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Direct numerical simulations (DNS) of turbulent fronts spreading into an irrotational flow
region are used to analyse the turbulent entrainment mechanism for viscoelastic fluids.
The simulations use the FENE-P fluid model and are initiated from DNS of isotropic
turbulence with Weissenberg and turbulence Reynolds numbers varying in the ranges
1.30 ≤ Wi ≤ 3.46 and 206 ≤ Re0

λ ≤ 404, respectively. The enstrophy dynamics near the
turbulent/non-turbulent interface (TNTI) layer, that separates regions of turbulent and
irrotational flow, includes a new mechanism – the viscoelastic production – caused by
the interaction between the vorticity field and the polymer stresses. This term can be a
sink or a source of enstrophy in the turbulent core region of the flow, depending on the
Weissenberg number, and contributes to the initial growth of the enstrophy in the viscous
superlayer, together with the viscous diffusion, which is the only mechanism present for
Newtonian fluids. For low and moderate Weissenberg numbers the scaling of the TNTI
layer is similar to the scaling of TNTI layers for Newtonian fluids, but this is no longer
the case at high Weissenberg numbers where the enstrophy tends to be concentrated into
thin vortex sheets instead of vortex tubes. Finally, it is shown that the substantial decrease
of the entrainment rates observed in turbulent flows of viscoelastic fluids, compared with
Newtonian fluids, is caused by a reduction of the surface area and fractal dimension of the
irrotational boundary, originated by the depletion of ‘active’ scales of motion in the fluid
solvent caused by the viscoelasticity.

Key words: viscoelasticity, shear layer turbulence, turbulence simulation

1. Introduction
The substantial reduction in wall friction exhibited by solutions of macromolecules
or of worm-like micelle surfactant solutions that exhibit viscoelastic characteristics,
has motivated a wealth of research following Toms’ report (Toms 1948) due to its
potentially important engineering applications. Recently, direct numerical simulations
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(DNS) of viscoelastic fluids have gained prominence in the search for physical insight
into this phenomenon, although being significantly more expensive than their equivalent
Newtonian DNS. The simulations are usually carried out for fluids described by the finitely
extensible nonlinear elastic constitutive equation (Bird et al. 1987), with the dumbbell
spring force described by the simplified Peterlin’s closure (Bird, Dotson & Johnson 1980),
henceforth denoted as the FENE-P model.

For obvious reasons, the majority of investigations of this problem have focused on wall
bounded flows e.g. (Li & Graham 2007; White & Mungal 2008; Graham 2014) but many
recent investigations of the effect of viscoelasticity on inertial turbulence have focused on
homogenous isotropic turbulence (HIT) where the absence of walls and inhomogeneities
allows for the investigation of the kinetic energy cascade mechanism in great detail (De
Angelis et al. 2005; Ouellette, Xu & Bodenschatz 2009; Li et al. 2012; Valente, da Silva
& Pinho 2014). In particular, the most recent investigations of HIT of polymer solutions
have shown a reduction of the classical (nonlinear) energy cascade flux with a concomitant
increase of the energy directly dissipated by the polymers (Valente et al. 2014). However, at
high Weissenberg numbers (defined as the ratio between the maximum polymer relaxation
time scale and the Kolmogorov time Wi = τp/τη) the polymers become incapable of
dissipating all the energy transferred from the large scales and deliver an increasingly
proportion of this energy into the small scales of the solvent, thus effectively creating
a polymer-induced energy cascade from the large into the small scales (Valente et al.
2014), and these changes in the energy transfer mechanisms are also accompanied by
modifications in the shape of the energy spectra, provided the Weissenberg number (Wi) or
Deborah number (De) are moderate, whereas a classical (−5/3) kinetic energy spectrum
shape is recovered for higher values of Wi (Valente, da Silva & Pinho 2016).

The present investigation is motivated by another problem in turbulence physics that
has not enjoyed the recent progress observed in the understanding of the polymer-induced
modifications to the turbulence dynamics in wall and HIT flows. It concerns the spreading
of a turbulent flow region into a region of irrotational flow for a viscoelastic fluid.
Specifically, if the turbulence is surrounded by a sea of irrotational fluid, how does
the propagation of the turbulence of polymer-laden fluid takes place? This problem is
linked to the mechanism of turbulent entrainment (TE) that governs the growth rates of
turbulent free-shear layers such as jets, mixing layers and wakes, and also boundary layers
(Townsend 1976). TE governs also the rates of mixing and heat transfer in these flows
and is therefore very important to many industrial applications. TE takes place across
a turbulent/non-turbulent interface (TNTI) layer, that separates the flow field into two
distinct regions: (i) a region where the flow is turbulent (T) and, (ii) a region where the flow
is irrotational (or non-turbulent – NT). The key variable associated with the mechanism
of TE is the vorticity field, since in the NT region the vorticity is zero, whereas in the
T region the vorticity is non-zero, and thus TE can be understood as the mechanism by
which fluid from the NT region is drawn into the T core region of the flow while crossing
the TNTI layer, and how it acquires vorticity in this process (da Silva et al. 2014a).

The detailed investigation of the TE (for a Newtonian fluid) has started in the late 1940s
with Townsend’s experiments (Townsend 1948) with much progress being achieved by
Corrsin & Kistler (1955), who provided the first examination of the physical processes
at the interfacial layer separating the turbulent flow region from the irrotational flow
region in jets and wakes. They proposed the existence of a very thin viscous dominated
layer, henceforth denoted the viscous superlayer (VSL), with a length scale comparable
to the Kolmogorov scale, between the two flow regions, associated with the diffusion of
vorticity from the turbulent region. This VSL has only been observed very recently and
is a continuous layer at the external interface separating the turbulent and non-turbulent
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flow regions, with a mean thickness of approximately 5η, where η is the Kolmogorov
micro-scale (Taveira & da Silva 2014). Many subsequent experimental and numerical
investigations led to the present understanding of the TNTI layer separating the two flow
regions as being composed of two sublayers: the VSL on the external side of the TNTI
layer, and a new layer (closer to the T region), designated as the turbulent sublayer (TSL)
(da Silva et al. 2014a). The TSL is associated with the sharp rise of vorticity across the
TNTI layer caused by the dominating effect of vorticity production by vortex stretching
(Holzner et al. 2007; da Silva & Pereira 2008, 2009). The thickness of this sublayer at
high Reynolds numbers has recently been shown to be one order of magnitude larger than
the Kolmogorov scale i.e. (Silva, Zecchetto & da Silva 2018). Thus, both sublayers ensure
the transition between the intense and zero vorticity regions characterising the turbulent
and non-turbulent regions, respectively.

Two mechanisms are identified as being responsible for the TE, with the consequent
transport of vorticity from the turbulent into the irrotational fluid region: engulfment and
nibbling. Engulfment refers to the large scale inviscid motion of the fluid into the turbulent
region caused by the large scale vortices near the interface, whereas nibbling is associated
with the small scale vorticity transfer taking place along the entire interface by a viscous
diffusion process. Engulfment was considered to be the dominating mechanism causing
the entrainment (Townsend 1966, 1976), however, it has been shown recently that, at least
for jets, nibbling is more important (Westerweel et al. 2005, 2009; Taveira et al. 2013).

While much attention has been given to the physics of TE in Newtonian fluids, much
less has been devoted to understanding TE for a viscoelastic fluid, despite its importance
to many industrial processes e.g. in mixers. Since dilute polymer solutions are known
to produce macroscopic changes in turbulent flows through the interactions between
the smallest velocity gradients and the polymer chains, it is natural to expect that the
entrainment in a viscoelastic fluid will be strongly affected by the viscoelasticity of the
fluid.

Liberzon et al. (2009) carried out measurements of a turbulent front spreading into
a region of still fluid for a (i) Newtonian (water) and (ii) a viscoelastic (dilute polymer
solution in water) fluid. He observed that the polymers modified the large scale shape of the
TNTI layer and that the entrainment velocity is lower for the polymeric solution than for
water. Cocconi et al. (2017) analysed the same flow case both experimentally and through
DNS using the FENE-P model, and concluded that a reduced vortex stretching near
the TNTI layer for the viscoelastic fluids explains the reduced entrainment and reduced
advancement of the turbulent flow region, compared with the Newtonian case. Recently,
Guimarães et al. (2020) has shown that turbulent viscoelastic jets exhibit significantly
smaller spreading rates than classical (Newtonian) turbulent jets, which also supports the
view of a reduced entrainment rate for viscoelastic turbulent shear flows compared with
similar types of Newtonian flows.

In the present work we intend to extend the present knowledge of certain aspects of
turbulent entrainment and of the dynamics of the TNTI layer for viscoelastic fluids, by
analysing DNS of a turbulent front expanding into an irrotational flow region, where the
fluid (in both flow regions) consists of a homogeneous dilute solution of long chained
(polymer) molecules dissolved into a Newtonian fluid (solvent), and is described by the
FENE-P rheological model. Specifically, we intend to analyse for a viscoelastic fluid (i)
the vorticity dynamics at the TNTI layer, (ii) the structure of the TNTI layer, (iii) the
geometry of the TNTI layer and (iv) the entrainment rate.

This paper is organised as follows: the next section (§ 2) describes the numerical
methods and the several simulations carried out in the present work. Sections 3 and
4 address the enstrophy and its governing mechanisms across the TNTI layer for
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viscoelastic fluids. Sections 5 and 6 describe the structure of the TNTI layer and the effects
of viscoelasticity in the TE. The work ends (§ 7) with an overview of the main results and
conclusions.

2. DNS of shear-free turbulent fronts in a viscoelastic fluid
The viscoelastic fluid simulated here consists of a Newtonian solvent carrying long
chain polymer molecules, that represent a small fraction of the total fluid i.e. a dilute
polymeric solution. To represent the rheological behaviour of the polymeric solutions,
we use the finitely extensible nonlinear elastic constitutive model closed with Peterlin’s
approximation (FENE-P model) proposed by Bird et al. (1980).

2.1. Governing equations
The flow field described by the FENE-P rheological model (Bird et al. 1980) is governed
by the continuity, momentum and rheological constitutive equations. The continuity
equation is the same as for incompressible Newtonian fluids

∂uj

∂xj
= 0, (2.1)

whereas the momentum equation is expressed as

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ

∂p
∂xi

+ 1
ρ

∂σij

∂xj
, (2.2)

where ui(x, t) is the velocity vector, ρ is the fluid density and p(x, t) is the pressure.
The extra-stress tensor σij represents the sum of the Newtonian (solvent) and polymer
contributions

σij ≡ σ
[s]
ij + σ

[p]
ij . (2.3)

The Newtonian (solvent) stress is given by Newton’s viscosity law

σ
[s]
ij = 2ρν[s]Sij, (2.4)

where ν[s] is the Newtonian kinematic viscosity, Sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the
rate-of-deformation tensor and β = ν[s]/(ν[p] + ν[s]) is the ratio between the solvent and
the total zero-shear-rate viscosity of the solution.

