Lecture 10: Attention Mechanisms and Transformers

André Martins, Francisco Melo, Mário Figueiredo

Deep Learning Course, Winter 2022-2023

A. Martins, F. Melo, M. Figueiredo (IST)

Lecture 10

Today's Roadmap

Previous lecture: sequence-to-sequence models using RNNs and attention.

Today we look at self-attention and transformers:

- Convolutional sequence-to-sequence models
- Self-attention
- Transformer networks
- Pre-trained models and transfer learning (next class)

Pointers for Today's Class

- Lena Voita's seq2seq with attention: https://lena-voita. github.io/nlp_course/seq2seq_and_attention.html
- Marcos Treviso lecture on attention mechanisms: https://andre-martins.github.io/docs/dsl2020/ attention-mechanisms.pdf
- John Hewitt's lecture on self-attention and transformers: http://web.stanford.edu/class/cs224n/slides/ cs224n-2021-lecture09-transformers.pdf
- Illustrated transformer: http://jalammar.github.io/illustrated-transformer/
- Annotated transformer: https://nlp.seas.harvard.edu/2018/04/03/attention.html

Outline

1 Convolutional Encoder-Decoder

2 Self-Attention and Transformer Networks

Onclusions

Recap: RNN with Attention (Encoder)

(Slide credit: Chris Dyer)

Recap: RNN with Attention (Decoder)

(Slide credit: Chris Dyer)

RNN-Based Encoder-Decoder

RNN-Based Encoder-Decoder

RNN-Based Encoder-Decoder

Drawbacks of RNNs

• Sequential mechanism prohibits parallelization

Drawbacks of RNNs

• Sequential mechanism prohibits parallelization

• Long-range dependencies are tricky, despite gating

Drawbacks of RNNs

• Sequential mechanism prohibits parallelization

• Long-range dependencies are tricky, despite gating

$$(x_1)$$
 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 ... (x_{n-1}) x_n

Possible solution: replace RNN encoder by hierarchical 1-D CNN

Convolutional Encoder

(Gehring et al., 2017)

Fully Convolutional

- Can use CNN decoder too!
- Convolutions will be over output prefixes only
- Encoder is parallelizable, but decoder still requires sequential computation (the model is still auto-regressive)

Convolutional Sequence-to-Sequence

Convolutional Sequence-to-Sequence

(Gehring et al., 2017)

Next: Self-Attention

- Both RNN and CNN decoders require an attention mechanism
- Attention allows focusing on an arbitrary position in the source sentence, shortcutting the computation graph
- But if attention gives us access to any state... ...maybe we don't need the RNN?

Outline

Convolutional Encoder-Decoder

2 Self-Attention and Transformer Networks

Onclusions

Why Attention?

We want NNs that automatically weigh input relevance

Main advantages:

- performance gain
- none or few parameters
- fast (easy to parallelize)
- tool for "interpreting" predictions

Example: Machine Translation

Dzmitry Bahdanau, KyungHuyn Cho, and Yoshua Bengio. Neural Machine Translation by Jointly Learning to Translate and Align. ICLR'15.

Example: Caption Generation

Attention over images:

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

(Slide credit to Yoshua Bengio)

A giraffe standing in a forest with trees in the background.

Example: Document Classification

Task: Hotel location

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though as very thin . service was excellent , let us book in at 8:30am ! for location and price , this ca n't be betten , but it is chean for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

Task: Hotel cleanliness

you get what you pay for . **not the cleanest rooms but bed was clean and so was bathroom**. bring your own towels though as very thin . service was excellent , let us book in at 8:30am ! for location and price , this ca n't be beaten , but it is cheap for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b. *Task: Hotel service*

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though as very thin . service was excellent . let us book in at 8:30am ! for location and price , this ca n't be beaten , but it is cheap for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

(Bao et al., 2018)

Attention Mechanism

Attention Mechanism: Recap

Recall how attention works:

- **1** We have a query vector **q** (e.g. the decoder state)
- **2** We have input vectors $\boldsymbol{H} = [\boldsymbol{h}_1, \dots, \boldsymbol{h}_L]^\top$ (e.g. one per source word)
- **3** We compute affinity scores s_1, \ldots, s_L by "comparing" **q** and **H**
- We convert these scores to probabilities:

$$p = \operatorname{softmax}(s)$$

5 We use this to output a representation as a weighted average:

$$\boldsymbol{c} = \boldsymbol{H}^{\top} \boldsymbol{p} = \sum_{i=1}^{L} p_i \boldsymbol{h}_i$$

Let's see these steps in detail!

