Lecture 1: Introduction

André Martins, Francisco Melo, Mário Figueiredo

fit técnico
 LISBOA

Deep Learning Course, Winter 2022-2023

Deep Learning Course

- A new MSc-level course
- Offered jointly by DEEC and DEI
- MSc programs: MEEC, MECD, MEIC-A, MEIC-T
- 350 students enrolled this year! (192 DEEC, 158 DEI).

Course Website(s)

DEEC:

https:
//fenix.tecnico.ulisboa.pt/disciplinas/AProf/2022-2023/1-semestre

DEI:
https://fenix.tecnico.ulisboa.pt/disciplinas/AP-Dei/2022-2023/
1-semestre
There we can find:

- Syllabus
- Lecture slides
- Literature pointers
- Practical and homework assignments
- Announcements

Instructors

- Main instructors: André Martins (DEI Alameda), Francisco Melo (DEI Tagus), Mário Figueiredo (DEEC)
- Practical classes: Andreas Wichert, Ben Peters, Chrysoula Zerva, Gonçalo Correia, João Fonseca, João Santinha, José Moreira, Margarida Campos, Tomás Costa
- Location \& schedule: see course webpage in Fenix (previous slide)
- Office hours: see information in Fenix
- Communication:
piazza.com/tecnico.ulisboa.pt/fall2022/c88

> Please register in Piazza!!

Outline

(1) Introduction

(2) Class Administrativia
(3) Recap

Linear Algebra
Probability Theory Refresher
Optimization
(4) Introduction to Machine Learning

What is ""Deep Learning"?

- Neural networks?
- Neural networks with many hidden layers?
- Anything beyond shallow (linear) models for machine learning?
- Anything that learns representations?
- A form of learning that is really intense and profound?

What is ""Deep Learning"?

- Neural networks?
- Neural networks with many hidden layers?
- Anything beyond shallow (linear) models for machine learning?
- Anything that learns representations?
- A form of learning that is really intense and profound?

Why Did Deep Learning Become Mainstream?

Lots of recent breakthroughs:

- Object recognition
- Speech and language processing (Transformers, BERT, GPT-3)
- Machine translation
- Chatbots and dialog systems
- Self-driving cars
- Solving games (Atari, Go, StartCraft II)
- Protein design (AlphaFold)

No signs of slowing down...

Microsoft's Deep Learning Project Outperforms Humans In Image Recognition

Michael Thomsen, contributor
I write about tech, video games, sclence and culture. FULL BIO \vee

Microsoft's new breakthrough: Al that's as good as humans at listening... on the phone

Microsoft's new speech-recognition record means professional transcribers could be among the first to lose their jobs to artificial intelligence.By Liam Tung | October 19, 2016--10:10 GMT (11:10 BST) | Topic: Innovation

Who is wearing glasses? man

Is the umbrella upside down?

Where is the child sitting?
fridge

arms

How many children are in the bed?

1

The Great A.I. Awakening

How Google used artificial intelligence to transform Google Translate, one of its more popular
services - and how machine learning is poised to reinvent computing itself.

Google unleashes deep learning tech on language with Neural Machine Translation

Posted Sep 27, 2016 by Devin Coldewey, Contributor

AlphaGo Beats Go Human Champ: Godfather Of Deep Learning Tells Us Do Not Be Afraid Of AI

Last week, Google's artificial intelligence program

Last week, Google's artificial intelligence program AlphaGo dominated its match with South Korean world Go champion Lee Sedol, winning with a 4-1 score.

The achievement stunned artificial intelligence experts, who previously thought that Google's computer program would need at least 10 more years before developing enough to be able to beat a human world champion.

A robot wrote this entire article. Are you scared yet, human?

We asked GPT-3, OpenAI's powerful new language generator, to write an essay for us from scratch. The assignment? To convince us robots come in peace

- For more about GPT-3 and how this essay was written and edited, please read our editor's note below

'It will change everything': DeepMind's AI makes gigantic leap in solving protein structures

Google's deep-learning program for determining the 3D shapes of proteins stands to transform biology, say scientists.

Ewen Callaway
v) f

A protein's function is determined by its 3D shape. Credit: DeepMind

AlphaFold's new rival? Meta AI predicts shape of $\mathbf{6 0 0}$ million proteins

Microbial molecules from soil, seawater and human bodies are among the planet's least understood.

