Deep Learning (IST, 2022-23)

Practical 3: Linear and Logistic Regression

André Martins, Andreas Wichert, Taisiya Glushkova, Luis Sa Couto

Question 1

Consider the following training data:

M =[-2.0],2® = [-1.0],2® =[0.0],2® =[2.0]

yM =20,y =3.0,y® = 1.0,y = -1.0.

1. Find the closed form solution for a linear regression that minimizes the sum of squared errors
on the training data..

Solution: First, we need to build the n x (d+ 1) design matrix to account for the bias
parameter, where n is the number of examples and d is the original number of input features.

1 -2.0
1 -1.0
X= 1 0.0
1 2.0

Second, we construct a target vector:

2.0

3.0

1.0
-1.0

Now, the goal is to find the weight vector w = [wo Wi]T that minimizes the sum of
squared errors. We can do it using the pseudo-inverse:

-1
w= (X'X) X" y
[S —
Pseudo-inverse X*

w=(X"X)"' X"y

T -1 T
1 2.0 1 -20 1 -2.0 2.0
1 -1.0 1 -1.0 1 -1.0 3.0
{11 00 1 00 1 00 1.0
1 20 1 20 1 20 -1.0
- 1 -20\1" 2.0
~ 1 11 1 1 -1.0 1 11 1 3.0
|\ 2.0 -1.0 00 2.0) 1 00 (—2.0 -1.0 0.0 2.0) 1.0
| 1 20 -1.0
2.0
(40 10\ 1 1 1 1 3.0
"\ -1.0 90) (—2.0 -1.0 0.0 2.0) 1.0
~1.0
2.0
_(0.2571 ().0286)(1 11 3.0
~ 1 0.0286 0.1143 J\ -2.0 -1.0 0.0 2.0 1.0
~1.0
2.0

~(0.2 0.2286 0.2571 0.3143 3.0
| -0.2 -0.0857 0.0286 0.2571 1.0

1.0
[1.0286
~\ -0.8857

2. Predict the target value for Tquery = [1].

Solution:

From the previous question, we have our weights:

w — 1.0286
| -0.8857
So, to compute the predicted value, we just need to augment the query vector with a bias
dimension and apply the linear regression:

o [1.0286 1]
y‘“"”‘[—0.8857] [1]‘0'1429'

3. Sketch the predicted hyperplane along which the linear regression predicts points will fall.

Solution: We can get the hyperplane’s equation by taking the linear regression output for
a general input [1]T and equating it to zero:

:& —w-x =0
[rozse 111
| -0.8857 T B

=-0.8857z; +1.0286 =0

Page 2

From the equation, we get the following plot:

output
o

4. Compute the mean squared error produced by the linear regression.

Solution:

For each point in the training data, we must compute the linear regression prediction and
then compute its squared error:

2
M _ .z = [20- [10286) [1 - (2.0- 2 _
(y w-x) (2.0 (_0‘8857 90 (2.0 - 2.800)% = 0.64

2
(2) _ . (2) 2 _ _ 10286 . _ _ 2 _
(y? - w-2®) (3.0 (e o (3.0-1.9143)% = 1.1788

1
-1
(s - w- <3))2_ 1o 1O286) 1 2—(10—10286)2—00008
L ~0.8857 00)) VT o

2
@ @\ (g [10286) (1 o 2_
(v -w-2™) (1.0 (_0'8857 20 (-1.0 - (=0.7429))? = 0.0661
So, the mean squared error is:

0.64 +1.1788 + 0.0008 + 0.0661
4

=0.4714

Question 2

Consider the following training data:

m_| 1 @_| 2. .@_|! @_|3
I ERE MR PR

y =14,y =054 =24 =25

1. Find the closed form solution for a linear regression that minimizes the sum of squared errors
on the training data..

Page 3

Solution:

First, we need to build the nx(d + 1) design matrix to account for the bias parameter, where
n is the number of examples and d is the original number of input features.

e e
W = DN =
W W = =

Second, we construct a target vector:

