
Deep Learning (IST, 2022-23)

Practical 2: Perceptron

André Martins, Andreas Wichert, Luis Sá-Couto

Question 1

Consider the following linearly separable training set:

x(1) = [−1
0

] ,x(2) = [0
0.25

] ,x(3) = [1
1

] ,x(4) = [1
−1]

y(1) = −1, y(2) = +1, y(3) = +1, y(4) = −1.

1. Initialize all weights to zero (including the bias). Assume sign(z) = +1 iff z ≥ 0, and −1 if
z < 0. Use a learning rate of one. Apply the perceptron learning algorithm until convergence.
How many epochs does it take to converge?

2. Draw the separation hyperplane.

3. What is the perceptron output for the query point [0 1]⊺?

4. Change the initialization of weights and biases to be random with a standard normal distri-
bution N(0,1). Try multiple times. Does it always converge?

Question 2

1. Generate a balanced dataset with 30 examples in R2 and 3 classes. Assume each of the 10
inputs associated to class k ∈ {0,1,2} is generated as x ∼ N(µk, σ2kI), with σ0 = σ1 = σ2 = 1,
µ0 = [0,0]⊺, µ1 = [0,3]⊺, and µ2 = [2,2]⊺. Plot the data.

2. Implement the multi-class perceptron algorithm and run 100 iterations. Initialize all the
weights to zero and use a learning rate of one. What is the training accuracy (fraction of
points that are correctly classified)?

Question 3

The perceptron can learn a relatively large number of functions. In this exercise, we focus on
simple logical functions.

1. Show graphically that a perceptron can learn the logical NOT function. Give an example
with specific weights.

2. Show graphically that a perceptron can learn the logical AND function for two inputs. Give
an example with specific weights.

1

3. Show graphically that a perceptron can learn the logical OR function for two inputs. Give
an example with specific weights.

4. Show graphically that a perceptron can not learn the logical XOR function for two inputs.

Question 4

Now it’s time to try the perceptron on real data and see what happens.

1. Load the UCI handwritten digits dataset using scikit-learn:

from sklearn.datasets import load_digits
data = load_digits()

This is a dataset containing 1797 8x8 input images of digits, each corresponding to one
out of 10 output classes. You can print the dataset description and visualize some input
examples with:

print(data.DESCR)

import matplotlib.pyplot as plt
plt.gray()
for i in range(10):

plt.matshow(data.images[i])
plt.show()

Randomly split this data into training (80%) and test (20%) partitions. This can be done
with:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.2, random_state=42)

2. Run your implementation of the multi-class perceptron algorithm on this dataset. Measure
the training and test accuracy.

3. Use scikit-learn’s implementation of the perceptron algorithm. This can be done with

from sklearn.linear_model import Perceptron
clf = Perceptron(fit_intercept=False, shuffle=False)
clf.fit(X_train, y_train)
print(clf.score(X_train, y_train))
print(clf.score(X_test, y_test))

Compare the resulting accuracies.

Page 2

