
Lecture 5: Neural Networks II

André Martins, Francisco Melo, Mário Figueiredo

Deep Learning Course, Winter 2022-2023

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 1 / 42



Today’s Roadmap

Last lecture was about neural networks:

• From perceptron to multi-layer perceptron

• Feed-forward neural networks

• Activation funcions: sigmoid, tanh, relu, ...

• Activation maps: softmax, sparsemax, ...

• Non-convex optimization and local minima

• Universal approximation theorem

• Gradient backpropagation

Today: autodiff, regularization, tricks of the trade.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 2 / 42



Outline

1 Training Neural Networks

Automatic Differentiation

Regularization

Tricks of the Trade

2 Conclusions

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 3 / 42



Outline

1 Training Neural Networks

Automatic Differentiation

Regularization

Tricks of the Trade

2 Conclusions

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 4 / 42



Recap: Forward Propagation

Now assume L ≥ 1 hidden layers:

• Hidden layer pre-activation (define
h(0) = x, for convenience):

z(`)(x) = W (`)h(`−1)(x) + b(1),

with W (`) ∈ RK`×K`−1 and
b(`) ∈ RK` .

• Hidden layer activation:

h(`)(x) = g(z(`)(x)).

• Output layer activation:

f (x) = o(z(L+1)(x)) = o(W (L+1)h(L) + b(L+1)).

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 5 / 42



Recap: Gradient Backpropagation

Compute output gradient (before activation):

∇z(L+1)L(f (x;θ), y) = −(1y − f (x))

for ` from L + 1 to 1 do
Compute gradients of hidden layer parameters:

∇W (`)L(f (x;θ), y) = ∇z(`)L(f (x;θ), y) h(`−1)>

∇b(`)L(f (x;θ), y) = ∇z(`)L(f (x;θ), y)

Compute gradient of previous hidden layer:

∇h(`−1)L(f (x;θ), y) = W (`)>∇z(`)L(f (x;θ), y)

Compute gradient of previous hidden layer (before activation):

∇z(`−1)L(f (x;θ), y) = ∇h(`−1)L(f (x;θ), y)� g ′(z(`−1))

end for

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 6 / 42



Computation Graph

• Forward propagation can be represented as a
DAG (directed acyclic graph).

• Allows implementing forward propagation in a
modular way.

• Each box can be an object with a fprop

method, which computes the output of the box
given its inputs.

• Calling the fprop method of each box in the
right order yields forward propagation.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 7 / 42



Computation Graph

• Forward propagation can be represented as a
DAG (directed acyclic graph).

• Allows implementing forward propagation in a
modular way.

• Each box can be an object with a fprop

method, which computes the output of the box
given its inputs.

• Calling the fprop method of each box in the
right order yields forward propagation.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 7 / 42



Computation Graph

• Forward propagation can be represented as a
DAG (directed acyclic graph).

• Allows implementing forward propagation in a
modular way.

• Each box can be an object with a fprop

method, which computes the output of the box
given its inputs.

• Calling the fprop method of each box in the
right order yields forward propagation.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 7 / 42



Computation Graph

• Forward propagation can be represented as a
DAG (directed acyclic graph).

• Allows implementing forward propagation in a
modular way.

• Each box can be an object with a fprop

method, which computes the output of the box
given its inputs.

• Calling the fprop method of each box in the
right order yields forward propagation.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 7 / 42



Automatic Differentiation (Autodiff)

• Backpropagation is also implementable in a
modular way.

• Each box should have a bprop method, which
computes the loss gradient w.r.t. its parents,
given the loss gradient w.r.t. to the output.

• Can make use of cached computation done
during the fprop method

• Calling the bprop method in reverse order
yields backpropagation
(only needs to reach the parameters)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 8 / 42



Automatic Differentiation (Autodiff)

• Backpropagation is also implementable in a
modular way.