1.4
| oos
Y=1 20

25

Now, the goal is to find the weight vector w = [wy Wy w2]T that minimizes the sum of
squared errors. We can do it using the pseudo-inverse:

w=(X"X)" Xy

w=(X"X)"' X"y

111 111 111 1.4
Al o2t 1 21 12 1 0.5
1111 3 113 113 2.0

1 3 3 1 3 3 1 3 3 2.5
_ -1

11 1 1 ; 1 111 1 (1)‘;
“fr 28],] 3 1213 ||,
RN S RNy

47 8\'/1 111 ég
-l 7 15 15 121 ||y,

8 15 20 113 3|5,

1875 —05 -0375\/1 1 1 1 (1)‘51
-1 -05 04 -01 1213 ||,

~0.375 -0.1 0.275 113 3 '

2.5

1.0 05 025 -0.75 (1)‘51
- —02 02 -04 04 i

02 -0.3 035 0.15)

0.275
| 0.02

0.645

2. Predict the target value for Zquery = [2 3]T.

Page 4

Solution: From the previous question, we have our weights:

0.275
w=| 0.02
0.645

So, to compute the predicted value, we just need to augment the query vector with a bias
dimension and apply the linear regression:

0.275 1
g:w.m: 0.02 -l 2 =2.25
0.645 3

3. Sketch the predicted hyperplane along which the linear regression predicts points will fall.

Solution: We can get the hyperplane’s equation by taking the linear regression output for
a general input [1 21 =9]T and equating it to zero:

@ —w-x =0
0.275 1

= 0.02 [-] =1 =0
0.645 To

=0.02z1 + 0.64522 + 0.275 =0

From the equation, we get the following plot:

Output

4. Compute the mean squared error produced by the linear regression.

Solution:

For each point in the training data, we must compute the linear regression prediction and
then compute its squared error:

, , 0.275 11\’
(y<1) —Q(U) - (y<1) —w-m(l)) =l1a-| 002 || 1 || =(1.4-0.94)%=0.2116
0.645 1
) , 0.275 11\’
(y<2) - y@)) = (y(Q) —w- a:<2>) =los-| 002 || 2 || =(0.5-096)%=0.2116
0.645 1

Page 5

0.275 11\’

2 2
(y<3) - g(?’)) - (y<3> —w- m(3)) =l20-| 002 || 1 || =(2.0-2.23)%=0.0529
0.645 3

, , 0.275 11\’
(y(4) - y(‘*)) - (y(4) —w- a:<4>) =[25-| 002 || 3 || =(@25-2.27)%=0.0529
0.645 3

So, the mean error is:

0.2116 + 0.2116 + 0.0529 + 0.0529
4

=0.13225

Question 3

Consider the following training data:

2D =[3], 2@ =[4], =®=[6], =™ =[10], 2@ =[12]

yM =15, yP =93 @ =234 y®-458 ¢ =601

1. Adopt a logarithmic feature transformation ¢ (x1) =log (x1) and find the closed form solu-
tion for this non-linear regression that minimizes the sum of squared errors on the training
data.

Solution:

First, we need to build the nx(d + 1) design matrix to account for the bias parameter, where
n is the number of examples and d is the original number of input features. However, unlike
previous exercises where we used the features themselves directly (¢ (x) = x), in this case,
we have a non-linear transformation. So, we apply it:

1 log(3) 1 1.0986
1 log(4) 1 1.3863
d=| 1 log(6) |=| 1 1.7018
1 log(10) 1 2.3026
1 log(12) 1 2.4849

Second, we construct a target vector:

1.5
9.3
y=| 234
45.8
60.1

Now, the goal is to find the weight vector w = [wy Wi]T that minimizes the sum of
squared errors. We can do it using the pseudo-inverse:

Page 6

w=(®P)