Affinity Scores

Several ways of "comparing" a query \boldsymbol{q} and an input ("key") vector \boldsymbol{h}_i :

• Additive attention (Bahdanau et al., 2015), what we covered in previous class:

$$s_i = \boldsymbol{u}^{ op} \operatorname{tanh}(\boldsymbol{A}\boldsymbol{h}_i + \boldsymbol{B}\boldsymbol{q})$$

• Bilinear attention (Luong et al., 2015):

$$s_i = \boldsymbol{q}^\top \boldsymbol{U} \boldsymbol{h}_i$$

• Dot product attention (Luong et al., 2015) (particular case; queries and keys must have the same size):

$$s_i = \boldsymbol{q}^{\top} \boldsymbol{h}_i$$

The last two are easier to batch when we have multiple queries and multiple keys.

Keys and Values

The input vectors $\boldsymbol{H} = [\boldsymbol{h}_1, \dots, \boldsymbol{h}_L]^\top$ appear in two places:

- They are used as keys to "compare" them with the query vector **q** to obtain the affinity scores
- They are used as values to form the weighted average $\boldsymbol{c} = \boldsymbol{H}^{\top} \boldsymbol{p}$

Keys and Values

The input vectors $\boldsymbol{H} = [\boldsymbol{h}_1, \dots, \boldsymbol{h}_L]^\top$ appear in two places:

- They are used as keys to "compare" them with the query vector **q** to obtain the affinity scores
- They are used as values to form the weighted average $\boldsymbol{c} = \boldsymbol{H}^{\top} \boldsymbol{p}$

To be fully general, they don't need to be the same – we can have:

• A key matrix
$$\mathbf{K} = [\mathbf{k}_1, \dots, \mathbf{k}_L]^\top \in \mathbb{R}^{L imes d_K}$$

• A value matrix
$$\boldsymbol{V} = [\boldsymbol{v}_1, \dots, \boldsymbol{v}_L]^\top \in \mathbb{R}^{L \times d_V}$$

Attention Mechanism: More General Version

- 1 We have a query vector **q** (e.g. the decoder state)
- **2** We have key vectors $\boldsymbol{K} = [\boldsymbol{k}_1, \dots, \boldsymbol{k}_L]^\top \in \mathbb{R}^{L \times d_K}$ and value vectors $\boldsymbol{V} = [\boldsymbol{v}_1, \dots, \boldsymbol{v}_L]^\top \in \mathbb{R}^{L \times d_V}$ (e.g. one of each per source word)
- **3** We compute query-key affinity scores s_1, \ldots, s_L "comparing" q and K
- **4** We convert these scores to probabilities:

 $p = \operatorname{softmax}(s)$

5 We output a weighted average of the values:

$$oldsymbol{c} = oldsymbol{V}^{ op} oldsymbol{p} = \sum_{i=1}^L p_i oldsymbol{v}_i \in \mathbb{R}^{d_V}$$

Self-Attention

- So far we talked about contextual attention the decoder attends to encoder states (this is called "input context")
- The encoder and the decoder states were propagated sequentially with a RNN, or hierarchically with a CNN
- Alternative: self-attention at each position, the encoder attends to the other positions in the encoder itself
- Same for the decoder.