Ewen Callaway

- f -

The ESM Metagenomic Atlas contains structural predictions for 617 million proteins. Credit: ESM Metagenomic Atlas (CC BY 4.0)

How to use DALL•E 2 to turn your wildest imaginations into tangible art

Al art platform, DALL•E 2, creates images from text descriptions in seconds. In this article, we show you how to get the results you desire.

Why Now?

Why does deep learning work now, but not 30 years ago?

Many of the core ideas were there, after all.

Why Now?

Why does deep learning work now, but not 30 years ago?

Many of the core ideas were there, after all.

But now we have:

- more data
- more computing power
- (much) better software engineering (e.g. auto-diff)
- some algorithmic innovations: many layers, ReLUs, better learning algorithms, dropout, CNNs, LSTMs, transformers, etc.
All of these will be covered in this course.

"But It's Non-Convex"

For many years (1990-2010), NNs were not popular in machine learning, because they were hard to learn.

"But It's Non-Convex"

For many years (1990-2010), NNs were not popular in machine learning, because they were hard to learn.

Why does gradient-based optimization work at all in NNs despite the non-convexity?

"But It's Non-Convex"

For many years (1990-2010), NNs were not popular in machine learning, because they were hard to learn.

Why does gradient-based optimization work at all in NNs despite the non-convexity?

One possible, partial answer (this is an open research topic)

- there are generally many hidden units
- there are many ways a neural net can approximate the desired input-output relationship
- we only need to find one

One turning point: AlexNet

- Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton; 2012

One turning point: AlexNet

- Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton; 2012
- ImageNet: Large Scale Visual Recognition Challenge (14 million images, 20000 categories)

One turning point: AlexNet

- Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton; 2012
- ImageNet: Large Scale Visual Recognition Challenge (14 million images, 20000 categories)

- Large CNN, much deeper than anything else at the time

One turning point: AlexNet

- Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton; 2012
- ImageNet: Large Scale Visual Recognition Challenge (14 million images, 20000 categories)

- Large CNN, much deeper than anything else at the time
- Used parallel processing (one of the first uses of GPUs in NNs)

One turning point: AlexNet

- Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton; 2012
- ImageNet: Large Scale Visual Recognition Challenge (14 million images, 20000 categories)

- Large CNN, much deeper than anything else at the time
- Used parallel processing (one of the first uses of GPUs in NNs)
- Convinced many people that deep learning would change the field.

Recommended Books

Main book:

- Deep Learning. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. MIT Press, 2016. Chapters available at http://deeplearningbook.org

Recommended Books

Secondary books:

- Artificial Intelligence Engines: A Tutorial Introduction to the Mathematics of Deep Learning. James Stone. Sebtel Press, 2019.
- Dive into Deep Learning. Aston Zhang, Zach Lipton, Mu Li, Alex Smola (https://d2l.ai/)
- Deep Learning with Python. François Chollet. Manning Publications, 2017.
- Machine Learning - A Journey to Deep Learning with Exercises and Answers. Andreas Wichert and Luis Sa-Couto, 2021
- Probabilistic Machine Learning. Kevin P. Murphy (https://probml.github.io/pml-book/)

Tentative Syllabus

Week 1	Introduction and Course Description
	Linear Classifiers I (linear regression, perceptron)
Week 2	Linear Classifiers II (logistic regression, regularization)
Week 3	Neural Networks I
Week 4	Neural Networks II
	Representation Learning and Auto-Encoders
Week 5	Convolutional Networks
	Recurrent Neural Networks and LSTMs
Week 6	Sequence-to-Sequence Models and Attention Mechanisms Week 7 7
	Self-Supervised Learning (BERT, GPT3, etc.) Interpretability and Fairness

Outline

(1) Introduction

(2) Class Administrativia
(3) Recap

Linear Algebra
Probability Theory Refresher
Optimization
(4) Introduction to Machine Learning

What This Class Is About

- Introduction to deep learning (DL)
- Goal: after finishing this class, you should be able to:
\checkmark Understand how DL works (it's not magic)
\checkmark Understand the math and intuition behind DL models
\checkmark Apply DL on practical problems (language, vision, ...)
- Target audience:
\checkmark MSc students with basic background in probability theory, linear algebra, programming.
\checkmark Useful: background in machine learning.