(1 10986 \'/ 1 1.0986 \]
113863 | | 1 1.3%63

Al 1 17918 || 1 17018
1 23026 | | 1 2.3026
1 24849 | \ 1 2.4849

B 1 1 1 1
T\ 1.0986 1.3863 1.7918 2.3026

1.0986
1.3863
1.7918
2.3026
2.4849

1.0986
1.3863
1.7918
2.3026
2.4849

[50 90642 |7
“\ 9.0642 17.8158

25745 -1.3098
-1.3098 0.7225

e e i S G SN

-0.5160 -0.3082 -0.0152 0.3539

_(1.13556 0.7587 0.2276 -0.4415

[-47.0212
“\ 413945

<I>Ty
1 1.0086 \' [1.5
1 1.3863 9.3
1 1.7918 23.4
1 2.3026 45.8
1 2.4849 60.1
1 1.0986 \71
.) 1 1.3863
1 1.7918
2.4849 1 2.3026
1 2.4849
15
9.3
923.4
45.8
60.1
(15
9.3
923.4
45.8
60.1
1.5
—0.6803) 293‘34
0.4856 s
60.1

—_ = e

1.0986
1.3863
1.7918
2.3026
2.4849

2. Repeat the exercise above for a quadratic feature transformation ¢ (21) = 2.

1.5
9.3
23.4
45.8
60.1

Solution: First, we need to build the n x (d+ 1) design matrix to account for the bias
parameter, where n is the number of examples and d is the original number of input features.
However, unlike previous exercises where we used the features themselves directly (¢ (z) = z),
in this case, we have a non-linear transformation. So, we apply it:

KA
Il
— e e e

Second, we construct a target vector:

32
42
62
102
122

Page 7

16
36
100
144

—_ = =

1.5
9.3
y=| 234
45.8
60.1

Now, the goal is to find the weight vector w = [wy Wi]T that minimizes the sum of
squared errors. We can do it using the pseudo-inverse:

1

w=(2'®) @'y

- T -1 T

1 9 1 9 1 9 1.5

1 16 1 16 1 16 9.3

=1l 1 36 1 36 1 36 23.4

1 100 1 100 1 100 45.8

[\ 1 144 1 144 1 144 60.1
I 1 9 \1' 1.5
_(11111)}{,1,)? (11111)293'34
9 16 36 100 144 L 100 9 16 36 100 144 Jf 270
1 144 60.1

1.5

(50 3050 Yf1 1 1 1 1 29?;34
“{ 305.0 32369.0 9 16 36 100 144 Jf 0

60.1
1.5

_(0.4703 —0.0044)(1 11 1 1) 0.3

~0.0044 0.00007)\ 9 16 36 100 144 ig;‘

60.1
1.5

_(0.4305 0.3994 0.3108 0.0272 —0.1678) 93

~0.0038 -0.0033 —0.0018 0.0028 0.0060 Z?'g

60.1
[2.7895
~\ 0.4136
. Plot both regressions.

Solution: For the logarithmic, we get:

§=w-¢(x)=-47.0212 + 41.395log (z1)

For the quadratic, we get:

Page 8

j=w-¢(x)=2.7895+0.413622

With the equations, we can build the plots:

— log
—— quadratic

4. Which is a better fit, a) or b)?

Solution: Recall the equations for both regressions:

Glog = W+ @ (x) = —47.0212 + 41.395 log (1)

Jquadratic = W - ¢ () = 2.7895 + 0.413627

To measure which fit is better we will measure the mean squared errors.

For the logarithmic transform, we have:

2

1 1.0986 1.5 9.2704
1 1.3863 9.3 11315
(Pwipg—y) =|| 1 1.7918 (‘4417;;)12)— 234 || =| 14.0455
1 2.3026 ' 45.8 6.2155
124849 60.1 18.1460

Which yields a mean squared error of:

9.2704 + 1.1315 + 14.0455 + 6.2155 + 18.1460

=9.7618
5)
For the quadratic transform, we have:
1 9 1.5 \\° [25.1202
1 16 9.3 0.0152
(q)wquadratic—y)2 = 1 36 (gﬁgg)— 23.4 =1 32.7228
1 100 ' 45.8 2.7192
1 144 60.1 5.0628
Which yields a mean squared error of:
25.1202 + 0.0152 + 32.7228 + 2.7192 + 5.0628 131973

5

So, given the availale data, the logarithmic transform appears to fit the data better.