• Each box should have a bprop method, which
computes the loss gradient w.r.t. its parents,
given the loss gradient w.r.t. to the output.

• Can make use of cached computation done
during the fprop method

• Calling the bprop method in reverse order
yields backpropagation
(only needs to reach the parameters)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 8 / 42



Automatic Differentiation (Autodiff)

• Backpropagation is also implementable in a
modular way.

• Each box should have a bprop method, which
computes the loss gradient w.r.t. its parents,
given the loss gradient w.r.t. to the output.

• Can make use of cached computation done
during the fprop method

• Calling the bprop method in reverse order
yields backpropagation
(only needs to reach the parameters)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 8 / 42



Automatic Differentiation (Autodiff)

• Backpropagation is also implementable in a
modular way.

• Each box should have a bprop method, which
computes the loss gradient w.r.t. its parents,
given the loss gradient w.r.t. to the output.

• Can make use of cached computation done
during the fprop method

• Calling the bprop method in reverse order
yields backpropagation
(only needs to reach the parameters)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 8 / 42



Several Autodiff Strategies

Symbol-to-number differentiation (Caffe, Torch, Pytorch, Dynet, ...)

• Take a computational graph and numerical inputs, returns a set of
numerical values describing the gradient at those input values.

• Advantage: simpler to implement and debug.

• Disadvantage: only works for first-order derivatives.

Symbol-to-symbol differentiation (Theano, Tensorflow, ...)

• Take a computational graph and add additional nodes to the graph
that provide a symbolic description of the desired derivatives (i.e. the
derivatives are just another computational graph)

• Advantage: generalizes automatically to higher-order derivatives

• Disadvantage: harder to implement and to debug

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 9 / 42



Several Autodiff Strategies

Symbol-to-number differentiation (Caffe, Torch, Pytorch, Dynet, ...)

• Take a computational graph and numerical inputs, returns a set of
numerical values describing the gradient at those input values.

• Advantage: simpler to implement and debug.

• Disadvantage: only works for first-order derivatives.

Symbol-to-symbol differentiation (Theano, Tensorflow, ...)

• Take a computational graph and add additional nodes to the graph
that provide a symbolic description of the desired derivatives (i.e. the
derivatives are just another computational graph)

• Advantage: generalizes automatically to higher-order derivatives

• Disadvantage: harder to implement and to debug

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 9 / 42



Many Software Toolkits for Neural Networks

• Theano

• Tensorflow

• Torch, Pytorch

• MXNet

• Keras

• Caffe

• DyNet

• ...

All implement automatic differentiation.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 10 / 42



Some Theano Code (Logistic Regression)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 11 / 42



Some Code in Tensorflow (Linear Regression)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 12 / 42



Some Code in Keras (Multi-Layer Perceptron)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 13 / 42



Some Code in Pytorch (Multi-Layer Perceptron)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 14 / 42



Reminder: Key Ingredients of SGD

In sum, we need the following ingredients:

• The loss function L(f (xi ;θ), yi ) X

• A procedure for computing the gradients ∇θL(f (xi ;θ), yi ) X

• The regularizer Ω(θ) and its gradient: next!

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 15 / 42



Outline

1 Training Neural Networks

Automatic Differentiation

Regularization

Tricks of the Trade

2 Conclusions

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 16 / 42



Regularization

Recall that we’re minimizing the following objective function:

L(θ) := λΩ(θ) +
1

N

N∑
n=1

L(f (xi ;θ), yi )

It remains to define the regularizer and its gradient

We will study:

• `2 regularization

• `1 regularization

• dropout regularization

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 17 / 42



Regularization

Recall that we’re minimizing the following objective function:

L(θ) := λΩ(θ) +
1

N

N∑
n=1

L(f (xi ;θ), yi )

It remains to define the regularizer and its gradient

We will study:

• `2 regularization

• `1 regularization

• dropout regularization

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 17 / 42



`2 Regularization

• The biases b(1), ...,b(L+1) are not regularized; only the weights:

Ω(θ) =
1

2

L+1∑
`=1

‖W (`)‖2

• Equivalent to a Gaussian prior on the weights

• Gradient of this regularizer is: ∇W (`)Ω(θ) = W (`)

• Weight decay effect (as seen in the previous lecture)

W (`) ← W (`) − η∇W (`)Li (θ)

= W (`) − η(λ∇W (`)Ω(θ) +∇W (`)L(f (xi ;θ), yi ))

= (1− ηλ)︸ ︷︷ ︸
<1

W (`) − η∇W (`)L(f (xi ;θ), yi )

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 18 / 42



`2 Regularization

• The biases b(1), ...,b(L+1) are not regularized; only the weights:

Ω(θ) =
1

2

L+1∑
`=1

‖W (`)‖2

• Equivalent to a Gaussian prior on the weights

• Gradient of this regularizer is: ∇W (`)Ω(θ) = W (`)

• Weight decay effect (as seen in the previous lecture)

W (`) ← W (`) − η∇W (`)Li (θ)

= W (`) − η(λ∇W (`)Ω(θ) +∇W (`)L(f (xi ;θ), yi ))

= (1− ηλ)︸ ︷︷ ︸
<1

W (`) − η∇W (`)L(f (xi ;θ), yi )

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 18 / 42



`2 Regularization

• The biases b(1), ...,b(L+1) are not regularized; only the weights:

Ω(θ) =
1

2

L+1∑
`=1

‖W (`)‖2

• Equivalent to a Gaussian prior on the weights

• Gradient of this regularizer is: ∇W (`)Ω(θ) = W (`)

• Weight decay effect (as seen in the previous lecture)

W (`) ← W (`) − η∇W (`)Li (θ)

= W (`) − η(λ∇W (`)Ω(θ) +∇W (`)L(f (xi ;θ), yi ))

= (1− ηλ)︸ ︷︷ ︸
<1

W (`) − η∇W (`)L(f (xi ;θ), yi )

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 18 / 42



`2 Regularization

• The biases b(1), ...,b(L+1) are not regularized; only the weights:

Ω(θ) =
1

2

L+1∑
`=1

‖W (`)‖2

• Equivalent to a Gaussian prior on the weights

• Gradient of this regularizer is: ∇W (`)Ω(θ) = W (`)

• Weight decay effect (as seen in the previous lecture)

W (`) ← W (`) − η∇W (`)Li (θ)

= W (`) − η(λ∇W (`)Ω(θ) +∇W (`)L(f (xi ;θ), yi ))

= (1− ηλ)︸ ︷︷ ︸
<1

W (`) − η∇W (`)L(f (xi ;θ), yi )

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 18 / 42



`1 Regularization

• The biases b(1), ...,b(L+1) are not regularized; only the weights:

Ω(θ) =
∑
`

‖W (`)‖1 =
∑
`

∑
ij

|W (`)
ij |

• Equivalent to Laplacian prior on the weights

• Gradient is: ∇W (`)Ω(θ) = sign(W (`))

• Promotes sparsity of the weights

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 19 / 42



`1 Regularization

• The biases b(1), ...,b(L+1) are not regularized; only the weights:

Ω(θ) =
∑
`

‖W (`)‖1 =
∑
`

∑
ij

|W (`)
ij |

• Equivalent to Laplacian prior on the weights

• Gradient is: ∇W (`)Ω(θ) = sign(W (`))

• Promotes sparsity of the weights

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 19 / 42



`1 Regularization

• The biases b(1), ...,b(L+1) are not regularized; only the weights:

Ω(θ) =
∑
`

‖W (`)‖1 =
∑
`

∑
ij

|W (`)
ij |

• Equivalent to Laplacian prior on the weights

• Gradient is: ∇W (`)Ω(θ) = sign(W (`))