The ensembles of polymer chains are represented by a coarse-grained model, namely
the dumbbell model, in which two beads are connected by a nonlinear spring, in which
the two beads represent subsets of chains and the spring accounts for their interactions
(Bird et al. 1987). In this so-called FENE context, the polymer stress contribution for the
FENE-P fluid model is given by

σ
[p]
ij = ρν[p]

τp

[
f (Ckk)Cij − δij

]
, (2.5)

where τp is the longest relaxation time of the polymer, ν[p] is the polymer contribution to
the zero shear rate kinematic viscosity and Cij is the conformation tensor, that characterises
the rheological behaviour of an ensemble of polymer chains, and is defined as the
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second-order moment of the end-to-end vector connecting the ends of the polymer chain,
normalised by the square of its equilibrium length

〈
r2〉

0

Cij =
〈
rirj

〉
〈
r2

〉
0
, (2.6)

where
〈
r2〉 is the (squared) ensemble averaged length of the polymers (δij is the Kronecker

delta).
Finally, the Peterlin function is defined by

f (Ckk) =
(Lp)

2 − 3
(Lp)2 − Ckk

, (2.7)

where
√

Ckk is the square root of the trace of the conformation tensor, thus a measure of
its normalised extension length, while Lp is the normalised maximum extensibility of the
polymer chains.

The conformation tensor is governed by

DCij

Dt
≡

∂Cij

∂t
+ uk

∂Cij

∂xk
= Cjk

∂ui

∂xk
+ Cik

∂uj

∂xk
− 1

τp

[
f (Ckk)Cij − δij

]
, (2.8)

where the material derivative is on the left-hand side, the first two terms on the
right-hand side of (2.8) represent the production by velocity–polymer interactions
(polymer stretching/distortion) and the last term is associated with the storage of elastic
energy by the polymer molecules.

2.2. Numerical methods
The numerical code employed here has been used by the authors to simulate shear-free
turbulence (SFT) and a temporally developing planar jet for Newtonian fluids (Silva et al.
2018), and forced HIT in Newtonian and viscoelastic fluids described by the FENE-P
model (Teixeira & da Silva 2012; Valente et al. 2014).

The momentum equations for an incompressible fluid are integrated in a triple periodic
domain with N3 collocation points using a pseudo-spectral method (de-aliased with the
2/3 rule) and a third-order Runge–Kutta scheme in time. The transport equation for
the conformation tensor is solved using the central differences algorithm proposed by
Vaithianathan et al. (2006) based on the Kurganov–Tadmor method, which guarantees
that the conformation tensor remains symmetric and positive definite and avoids the need
to add artificial diffusion in (2.8). More details are given in Ferreira, Pinho & da Silva
(2017), Silva et al. (2018) and references therein.

2.3. Physical and computational parameters of the simulations
We carry out four DNS of SFT, i.e. of a turbulent front evolving into an irrotational flow
region, without the presence of mean shear, for a viscoelastic fluid, and an additional
Newtonian simulation is also used for reference. These types of simulation have been used
before by the authors for Newtonian fluids using a procedure that has now been extensively
described in Silva et al. (2018) and references therein, and that has been applied to the
case of viscoelastic fluids. The simulations begin from statistically stationary (forced) HIT
simulations of viscoelastic fluids similar to the ones recently published by the authors and
described in e.g. Valente et al. (2014) and Ferreira et al. (2017).
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Wi Wi0 τp Reλ Re0
λ u0 l0 K ε[s] ε[p] λ η kmaxη

0

×10−3

(Newt.) — — 103 181 2.64 0.63 4.72 5.92 — 0.14 6.73 1.5
1.30 1.41 0.025 98 206 2.66 0.63 7.07 6.23 2.74 0.11 6.65 1.6
1.89 2.07 0.050 128 278 2.60 0.67 6.25 3.29 5.22 0.15 7.80 1.9
2.81 2.98 0.100 192 366 2.54 0.72 6.57 1.82 6.17 0.23 9.04 2.2
3.46 4.44 0.200 139 404 2.33 0.82 3.80 0.68 4.38 0.25 11.53 2.6

Table 1. Physical and computational parameters of the reference (Newtonian – ‘Newt.’) and viscoelastic DNS.
Variables with superscript ‘0’ are taken at the HIT instant before the start of the SFT simulation, while variables
without this superscript correspond to the instant used in the analysis (computed inside the turbulent core
region): Weissenberg number (Wi); initial (HIT) Weissenberg number (Wi0); maximum relaxation time of the
polymer molecules (τp); Reynolds number based on the Taylor scale (Reλ); initial (HIT) Reynolds number
based on the Taylor scale (Re0

λ); initial (HIT) root-mean-square (r.m.s.) velocity fluctuations (u0); initial (HIT)
integral scale (l0); turbulent kinetic energy (K); solvent viscous dissipation rate (ε[s]); polymer dissipation
rate (ε[p]); Taylor micro-scale (λ); Kolmogorov micro-scale (η); initial (HIT) maximum effective wavenumber
(kmax) normalised by the initial Kolmogorov micro-scale (kmaxη

0). SI units have been used for all dimensional
quantities.

For all the simulations the computational domain size extends to 2π × 2π × 2π and
is represented by (Nx × Ny × Nz) = (768 × 768 × 768) collocation points, which, to
the authors knowledge, make these viscoelastic fluid (FENE-P) simulations the biggest
published until now. Table 1 summarises the main physical and computational parameters
of the simulations. All simulations use the same kinematic viscosity of the solvent ν[s] =
0.0023 and the four viscoelastic simulations differ in the maximum relaxation time of
the polymer molecules which is equal to τp = [0.025, 0.05, 0.100, 0.200] s. This imposes
the Weissenberg number, which is defined as the ratio between the maximum polymer
relaxation time scale and the Kolmogorov time Wi = τp/τη, where for the viscoelastic
cases τη = (ν[s]/ε[s])1/2. The polymer concentration and maximum extensibility of all the
simulations are equal to β = 0.8 and (Lp)

2 = 1002, respectively.
The SFT simulations start from DNS of (forced) HIT, and subsequently, a shear-free

boundary between a turbulent and a non-turbulent flow region is generated by
instantaneously inserting this initial HIT into the middle of a quiescent flow. Specifically,
the SFT simulations are done in two steps. The first one consists in the generation of a
forced homogeneous isotropic field by using a forcing scheme (Alvelius 1999) with a peak
forcing concentrated in three wavenumbers centred at kp = 3, with a total power input
equal to P = 10. In table 1 all the variables with the superscript ‘0’ are taken from the
(statistically stationary) HIT instant, at the end of this first step, while the other variables
e.g. the Taylor λ, and Kolmogorov micro-scales η, are computed from the data inside the
turbulent core region of the flow.

Subsequently, part of the HIT velocity field taken from the centre of the computational
domain (|y| ≤ π/4), (the origin of the coordinate system is (x, y, z) = (0, 0, 0)), is inserted
into a new 2π × 2π × 2π computational box, with quiescent (zero velocity fluid), and
Cij = δij (for the viscoelastic cases), through a smoothing (hyperbolic tangent) profile
(see Silva et al. (2018) for more details). With this initial field the actual SFT simulation
is initiated, consisting of a central turbulence region that expands into the two adjacent
irrotational regions in the absence of mean shear or of any forcing.

These SFT simulations were originally conceived by Perot & Moin (1995) (for
Newtonian fluids), and were for the first time applied in DNS of viscoelastic fluids
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by Cocconi et al. (2017). This artificial initialisation generates initial discontinuities in
the velocity components in the two planes defined by y = ±π/4, however, the pressure
redistributes the energy among the velocity components very quickly, so that at the end
of the first iteration the velocity field is divergence free. Perot & Moin (1995) observed
that the key to eliminating the initial velocity discontinuities is by drastically reducing the
initial time step of the second phase in these simulations.

After a number of (500) initial iterations, the SFT simulations are allowed to evolve
further using the typical time step of the earlier HIT simulations, consisting of a central
turbulent region, where the turbulence slowly decays, spreading into the non-turbulent
flow region in the absence of mean shear. The subsequent analysis of the flow is carried
out using only a single instantaneous field from each SFT simulation, where the flow
variables have already evolved from their initial HIT values (see table 1), and where it was
checked that the periodic boundaries have no influence on the development of the SFT,
since the computational box is large enough. The next section describes how the statistics
from the turbulent fronts are obtained.

3. Enstrophy profiles across a TNTI layer in a viscoelastic fluid
In order to investigate the detailed dynamics of the enstrophy across the TNTI layer a
new metric is needed without the usual limitations of the classical statistics where, due
to the highly convoluted shape of the interface, the statistics of a given flow quantity
computed using spatial averages at a fixed position contain samples from both turbulent
and non-turbulent events, which limits the analysis of the flow variable near the TNTI.

In order to circumvent this limitation we use conditional statistics in relation to the
distance from a particular position within the TNTI layer. This procedure has been
extensively used in many previous works and is only briefly described here (see e.g. Silva
et al. (2018) and references therein).

3.1. Detecting the irrotational boundary
Since by definition the irrotational region has no vorticity the TNTI layer is defined in
terms of the vorticity/no-vorticity content of the flow. In practice one looks for a low
vorticity magnitude threshold ωth, below which the flow region can be considered to be
(approximately) irrotational.

The procedure to obtain these conditional statistics starts with the detection of the
irrotational boundary (IB) which corresponds to a low vorticity iso-surface, with vorticity
magnitude equal to (ωiωi)

1/2 = ωth that defines the outer surface of the TNTI layer, in a
procedure developed by Taveira et al. (2013).

It turns out that, in many flows with TNTI, many statistics related to the position of the
interface layer (e.g. conditional vorticity profiles in relation to the distance from the TNTI,
the geometric shape of the TNTI) are insensitive to the particular value assumed by ωth to
define a reference position within the TNTI layer. This is true, provided ωth is taken from
a range of values where from, by changing ωth, the position of this reference value within
the TNTI layer remains virtually the same.