Self-Attention Layer

Self-attention for a sequence of length L:

- **1** Query vectors $\boldsymbol{Q} = [\boldsymbol{q}_1, \dots, \boldsymbol{q}_L]^\top \in \mathbb{R}^{L \times d_Q}$
- **2** Key vectors $\boldsymbol{K} = [\boldsymbol{k}_1, \dots, \boldsymbol{k}_L]^\top \in \mathbb{R}^{L \times d_K}$
- **3** value vectors $\boldsymbol{V} = [\boldsymbol{v}_1, \dots, \boldsymbol{v}_L]^\top \in \mathbb{R}^{L \times d_V}$

4 Compute query-key affinity scores "comparing" Q and K, e.g.,

$$\boldsymbol{S} = \boldsymbol{Q} \boldsymbol{K}^{ op} \in \mathbb{R}^{L imes L}$$
 (dot-product affinity)

5 Convert these scores to probabilities (row-wise):

$$\boldsymbol{P} = \operatorname{softmax}(\boldsymbol{S}) \in \mathbb{R}^{L \times L}$$

6 Output the weighted average of the values:

$$\boldsymbol{Z} = \boldsymbol{P}\boldsymbol{V} = \underbrace{\operatorname{softmax}(\boldsymbol{Q}\boldsymbol{K}^{\top})}_{\boldsymbol{P}} \boldsymbol{V} \in \mathbb{R}^{L \times d_{V}}.$$

Self-Attention

Transformer (Vaswani et al., 2017)

- Key idea: instead of RNN/CNNs, use self-attention in the encoder
- Each word state attends to all the other words
- Each self-attention is followed by a feed-forward transformation
- Do several layers of this
- Do the same for the decoder, attending only to already generated words.

Figure 1: The Transformer - model architecture.

Transformer

Transformer

Transformer Blocks

(Illustrated transformer: http://jalammar.github.io/illustrated-transformer/)

Transformer Basics

Let's define the basic building blocks of transformer networks first: new attention layers!

Two innovations:

- scaled dot-product attention
- multi-head attention

Scaled Dot-Product and Multi-Head Attention

(Vaswani et al., 2017)

The Encoder

Example for a sentence with 2 words:

Transformer Self-Attention: Queries, Keys, Vectors

 Obtained by projecting the embedding matrix *X* ∈ ℝ^{L×e} to a lower dimension:

$$Q = XW^Q$$

 $K = XW^K$
 $V = XW^V$.

 The projection matrices *W^Q*, *W^K*, *W^V* are model parameters.

Transformer Self-Attention: Queries, Keys, Vectors

Scaled Dot-Product Attention

Problem: As d_K gets large, the variance of $\mathbf{q}^{\top}\mathbf{k}$ increases, the softmax gets very peaked, hence its gradient gets smaller.

Solution: scale by length of query/key vectors:

$$oldsymbol{Z} = ext{softmax} \left(rac{oldsymbol{Q}oldsymbol{K}^ op}{\sqrt{d_{oldsymbol{K}}}}
ight)oldsymbol{V}.$$

Scaled Dot-Product Attention

Scaled Dot-Product and Multi-Head Attention

(Vaswani et al., 2017)

Multi-Head Attention

Self-attention: each word forms a query vector and attends to the other words' key vectors

This is vaguely similar to a 1D convolution, but where the filter weights are "dynamic" is the window size spans the entire sentence!

Problem: only one channel for words to interact with one-another

Solution: multi-head attention!

- define h attention heads, each with their own projection matrices (e.g. h = 8)
- apply attention in multiple channels, concatenate the outputs and pipe through linear layer:

 $MultiHead(\boldsymbol{X}) = Concat(\boldsymbol{Z}_1, \ldots, \boldsymbol{Z}_h) \boldsymbol{W}^O,$

where
$$Z_i = \operatorname{Attention}(\underbrace{XW_i^Q}_{Q_i}, \underbrace{XW_i^K}_{K_i}, \underbrace{XW_i^V}_{V_i}).$$

Multi-Head Attention

Other Tricks

- Self-attention blocks are repeated several times (e.g. 6 or 12)
- Residual connections on each attention block
- Layer normalization
- Positional encodings (to distinguish word positions)

Figure 1: The Transformer - model architecture.