What This Class Is Not About

- Just playing with DL toolkits, without learning the fundamental concepts
- Introduction to machine learning (other courses by DEEC and DEI)
- Natural language processing (another course offered by DEI)
- Computer vision (another course offered by DEEC)
- Optimization (other courses by DEEC and DEI)

Prerequisites

- Calculus and basic linear algebra
- Basic probability theory
- Basic knowledge of machine learning (preferred, but not required)
- Programming (Python \& PyTorch, preferred but not required)

Course Information

- Main instructors: André Martins (DEI Alameda), Francisco Melo (DEI Tagus), Mário Figueiredo (DEEC)
- Practical classes: Andreas Wichert, Ben Peters, Chrysoula Zerva, Gonçalo Correia, João Fonseca, João Santinha, José Moreira, Margarida Campos, Tomás Costa
- Location \& schedule: see course webpage in Fenix (previous slide)
- Office hours: see information in Fenix
- Communication:
piazza.com/tecnico.ulisboa.pt/fall2022/c88
Please register in Piazza!!!

Schedule (DEI Alameda/Tagus)

	Mon 11/21	Tue 11/22	Wed 11/23	Thu 11/24	Fri 11/25
07:00					
08:00					
	68:30-10:30				
09:00					
10:00					
11:00					
				$11730-13: 50$	
12:00					
				1-29	
13:00					
	$1{ }^{13: 30-15: 00}$			13330-159 13:30-15.	
14:00	-29			$\begin{array}{\|l\|l} \mathrm{T} & \mathrm{~T} \\ \mathrm{QA} \end{array}$	$14: 00-14: 00-94: 00-$
			$L^{1430-16} / \frac{14: 30-16}{}$		$\begin{array}{\|l\|l\|l} \hline \mathrm{L} & \mathrm{~L} & \mathrm{~L} \\ \mathrm{EE} & \mathrm{~F} 2 & \mathrm{F4} \\ \hline \end{array}$
15:00	$15: 00-16: 30$	$\begin{aligned} & 15: 00-17: 00 \\ & T \end{aligned}$	F2 F3		
16:00	1-29			$\begin{aligned} & 15: 30-17: 00 \\ & \mathrm{~L} \\ & 0-21 \end{aligned}$	$\left\|\begin{array}{ll} 15: 30-173 & 15: 30-172 \\ E & L \\ E 5 & F 2 \end{array}\right\|$
17:00					17:00-18: 17:00-18.
			17:30-19: $17.30-18$.		$\begin{array}{l\|l} \mathrm{L} & \mathrm{~L} \\ \mathrm{~F} 2 & \mathrm{~F} \end{array}$
18:00			L L EF $\mathrm{F3}$		
19:00					
20:00					

- Letures: 2 per week (Alameda: Tue \& Thur; Tagus: Mon \& Thur)
- Practical shifts (see Fenix) - pick your slots and register as a group! (more later)

Schedule (DEEC Alameda)

- Lectures: 2 per week (shift 1: Mon \& Thur; shift 2: Tue \& Thur)
- Practical shifts (see Fenix): pick your slots and register as a group! (more later!)

Grading

- 2 homework assignments: 50%
- Minimal grade: 8
- Theoretical questions \& implementation
- Groups of 2 - you need to register your group in Fenix!
- Some of the practicals will be Q\&A about these assignments, so please join the practicals as a group
- Submission through Fenix
- No late days allowed
- Final exam: 50\%
- Minimal grade: 8

Registering Your Group in Fenix

- Pick a group of 2
- Register in Fenix
- Deadline: Sunday, November 27, at 23:59
- Use Piazza to find group mates
- Can't find a group?

Tell the instructors by November 28 (in Piazza); we'll find a solution.

Collaboration Policy

- Assignments should be done within each group
- Students may discuss the questions across groups, as long as they write their own answers and their own code
- If this happens, acknowledge with whom you collaborate!
- Zero tolerance on plagiarism!!
- Always credit your sources!!!

Questions?

Today's Roadmap

- Linear Algebra (only skim over)
- Probability Refresher (only skim over)
- Optimization
- Introduction to Machine Learning
- "Deep Learning Superheroes"
- Supervised, Unsupervised, Reinforcement Learning
- Classification and Regression

Outline

(1) Introduction

(2) Class Administrativia

(3) Recap

Linear Algebra
Probability Theory Refresher
Optimization

(4) Introduction to Machine Learning

Outline

(1) Introduction

(2) Class Administrativia
(3) Recap

Linear Algebra
Probability Theory Refresher
Optimization
(4) Introduction to Machine Learning

Notation: Matrices and Vectors

- $A \in \mathbb{R}^{m \times n}$ is a matrix with m rows and n columns.