Page 9

Question 4

Consider the following training data:

w_| -1 @_| 0 @ _| 1 @_| 1
¥ ‘[0]’ v ‘[0.25]’ v ‘[1]’ ¥ ‘[-1

y(l) =0, y(Q) =1, y(3) =1, y(4) =0
In this exercise, we will consider binary logistic regression:

1
l+exp(~w-x)

pw(y=1]z)=0(w-z)=

And we will use the cross-entropy loss function:

L(w)= —ilog (pw (y(i) | m(z‘))) -]ZV: (y(z‘) log o (w . a:(i)) + (1 _ y(i)) log (1 g (w . m(i))))

i-1
1. Determine the gradient descent learning rule for this unit.
Solution: To apply gradient descent, we want an update rule that moves a step of size n

towards the opposite direction from the gradient of the error function with respect to the
weights:

To find the learning rule, we must compute the gradient:

N . . .
3%_:;“) _ _;mm(y(z) = o(w- 2 DY)

So, we can write our update rule as follows.
OL (w)
ow

w —n(—gw(“ (4 _U(w.xm)))

=w +njzv:a:(i) (y(i) —a(w-x(i)))

i=1

w=w-n

2. Compute the first gradient descent update assuming an initialization of all zeros. Assume a
learning rate of 1.0.

Solution:

The original gradient descent does one update per epoch because its learning rule requires
contributions from all data points to do one step. Let us compute it.

0

According to the problem statement, we start with weights w = | 0 | and learning rate
0

n =1.0.

Page 10

w=w+73 (4 o (w-20))
=1

4
- D (4D _ 5 (- 2D
w+n;w (v -0 (w-=™))
- w2 (y <1>_U(w.m(1>))+m<2)() g (w-2®))+
ne® (19 g (w-2®)) + 52 (1D~ o (w2)

(o) (2 ((DG () s)
(el DA et)

- § +(—;1)<o—a<o>>+ 0.(1;5)‘1“’(0)” % <1—a<o>>+(i)(o—o<o>>
: §O+()OZ'55)*(§?; (52)- (s

3. Compute the first stochastic gradient descent update assuming an initialization of all zeros.
Assume a learning rate of 1.0.

Solution:

In stochastic gradient descent we make one update for each training example. So, instead
of summing across all data points we adapt the learning rule for one example only:

w=w+nx(y-o(w-x))

We can now do the updates. Let us start with the first example:

w=w+nz(y-o(w-x))

0 1 0 1
Lo GG)
0 0 0 0
0 1
=1 0 |+ 1)(00—(0))
0 0
0 -0.5
=1 0 |+ 0.5)
0 0
-0.5
=1 0.5
0

Page 11

Question 5
Now it’s time to try multi-class logistic regression on real data and see what happens.
1. Load the UCI handwritten digits dataset using scikit-learn:

from sklearn.datasets import load_digits
data = load_digits()

This is a dataset containing 1797 8x8 input images of digits, each corresponding to one
out of 10 output classes. You can print the dataset description and visualize some input
examples with:

print (data.DESCR)

import matplotlib.pyplot as plt

plt.gray(Q

for i in range(10):
plt.matshow(data.images[i])

plt.show()

Randomly split this data into training (80%) and test (20%) partitions. This can be done
with:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42)

2. Run your implementation of the multi-class logistic regression algorithm on this dataset,
using stochastic gradient descent with n = 0.001. Plot the loss and the training and test
accuracy over the epochs.

3. Use scikit-learn’s implementation of multi-class logistic regression. This can be done with

from sklearn.linear_model import LogisticRegression

clf = LogisticRegression(fit_intercept=False, penalty='none')
clf .fit(X_train, y_train)

print(clf.score(X_train, y_train))

print(clf.score(X_test, y_test))

Compare the resulting accuracies.

Page 12