This is well illustrated in figure 1 which shows the volume fraction of the flow defined
as turbulent (VolT(ωth)), whenever the local vorticity magnitude (ωiωi)

1/2 is greater than
ωth, for all the DNS used in the present work. It is clear that for a range of values of ωth,
1 ! ωth ! 10 i.e. while varying ωth by approximately one order of magnitude, VolT(ωth)
changes very slowly, exhibiting a near plateau region. Similar profiles of VolT(ωth) have
been observed in TNTI from many different flow types, e.g. da Silva, Taveira & Borrell
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10–1
0

0.5

1.0

100 101 102

|ω|

VolT

103

Wi = 3.46

Wi = 2.81

Wi = 1.89

Wi = 1.30

Newt.

Figure 1. Turbulent volume fraction (VolT ) as function of the vorticity magnitude threshold |ω|, for all the
DNS used in the present work, at the instants used in the subsequent SFT analysis. The vertical lines represent
the detected thresholds for each case, obtained with the second derivative method i.e. d2VolT/d|ω|2(ωth) = 0
(see main text for details).

(2014b), which reflects the ‘sharpness’ of the TNTI, which was clearly apparent even from
the early visualisations of this layer, e.g. Silva et al. (2018) observed that changing ωth by
more than 2 orders of magnitude resulted in this reference position moving about ≈ 1η.

The particular value of ωth used for each simulation is obtained from d2VolT/d|ω|2
(ωth) = 0 and is represented by a vertical line in figure 1, but it must be stressed that
any other value taken from the same plateau of constant, or slowly evolving, VolT(ωth),
results in virtually the same conditional statistics. The computation of ωth using the above
procedure can be difficult for some cases because the function VolT(ωth) may exhibit small
scale oscillations for small values of ωth. In these cases one may need to apply a filter to the
function VolT(ωth) before computing d2VolT/d|ω|2. No filtering was needed in the present
cases.

Figure 2 shows iso-surfaces of vorticity magnitude corresponding to the several
simulations analysed in the present work. The IB corresponding to the Newtonian case
(figure 2a) exhibits the typical features that have been observed in IB from many other
flows (da Silva et al. 2014b). The IB is highly convoluted and exhibits a number of crests
and troughs, spanning a range of large and small scales, which are imposed from the
turbulent characteristics of the turbulent flow region. For the other (non-Newtonian) cases
the size of the largest scales imprinted in the IB seems to increase as the Weissenberg
number increases. This reflects the important modifications that the flow experiences due
to the viscoelastic effects of the fluid, both from inside the turbulent core region of the
flow, as well as from within the TNTI layer, as we will discuss below. In particular,
the increasing size of the large scale convolutions of the IB reflects the increase of
the turbulent integral scale of the flow as Wi increases, as observed in Valente et al.
(2014). The values of l0 in table 1 support this view. The increase of the integral scale
of turbulence for a viscoelastic fluid, when compared with a Newtonian reference case,
has been documented before in Liberzon et al. (2009) who compared turbulent fronts of
water and of a viscoelastic fluid. In these experiments the integral scale was observed
to have increased by approximately 30 % in the viscoelastic fluid (compared with water).
This is precisely the increase of l0 we observe here when comparing the Newtonian and
the viscoelastic case with the highest Weissenberg number (see table 1).
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(e)

(b)(a)

(c) (d )

Figure 2. Top view iso-surfaces of the IB, detected with the vorticity magnitude equal to the selected threshold
(|ω| = ωth) for all the DNS used in the present work, at the instant used in the analysis: (a) Newtonian reference
case; (b) Wi = 1.30; (c) Wi = 1.89; (d) Wi = 2.81; (e) Wi = 3.46.

3.2. Conditional statistics in relation to the TNTI layer
In the present work we compute statistics in relation to the distance from the ‘real’ IB
surface, and not its envelope, which has been used in the great majority of the previous
works dealing with the TNTI layer. Figure 3(a) shows contours of enstrophy in a side view
of the entire flow domain in the (x, y) plane, for the Newtonian reference simulation. In
the turbulent core region (TR) the enstrophy is above the enstrophy threshold detected,
as explained in the previous section (ω > ωth), whereas the irrotational region (IR) is
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IR
(ω < ωth)

(ω = ωth)

yI < 0

yI = 0 IB

yI > 0

Envelope

Interface

n

IR
(ω < ωth)

TR
(ω > ωth)

(a) (b)

Figure 3. Sketch of the procedure used to compute the conditional statistics in relation to the position of the
IB for the Newtonian reference simulation. (a) Contours of enstrophy in a (x, y) plane showing the entire
flow domain. The IB is represented by a solid dark line, which separates the TR and the IR flow regions;
(b) magnification of a flow region near the TNTI layer showing the IB (solid dark line) and the IB interface
(dashed white line). The figure shows also the local axis (normal to the local IB) that is used to collect the flow
statistics in relation to the IB position. The origin of this axis coincides with the IB (yI = 0) and the coordinates
with yI > 0 and yI < 0 correspond to the turbulent and irrotational flow regions, respectively. The figure shows
also that points from a nearby hole of non-turbulent flow within the turbulent region are not accounted for in
the conditional statistics of the turbulent region.

represented by flow points below this threshold (ω < ωth). The IB is represented by a
solid dark line and corresponds to points with ω = ωth.

Figure 3(b) shows the difference between the ‘true’ IB, which is used here to compute
the conditional statistics, and the envelope of the IB. The local enstrophy gradient is used
to define a three-dimensional (3-D) normal at each point of the IB, in the upper and lower
shear layers, and any flow quantity of interest is collected into a grid defined on this
3-D axis at fixed distances yI , using a trilinear interpolation. The orientation of this 3-D
normal is such that yI < 0 and yI > 0 correspond to the irrotational and turbulent regions,
respectively (the IB is located at yI = 0). We denote the mean of a general quantity φ
computed with this procedure as ⟨φ⟩I .

As in Westerweel et al. (2009), points belonging to bubbles of irrotational flow
within the turbulent region, and islands of turbulent flow inside the non-turbulent region,
are automatically discarded from the statistical sample. In the present work, a single
instantaneous field is used to compute the conditional statistics corresponding to each
individual simulation, which is sufficient to obtain a good level of convergence of the
desired quantities because of the large number of grid points available.

3.2.1. Conditional profiles of mean enstrophy and mean trace of the conformation tensor
Figure 4(a,b) shows the conditional mean profiles of vorticity magnitude

〈
(ωiωi)

1/2〉
I

and (normalised) trace of the conformation tensor, ⟨Ckk⟩I /(Lp)
2, for each one of the

simulations used in the present work. The distance to the IB is normalised with the size of
the initial turbulent region H.

In the Newtonian simulation the vorticity magnitude is virtually zero in the
non-turbulent region and tends to a near constant value inside the turbulent core region,
after experiencing a very sharp jump right after the IB position (0 ≤ yI/H ≤ 0.05).
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Figure 4. Conditional mean profiles of (a) vorticity magnitude
〈√

ωiωi
〉
I and (b) (normalised) trace of the

conformation tensor, ⟨Ckk⟩I /(Lp)
2, as a function of the distance from the IB position, for all the DNS used in

the present work, at the instant used in the analysis.

This jump occurs inside the TNTI layer, whereas the smaller vorticity increase observed
afterward (yI/H > 0.05) is associated with large scale inhomogeneities in the turbulent
core region (Zecchetto & da Silva 2021). Similar conditional enstrophy profiles have been
reported in many different shear flows, including jets, mixing layers and boundary layers
(e.g. Bisset, Hunt & Rogers 2002; Westerweel et al. 2005; Holzner et al. 2007; Watanabe,
da Silva & Nagata 2019).

Comparing these profiles for all the simulations used in the present work one observes
that as Wi increases the enstrophy magnitude in the turbulent core region decreases. This
result reflects one of the well-known effects of viscoelasticity in turbulent flows, namely
that it depletes the turbulence at the small scales of motion (Valente et al. 2014), a fact that
is clearly apparent from the values of solvent viscous dissipation ε[s] listed in table 1. For
the Newtonian case the vorticity magnitude inside the turbulent core region ω′ =

√
⟨ωiωi⟩I

is well approximated by the relation ω′ ∼ τ−1
η , where τη = (ν/ε)1/2 is the Kolmogorov

time scale (Zecchetto & da Silva 2021). Note that the same relation holds in the viscoelastic
cases if we replace ε and ν by ε[s] and ν[s], respectively i.e. ω′ ∼ (ε[s]/ν[s])1/2. However,
for high Wi the theory of Lumley (1973) can be employed to estimate ω′. In short, at high
Wi the fluctuating polymer stresses and velocity gradients are strongly ‘coupled’ for length
scales r below a scale r∗, known as Lumley’s scale, so that the time scale of the flow τ (l),
associated with a given eddy size l, is imposed by the polymers relaxation time scale,
τ (l) ∼ τp. By using the inertial range scaling for the velocity scale u(l) ∼ (ε[s]l)1/3, and
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since τ (l) ∼ l/u(l), one obtains Lumley’s length and velocity scales, r∗ =
√

ε[s]τ 3
p and

u∗ =
√

ε[s]τp, respectively. Since for high Wi the smallest time scale is τp, the vorticity
magnitude should scale as ω′ ∼ τ−1

p . This relation is reasonably well observed in the
present data for the highest Wi, and explains why the vorticity magnitude in the turbulent
core region of the flow decreases as Wi (and τp) increases. Apart from this, it is difficult to
observe the effects of viscoelasticity in the details of the enstrophy jump across the TNTI
layer, since the magnitude of the enstrophy jump at the interface and the thickness of this
jump are not clearly dependent on the value of Wi.

The conditional mean profiles of trace of the conformation tensor, ⟨Ckk⟩I /(Lp)
2 are

also virtually zero (actually 3/(Lp)
2) in the non-turbulent region and display a constant or

slowly evolving growth in the turbulent region. Since this quantity is proportional to the
elastic energy stored in the polymer molecules the fact that ⟨Ckk⟩I /(Lp)

2 increases with Wi
is consistent with the behaviour of the enstrophy. Specifically, because part of the kinetic
energy in the energy cascade is diverted into the polymer molecules, as Wi increases,
less energy is directly dissipated by the solvent and more is diverted to the polymers for
storage/dissipation. The conditional mean profiles of the trace of the conformation tensor
display also a sharp jump after the IB for all the simulations used in the present work,
but have an associated thickness that seems to be slightly larger than the thickness of
the corresponding enstrophy jump. This may imply that, compared with the enstrophy,
the viscoelastic mechanisms need more time to adjust to the dramatic inhomogeneity
characteristic of TNTIs.

