Deep Learning (IST, 2022-23)
 Practical 3: Linear and Logistic Regression

André Martins, Andreas Wichert, Taisiya Glushkova, Luis Sá Couto

Question 1

Consider the following training data:

$$
\begin{gathered}
\boldsymbol{x}^{(1)}=[-2.0], \boldsymbol{x}^{(2)}=[-1.0], \boldsymbol{x}^{(3)}=[0.0], \boldsymbol{x}^{(4)}=[2.0] \\
y^{(1)}=2.0, y^{(2)}=3.0, y^{(3)}=1.0, y^{(4)}=-1.0 .
\end{gathered}
$$

1. Find the closed form solution for a linear regression that minimizes the sum of squared errors on the training data..
2. Predict the target value for $\boldsymbol{x}_{\text {query }}=[1]$.
3. Sketch the predicted hyperplane along which the linear regression predicts points will fall.
4. Compute the mean squared error produced by the linear regression.

Question 2

Consider the following training data:

$$
\begin{gathered}
\boldsymbol{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \boldsymbol{x}^{(2)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \boldsymbol{x}^{(3)}=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \boldsymbol{x}^{(4)}=\left[\begin{array}{l}
3 \\
3
\end{array}\right] \\
y^{(1)}=1.4, y^{(2)}=0.5, y^{(3)}=2, y^{(4)}=2.5
\end{gathered}
$$

1. Find the closed form solution for a linear regression that minimizes the sum of squared errors on the training data..
2. Predict the target value for $\boldsymbol{x}_{\text {query }}=\left[\begin{array}{ll}2 & 3\end{array}\right]^{\top}$.
3. Sketch the predicted hyperplane along which the linear regression predicts points will fall.
4. Compute the mean squared error produced by the linear regression.

Question 3

Consider the following training data:

$$
\begin{aligned}
& \boldsymbol{x}^{(1)}=[3], \quad \boldsymbol{x}^{(2)}=[4], \quad \boldsymbol{x}^{(3)}=[6], \quad \boldsymbol{x}^{(4)}=[10], \quad \boldsymbol{x}^{(5)}=[12] \\
& y^{(1)}=1.5, \quad y^{(2)}=9.3, \quad y^{(3)}=23.4, \quad y^{(4)}=45.8, \quad y^{(5)}=60.1
\end{aligned}
$$

1. Adopt a logarithmic feature transformation $\phi\left(x_{1}\right)=\log \left(x_{1}\right)$ and find the closed form solution for this non-linear regression that minimizes the sum of squared errors on the training data.
2. Repeat the exercise above for a quadratic feature transformation $\phi\left(x_{1}\right)=x_{1}^{2}$.
3. Plot both regressions.
4. Which is a better fit, a) or b)?

Question 4

Consider the following training data:

$$
\begin{gathered}
\boldsymbol{x}^{(1)}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \quad \boldsymbol{x}^{(2)}=\left[\begin{array}{c}
0 \\
0.25
\end{array}\right], \quad \boldsymbol{x}^{(3)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \boldsymbol{x}^{(4)}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
y^{(1)}=0, \quad y^{(2)}=1, \quad y^{(3)}=1, \quad y^{(4)}=0
\end{gathered}
$$

In this exercise, we will consider binary logistic regression:

$$
p_{\boldsymbol{w}}(y=1 \mid \boldsymbol{x})=\sigma(\boldsymbol{w} \cdot \boldsymbol{x})=\frac{1}{1+\exp (-\boldsymbol{w} \cdot \boldsymbol{x})}
$$

And we will use the cross-entropy loss function:

$$
L(\boldsymbol{w})=-\sum_{i=1}^{N} \log \left(p_{\boldsymbol{w}}\left(y^{(i)} \mid \boldsymbol{x}^{(i)}\right)\right)=-\sum_{i=1}^{N}\left(y^{(i)} \log \sigma\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}\right)\right)\right)
$$

1. Determine the gradient descent learning rule for this unit.
2. Compute the first gradient descent update assuming an initialization of all zeros. Assume a learning rate of 1.0 .
3. Compute the first stochastic gradient descent update assuming an initialization of all zeros. Assume a learning rate of 1.0 .

Question 5

Now it's time to try multi-class logistic regression on real data and see what happens.

1. Load the UCI handwritten digits dataset using scikit-learn:
```
from sklearn.datasets import load_digits
data = load_digits()
```

This is a dataset containing 17978 x 8 input images of digits, each corresponding to one out of 10 output classes. You can print the dataset description and visualize some input examples with:

```
print(data.DESCR)
import matplotlib.pyplot as plt
plt.gray()
for i in range(10):
    plt.matshow(data.images[i])
plt.show()
```

Randomly split this data into training (80\%) and test (20\%) partitions. This can be done with:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42)
```

2. Run your implementation of the multi-class logistic regression algorithm on this dataset, using stochastic gradient descent with $\eta=0.001$. Plot the loss and the training and test accuracy over the epochs.
3. Use scikit-learn's implementation of multi-class logistic regression. This can be done with
```
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(fit_intercept=False, penalty='none')
clf.fit(X_train, y_train)
print(clf.score(X_train, y_train))
print(clf.score(X_test, y_test))
```

Compare the resulting accuracies.