• Promotes sparsity of the weights

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 19 / 42



`1 Regularization

• The biases b(1), ...,b(L+1) are not regularized; only the weights:

Ω(θ) =
∑
`

‖W (`)‖1 =
∑
`

∑
ij

|W (`)
ij |

• Equivalent to Laplacian prior on the weights

• Gradient is: ∇W (`)Ω(θ) = sign(W (`))

• Promotes sparsity of the weights

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 19 / 42



Dropout Regularization (Srivastava et al., 2014)

During training, remove some hidden units, chosen at random

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 20 / 42



Dropout Regularization (Srivastava et al., 2014)

• Each hidden unit output is set to 0 with probability p (e.g. p = 0.5)

• This prevents hidden units to co-adapt to other units, forcing them to
be more generally useful

• At test time, keep all units, with the outputs multiplied by 1− p

• Shown to be a form of adaptive regularization (Wager et al., 2013)

• Many software packages implement another variant, inverted dropout,
where at training time the output of the units that were not dropped
is divided by 1− p and requires no change at test time

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 21 / 42



Dropout Regularization (Srivastava et al., 2014)

• Each hidden unit output is set to 0 with probability p (e.g. p = 0.5)

• This prevents hidden units to co-adapt to other units, forcing them to
be more generally useful

• At test time, keep all units, with the outputs multiplied by 1− p

• Shown to be a form of adaptive regularization (Wager et al., 2013)

• Many software packages implement another variant, inverted dropout,
where at training time the output of the units that were not dropped
is divided by 1− p and requires no change at test time

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 21 / 42



Dropout Regularization (Srivastava et al., 2014)

• Each hidden unit output is set to 0 with probability p (e.g. p = 0.5)

• This prevents hidden units to co-adapt to other units, forcing them to
be more generally useful

• At test time, keep all units, with the outputs multiplied by 1− p

• Shown to be a form of adaptive regularization (Wager et al., 2013)

• Many software packages implement another variant, inverted dropout,
where at training time the output of the units that were not dropped
is divided by 1− p and requires no change at test time

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 21 / 42



Dropout Regularization (Srivastava et al., 2014)

• Each hidden unit output is set to 0 with probability p (e.g. p = 0.5)

• This prevents hidden units to co-adapt to other units, forcing them to
be more generally useful

• At test time, keep all units, with the outputs multiplied by 1− p

• Shown to be a form of adaptive regularization (Wager et al., 2013)

• Many software packages implement another variant, inverted dropout,
where at training time the output of the units that were not dropped
is divided by 1− p and requires no change at test time

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 21 / 42



Dropout Regularization (Srivastava et al., 2014)

• Each hidden unit output is set to 0 with probability p (e.g. p = 0.5)

• This prevents hidden units to co-adapt to other units, forcing them to
be more generally useful

• At test time, keep all units, with the outputs multiplied by 1− p

• Shown to be a form of adaptive regularization (Wager et al., 2013)

• Many software packages implement another variant, inverted dropout,
where at training time the output of the units that were not dropped
is divided by 1− p and requires no change at test time

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 21 / 42



Implementation of Dropout

• Usually implemented using random binary masks

• The hidden layer activations become

h(`)(x) = g(z(`)(x))�m(`)

• Beats regular backpropagation on many datasets (Hinton et al., 2012)

• Other variants, e.g. DropConnect (Wan et al., 2013), Stochastic
Pooling (Zeiler and Fergus, 2013)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 22 / 42



Implementation of Dropout

• Usually implemented using random binary masks

• The hidden layer activations become

h(`)(x) = g(z(`)(x))�m(`)

• Beats regular backpropagation on many datasets (Hinton et al., 2012)

• Other variants, e.g. DropConnect (Wan et al., 2013), Stochastic
Pooling (Zeiler and Fergus, 2013)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 22 / 42



Implementation of Dropout

• Usually implemented using random binary masks

• The hidden layer activations become

h(`)(x) = g(z(`)(x))�m(`)