In the next section we address the detailed enstrophy budgets across the TNTI in order
to understand this interplay between the solvent and polymer dynamics within TNTI layers
from viscoelastic fluids.

4. Enstrophy budgets in TNTIs of viscoelastic fluids
By applying the curl operator to (2.2) and after multiplying by the vorticity vector ωi =
ϵijk∂uk/∂xj we obtain the equation governing the enstrophy Ω = ωiωi/2 for a viscoelastic
fluid

D
Dt

(ωiωi

2

)

︸ ︷︷ ︸
TΩ

= ωiωjSij︸ ︷︷ ︸
PΩ

+ ν[s] ∂2

∂xj∂xj

(ωiωi

2

)

︸ ︷︷ ︸
DΩ

− ν[s]
(

∂ωi

∂xj

∂ωi

∂xj

)

︸ ︷︷ ︸
εΩ

+ωiϵnji
∂2σ

[p]
mj

∂xm∂xn︸ ︷︷ ︸
VΩ

, (4.1)

where the first three terms on the right-hand side of (4.1) represent the total variation
of enstrophy (TΩ ), caused by enstrophy production (PΩ ), viscous diffusion (DΩ ) and
viscous dissipation (εΩ ), respectively. The last term represents the viscoelastic production
resulting from the interactions between the vorticity field and the viscoelastic stresses, and
is absent in classical (Newtonian) turbulence.

Figure 5 shows the conditional enstrophy budgets, obtained by averaging all the terms
in (4.1) in relation to the distance from the IB, for all the simulations used in the present
work. As in figure 4 the IB is located at yI/H = 0 and the non-turbulent and turbulent
regions are at yI < 0 and yI > 0, respectively.

The enstrophy budgets for the Newtonian case (figure 5a) are similar to the ones
observed in numerous other works (da Silva et al. 2014a): all the enstrophy governing
terms are virtually zero in the non-turbulent region yI/H < 0, while deep inside the
turbulent core region (yI/H " 0.3) the enstrophy production and viscous dissipation
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Figure 5. Conditional enstrophy budgets for all the simulations used in the present work, obtained by averaging
all the terms in (4.1) in relation to the distance from the IB as described in § 3.2.1: thin/solid/dark line – total
variation (TΩ ); long dashed/blue line – enstrophy production (PΩ ); dashed/green line – viscous diffusion (DΩ );
dotted/magenta line – viscous dissipation (εΩ ); solid/red line – viscoelastic production (VΩ ). The IB is located
at yI/H = 0 and the non-turbulent and turbulent regions are at yI < 0 and yI > 0, respectively. The distance
from the IB (yI) is normalised by the size of the initial turbulent region H: (a) Newtonian (reference) case; (b)
Wi = 1.30; (c) Wi = 1.89; (d) Wi = 2.81; (e) Wi = 3.46.

roughly balance ⟨PΩ⟩I ≈ ⟨εΩ⟩I , and the viscous diffusion is negligible ⟨DΩ⟩I ≈ 0. It
is noteworthy that, in the turbulent core region and for the Newtonian and low Wi
cases, the enstrophy production normalised by the Kolmogorov time scale is PΩτ 3

η =
PΩ/(uη/η)3 ≈ 0.2, which is the same observed for a Newtonian fluid (Zecchetto & da
Silva 2021), where in the viscoelastic cases the Kolmogorov time scale is computed as
described before, τη = (ν[s]/ε[s])1/2. This relation falls to PΩτ 3

η ≈ 0.12 for the highest
Wi case, likely due to the decrease in the alignment between the vorticity and strain
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induced by the viscoelasticity (Cocconi et al. 2017). When moving from the non-turbulent
into the turbulent region the enstrophy increases initially (yI/H ≈ 0.01) by viscous
diffusion, which is the most important term at that location ⟨DΩ⟩I ≫ ⟨PΩ⟩I , while later
on (0.01 ! yI/H ! 0.03) enstrophy production takes over, ⟨PΩ⟩I ≫ ⟨DΩ⟩I . The slower
increase observed in the enstrophy production ⟨PΩ⟩I between 0.1 ! yI/H ! 0.3 is caused
by the adjustment of the flow to large scale inhomogeneities (Zecchetto & da Silva
2021).

In the viscoelastic cases (figure 5b–e) a new term exists – viscoelastic production
(VΩ ) – which adds new complexity to the mechanism of enstrophy increase across the
TNTI layer. The first observation regarding this term is that its source/sink nature (mean
positive/negative) inside the turbulent core region depends on the Weissenberg number.
Whereas the viscoelastic production is negative, and thus tends to decrease the mean
value of enstrophy in the turbulent core region, for Wi = 1.30 and Wi = 1.89, it becomes
positive (increasing the mean value of enstrophy) for Wi = 2.81 and Wi = 3.46. Moreover,
the mean value of ⟨VΩ⟩I well inside the turbulent core, seems to be a monotonic increasing
function of Wi for all the cases considered. We recover ⟨VΩ⟩I = −3998.0, −1380.0, 457.3
and 598.5 at yI/H = 0.67 for the cases with Wi = 1.30, 1.89, 2.81 and 3.46 respectively.
Furthermore, for the simulation with the highest value of Wi the viscoelastic production is
as important as the production by vortex stretching, ⟨VΩ⟩I ≈ ⟨PΩ⟩I .

This changing nature of VΩ , i.e. its dependence on Wi, is certainly linked with the
modified energy cascade mechanism that exists in viscoelastic turbulence (compared with
Newtonian turbulence) and which changes with the Weissenberg number. As described in
e.g. Valente et al. (2014, 2016) for low values of Wi the kinetic energy spectrum exhibits
a classical Kolmogorov–Obukhov inertial range E(k) ∼ k−5/3, which is recovered also at
very high values of Wi, while for intermediate values of Wi the kinetic energy spectrum
displays an inertial–elastic region with E(k) ∼ k−3. The rational for this behaviour is the
following. While at low Wi the energy cascade mechanism remains similar to Newtonian
turbulence, although with an additional dissipation mechanism caused by the polymer
molecules, at very high values of Wi the solvent and polymer dynamics are totally
de-correlated, because the energy input created by the large scales of motion is transferred
into the polymers at large scales. However, for intermediate values of Wi, a fraction of
the energy injected by the large scales of motion into the solvent is transferred and stored
in the polymers, thereby decreasing the ‘activity’ in the intermediate and small scales of
motion in the solvent.

In agreement with the energy cascade picture described above, figure 5(b,c)
corresponding to low Wi, shows that adding the polymer molecules results in a new
(additional) dissipation mechanism, as shown by the negative value of the viscoelastic
production (VΩ ). In contrast, for very high values of Wi, figure 5d,e), the enstrophy
production becomes positive, which is consistent with the mechanism described in Valente
et al. (2014), where the energy cascade is altered by the existence of a new mechanism
in which the polymers gain energy from the flow at small scales but cannot dissipate
this extra energy and inject it back into the solvent dissipative scales. It is interesting
to observe, however, that for all cases, even for low Wi where we have ⟨VΩ⟩I < 0, in the
turbulent core region, the viscoelastic production is always positive at the IB i.e. ⟨VΩ⟩I ≥ 0
at yI/H ≈ 0. This result is interesting because it suggests that the mechanisms influencing
the viscoelastic production may work differently inside the TNTI layer and in the turbulent
core region.

In order to analyse this in more detail figure 6 shows the probability density functions
(p.d.f.s) of the several terms governing the enstrophy (4.1) for the two limiting viscoelastic
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Figure 6. The p.d.f.s of the several terms governing the enstrophy transport equation (4.1) for the viscoelastic
simulations with Wi = 1.30 (a–c) and Wi = 3.46 (d– f ), at several locations within the TNTI layer: (a,d) at
the VSL (in the point of maximum enstrophy viscous diffusion); (b,e) at the TSL (in middle of the region of
growing enstrophy production); and at the turbulent core region (c, f ).

simulations – Wi = 1.30 and Wi = 3.46 – at several locations within the TNTI: at the VSL,
at the TSL, and inside the turbulent core region.

As expected the general shape of the p.d.f.s of enstrophy production and viscous
dissipation (PΩ and εΩ ) do not change while crossing the TNTI layer i.e. when moving
from the IB into the turbulent core region: the p.d.f. of the dissipation is always negatively
skewed (indeed all instantaneous values of εΩ are negative), whereas the p.d.f.s of
PΩ is positively skewed, with a predominance of production by vortex stretching over
dissipation by vortex compression. Also, the p.d.f. of enstrophy diffusion changes from
being positively skewed in the VSL into being negatively skewed in the TSL and in the
turbulent core regions, which implies a viscous transport of enstrophy from the turbulent
core region into the non-turbulent region. The behaviour of the viscous diffusion in the
present viscoelastic TNTIs is then similar to virtually all reported TNTIs of Newtonian
fluids (da Silva et al. 2014a). Thus, the viscoelasticity does not affect, at least in a direct
way, the behaviour of the other enstrophy governing equation terms, apart from decreasing
the magnitude of each one of these terms as Wi increases.

Recall that the p.d.f.s of the terms governing (4.1) have been analysed in isotropic
turbulence by Cai, Li & Zhang (2010), and that the shape of the present p.d.f.s (in the
turbulent core region – figure 6c– f ), as well as their dependence on Wi closely resemble
the ones from Cai et al. (2010), including the fact that increasing Wi results on a depletion
of the activity in the small scales of motion, and a concomitant decrease in the frequency
of the extreme events in these terms.

In contrast the shape of the p.d.f. of the viscoelastic production term (VΩ ) changes both
with the position within the TNTI layer and with Wi. As expected from the conditional
mean values of VΩ analysed above, for the lower Wi values e.g. Wi = 1.30 (figure 6b,c)
and Wi = 1.89 (not shown) the viscoelastic production is negative both in the TSL and in

934 A36-15

C
9

/2
32

:
C

C
C

 1
/:

0
72

53
 

5
1

3 
.

