
Lecture 5: Neural Networks II
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Today’s Roadmap

Last lecture was about neural networks:

• From perceptron to multi-layer perceptron

• Feed-forward neural networks

• Activation funcions: sigmoid, tanh, relu, ...

• Activation maps: softmax, sparsemax, ...

• Non-convex optimization and local minima

• Universal approximation theorem

• Gradient backpropagation

Today: autodiff, regularization, tricks of the trade.
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Recap: Forward Propagation

Now assume L ≥ 1 hidden layers:

• Hidden layer pre-activation (define
h(0) = x, for convenience):

z(`)(x) = W (`)h(`−1)(x) + b(1),

with W (`) ∈ RK`×K`−1 and
b(`) ∈ RK` .

• Hidden layer activation:

h(`)(x) = g(z(`)(x)).

• Output layer activation:

f (x) = o(z(L+1)(x)) = o(W (L+1)h(L) + b(L+1)).
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Recap: Gradient Backpropagation

Compute output gradient (before activation):

∇z(L+1)L(f (x;θ), y) = −(1y − f (x))

for ` from L + 1 to 1 do
Compute gradients of hidden layer parameters:

∇W (`)L(f (x;θ), y) = ∇z(`)L(f (x;θ), y) h(`−1)>

∇b(`)L(f (x;θ), y) = ∇z(`)L(f (x;θ), y)

Compute gradient of previous hidden layer:

∇h(`−1)L(f (x;θ), y) = W (`)>∇z(`)L(f (x;θ), y)

Compute gradient of previous hidden layer (before activation):

∇z(`−1)L(f (x;θ), y) = ∇h(`−1)L(f (x;θ), y)� g ′(z(`−1))

end for
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Computation Graph

• Forward propagation can be represented as a
DAG (directed acyclic graph).

• Allows implementing forward propagation in a
modular way.

• Each box can be an object with a fprop

method, which computes the output of the box
given its inputs.

• Calling the fprop method of each box in the
right order yields forward propagation.
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Automatic Differentiation (Autodiff)

• Backpropagation is also implementable in a
modular way.

• Each box should have a bprop method, which
computes the loss gradient w.r.t. its parents,
given the loss gradient w.r.t. to the output.

• Can make use of cached computation done
during the fprop method

• Calling the bprop method in reverse order
yields backpropagation
(only needs to reach the parameters)
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Several Autodiff Strategies

Symbol-to-number differentiation (Caffe, Torch, Pytorch, Dynet, ...)

• Take a computational graph and numerical inputs, returns a set of
numerical values describing the gradient at those input values.

• Advantage: simpler to implement and debug.

• Disadvantage: only works for first-order derivatives.

Symbol-to-symbol differentiation (Theano, Tensorflow, ...)

• Take a computational graph and add additional nodes to the graph
that provide a symbolic description of the desired derivatives (i.e. the
derivatives are just another computational graph)

• Advantage: generalizes automatically to higher-order derivatives

• Disadvantage: harder to implement and to debug
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Many Software Toolkits for Neural Networks

• Theano

• Tensorflow

• Torch, Pytorch

• MXNet

• Keras

• Caffe

• DyNet

• ...

All implement automatic differentiation.
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Some Theano Code (Logistic Regression)
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Some Code in Tensorflow (Linear Regression)
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Some Code in Keras (Multi-Layer Perceptron)
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Some Code in Pytorch (Multi-Layer Perceptron)
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Reminder: Key Ingredients of SGD

In sum, we need the following ingredients:

• The loss function L(f (xi ;θ), yi ) X

• A procedure for computing the gradients ∇θL(f (xi ;θ), yi ) X

• The regularizer Ω(θ) and its gradient: next!
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Regularization

Recall that we’re minimizing the following objective function:

L(θ) := λΩ(θ) +
1

N

N∑
n=1

L(f (xi ;θ), yi )

It remains to define the regularizer and its gradient

We will study:

• `2 regularization

• `1 regularization

• dropout regularization
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`2 Regularization

• The biases b(1), ...,b(L+1) are not regularized; only the weights:

Ω(θ) =
1

2

L+1∑
`=1

‖W (`)‖2

• Equivalent to a Gaussian prior on the weights

• Gradient of this regularizer is: ∇W (`)Ω(θ) = W (`)

• Weight decay effect (as seen in the previous lecture)

W (`) ← W (`) − η∇W (`)Li (θ)

= W (`) − η(λ∇W (`)Ω(θ) +∇W (`)L(f (xi ;θ), yi ))

= (1− ηλ)︸ ︷︷ ︸
<1

W (`) − η∇W (`)L(f (xi ;θ), yi )
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`1 Regularization

• The biases b(1), ...,b(L+1) are not regularized; only the weights:

Ω(θ) =
∑
`

‖W (`)‖1 =
∑
`

∑
ij

|W (`)
ij |

• Equivalent to Laplacian prior on the weights

• Gradient is: ∇W (`)Ω(θ) = sign(W (`))

• Promotes sparsity of the weights
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Dropout Regularization (Srivastava et al., 2014)

During training, remove some hidden units, chosen at random
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Dropout Regularization (Srivastava et al., 2014)

• Each hidden unit output is set to 0 with probability p (e.g. p = 0.5)

• This prevents hidden units to co-adapt to other units, forcing them to
be more generally useful

• At test time, keep all units, with the outputs multiplied by 1− p

• Shown to be a form of adaptive regularization (Wager et al., 2013)

• Many software packages implement another variant, inverted dropout,
where at training time the output of the units that were not dropped
is divided by 1− p and requires no change at test time
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Implementation of Dropout