$$
A=\left[\begin{array}{ccc}
A_{1,1} & \cdots & A_{1, n} \\
\vdots & \ddots & \vdots \\
A_{m, 1} & \cdots & A_{m, n}
\end{array}\right]
$$

Notation: Matrices and Vectors

- $A \in \mathbb{R}^{m \times n}$ is a matrix with m rows and n columns.

$$
A=\left[\begin{array}{ccc}
A_{1,1} & \cdots & A_{1, n} \\
\vdots & \ddots & \vdots \\
A_{m, 1} & \cdots & A_{m, n}
\end{array}\right]
$$

- $x \in \mathbb{R}^{n}$ is a vector with n components,

$$
x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Notation: Matrices and Vectors

- $A \in \mathbb{R}^{m \times n}$ is a matrix with m rows and n columns.

$$
A=\left[\begin{array}{ccc}
A_{1,1} & \cdots & A_{1, n} \\
\vdots & \ddots & \vdots \\
A_{m, 1} & \cdots & A_{m, n}
\end{array}\right]
$$

- $x \in \mathbb{R}^{n}$ is a vector with n components,

$$
x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

- A (column) vector is a matrix with n rows and 1 column.

Notation: Matrices and Vectors

- $A \in \mathbb{R}^{m \times n}$ is a matrix with m rows and n columns.

$$
A=\left[\begin{array}{ccc}
A_{1,1} & \cdots & A_{1, n} \\
\vdots & \ddots & \vdots \\
A_{m, 1} & \cdots & A_{m, n}
\end{array}\right]
$$

- $x \in \mathbb{R}^{n}$ is a vector with n components,

$$
x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

- A (column) vector is a matrix with n rows and 1 column.
- A matrix with 1 row and n columns is called a row vector.

Matrix Transpose and Matrix Products

- Given matrix $A \in \mathbb{R}^{m \times n}$, its transpose A^{T} is such that $\left(A^{T}\right)_{i, j}=A_{j, i}$.

Matrix Transpose and Matrix Products

- Given matrix $A \in \mathbb{R}^{m \times n}$, its transpose A^{T} is such that $\left(A^{T}\right)_{i, j}=A_{j, i}$.
- Matrix A is symmetric if $A^{T}=A$.

Matrix Transpose and Matrix Products

- Given matrix $A \in \mathbb{R}^{m \times n}$, its transpose A^{T} is such that $\left(A^{T}\right)_{i, j}=A_{j, i}$.
- Matrix A is symmetric if $A^{T}=A$.
- Given matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, their product is

$$
C=A B \in \mathbb{R}^{m \times p} \quad \text { where } \quad C_{i, j}=\sum_{k=1}^{n} A_{i, k} B_{k, j}
$$

Matrix Transpose and Matrix Products

- Given matrix $A \in \mathbb{R}^{m \times n}$, its transpose A^{T} is such that $\left(A^{T}\right)_{i, j}=A_{j, i}$.
- Matrix A is symmetric if $A^{T}=A$.
- Given matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, their product is

$$
C=A B \in \mathbb{R}^{m \times p} \quad \text { where } \quad C_{i, j}=\sum_{k=1}^{n} A_{i, k} B_{k, j}
$$

- Inner product between vectors $x, y \in \mathbb{R}^{n}$:

$$
\begin{gathered}
\langle x, y\rangle=x^{T} y=y^{T} x=\sum_{i=1}^{n} x_{i} y_{i} \\
{\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]^{T}\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[x_{1}, \ldots, x_{n}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{i=1}^{n} x_{i} y_{i}}
\end{gathered}
$$

Outer and Hadamard Products

- Outer product between vectors $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$:

$$
\begin{gathered}
x y^{\top} \in \mathbb{R}^{n \times m}, \quad \text { where }\left(x y^{\top}\right)_{i, j}=x_{i} y_{j} \\
x y^{T}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]\left[y_{1}, \ldots, y_{m}\right]=\left[\begin{array}{ccc}
x_{1} y_{1} & \cdots & x_{1} y_{m} \\
\vdots & \ddots & \vdots \\
x_{n} y_{1} & \cdots & x_{n} y_{m}
\end{array}\right]
\end{gathered}
$$