7
3

72
/2

3
2

,/
/

0
31

3
/:

0
72

53
3

3
:

3
/

/7
9/

09
3

/
C

C
C

 1
/:

0
72

53
 

5
1

3
3

:
 

2
7 

5
 

:
 

 

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.1139


H. Abreu, F.T. Pinho and C.B. da Silva

–5

5

10 –1

–2

–3

–4

–5

15 0

0

5 10 15
T

Ω
/σ

D
Ω
/σ

0 –5

5

10 –1

–2

–3

–4

–5

15 0

0

5 10 15
T

Ω
/σ

0 –5

5

10 –1

–2

–3

–4

–5

15 0

0

5 10 15
T

Ω
/σ

0

(b)(a) (c)

Figure 7. The j.p.d.f.s of enstrophy variation (TΩ ) and enstrophy viscous diffusion (DΩ ) at the VSL for the
simulations with (a) Wi = 0 (Newtonian), (b) Wi = 1.30 and (c) Wi = 3.46. The variables are centred and
normalised by their r.m.s. values. In these and all the other j.p.d.f.s of this paper the lower limit of the iso-lines
displayed corresponds to the level 10−5, and the j.p.d.f.s are normalised so that

∫∫
p(x, y) dx dy = 1.

the turbulent core region of the flow, causing therefore a decrease of enstrophy in the flow
at these locations. In contrast, for the higher Wi VΩ is always positively skewed.

However, for all (low and high) values of Wi the p.d.f. of VΩ is always positively skewed
at the IB (yI/H = 0 – not shown) and also inside the VSL (figure 6a,d) i.e. even though
VΩ can represent either a source or a sink of the total enstrophy in the turbulent core region
of the flow, depending on Wi, the positive (source) contributions always dominate close to
the IB, showing that the mechanisms of the viscoelastic production are somehow affected
by the peculiar dynamics of the flow near the IB.

Again, while the changing nature of the viscoelastic production inside the turbulent core
region of the flow, i.e. its Wi dependence, can surely be attributed to the changing energy
cascade mechanism described above when discussing the mean value of this quantity
⟨VΩ⟩I , this cannot explain what happens near the IB or in the VSL, since no true kinetic
energy cascade exists at these locations (Watanabe et al. 2019). The particular dynamics
of the flow near the IB must be somehow responsible for this particular feature of the
viscoelastic production.

In order to assess this further the following figures show joint probability density
functions (j.p.d.f.) of several of the terms governing the enstrophy at several locations
inside the TNTI layer. The j.p.d.f.s between the total variation (TΩ ) and viscous diffusion
(DΩ ) (figure 7), and between total variation (TΩ ) and production (PΩ ) (figure 8)
essentially show that the same results already described in Taveira et al. (2013) for a
Newtonian fluid, are also valid for the present viscoelastic flow. Specifically, that moving
from the non-turbulent into the turbulent region, the enstrophy increases initially (in the
VSL) by the action of viscous diffusion and latter (in the TSL) by vortex stretching. The
new results obtained for the viscoelastic cases show only a mild effect of Wi on these facts,
and suggest that as Wi increases the enstrophy viscous diffusion (inside the VSL) and the
enstrophy production (inside the TSL), contribute slightly less to the growth of the total
enstrophy, as Wi increases.

Figure 9 shows the j.p.d.f. between the total variation (TΩ ) and the viscoelastic
production (VΩ ). The slight positive correlation between the two quantities attests that
this mechanism indeed contributes to the growth of enstrophy right at the IB position
(yI/H = 0), and the next sets of three figures show the evolution of these j.p.d.f.s across
the TNTI layer for Wi = 1.30 (figure 10) and Wi = 3.46 (figure 11). The j.p.d.f.s at the VSL
confirm the result observed at the IB for both simulations Wi = 1.30 and 3.46, showing a
more well-defined positive correlation between TΩ and VΩ . However, it is clear that the
shapes of the j.p.d.f.s at the TSL for Wi = 1.30 (figure 10b) and Wi = 3.46 (figure 11b)
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Figure 8. The j.p.d.f.s of enstrophy variation (TΩ ) and enstrophy production (PΩ ) at the turbulent superlayer
(TSL) for the simulations with (a) Wi = 0 (Newtonian), (b) Wi = 1.30 and (c) Wi = 3.46. The variables are
centred and normalised by their r.m.s. values.
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Figure 9. The j.p.d.f.s of enstrophy variation (TΩ ) and viscoelastic production (VΩ ) at the IB for the
simulations with (a) Wi = 1.30 and (b) Wi = 3.46. The variables are centred and normalised by their r.m.s.
values.
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Figure 10. The j.p.d.f.s of enstrophy variation (TΩ ) and viscoelastic production (VΩ ) for the simulation with
Wi = 1.30, at the VSL (a); TSL (b) and turbulent core region (c). The variables are centred and normalised by
their r.m.s. values.

are qualitatively different. Whereas for Wi = 1.30 the correlation between TΩ and VΩ

comes from negative values of both quantities i.e. the enstrophy decreases due to negative
values of VΩ (see figure 10b), for Wi = 3.46 it clearly comes from positive values of
both quantities (see figure 11b). The same is true in the turbulent core region, although
the correlation between TΩ and VΩ seems to be always stronger for Wi = 3.46 than for
Wi = 1.30.

To summarise, the analysis of the terms governing the enstrophy equation (4.1) across
the TNTI layer show that in viscoelastic fluids a new term exists – the viscoelastic
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Figure 11. The j.p.d.f.s of enstrophy variation (TΩ ) and viscoelastic production (VΩ ) for the simulation with
Wi = 3.46, at the VSL (a); TSL (b) and turbulent core region (c). The variables are centred and normalised by
their r.m.s. values.

production – that contributes significantly to the dynamics of the enstrophy in the layer (as
in the turbulent core region). While this term can be positive or negative in the turbulent
core region, depending on Wi, it is consistently positive near the IB and within the VSL.
Thus, the mechanism of enstrophy generation across the TNTI layer is different to the one
observed in Newtonian fluids, and this may have an impact on the structure of the TNTI
layer itself. This issue is addressed in the next section.

5. The structure of the TNTI layer for viscoelastic flows
As described in the introduction the structure of the TNTI layer in Newtonian fluids
has been extensively analysed. Its definition is based on the relative importance of the
two mechanisms driving the growth of the enstrophy from the non-turbulent region into
the turbulent core region of the flow. The TNTI layer is comprised of two sublayers:
the viscous superlayer (VSL) where the viscous diffusion dominates, and the turbulent
sublayer (TSL) where the production by vortex stretching becomes dominant (see Silva
et al. (2018) and references therein).

Since the TNTI layer in viscoelastic flows has an additional new physical mechanism
due to the interaction between the vorticity and polymer stresses (viscoelastic production,
VΩ ), it is important to analyse whether the classical (Newtonian) structure of the TNTI
layer holds also in viscoelastic flows, or if, on the contrary, the new mechanism leads to
the emergence of a sublayer within the TNTI layer.

To clarify this, figure 12 shows the conditional enstrophy budgets for the Newtonian
(reference) simulation, and for the simulations with Wi = 1.30 and Wi = 3.46, indicating
the extents of the VSL and TSL, which added together define the total extent of the TNTI
layer. The Newtonian case (figure 12a) allows one also to recall the exact definitions used
for the two sublayers: the VSL is defined as the distance from the IB to the point where
the enstrophy viscous diffusion crosses the enstrophy production, DΩ = PΩ , while the
TSL is defined as the distance between this point and the location of the first maximum
of enstrophy (which is not shown in figure 12). As in Silva et al. (2018) we define the
boundary between the VSL and TSL by the point where the enstrophy viscous diffusion
intersects the enstrophy production, DΩ = PΩ .

Looking into the enstrophy budgets for the case Wi = 1.30 it is clear that the conditional
mean viscoelastic production, VΩ , never overtakes any of the other enstrophy equation
terms, since the mean profile of this term is always slightly negative (except at the IB).
For Wi = 3.46 the viscoelastic production closely follows the production by vortex
stretching, PΩ ≈ VΩ , until yI/H ≈ 0.04 without ever becoming more important.
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Figure 12. Conditional mean profiles of the terms in (4.1) showing the extent of the VSL, TSL and the total
extent of the TNTI layer, for the simulations with: (a) Newtonian fluid; (b) Wi = 1.30; (c) Wi = 3.46. The
colours and line types for each term are the same as in figure 5 e.g. the viscoelastic production (VΩ ) is
represented in solid/red line.

Wi ⟨δTNTI⟩ /H ⟨δVSL⟩ /H ⟨δTSL⟩ /H ⟨δTNTI⟩ /η ⟨δVSL⟩ /η ⟨δTSL⟩ /η

(Newt.) 0.042 0.012 0.030 9.72 2.73 6.99
1.30 0.061 0.012 0.049 14.46 2.77 11.69
1.89 0.068 0.013 0.055 13.64 2.62 11.02
2.81 0.039 0.018 0.021 6.79 3.17 3.62
3.46 0.046 0.024 0.022 6.21 3.19 3.02

Table 2. Mean thickness of the VSL ⟨δVSL⟩, TSL ⟨δTSL⟩ and the total extent of the TNTI layer ⟨δTNTI⟩, for the
simulations with Newtonian and viscoelastic fluids analysed in the present work. The several mean thicknesses
are normalised by the size of the initial turbulent region (H) and by the Kolmogorov micro-scale (η).

Therefore we conclude that, at least for the range of values of Wi considered in this
study, a viscoelastic sublayer i.e. a sublayer where this term might be dominant, cannot be
observed, so that the structure of the TNTI layer remains the same as for Newtonian fluids.
However, the relative size of each one of these sublayers is affected by the Weissenberg
number as the results listed in table 2 clearly show.

This table lists the values of the mean thicknesses of the TNTI layer, and of its
two sublayers, for all the simulations used in the present work. The mean thicknesses
are normalised by the size of the initial turbulent region H, and by the Kolmogorov
micro-scale η, computed at the turbulent core region of the flow. It is instructive to start
this analysis by looking into the values of the mean thicknesses using the normalisation
with H. It is clear that ⟨δTNTI⟩ /H is not a monotonic function of Wi, as its value starts to
increase with Wi, reaching ⟨δTNTI⟩ /H ≈ 0.07 until Wi = 1.89, but subsequently decreases
to ⟨δTNTI⟩ /H ≈ 0.040 for Wi = 2.81 and 3.46. This is explained mainly by a similar
non-monotonic behaviour of the mean thickness of the TSL, ⟨δTSL⟩ /H, since the mean
thickness of the VSL, which, as expected is always much smaller than the TSL, is
approximately constant with ⟨δVSL⟩ /H ≈ 0.01 − 0.02 for all cases.