• Usually implemented using random binary masks

• The hidden layer activations become

h(`)(x) = g(z(`)(x))�m(`)

• Beats regular backpropagation on many datasets (Hinton et al., 2012)

• Other variants, e.g. DropConnect (Wan et al., 2013), Stochastic
Pooling (Zeiler and Fergus, 2013)
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Backpropagation with Dropout

Compute output gradient (before activation):

∇z(L+1)L(f (x;θ), y) = −(1y − f (x))

for ` from L + 1 to 1 do
Compute gradients of hidden layer parameters:

∇W (`)L(f (x;θ), y) = ∇z(`)L(f (x;θ), y) h(`−1)>︸ ︷︷ ︸
includes m(`−1)

∇b(`)L(f (x;θ), y) = ∇z(`)L(f (x;θ), y)

Compute gradient of hidden layer below:

∇h(`−1)L(f (x;θ), y) = W (`)>∇z(`)L(f (x;θ), y)

Compute gradient of hidden layer below (before activation):

∇z(`−1)L(f (x;θ), y) = ∇h(`−1)L(f (x;θ), y)� g ′(z(`−1))�m(`−1)

end for
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Initialization

• Biases: initialize at zero

• Weights:

X Cannot initialize to zero with tanh activation (gradients would also be
all zero and we would be at saddle point)

X Cannot initialize the weights to the same value (need to break the
symmetry)

X Random initialization (Gaussian, uniform), sampling around 0 to break
symmetry

X For ReLU activations, the mean should be a small positive number

X Variance cannot be too high, otherwise all neuron activations will be
saturated
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“Glorot Initialization”

• Recipe from Glorot and Bengio (2010):

W (`)
i ,j ∼ U[−t, t], with t =

√
6√

K (`) + K (`−1)

• Works well in practice with tanh and sigmoid activations
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Training, Validation, and Test Sets

Split datasets in training, validation, and test partitions.

• Training set: serves to train the model

• Validation set: used to tune hyperparameters (learning rate, number
of hidden units, regularization coefficient, dropout probability, best
epoch, etc.)

• Test set: used to estimate the generalization performance
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Hyperparameter Tuning: Grid Search, Random Search

Search for the best configuration of the hyperparameters:

• Grid search: specify a set of values to test for each hyperparameter,
and try all configurations of these values

• Random search: specify a distribution over the values of each
hyper-parameter (e.g. uniform in some range) and sample
independently each hyper-parameter to get configurations

• Bayesian optimization (Snoek et al., 2012)

We can always go back and fine-tune the grid/distributions if necessary
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Early Stopping

• To select the number of epochs, stop training when validation error
increases (with some look ahead)

• One common strategy (with SGD) is to halve the learning rate for
every epoch where the validation error increases

(Image credit: Hugo Larochelle)
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Cross Validation
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Over-parametrization

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 31 / 42



Tricks of the Trade

• Normalization of the data

• Decaying the learning rate

• Mini-batches

• Adaptive learning rates

• Gradient checking

• Debugging on a small dataset
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Normalization of the Data

• For each input dimension: subtract the training set mean and divide
by the training set standard deviation

• It makes each input dimension have zero mean, unit variance

• It can speed up training (in number of epochs)

• Doesn’t work for sparse inputs (destroys sparsity)
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Decaying the Learning Rate

In SGD, as we get closer to a local minimum, it makes sense to take
smaller update steps (to avoid diverging)

• Start with a large learning rate (say 0.1)

• Keep it fixed while validation error keeps improving

• Divide by 2 and go back to the previous step
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Mini-Batches

• Instead of updating after a single example, can aggregate a
mini-batch of examples (e.g. 50–200 examples) and compute the
averaged gradient for the entire mini-batch

• Less noisy than standard SGD

• Can leverage matrix-matrix computations (or tensor computations)

• Large computational speed-ups in GPUs: computation is trivially
parallelizable accross the mini-batch and we can exhaust the GPU
memory
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Adaptive Learning Rates

Instead of using the same step size for all parameters, have one learning
rate per parameter

• Adagrad (Duchi et al., 2011): learning rates are scaled by the square
root of the cumulative sum of squared gradients

η(t) = η(t−1) + (∇θL(f (x), y))2, ∇̄(t)
θ =

∇θL(f (x), y)√
η(t) + ε

• RMSprop (Tieleman and Hinton, 2012): instead of cumulative sum,
use exponential moving average

η(t) = βη(t−1) + (1− β)(∇θL(f (x), y))2, ∇̄(t)
θ =

∇θL(f (x), y)√
η(t) + ε

• Adam (Kingma and Ba, 2014): combine RMSProp with momentum
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Gradient Checking

• If the training loss is not decreasing even with a very small learning
rate, there’s likely a bug in the gradient computation

• To debug your implementation of fprop/bprop, compute the
“numeric gradient,” a finite difference approximation of the true
gradient:

∂f (x)

∂x
≈ f (x + ε)− f (x − ε)

2ε
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Debugging on a Small Dataset

• Extract a small subset of your training set (e.g. 50 examples)

• Monitor your training loss in this set

• You should be able to overfit in this small training set

• If not, see if some units are saturated from the very first iterations (if
they are, reduce the initialization variance or properly normalize your
inputs)

• If the training error is bouncing up and down, decrease the learning
rate
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Conclusions

• Multi-layer perceptrons are universal function approximators

• However, they need to be trained

• Stochastic gradient descent is an effective training algorithm

• This is possible with the gradient backpropagation algorithm (an
application of the chain rule of derivatives)

• Most current software packages represent a computation graph and
implement automatic differentiation

• Dropout regularization is effective to avoid overfitting
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Thank you!

Questions?
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