
Deep Learning (IST, 2021-22)

Practical 10: Attention Mechanisms

André Martins, Ben Peters

Question 1

Let

x(1) = [−2.0,1.0,0.5]⊺ , x(2) = [1.0,1.5,−0.5]⊺ , x(3) = [−1.5,1.0,−0.5]⊺ , x(4) = [−2.0,−2.5,1.5]⊺

be an sequence of length 4, where each element is a vector in R3. We letX = [x(1),x(2),x(3),x(4)]⊺ ∈
R4×3 be the resulting input matrix.

1. Let q = [−2.0,1.0,−1.0]⊺ be a query vector. Compute the attention probabilities and resul-
ting output vector induced by this query on X using scaled dot product attention.

Solution: Let’s form the input matrix whose rows contain each element of the sequence,

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2.0 1.0 0.5
1.0 1.5 −0.5
−1.5 1.0 −0.5
−2.0 −2.5 1.5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

With scaled dot product attention, the scores are given by:

z =

Xq
√

3
=

1
√

3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2.0 1.0 0.5
1.0 1.5 −0.5
−1.5 1.0 −0.5
−2.0 −2.5 1.5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−2.0
1.0
−1.0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.59807621
0
2.59807621
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The attention probabilities are

a = softmax(z) = [0.46536883,0.03463117,0.46536883,0.03463117]⊺.

The output vector is

c =X⊺a =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2.0 1.0 0.5
1.0 1.5 −0.5
−1.5 1.0 −0.5
−2.0 −2.5 1.5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊺

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.46536883
0.03463117
0.46536883
0.03463117

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1.66342208
0.8961065
0.03463117

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

2. Let us suppose now that we want to compute (single-head) self-attention on this input.
Assuming that the projection matrices for queries, keys, and values are respectively

WQ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −1.5
0 2
−0.5 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, WK =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1.5 −1
2.5 0
0.5 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, WV =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 2.5
−0.5 −2
0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

1



compute the query, key, and value matrices (Q, K, V ), and the resulting output vector Z.
Plot the attention map.

Solution: We have

Q =XWQ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2.0 1.0 0.5
1.0 1.5 −0.5
−1.5 1.0 −0.5
−2.0 −2.5 1.5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −1.5
0 2
−0.5 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2.25 4.5
1.25 2
−1.25 4.75
−2.75 −3.5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

K =XWK =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2.0 1.0 0.5
1.0 1.5 −0.5
−1.5 1.0 −0.5
−2.0 −2.5 1.5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1.5 −1
2.5 0
0.5 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

5.75 1.5
2 −0.5
4.5 2
−2.5 0.5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

V =XWV =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2.0 1.0 0.5
1.0 1.5 −0.5
−1.5 1.0 −0.5
−2.0 −2.5 1.5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 2.5
−0.5 −2
0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2.5 −7.5
0.25 0
−2 −5.25
−0.75 −1.5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The attention probabilities P are given by computing scaled dot product attention and
applying softmax row-wise:

P = softmax(

QK⊺

√

2
)

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4.79433566 × 10−5 3.22098620 × 10−5 1.71943035 × 10−3 9.98200416 × 10−1

5.97319598 × 10−1 1.28333499 × 10−3 4.01298182 × 10−1 9.88847812 × 10−5

1.46423661 × 10−2 4.87223528 × 10−4 2.37021787 × 10−1 7.47848624 × 10−1

9.06143069 × 10−9 1.87817885 × 10−3 2.98824011 × 10−8 9.98121782 × 10−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Finally, the output is given by

Z = PV =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.75220098 −1.50668721
−2.29564869 −6.58686077
−1.07141415 −2.47595506
−0.74812187 −1.4971829

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The attention probabilities can be represented as the following plot:

Page 2



3. Let us now assume that we have a second attention head whose parameters W
(2)
Q , W (2)

K ,

W
(2)
V are matrices with all-ones (keeping the first attention head). Using

WO =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1.5 2
0 −1 −2
1 −1.5 0
2 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

compute the resulting output vector Z.

Solution: Proceeding as above, we get

P (2) = softmax
⎛

⎝

Q(2)K(2)⊺

√

2

⎞

⎠

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.18306921 × 10−1 2.01966211 × 10−2 1.68483136 × 10−1 6.93013322 × 10−1

8.48429312 × 10−4 9.98944583 × 10−1 2.06267364 × 10−4 7.20592823 × 10−7

2.67590116 × 10−2 7.79843042 × 10−4 5.42703523 × 10−2 9.18190793 × 10−1

2.47463407 × 10−5 6.12522986 × 10−10 2.06437556 × 10−4 9.99768815 × 10−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

Z(2) = P (2)V (2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2.26628332 −2.26628332
1.99725652 1.99725652
−2.82066255 −2.82066255
−2.99952526 −2.99952526

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The total output Ztotal concatenates the head representations Z(1) (the Z from the previous
exercise) and Z(2) (from this exercise) and matrix-multiplies by the output matrix WO,
leading to

Ztotal
= [Z(1),Z(2)] ⋅WO =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−6.04664898 3.77781072 −0.75731086
8.28741825 0.14750295 10.57968068
−7.3905735 5.09982766 −0.01158073
−8.25045389 4.87428797 −1.50140321

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The attention probabilities given by the two heads are represented as the following plots:

Page 3



Question 2

In this exercise, you will implement an attention mechanism for the simple sequence-to-sequence
task of string reversal. Given a source string over some alphabet (in our case, just the first four
letters of the Roman alphabet), the model’s task is to return the string in reversed order. For
this task, we will use randomly generated training and validation data. A simple LSTM-based
sequence-to-sequence model has already been implemented for you in the attached notebook
attention.ipynb.

1. Train a unidirectional sequence-to-sequence model on the string reversal task for 30 epochs.
Reasonable hyperparameters are already included in the notebook. Observe the results.

Solution: The final accuracy in the validation set was 82.1%.

2. In this exercise, you will implement a simple but effective style of attention mechanism
called dot-product attention (the same as in Question 1 but without the scale factor

√

d).
Dot-product attention works as an extra layer inside an RNN decoder that allows it to
make more focused use of the hidden states computed by the encoder. The mechanism
receives two inputs at time step t: the query st is the output of the decoder RNN; the
context F = [h1, . . . ,hS] is the sequence of all the hidden states computed by the encoder
RNN. The attention mechanism first computes an unnormalized attention score between
target position t and source position s with a simple dot product, and then normalizes with
softmax:

zts = s⊺ths

at = softmax(zt).

Then, at is used to compute a weighted sum ct = Fat over the source hidden states.

Finally, ct is concatenated to st and they are passed through a feed-forward layer, returning
the attentional hidden state s̃t = tanh(Wc[ct;st]).

Your goal is to implement dot-product attention in the DotProdAttention pytorch module in
attention.ipynb. After you implement it, train the model with the same hyperparameters
as in the previous exercise. How does performance compare?

Solution: The final accuracy in the validation set was 99.9%, so the model with attention
learns essentially solve this task.

3. Visualize the attention distributions returned by your model. Do they look the way you
expected they would?

Solution:

An example of an attention plot for the sequence abacadabacc is given below. The diagonal
structure is expected, since the decoder needs to attend to the source tokens in reverse order.

Page 4



Page 5