Outer and Hadamard Products

- Outer product between vectors $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$:

$$
\begin{gathered}
x y^{\top} \in \mathbb{R}^{n \times m}, \quad \text { where }\left(x y^{\top}\right)_{i, j}=x_{i} y_{j} \\
x y^{\top}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]\left[y_{1}, \ldots, y_{m}\right]=\left[\begin{array}{ccc}
x_{1} y_{1} & \cdots & x_{1} y_{m} \\
\vdots & \ddots & \vdots \\
x_{n} y_{1} & \cdots & x_{n} y_{m}
\end{array}\right]
\end{gathered}
$$

- Hadamard/Schur product between vectors $x, y \in \mathbb{R}^{n}:(x \odot y)_{i}=x_{i} y_{i}$,

$$
\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \odot\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1} y_{1} \\
\vdots \\
x_{n} y_{n}
\end{array}\right]
$$

Properties of Matrix Products and Transposes

- Given matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, their product is

$$
C=A B \in \mathbb{R}^{m \times p} \quad \text { where } \quad C_{i, j}=\sum_{k=1}^{n} A_{i, k} B_{k, j}
$$

Properties of Matrix Products and Transposes

- Given matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, their product is

$$
C=A B \in \mathbb{R}^{m \times p} \quad \text { where } \quad C_{i, j}=\sum_{k=1}^{n} A_{i, k} B_{k, j}
$$

- Matrix product is associative: $(A B) C=A(B C)$.

Properties of Matrix Products and Transposes

- Given matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, their product is

$$
C=A B \in \mathbb{R}^{m \times p} \quad \text { where } \quad C_{i, j}=\sum_{k=1}^{n} A_{i, k} B_{k, j}
$$

- Matrix product is associative: $(A B) C=A(B C)$.
- In general, matrix product is not commutative: $A B \neq B A$.

Properties of Matrix Products and Transposes

- Given matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, their product is

$$
C=A B \in \mathbb{R}^{m \times p} \quad \text { where } \quad C_{i, j}=\sum_{k=1}^{n} A_{i, k} B_{k, j}
$$

- Matrix product is associative: $(A B) C=A(B C)$.
- In general, matrix product is not commutative: $A B \neq B A$.
- Transpose of product: $(A B)^{T}=B^{T} A^{T}$.

Properties of Matrix Products and Transposes

- Given matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, their product is

$$
C=A B \in \mathbb{R}^{m \times p} \quad \text { where } \quad C_{i, j}=\sum_{k=1}^{n} A_{i, k} B_{k, j}
$$

- Matrix product is associative: $(A B) C=A(B C)$.
- In general, matrix product is not commutative: $A B \neq B A$.
- Transpose of product: $(A B)^{T}=B^{T} A^{T}$.
- Transpose of sum: $(A+B)^{T}=A^{T}+B^{T}$.

Norms

- The norm of a vector is (informally) its "magnitude." Euclidean norm:

$$
\|x\|_{2}=\sqrt{\langle x, x\rangle}=\sqrt{x^{\top} x}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

Norms

- The norm of a vector is (informally) its "magnitude." Euclidean norm:

$$
\|x\|_{2}=\sqrt{\langle x, x\rangle}=\sqrt{x^{\top} x}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

- More generally, the ℓ_{p} norm of a vector $x \in \mathbb{R}^{n}$, where $p \geq 1$,

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

Norms

- The norm of a vector is (informally) its "magnitude." Euclidean norm:

$$
\|x\|_{2}=\sqrt{\langle x, x\rangle}=\sqrt{x^{T} x}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

- More generally, the ℓ_{p} norm of a vector $x \in \mathbb{R}^{n}$, where $p \geq 1$,

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

- Notable case: the ℓ_{1} norm, $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$.

Norms

- The norm of a vector is (informally) its "magnitude." Euclidean norm:

$$
\|x\|_{2}=\sqrt{\langle x, x\rangle}=\sqrt{x^{T} x}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

- More generally, the ℓ_{p} norm of a vector $x \in \mathbb{R}^{n}$, where $p \geq 1$,

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

- Notable case: the ℓ_{1} norm, $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$.
- Notable case: the ℓ_{∞} norm, $\|x\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$.

Special Matrices

- The identity matrix $I \in \mathbb{R}^{n \times n}$ is a square matrix such that

$$
I_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & i \neq j
\end{array} \quad I=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]\right.
$$

Special Matrices

- The identity matrix $I \in \mathbb{R}^{n \times n}$ is a square matrix such that

$$
I_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & i \neq j
\end{array} \quad I=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]\right.
$$

- Neutral element of matrix product: $A I=I A=A$.