Recently, it has been demonstrated that, for a Newtonian fluid, provided the Reynolds
number is sufficiently high, the mean (and local) thicknesses of the TNTI layer and its two
sublayers, all scale with the Kolmogorov micro-scale (Silva et al. 2018). The explanation
has to do with the fact that the sharp vorticity jump observed across the TNTI layer is
caused by the first row of structures of intense vorticity, with mean diameters close to
Divs ≈ 10η, which themselves define the contours and shape of the IB surface and the size
of the thickness of the TNTI layer.
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The results in table 2 show that for the smaller values of the Weissenberg number
Wi = 1.30 and 1.89, the mean values of the TNTI thickness are in the range ⟨δTNTI⟩ /η ≈
10 − 14 which is very close to the values observed for Newtonian fluids (Silva et al.
2018). This is consistent with the idea that at low or moderate values of the Weissenberg
number turbulent viscoelastic flows display small scale eddy structures that are similar to
the ones observed in Newtonian turbulence. The slightly smaller value obtained here for
the Newtonian case is consistent with the relatively low Reynolds number corresponding
to this simulation.

However, for Wi = 2.81 and 3.46 we obtain ⟨δTNTI⟩ /η ≈ 6 which shows that the scaling
of the TNTI layer for these high Weissenberg number cases is clearly different to the
one obtained for Newtonian fluids. This comes as no surprise as it is well known, e.g.
Ferreira et al. (2017), that for high Weissenberg numbers the regions of intense vorticity
are organised into sheets, which have a smaller thickness than the typical diameter of the
intense vorticity structures. Since the IB is defined by a low vorticity threshold created
at the edge of these structures it is normal to expect a smaller thickness of the TNTI
layer, when this thickness is normalised by the Kolmogorov micro-scale. Note, however,
that for the higher Weissenberg number cases the Kolmogorov micro-scale is actually
much higher than in similar Newtonian or low Weissenberg number flows, so the question
here is more of deciding what is the smallest characteristic scale of motion in viscoelastic
turbulent flows (at high Weissenberg number), a topic that is probably outside the scope
of the present paper. The slightly smaller value of the mean thickness of the TSL observed
in the Newtonian case, ⟨δTNTI⟩ /η ≈ 7 compared with ⟨δTNTI⟩ /η ≈ 11 for Wi = 1.30 and
Wi = 1.89, can probably be attributed to the method employed for this estimation not
being very accurate - it measures the end of the TSL (and TNTI) by the location of the
first maximum in the conditional mean enstrophy profiles (compare figure 12a,b). The
more accurate methods described in Silva et al. (2018) and Zecchetto & da Silva (2021)
cannot be used in the present viscoelastic cases until the size of the smallest scales of
motion in these flows is finally settled. A final remark concerns the mean thickness of
the VSL. Table 2 shows that in all cases the mean thickness of the VSL is almost the
same, with ⟨δVSL⟩ /η ≈ 2 − 3, which is close to the values typically observed in Newtonian
turbulence.

To summarise, the present results show that, for the range of Weissenberg numbers
investigated, the structure of the TNTI layer is similar to the one found in Newtonian
interfaces, and is comprised of a VSL, dominated by the enstrophy solvent viscous
diffusion, followed by a TSL, dominated by the enstrophy production (for low and
moderate Wi), or simultaneously by the enstrophy production and viscoelastic production
(for high Wi). Moreover, the scaling of the TNTI layer, for low and moderate values of
Wi is similar to the scaling of the TNTI layer for Newtonian fluids, however, for high Wi
a different scaling exists, probably associated with the size of the sheet structures that
dominate the flow for high Wi.

In the next section we investigate how the several features of the TNTI layer described
above explain the smaller spreading rates observed in viscoelastic fluids compared with
Newtonian fluids.

6. TE for viscoelastic flows
One notable feature of viscoelastic turbulent free flows is the spectacular decrease of the
entrainment rates compared with Newtonian flows. In turbulent viscoelastic planar jets this
decreased entrainment rate is manifested by much smaller spreading rates, compared with
the typical (Newtonian) reference values (Guimarães et al. 2020). Liberzon et al. (2009)
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and Cocconi et al. (2017) observed a similar trend in free-shear turbulence, where the
mean propagating speed of the turbulent front is smaller for a solution of water carrying
polymer molecules, than for water alone.

This issue is analysed here by looking into the entrainment velocity vn, which is the
velocity of the turbulent front relative to the fluid, and the entrainment rate Ql, which can
be estimated by Ql ∼ vnAIB, where AIB is the area of the IB.

The local entrainment velocity vn can be computed by considering that the velocity of
an iso-surface of constant enstrophy, e.g. the iso-surface of low enstrophy corresponding
to the IB, uB

i , can be computed as the sum of the local fluid velocity ui, and the velocity
of the IB relative to the fluid, uR

i (uB
i = ui + uR

i ), where the local entrainment velocity, i.e.
the velocity of the IB relative to the fluid is uR

i = vnni, where

n =
∇

(ωiωi

2

)

∣∣∣∇
(ωiωi

2

)∣∣∣
(6.1)

is the local surface normal at the IB (Wolf et al. 2012). Since the iso-surface of enstrophy
corresponding to the IB, where the enstrophy is ωth

i ωth
i /2, moves with constant enstrophy,

we can write

D
(
ωth

i ωth
i /2

)

Dt
=

∂
(
ωth

i ωth
i /2

)

∂t
+ (uj + uR

j )
∂

(
ωth

i ωth
i /2

)

∂xj
= 0, (6.2)

where the entrainment velocity can be computed as

vn = − 1∣∣∣∇
(ωiωi

2

)∣∣∣

D
(ωiωi

2

)

Dt
, (6.3)

which leads to the final equation for the computation of the entrainment velocity after
substitution by (4.1) for the enstrophy variation, (Wolf et al. 2012; Watanabe et al. 2015)

vn = −
ωiωjSij∣∣∣∇
(ωiωi

2

)∣∣∣
︸ ︷︷ ︸

VP

−
ν[s] ∂2

∂xj∂xj

(ωiωi

2

)

∣∣∣∇
(ωiωi

2

)∣∣∣
︸ ︷︷ ︸

VD

+
ν[s]

(
∂ωi

∂xj

∂ωi

∂xj

)

∣∣∣∇
(ωiωi

2

)∣∣∣
︸ ︷︷ ︸

Vε

−
ωiϵnji

∂2σ
[p]
mj

∂xm∂xn∣∣∣∇
(ωiωi

2

)∣∣∣
︸ ︷︷ ︸

VV

, (6.4)

and where all the terms in the equation are to be evaluated at the IB i.e. at yI = 0. The first
three terms on the right-hand side of (6.4) represent the contributions from the enstrophy
production (VP), viscous diffusion (VD) and viscous dissipation (Vε) and exist also for
Newtonian fluids, while the last contribution, due to the viscoelastic production (VV ),
exists only for viscoelastic fluids. The derivation of (6.4) was first done by Holzner & Luthi
(2011) for a Newtonian fluid, while the form shown above represents a natural extension
for viscoelastic fluids.

Note that vn adopts positive values when the entrainment velocity is oriented in the
direction of the enstrophy gradient, which means that the local vn on a section of the
surface spreading into the irrotational flow region is negative, while locally positive values
of vn imply that the fluid at the IB is moving in the direction of the turbulent region.
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Wi ⟨−vn⟩ AIB Ql
l0

η

⟨−vn⟩
uη

AIB

η2
Ql

uηη2
⟨−vn⟩

u0
AIB

(l0)2
Ql

u0(l0)2

(m s−1) (m2) (m3 s−1) (×106) (×105)

(Newt.) 0.058 233.8 13.6 93.6 0.17 5.2 8.8 0.022 591.4 13.0
1.30 0.061 169.9 10.3 94.7 0.18 3.8 6.7 0.023 426.2 9.7
1.89 0.073 153.6 11.2 85.9 0.25 2.5 6.3 0.028 340.3 9.6
2.81 0.082 130.8 10.7 79.6 0.32 1.6 5.1 0.032 253.2 8.1
3.46 0.089 129.4 11.6 71.1 0.45 1.0 4.4 0.038 194.3 7.4

Table 3. Mean entrainment velocity ⟨vn⟩, surface area of the IB AIB and flow rate Ql, for all the simulations
carried out in the present work. These quantities are also shown when normalised by the Kolmogorov velocity
uη and length scale η, computed inside the turbulent core region, and also with the initial (HIT) r.m.s. velocity
u0 and integral scale l0.

Table 3 shows the values of the mean entrainment velocity vn, surface area of the IB
AIB and estimated flow rate Ql for all the simulations used in the present work. The mean
entrainment velocity is always negative, both for the Newtonian case, which agrees with
Wolf et al. (2012) and Watanabe et al. (2015), and for the viscoelastic case, which agrees
with Cocconi et al. (2017). The mean entrainment velocity varies significantly with the
Weissenberg number, increasing with Wi and exhibiting higher values for the simulation
with the higher Weissenberg number, Wi = 3.46, with ⟨−vn⟩ = 0.089, in contrast to
⟨−vn⟩ = 0.061 for Wi = 1.30. Liberzon et al. (2009) mentions that in his experiments
the entrainment velocity is larger for a viscoelastic fluid than for water, which is consistent
with what is observed in the present DNS. Notice, however, that the present simulations
are different from the experiments of Liberzon et al. (2009) and the experiments and
simulations of Cocconi et al. (2017) in one aspect. Whereas in Liberzon et al. (2009) a
constant energy input drives the turbulent front both in the case of water and of water
carrying polymers, in the present DNS the turbulence inside the turbulent core region
is actually (slowly) decaying in time, and for this reason different levels of energy are
driving the different simulated interfaces. The power input P in all cases can be estimated
by using the data (in table 1) from the large scales of motion, P ∼ K3/2/l ∼ (u0)3/l0,
and consistently decreases as Wi increases. Additionally, the integral scale of turbulence
increases with Wi and it is natural to expect that bigger sized large scale eddies will result
in bigger tangential velocities in their periphery, and therefore also in bigger entrainment
velocities.

The surface area on the other hand decreases significantly with increasing Wi. This
effect can be traced back to the decrease of the solvent dissipation rate, which in turn
increases the Kolmogorov micro-scale, and to the increase of the integral scale of the
turbulence, observed when increasing the Weissenberg number (see the discussion related
to the fractal dimension of the IB further below). Indeed, it is well known that the surface
of the IB results from the underlying eddy motions in the nearby turbulence region, which
define the large and small scales of the ‘roughness’ observed in this surface (da Silva,
dos Reis & Pereira 2011). Table 1 shows that, as the Weissenberg number increases, the
integral scale of turbulence, l0, associated with the largest eddy motions, increases, but
the Kolmogorov micro-scale, increases (proportionally) even faster so that the ‘roughness’
of the IB surface is much attenuated, decreasing the IB surface area. This can be easily
confirmed by the results shown in table 3 where it is clear that the area of the IB (AIB)
is not proportional to the (square of the) Kolmogorov micro-scale or integral scale i.e.
neither AIB ∼ l2 or AIB ∼ η2 are correct (notice that we use the integral scale computed in
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HIT assuming l ∼ l0). However, there is a deeper reason for this decrease of the surface
area explained further below.