• Beats regular backpropagation on many datasets (Hinton et al., 2012)

• Other variants, e.g. DropConnect (Wan et al., 2013), Stochastic
Pooling (Zeiler and Fergus, 2013)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 22 / 42



Backpropagation with Dropout

Compute output gradient (before activation):

∇z(L+1)L(f (x;θ), y) = −(1y − f (x))

for ` from L + 1 to 1 do
Compute gradients of hidden layer parameters:

∇W (`)L(f (x;θ), y) = ∇z(`)L(f (x;θ), y) h(`−1)>︸ ︷︷ ︸
includes m(`−1)

∇b(`)L(f (x;θ), y) = ∇z(`)L(f (x;θ), y)

Compute gradient of hidden layer below:

∇h(`−1)L(f (x;θ), y) = W (`)>∇z(`)L(f (x;θ), y)

Compute gradient of hidden layer below (before activation):

∇z(`−1)L(f (x;θ), y) = ∇h(`−1)L(f (x;θ), y)� g ′(z(`−1))�m(`−1)

end for

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 23 / 42



Outline

1 Training Neural Networks

Automatic Differentiation

Regularization

Tricks of the Trade

2 Conclusions

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 24 / 42



Initialization

• Biases: initialize at zero

• Weights:

X Cannot initialize to zero with tanh activation (gradients would also be
all zero and we would be at saddle point)

X Cannot initialize the weights to the same value (need to break the
symmetry)

X Random initialization (Gaussian, uniform), sampling around 0 to break
symmetry

X For ReLU activations, the mean should be a small positive number

X Variance cannot be too high, otherwise all neuron activations will be
saturated

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 25 / 42



Initialization

• Biases: initialize at zero

• Weights:

X Cannot initialize to zero with tanh activation (gradients would also be
all zero and we would be at saddle point)

X Cannot initialize the weights to the same value (need to break the
symmetry)

X Random initialization (Gaussian, uniform), sampling around 0 to break
symmetry

X For ReLU activations, the mean should be a small positive number

X Variance cannot be too high, otherwise all neuron activations will be
saturated

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 25 / 42



“Glorot Initialization”

• Recipe from Glorot and Bengio (2010):

W (`)
i ,j ∼ U[−t, t], with t =

√
6√

K (`) + K (`−1)

• Works well in practice with tanh and sigmoid activations

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 26 / 42



Training, Validation, and Test Sets

Split datasets in training, validation, and test partitions.

• Training set: serves to train the model

• Validation set: used to tune hyperparameters (learning rate, number
of hidden units, regularization coefficient, dropout probability, best
epoch, etc.)

• Test set: used to estimate the generalization performance

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 27 / 42



Hyperparameter Tuning: Grid Search, Random Search

Search for the best configuration of the hyperparameters:

• Grid search: specify a set of values to test for each hyperparameter,
and try all configurations of these values

• Random search: specify a distribution over the values of each
hyper-parameter (e.g. uniform in some range) and sample
independently each hyper-parameter to get configurations

• Bayesian optimization (Snoek et al., 2012)

We can always go back and fine-tune the grid/distributions if necessary

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 28 / 42



Early Stopping

• To select the number of epochs, stop training when validation error
increases (with some look ahead)

• One common strategy (with SGD) is to halve the learning rate for
every epoch where the validation error increases

(Image credit: Hugo Larochelle)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 29 / 42



Cross Validation

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 30 / 42



Over-parametrization

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 31 / 42



Tricks of the Trade

• Normalization of the data

• Decaying the learning rate

• Mini-batches

• Adaptive learning rates

• Gradient checking

• Debugging on a small dataset

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 32 / 42



Normalization of the Data

• For each input dimension: subtract the training set mean and divide
by the training set standard deviation

• It makes each input dimension have zero mean, unit variance

• It can speed up training (in number of epochs)

• Doesn’t work for sparse inputs (destroys sparsity)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 33 / 42