Special Matrices

- The identity matrix $I \in \mathbb{R}^{n \times n}$ is a square matrix such that

$$
I_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & i \neq j
\end{array} \quad I=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]\right.
$$

- Neutral element of matrix product: $A I=I A=A$.
- Diagonal matrix: $A \in \mathbb{R}^{n \times n}$ is diagonal if $(i \neq j) \Rightarrow A_{i, j}=0$.

Special Matrices

- The identity matrix $I \in \mathbb{R}^{n \times n}$ is a square matrix such that

$$
I_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & i \neq j
\end{array} \quad I=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]\right.
$$

- Neutral element of matrix product: $A I=I A=A$.
- Diagonal matrix: $A \in \mathbb{R}^{n \times n}$ is diagonal if $(i \neq j) \Rightarrow A_{i, j}=0$.
- Upper triangular matrix: $(j<i) \Rightarrow A_{i, j}=0$.

Special Matrices

- The identity matrix $I \in \mathbb{R}^{n \times n}$ is a square matrix such that

$$
I_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & i \neq j
\end{array} \quad I=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]\right.
$$

- Neutral element of matrix product: $A I=I A=A$.
- Diagonal matrix: $A \in \mathbb{R}^{n \times n}$ is diagonal if $(i \neq j) \Rightarrow A_{i, j}=0$.
- Upper triangular matrix: $(j<i) \Rightarrow A_{i, j}=0$.
- Lower triangular matrix: $(j>i) \Rightarrow A_{i, j}=0$.

Eigenvalues, eigenvectors, determinant, trace

- A vector $x \in \mathbb{R}^{n}$ is an eigenvector of matrix $A \in \mathbb{R}^{n \times n}$ if

$$
A x=\lambda x
$$

where $\lambda \in \mathbb{R}$ is the corresponding eigenvalue.

Eigenvalues, eigenvectors, determinant, trace

- A vector $x \in \mathbb{R}^{n}$ is an eigenvector of matrix $A \in \mathbb{R}^{n \times n}$ if

$$
A x=\lambda x
$$

where $\lambda \in \mathbb{R}$ is the corresponding eigenvalue.

- The eigenvalues of a diagonal matrix are the elements in the diagonal.

Eigenvalues, eigenvectors, determinant, trace

- A vector $x \in \mathbb{R}^{n}$ is an eigenvector of matrix $A \in \mathbb{R}^{n \times n}$ if

$$
A x=\lambda x
$$

where $\lambda \in \mathbb{R}$ is the corresponding eigenvalue.

- The eigenvalues of a diagonal matrix are the elements in the diagonal.
- Matrix trace:

$$
\operatorname{trace}(A)=\sum_{i} A_{i, i}=\sum_{i} \lambda_{i}
$$

Eigenvalues, eigenvectors, determinant, trace

- A vector $x \in \mathbb{R}^{n}$ is an eigenvector of matrix $A \in \mathbb{R}^{n \times n}$ if

$$
A x=\lambda x
$$

where $\lambda \in \mathbb{R}$ is the corresponding eigenvalue.

- The eigenvalues of a diagonal matrix are the elements in the diagonal.
- Matrix trace:

$$
\operatorname{trace}(A)=\sum_{i} A_{i, i}=\sum_{i} \lambda_{i}
$$

- Matrix determinant:

$$
|A|=\operatorname{det}(A)=\prod_{i} \lambda_{i}
$$

Eigenvalues, eigenvectors, determinant, trace

- A vector $x \in \mathbb{R}^{n}$ is an eigenvector of matrix $A \in \mathbb{R}^{n \times n}$ if

$$
A x=\lambda x
$$

where $\lambda \in \mathbb{R}$ is the corresponding eigenvalue.

- The eigenvalues of a diagonal matrix are the elements in the diagonal.
- Matrix trace:

$$
\operatorname{trace}(A)=\sum_{i} A_{i, i}=\sum_{i} \lambda_{i}
$$

- Matrix determinant:

$$
|A|=\operatorname{det}(A)=\prod_{i} \lambda_{i}
$$

- Properties: $|A B|=|A||B|$,

Eigenvalues, eigenvectors, determinant, trace

- A vector $x \in \mathbb{R}^{n}$ is an eigenvector of matrix $A \in \mathbb{R}^{n \times n}$ if

$$
A x=\lambda x
$$

where $\lambda \in \mathbb{R}$ is the corresponding eigenvalue.