Positional Encodings

- As just described, the transformer is insensitive to word order!
 - queries attend to keys regardless of their position in the sequence
- To make it sensitive to order, we add positional encodings
- Two strategies: learn one embedding for each position (up to a maximum length) or use sinusoidal positional encodings (next)

Sinusoidal Positional Encodings

Sinusoidal Positional Encodings

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{2i/d}}\right) \qquad PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{2i/d}}\right)$$

Residuals and Layer Normalization

Residuals and Layer Normalization

A. Martins, F. Melo, M. Figueiredo (IST)

Lecture 10

Residuals and Layer Normalization

What about the self-attention blocks in the decoder?

Everything is pretty much the same as in the encoder, with two twists:

- The decoder cannot see the future! Use "causal" masking
- The decoder should attend to itself (self-attention), but also to the encoder states (contextual attention).

A. Martins, F. Melo, M. Figueiredo (IST)

95

Lecture 10

Attention Visualization Layer 5

Ħ	is	Ē	this	spirit	that	а	majority	of	American	governments	have	passed	new	laws	since	2009	making	the	registration	or	voting	process	more	difficult	<eos></eos>	<pad></pad>	<pre><pre>cpad></pre></pre>	<pre><pre>cpad></pre></pre>	<pad></pad>	<pad></pad>	<pad></pad>
It	<u>s</u>	. <u>c</u>	this	spirit	that	a	majority	of	American	governments	have	passed	new	laws	since	2009	making	the	registration	or	voting	process	more	difficult	<eos></eos>	<pad></pad>	<pad></pad>	<pad></pad>	<pad></pad>	<pad></pad>	<pre>cpad></pre>

Implicit Anaphora Resolution

Computational Cost

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)
n = seg. lei	ngth d = hidden di	m <i>k</i> = ke	rnel size

- Faster to train (due to self-attention parallelization)
- More expensive to decode
- Scale quadratically with respect to sequence length (problematic for long sequences).

Other Tricks

- Label smoothing
- Dropout at every layer before residuals
- Beam search with length penalty
- Adam optimizer with learning-rate decay

Overall, transformers are harder to optimize than RNN seq2seq models They don't work out of the box: hyperparameter tuning is very important.

Transformer Results

Model	BL	EU	Training Cost (FLOPs)				
Model	EN-DE	EN-FR	EN-DE	EN-FR			
ByteNet [18]	23.75						
Deep-Att + PosUnk [39]		39.2		$1.0\cdot10^{20}$			
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$			
ConvS2S [9]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot10^{20}$			
MoE [32]	26.03	40.56	$2.0\cdot10^{19}$	$1.2\cdot10^{20}$			
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$			
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot10^{21}$			
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot10^{21}$			
Transformer (base model)	27.3	38.1	3.3 •	10 ¹⁸			
Transformer (big)	28.4	41.8	$2.3 \cdot$	10^{19}			

(Vaswani et al., 2017)'s "Attention Is All You Need"

TransformerXL

Big transformers can look at larger contexts.

TransformerXL: enables going beyond a fixed length without disrupting temporal coherence:

(Dai et al., 2019)

Outline

Convolutional Encoder-Decoder

2 Self-Attention and Transformer Networks

3 Conclusions

Conclusions

- RNN-based seq2seq models require sequential computation and have difficulties with long range dependencies
- Attention mechanisms allow focusing on different parts of the input
- Encoders/decoders can be RNNs, CNNs, or self-attention layers
- Transformers are the current state of the art for many tasks in NLP and vision
- Other applications: speech recognition, image captioning, etc.
- Next lecture: pretrained models and transfer learning (BERT, GPT-2, GPT-3, etc.)

Thank you!

Questions?

References I

- Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural Machine Translation by Jointly Learning to Align and Translate. In International Conference on Learning Representations.
- Bao, Y., Chang, S., Yu, M., and Barzilay, R. (2018). Deriving machine attention from human rationales. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1903–1913.
- Dai, Z., Yang, Z., Yang, Y., Cohen, W. W., Carbonell, J., Le, Q. V., and Salakhutdinov, R. (2019). Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860.
- Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017). Convolutional sequence to sequence learning. arXiv preprint arXiv:1705.03122.
- Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems, pages 5998–6008.