The combined effects of the Weissenberg number on the entrainment velocity and on
the surface area of the IB more or less cancel when combined to obtain Ql, as shown
in the values of Ql ≈ 10 − 11 shown in table 3, however, the entrainment rate is smaller
in the viscoelastic than in the Newtonian reference case. Because the several simulations
analysed correspond to different values of the Reynolds number it is important to analyse
the values of ⟨−vn⟩, AIB, and Ql normalised with the Kolmogorov and integral velocity
and length scales. Table 3 shows these variables with these normalisations, where the
Kolmogorov velocity and Kolmogorov micro-scale are taken from the turbulent core
region of the flow, for each instantaneous field used in the analysis.

For the Newtonian case the mean entrainment velocity is ⟨−vn⟩ ≈ 0.17uη, which is
very similar to the values obtained by Wolf et al. (2012); Watanabe et al. (2015). For
the viscoelastic cases ⟨−vn⟩ /uη increases with the Weissenberg number, and again the
normalised area of the IB, AIB/η2 consistently decreases as Wi increases which leads to a
consistent decrease of the entrainment rate Ql/(uηη

2) for increasing values of Wi.
The normalisation with the integral scales uses the r.m.s. of the velocity fluctuations u0

and the integral scale l0 taken from the HIT instants, prior to the generation of the SFT
simulations, which may be slightly different from the ones observed at the SFT instants
analysed, but allows one to analyse the main trends exhibited by the normalised vn, AIB
and Ql. As before, the normalised area of the IB, AIB/(l0)2, consistently decreases with
increasing Wi, and this seems to be the most important cause leading to the decrease
of the entrainment rate in viscoelastic flows, for low and intermediate values of Wi. To
conclude, when normalising the entrainment rate by the small or by large scales of the
flow we observe that the entrainment rate decreases as Wi increases, the reason being
the substantial decrease of the surface area of the IB. This explains the decrease of the
spreading rates recently observed in turbulent viscoelastic planar jets by Guimarães et al.
(2020), compared with the classical Newtonian spreading rates observed for the same flow.

Recently, it has been observed that TNTIs from gravity currents exhibit significantly
smaller surface areas with increasing stratification, leading to a substantial decrease of the
entrainment rate (Krug et al. 2017). The reduction of the surface area of these TNTIs is
explained by a substantial decrease of its fractal dimension (Krug et al. 2017). Can we
observe the same phenomenon in the present viscoelastic flows?

In order to respond to this question (prompted by an anonymous referee) we have carried
out here a similar investigation as described in de Silva et al. (2013), Mistry et al. (2017)
and Krug et al. (2017). Indeed, the viscoelastic IB should be a fractal just like the IBs
from Newtonian fluids (de Silva et al. 2013), where the surface areas measured at the
Kolmogorov and integral scales are related by

Aη = Al(η/l)2−Df , (6.5)

where (for Newtonian fluids) Df ≈ 7/3 is the fractal dimension (Sreenivasan 1991; de
Silva et al. 2013).

In the present work we have made use of the so-called ‘filtering method’ to determine
the fractal dimension of the IB (de Silva et al. 2013; Krug et al. 2017; Mistry et al. 2017).
The procedure starts with the application of a 3-D box filter to the vorticity magnitude
field used to detect the IB surfaces as described in § 3.1. Figure 13(a–c) shows a single
line from the upper IB corresponding to the Newtonian case (no filtering), together with
the IBs obtained after the application of a box filter with sizes .f /.x = 8 and 64. As
expected the filtering operation has a smoothing effect on the IB which is similar to what

934 A36-23

C
9

/2
32

:
C

C
C

 1
/:

0
72

53
 

5
1

3 
.

7
3

72
/2

3
2

,/
/

0
31

3
/:

0
72

53
3

3
:

3
/

/7
9/

09
3

/
C

C
C

 1
/:

0
72

53
 

5
1

3
3

:
 

2
7 

5
 

:
 

 

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.1139


H. Abreu, F.T. Pinho and C.B. da Silva

Wi = 3.46
Wi = 2.81
Wi = 1.89
Wi = 1.30
Newt.

103102

–0.3

101

'f /'x

η/'x λ/'x l0/'x

A IB
/A

0

10010–1
100

101
(d )(a)

(b)

(c)

Figure 13. (a–c) A single line of the upper IB for the Newtonian case in a fixed spanwise plane (z) and
showing entire extent in the x direction (Lx) (a), followed by the same curve obtained after filtering the vorticity
magnitude with a box filter with .f /.x = 8 and 64 (b,c) respectively. Bubbles and islands are removed from
the curves prior to the computation of the total surface area of each IB. (d) Fractal characteristics of the IB for
the present DNS of Newtonian and viscoelastic fluid obtained with the ‘filtering method’ (de Silva et al. 2013;
Krug et al. 2017; Mistry et al. 2017; Balamurugan et al. 2020). Here, AIB is the total area of the (upper and
lower) IB surfaces and A0 = Lx × Lz is a reference area. The filter size .f is normalised by the grid size .x and
the figure shows results (for all the simulations) for filter sizes equal to .f /.x = 2, 4, 6, 8, 12, 16, 24, 32, 48,
64, 96, 128, 192 and 256. The vertical lines show the locations of the Kolmogorov, Taylor and integral scales
(these values are taken from the Newtonian reference simulation). The fractal dimension is obtained from the
exponent of the power laws computed with the points between the Taylor and integral scales. The solid dark
line has a slope of −0.3 which corresponds to a fractal dimension of Df = 2.3 for the surface defining the IB
in the Newtonian case. Smaller values of the fractal dimension are recovered for the viscoelastic cases.

is observed in similar curves obtained in numerical and experimental works e.g. de Silva
et al. (2013) and Krug et al. (2017).

The second step consists in computing the slope of the curves of AIB = AIB(.f ), where
AIB is the area of the IB surface as shown in figure 13(d). It is crucial that this slope is
computed between appropriate ‘inner’ and ‘outer’ scales of motion, because the fractal
characteristics of turbulence are not observed near the Kolmogorov and integral scales
of motion (de Silva et al. 2013; Krug et al. 2017; Mistry et al. 2017; Balamurugan et al.
2020). As in, e.g. Balamurugan et al. (2020), we have selected the Taylor (λ) and integral
l0 scales of motion as ‘inner’ and ‘outer’ scales, respectively. It is clear that in all cases
a power law AIB ∼ .−α

f is observed. For the Newtonian case we get α ≈ 0.30 and from
(6.5) we have 2 − Df = −α so that the fractal dimension (for the Newtonian case) can be
estimated to be Df ≈ 2.30, which is very close to the values of Df ≈ 2.3 − 2.4 obtained
in the literature e.g. de Silva et al. (2013).

Figure 13(d) shows also the fractal dimension corresponding to the viscoelastic cases.
It is clear that the fractal dimension decreases as the Weissenberg number increases,
and we get α = 0.14, 0.15, 0.08 and 0.06 for the viscoelastic simulations with Wi =
1.30, 1.89, 2, 81 and 3.46, respectively, which correspond to the fractal dimensions of
these surfaces being equal to Df = 2.14, 2.15, 2.08 and 2.06. Interestingly, the value of
Df seems to be reaching the limit of Df ≈ 2 i.e. the surfaces become almost regular i.e.
non-fractal for very high values of the Weissenberg number. This result is similar to what
is observed in stably stratified flows where the entrainment rate decreases (compared with
non-stratified flows) because of a strong decrease of the interface area (Reeuwijk, Krug &
Holzner 2018).
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Vn
0 1.0 × 10–1–1.0 × 10–1

Vn
0 1.0 × 10–1–1.0 × 10–1

Vn
0 1.0 × 10–1–1.0 × 10–1

Vn

0 1.0 × 10–1–1.0 × 10–1

Vn

0 1.0 × 10–1–1.0 × 10–1

(e)

(b)(a) (c)

(d )

Figure 14. Top view of the iso-surfaces of the IB – obtained using the selected vorticity magnitude threshold
– for all the simulations carried out in the present work: (a) Newtonian; (b) Wi = 1.30; (c) Wi = 1.89; (d)
Wi = 2.81; (e) Wi = 3.46. The IB is coloured by the magnitude of the entrainment velocity vn. Negative values
mean that the fluid at the IB is moving into the irrotational flow region.

Thus the strong decrease of the surface area of the IB observed in viscoelastic flows
shown in table 3, which ultimately explains their diminished entrainment rate, is caused
by a decrease in the ‘roughness’ of the IB surface, consistent with a depletion of the scales
of motion imprinted on the IB.

In order to observe the local entrainment velocity figure 14 shows the surface of the
IB, coloured by the instantaneous (local) values of the entrainment velocity, for all the
simulations of the present work. It is clear that for the Newtonian case negative values
of vn are preferentially associated with the crests of the IB surface, while positive values
emerge from the throughs. This agrees again with the findings of Wolf et al. (2012) and
Watanabe et al. (2015) for a Newtonian fluid. Moreover, the regions with vn < 0 appear
to be slightly more frequent than the regions of vn > 0, which is also consistent with the
mean values of ⟨vn⟩ < 0 shown in table 3. The effect of increasing Wi for the viscoelastic
cases can be also appreciated in these figures. As Wi increases the “roughness” of the IB
decreases, and this leads to a simultaneous decrease of the magnitude of the surface area,
and also a decrease of the frequency of the regions with vn > 0, which explains therefore
why the mean value of ⟨−vn⟩ augments with Wi.

For the range of Wi used in the present work, although the entrainment rate decreases
when increasing Wi, it is clear that the entrainment velocity steadily increases with Wi.
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Wi ⟨−vn⟩ ⟨−VP⟩(%) ⟨−VD⟩ ⟨−Vε⟩ ⟨−VD − Vε⟩(%) ⟨−VV ⟩(%)

(Newt.) 0.0581 0.0294(51) 0.3838 −0.3551 0.0287(49) —
1.30 0.0606 0.0440(73) 0.3418 −0.3374 0.0044(7) 0.0121(20)
1.89 0.0732 0.0310(42) 0.2963 −0.2971 −0.0008(−1) 0.0430(59)
2.81 0.0817 0.0257(32) 0.2324 −0.2551 −0.0227(−28) 0.0787(96)
3.46 0.0893 0.0187(21) 0.2320 −0.2362 −0.0042(−5) 0.0748(84)

Table 4. Mean entrainment velocity ⟨−vn⟩ decomposed into its several contributions defined in (6.4),
computed at the IB, for all the simulations used in the present work. Negative values mean that the fluid at
the IB is moving into the irrotational flow region.

