
Deep Learning (IST, 2022-23)

Practical 3: Linear and Logistic Regression

André Martins, Andreas Wichert, Taisiya Glushkova, Luis Sá Couto

Question 1

Consider the following training data:

x(1) = [−2.0] ,x(2) = [−1.0] ,x(3) = [0.0] ,x(4) = [2.0]

y(1) = 2.0, y(2) = 3.0, y(3) = 1.0, y(4) = −1.0.

1. Find the closed form solution for a linear regression that minimizes the sum of squared errors
on the training data..

2. Predict the target value for xquery = [1].

3. Sketch the predicted hyperplane along which the linear regression predicts points will fall.

4. Compute the mean squared error produced by the linear regression.

Question 2

Consider the following training data:

x(1) = [1
1

] ,x(2) = [2
1

] ,x(3) = [1
3

] ,x(4) = [3
3

]

y(1) = 1.4, y(2) = 0.5, y(3) = 2, y(4) = 2.5

1. Find the closed form solution for a linear regression that minimizes the sum of squared errors
on the training data..

2. Predict the target value for xquery = [2 3]⊺.

3. Sketch the predicted hyperplane along which the linear regression predicts points will fall.

4. Compute the mean squared error produced by the linear regression.

1

Question 3

Consider the following training data:

x(1) = [3] , x(2) = [4] , x(3) = [6] , x(4) = [10] , x(5) = [12]

y(1) = 1.5, y(2) = 9.3, y(3) = 23.4, y(4) = 45.8, y(5) = 60.1

1. Adopt a logarithmic feature transformation φ (x1) = log (x1) and find the closed form solu-
tion for this non-linear regression that minimizes the sum of squared errors on the training
data.

2. Repeat the exercise above for a quadratic feature transformation φ (x1) = x21.

3. Plot both regressions.

4. Which is a better fit, a) or b)?

Question 4

Consider the following training data:

x(1) = [−1
0

] , x(2) = [0
0.25

] , x(3) = [1
1

] , x(4) = [1
−1]

y(1) = 0, y(2) = 1, y(3) = 1, y(4) = 0

In this exercise, we will consider binary logistic regression:

pw (y = 1 ∣ x) = σ(w ⋅x) = 1

1 + exp (−w ⋅x)
And we will use the cross-entropy loss function:

L (w) = −
N

∑
i=1

log (pw (y(i) ∣ x(i))) = −
N

∑
i=1

(y(i) logσ (w ⋅x(i)) + (1 − y(i)) log (1 − σ (w ⋅x(i))))

1. Determine the gradient descent learning rule for this unit.

2. Compute the first gradient descent update assuming an initialization of all zeros. Assume a
learning rate of 1.0.

3. Compute the first stochastic gradient descent update assuming an initialization of all zeros.
Assume a learning rate of 1.0.

Question 5

Now it’s time to try multi-class logistic regression on real data and see what happens.

1. Load the UCI handwritten digits dataset using scikit-learn:

from sklearn.datasets import load_digits
data = load_digits()

Page 2

This is a dataset containing 1797 8x8 input images of digits, each corresponding to one
out of 10 output classes. You can print the dataset description and visualize some input
examples with:

print(data.DESCR)

import matplotlib.pyplot as plt
plt.gray()
for i in range(10):

plt.matshow(data.images[i])
plt.show()

Randomly split this data into training (80%) and test (20%) partitions. This can be done
with:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.2, random_state=42)

2. Run your implementation of the multi-class logistic regression algorithm on this dataset,
using stochastic gradient descent with η = 0.001. Plot the loss and the training and test
accuracy over the epochs.

3. Use scikit-learn’s implementation of multi-class logistic regression. This can be done with

from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(fit_intercept=False, penalty='none')
clf.fit(X_train, y_train)
print(clf.score(X_train, y_train))
print(clf.score(X_test, y_test))

Compare the resulting accuracies.

Page 3