- The eigenvalues of a diagonal matrix are the elements in the diagonal.
- Matrix trace:

$$
\operatorname{trace}(A)=\sum_{i} A_{i, i}=\sum_{i} \lambda_{i}
$$

- Matrix determinant:

$$
|A|=\operatorname{det}(A)=\prod_{i} \lambda_{i}
$$

- Properties: $|A B|=|A||B|, \quad\left|A^{T}\right|=|A|$,

Eigenvalues, eigenvectors, determinant, trace

- A vector $x \in \mathbb{R}^{n}$ is an eigenvector of matrix $A \in \mathbb{R}^{n \times n}$ if

$$
A x=\lambda x
$$

where $\lambda \in \mathbb{R}$ is the corresponding eigenvalue.

- The eigenvalues of a diagonal matrix are the elements in the diagonal.
- Matrix trace:

$$
\operatorname{trace}(A)=\sum_{i} A_{i, i}=\sum_{i} \lambda_{i}
$$

- Matrix determinant:

$$
|A|=\operatorname{det}(A)=\prod_{i} \lambda_{i}
$$

- Properties: $|A B|=|A||B|, \quad\left|A^{T}\right|=|A|, \quad|\alpha A|=\alpha^{n}|A|$

Matrix Inverse

- Matrix $A \in \mathbb{R}^{n \times n}$ in invertible if there is $B \in \mathbb{R}^{n \times n}$ s.t. $A B=B A=l$.

Matrix Inverse

- Matrix $A \in \mathbb{R}^{n \times n}$ in invertible if there is $B \in \mathbb{R}^{n \times n}$ s.t. $A B=B A=l$.
- ...matrix B, such that $A B=B A=I$, denoted $B=A^{-1}$.

Matrix Inverse

- Matrix $A \in \mathbb{R}^{n \times n}$ in invertible if there is $B \in \mathbb{R}^{n \times n}$ s.t. $A B=B A=l$.
- ...matrix B, such that $A B=B A=I$, denoted $B=A^{-1}$.
- Matrix $A \in \mathbb{R}^{n \times n}$ is invertible $\Leftrightarrow \operatorname{det}(A) \neq 0$.

Matrix Inverse

- Matrix $A \in \mathbb{R}^{n \times n}$ in invertible if there is $B \in \mathbb{R}^{n \times n}$ s.t. $A B=B A=l$.
- ...matrix B, such that $A B=B A=I$, denoted $B=A^{-1}$.
- Matrix $A \in \mathbb{R}^{n \times n}$ is invertible $\Leftrightarrow \operatorname{det}(A) \neq 0$.
- Determinant of inverse: $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.

Matrix Inverse

- Matrix $A \in \mathbb{R}^{n \times n}$ in invertible if there is $B \in \mathbb{R}^{n \times n}$ s.t. $A B=B A=l$.
- ...matrix B, such that $A B=B A=I$, denoted $B=A^{-1}$.
- Matrix $A \in \mathbb{R}^{n \times n}$ is invertible $\Leftrightarrow \operatorname{det}(A) \neq 0$.
- Determinant of inverse: $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
- Solving system $A x=b$, if A is invertible: $x=A^{-1} b$.

Matrix Inverse

- Matrix $A \in \mathbb{R}^{n \times n}$ in invertible if there is $B \in \mathbb{R}^{n \times n}$ s.t. $A B=B A=l$.
- ...matrix B, such that $A B=B A=I$, denoted $B=A^{-1}$.
- Matrix $A \in \mathbb{R}^{n \times n}$ is invertible $\Leftrightarrow \operatorname{det}(A) \neq 0$.
- Determinant of inverse: $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
- Solving system $A x=b$, if A is invertible: $x=A^{-1} b$.
- Properties: $\left(A^{-1}\right)^{-1}=A$,

Matrix Inverse

- Matrix $A \in \mathbb{R}^{n \times n}$ in invertible if there is $B \in \mathbb{R}^{n \times n}$ s.t. $A B=B A=l$.
- ...matrix B, such that $A B=B A=I$, denoted $B=A^{-1}$.
- Matrix $A \in \mathbb{R}^{n \times n}$ is invertible $\Leftrightarrow \operatorname{det}(A) \neq 0$.
- Determinant of inverse: $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
- Solving system $A x=b$, if A is invertible: $x=A^{-1} b$.
- Properties: $\left(A^{-1}\right)^{-1}=A, \quad\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$,