2010–10–20
10–5

100

0

VP
VD
Vε
Vv
vn
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Vε
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(e)

(b)(a) (c)

(d )

Figure 15. The p.d.f.s of the entrainment velocity vn, and of its several contributions defined in (6.4) computed
at the IB: (a) Newtonian; (b) Wi = 1.30; (c) Wi = 1.89; (d) Wi = 2.81; (e) Wi = 3.46. Negative values mean
that the fluid at the IB is moving into the irrotational flow region.

It is therefore important to investigate more in detail the contribution for this fact arising
from the several terms in (6.4).

Table 4 lists the mean values of the entrainment velocity vn (same as in table 3)
decomposed into its several contributions defined in (6.4). For the Newtonian case and, in
agreement with Watanabe et al. (2014), the mean values of the two viscous contributions
⟨VD⟩ and ⟨Vε⟩ are the highest but nearly cancel as they are being approximately symmetric
(⟨VD⟩ ≈ − ⟨Vε⟩), so that mean vortex stretching contribution ⟨VP⟩ becomes important in
determining ⟨vn⟩. A similar cancelation somehow exists also in the viscoelastic cases, but
the viscoelastic contribution (VV ) increases with the Weissenberg number and becomes by
far the most important contribution to the entrainment velocity for higher Wi.

In order to understand the interplay between the several terms as the Weissenberg
number increases we need to look into the p.d.f.s of all the contributions to the entrainment
velocity, which are shown in figure 15 for the Newtonian case (figure 15a) and for the
simulations with the lowest (figure 15b,c) and highest Weissenberg numbers (figure 15d,e).

It is clear that the local values of the enstrophy production term (VP) are always very
small compared with the other terms. This is not surprising because vn is computed
using the terms from (6.4) computed at the IB where the enstrophy production is
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Figure 16. The j.p.d.f.s between the entrainment velocity vn and several of its contributions for the simulation
with Wi = 3.46: (a) enstrophy production contribution VP, (b) enstrophy diffusion contribution VD, (c)
enstrophy dissipation contribution Vε , (d) viscoelastic production contribution VV .

negligible i.e. PΩ ≈ 0 and therefore VP ≈ 0. On the other hand the magnitude of the
local viscoelastic contribution (VV ) increases with Wi. For the highest Wi number cases
the p.d.f. of the entrainment velocity seems to collapse onto the p.d.f. of the viscoelastic
contribution (figure 15d,e), which suggests that in this case the entrainment velocity is
effectively imposed by the viscoelastic contribution. It is also clear that the increase of
the Weissenberg number is concomitant with a general decrease of the local values of the
viscous contributions VD and Vε.

The analysis of several j.p.d.f.s between the several contributions of (6.4) allow us
to shed some light into the interplay between these terms in imposing the entrainment
velocity. Figure 16 shows the j.p.d.f.s between the entrainment velocity vn and its
contributions (production – VP, diffusion – VD, dissipation – Vε, viscoelastic VV ) for the
case with Wi = 3.46. Surprisingly, these j.p.d.f.s are very similar for all the cases (not
shown), including the Newtonian case where the last j.p.d.f. does not exist and shows that
the contributions from viscous diffusion, production by vortex stretching and viscoelastic
production, all exhibit positive correlations with vn for a large range of values of these
quantities. Interestingly, the j.p.d.f. for viscoelastic production is remarkably similar to the
j.p.d.f. of the production but the j.p.d.f. of these two terms show that they are not correlated
(not shown). Numerous other j.p.d.f.s between these terms themselves, and between these
terms and the entrainment velocity (not shown) seem to be relatively independent of Wi
i.e. do not show any dramatic change when moving from the lower to the higher Wi cases.
This suggests that the observed increase of the entrainment velocity with Wi, caused by
the (increase) of the viscoelastic production is not due to a fundamentally different relation
between the several physical mechanisms involved, but rather by the local intensification
of the local values of the viscoelastic production, together with a decrease of the local
values of the viscous terms and production, observed in figure 15.

To summarise, although viscoelasticity increases the entrainment velocity with Wi,
through the local intensification of viscoelastic production,VV , and local reduction of the
viscous and vortex stretching terms, it has an even greater impact on the surface area of
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Figure 17. The j.p.d.f.s between the enstrophy production (PΩ ) and enstrophy diffusion (DΩ ) for the
simulation with Wi = 3.46 at two closely spaced locations: (a) IB; (b) VSL.

the IB, leading to a reduction of the entrainment rate. In contrast to classical (Newtonian)
fully developed turbulence where IB typically exhibits a fractal character which explains
the important transfers of mass, momentum and scalars that take place across turbulent
fluid interfaces, in viscoelastic flows the fractal dimension of the IB is strongly attenuated,
which leads to the reduction of the effective surface area and thus of the entrainment rate.

We end this section with a couple of remarks that are important to bear in mind when
considering (4.1) and (6.4) simultaneously, in any future analysis similar to the ones
carried out in the present work. At first sight one may be tempted to infer that the relations
between the individual terms discussed in connection to the analysis of (4.1) are similar to
the relations observed (for the same terms) in connection to (6.4). After all one can write
for instance that VD = DΩ/|∇(ωiωi/2)| and vn = TΩ/|∇(ωiωi/2)| and thus it is normal
to expect the relation between DΩ and TΩ in connection to (4.1) to be similar to the relation
between VD and vn in (6.4). This reasoning cannot be made, however, because, whereas
(4.1) makes sense in the entire flow domain, (6.4), is designed to compute the entrainment
velocity solely at the IB. In other words, whereas the discussion of the individual terms
in (4.1) was carried out in the entire flow domain, the analysis of the terms in (6.4)
described above relates to their behaviour at the IB only. It is important to clarify this point
because important differences arise in the flow dynamics between locations as closely
spaced as the IB and the VSL. To illustrate this point figure 17(a,b) shows the j.p.d.f.s
between the enstrophy production (PΩ ) and enstrophy diffusion (DΩ ) for the simulation
with Wi = 3.46 at the IB and at the VSL, respectively. It is clear that the two plots are very
different. Whereas at the IB no correlation between the two terms can be observed, in the
VSL the two terms already display a positive correlation. Many other similar examples
could be shown exhibiting similar differences.

7. Conclusions
Numerous experimental results and recent numerical simulations noted that turbulent
viscoelastic free-shear flows display a substantial decrease of the entrainment rates
compared with the classical values observed for Newtonian fluids. The present work uses
several DNS of SFT, i.e. turbulent fronts evolving in the absence of mean shear, in order
to address the small scale mechanisms associated with the TE mechanism in viscoelastic
fluids.

The simulations use the FENE-P model and rely on pseudo-spectral schemes for spatial
discretisation, and in the algorithm proposed by Vaithianathan et al. (2006) which is based
on the Kurganov–Tadmor method, to handle the conformation tensor governing equations.
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The simulations are based on the biggest simulations of forced isotropic turbulence (FHIT)
using the FENE-P model yet published, where the Weissenberg and turbulence Reynolds
numbers vary in the ranges 1.30 ≤ Wi ≤ 3.46 and 206 ≤ Re0

λ ≤ 404, respectively. The
SFT are started with the FHIT simulations by employing a procedure previously used in
several works, as described in Silva et al. (2018), that creates a turbulent front evolving
ahead of a turbulent region, in the absence of mean shear, with Reynolds numbers varying
in the range 98 ≤ Reλ ≤ 192 at the time instant used in the subsequent analysis. A
reference Newtonian simulation is also carried out using the same procedure, to allow
a comparison with the several viscoelastic cases.

The IB is detected using an analysis of the volume of the turbulent region as a function
of the vorticity magnitude threshold, described and used in numerous works, and, for
the reference Newtonian simulation, exhibits the characteristic large number of crests and
troughs, spanning a wide range of scales, characteristic of a fractal surface, that has been
observed in IBs from other Newtonian fluids. For the viscoelastic cases as the Weissenberg
number increases the size of the largest scales imprinted on the IB also increases, reflecting
the increase of the turbulent integral scale of the flow, but a depletion of the small scale
‘roughness’ of the IB is also observed, which is caused by the increase of the size of the
smallest scales of motion within the flow. These two facts explain the strong attenuation
of the fractal dimension of the IB observed in the viscoelastic cases.

The conditional mean profiles of the enstrophy governing transport equations in the
Newtonian case resemble the ones observed in numerous other works. Specifically, while
in the turbulent core region production by vortex stretching is balanced by enstrophy
viscous dissipation, within the TNTI layer, at the IB the enstrophy increases initially by
viscous diffusion (in the viscous superlayer), and later by enstrophy production by vortex
stretching (in the TSL). In the viscoelastic cases a new term – the viscoelastic production –
associated with the interaction between the vorticity field and polymer stresses, adds new
complexity to the dynamics of the enstrophy within TNTIs for viscoelastic fluids. This
term is always positive in the viscous superlayer (including at the IB), and thus contributes
to the initial growth of the enstrophy in the TNTI layer. It can be positive or negative in the
turbulent core region, depending on the values of the Weissenberg number and becomes
as important as the enstrophy production term for the cases with the highest Wi.

The structure of the TNTI layer is equal in the Newtonian and in the viscoelastic cases,
comprising a VSL and a TSL i.e. for the range of values of Wi considered in this work, no
new region arises within the TNTI layer (viscoelastic superlayer) due to the interactions
between the vorticity and the polymeric stresses. For low and moderate values of Wi the
sizes of the TNTI layer and of its two sublayers are close to the ones typically observed
for Newtonian fluids, however, for high Wi, the scaling is different, since the Kolmogorov
micro-scale is no longer the characteristic length scale of the TNTI layer in these cases.

The entrainment rate was investigated by computing the surface area of the IB and the
entrainment velocity. The entrainment velocity increases with the Weissenberg number,
but the decisive factor explaining the decreased entrainment rates observed in the
viscoelastic cases, compared with the Newtonian case, is the substantial reduction of the
surface area of the IB observed to occur as the Weissenberg number increases. This area
reduction is explained by a reduced scale separation arising in the fluid solvent as Wi
increases that causes a dramatic decrease of the fractal dimension of the IB.
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