Decaying the Learning Rate

In SGD, as we get closer to a local minimum, it makes sense to take
smaller update steps (to avoid diverging)

• Start with a large learning rate (say 0.1)

• Keep it fixed while validation error keeps improving

• Divide by 2 and go back to the previous step

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 34 / 42



Mini-Batches

• Instead of updating after a single example, can aggregate a
mini-batch of examples (e.g. 50–200 examples) and compute the
averaged gradient for the entire mini-batch

• Less noisy than standard SGD

• Can leverage matrix-matrix computations (or tensor computations)

• Large computational speed-ups in GPUs: computation is trivially
parallelizable accross the mini-batch and we can exhaust the GPU
memory

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 35 / 42



Adaptive Learning Rates

Instead of using the same step size for all parameters, have one learning
rate per parameter

• Adagrad (Duchi et al., 2011): learning rates are scaled by the square
root of the cumulative sum of squared gradients

η(t) = η(t−1) + (∇θL(f (x), y))2, ∇̄(t)
θ =

∇θL(f (x), y)√
η(t) + ε

• RMSprop (Tieleman and Hinton, 2012): instead of cumulative sum,
use exponential moving average

η(t) = βη(t−1) + (1− β)(∇θL(f (x), y))2, ∇̄(t)
θ =

∇θL(f (x), y)√
η(t) + ε

• Adam (Kingma and Ba, 2014): combine RMSProp with momentum

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 36 / 42



Gradient Checking

• If the training loss is not decreasing even with a very small learning
rate, there’s likely a bug in the gradient computation

• To debug your implementation of fprop/bprop, compute the
“numeric gradient,” a finite difference approximation of the true
gradient:

∂f (x)

∂x
≈ f (x + ε)− f (x − ε)

2ε

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 37 / 42



Debugging on a Small Dataset

• Extract a small subset of your training set (e.g. 50 examples)

• Monitor your training loss in this set

• You should be able to overfit in this small training set

• If not, see if some units are saturated from the very first iterations (if
they are, reduce the initialization variance or properly normalize your
inputs)

• If the training error is bouncing up and down, decrease the learning
rate

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 38 / 42



Outline

1 Training Neural Networks

Automatic Differentiation

Regularization

Tricks of the Trade

2 Conclusions

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 39 / 42



Conclusions

• Multi-layer perceptrons are universal function approximators

• However, they need to be trained

• Stochastic gradient descent is an effective training algorithm

• This is possible with the gradient backpropagation algorithm (an
application of the chain rule of derivatives)

• Most current software packages represent a computation graph and
implement automatic differentiation

• Dropout regularization is effective to avoid overfitting

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 40 / 42



Thank you!

Questions?

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 41 / 42



References I

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–2159.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In AISTATS,
volume 9, pages 249–256.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. (2012). Improving neural networks by
preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.

Kingma, D. and Ba, J. (2014). Adam: A Method for Stochastic Optimization. In Proc. of International Conference on Learning
Representations.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. In Advances
in neural information processing systems, pages 2951–2959.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a simple way to prevent
neural networks from overfitting. Journal of Machine Learning Research, 15(1):1929–1958.

Tieleman, T. and Hinton, G. (2012). Rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA:
Neural Networks for Machine Learning, 4(2).

Wager, S., Wang, S., and Liang, P. S. (2013). Dropout training as adaptive regularization. In Advances in neural information
processing systems, pages 351–359.

Wan, L., Zeiler, M., Zhang, S., Cun, Y. L., and Fergus, R. (2013). Regularization of neural networks using dropconnect. In
Proc. of the International Conference on Machine Learning, pages 1058–1066.

Zeiler, M. D. and Fergus, R. (2013). Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint
arXiv:1301.3557.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2022 42 / 42


	Training Neural Networks
	Automatic Differentiation
	Regularization
	Tricks of the Trade

	Conclusions
	References
	References