Matrix Inverse

- Matrix $A \in \mathbb{R}^{n \times n}$ in invertible if there is $B \in \mathbb{R}^{n \times n}$ s.t. $A B=B A=l$.
- ...matrix B, such that $A B=B A=I$, denoted $B=A^{-1}$.
- Matrix $A \in \mathbb{R}^{n \times n}$ is invertible $\Leftrightarrow \operatorname{det}(A) \neq 0$.
- Determinant of inverse: $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
- Solving system $A x=b$, if A is invertible: $x=A^{-1} b$.
- Properties: $\left(A^{-1}\right)^{-1}=A, \quad\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}, \quad(A B)^{-1}=B^{-1} A^{-1}$

Matrix Inverse

- Matrix $A \in \mathbb{R}^{n \times n}$ in invertible if there is $B \in \mathbb{R}^{n \times n}$ s.t. $A B=B A=l$.
- ...matrix B, such that $A B=B A=I$, denoted $B=A^{-1}$.
- Matrix $A \in \mathbb{R}^{n \times n}$ is invertible $\Leftrightarrow \operatorname{det}(A) \neq 0$.
- Determinant of inverse: $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
- Solving system $A x=b$, if A is invertible: $x=A^{-1} b$.
- Properties: $\left(A^{-1}\right)^{-1}=A, \quad\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}, \quad(A B)^{-1}=B^{-1} A^{-1}$
- There are many algorithms to compute A^{-1}; general case, computational cost $O\left(n^{3}\right)$.

Quadratic Forms and Positive (Semi-)Definite Matrices

- Given matrix $A \in \mathbb{R}^{n \times n}$ and vector $x \in \mathbb{R}^{n}$,

$$
x^{T} A x=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} x_{i} x_{j} \in \mathbb{R}
$$

is called a quadratic form.

Quadratic Forms and Positive (Semi-)Definite Matrices

- Given matrix $A \in \mathbb{R}^{n \times n}$ and vector $x \in \mathbb{R}^{n}$,

$$
x^{T} A x=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} x_{i} x_{j} \in \mathbb{R}
$$

is called a quadratic form.

- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD) if, for any $x \in \mathbb{R}^{n}, x^{T} A x \geq 0$.

Quadratic Forms and Positive (Semi-)Definite Matrices

- Given matrix $A \in \mathbb{R}^{n \times n}$ and vector $x \in \mathbb{R}^{n}$,

$$
x^{T} A x=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} x_{i} x_{j} \in \mathbb{R}
$$

is called a quadratic form.

- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD) if, for any $x \in \mathbb{R}^{n}, x^{\top} A x \geq 0$.
- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite (PD) if, for any $x \in \mathbb{R}^{n},(x \neq 0) \Rightarrow x^{\top} A x>0$.

Quadratic Forms and Positive (Semi-)Definite Matrices

- Given matrix $A \in \mathbb{R}^{n \times n}$ and vector $x \in \mathbb{R}^{n}$,

$$
x^{T} A x=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} x_{i} x_{j} \in \mathbb{R}
$$

is called a quadratic form.

- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD) if, for any $x \in \mathbb{R}^{n}, x^{\top} A x \geq 0$.
- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite (PD) if, for any $x \in \mathbb{R}^{n},(x \neq 0) \Rightarrow x^{\top} A x>0$.
- Matrix $A \in \mathbb{R}^{n \times n}$ is PSD \Leftrightarrow all $\lambda_{i}(A) \geq 0$.

Quadratic Forms and Positive (Semi-)Definite Matrices

- Given matrix $A \in \mathbb{R}^{n \times n}$ and vector $x \in \mathbb{R}^{n}$,

$$
x^{T} A x=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} x_{i} x_{j} \in \mathbb{R}
$$

is called a quadratic form.

- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD) if, for any $x \in \mathbb{R}^{n}, x^{T} A x \geq 0$.
- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite (PD) if, for any $x \in \mathbb{R}^{n},(x \neq 0) \Rightarrow x^{\top} A x>0$.
- Matrix $A \in \mathbb{R}^{n \times n}$ is PSD \Leftrightarrow all $\lambda_{i}(A) \geq 0$.
- Matrix $A \in \mathbb{R}^{n \times n}$ is $\mathrm{PD} \Leftrightarrow$ all $\lambda_{i}(A)>0$.

Outline

(1) Introduction

(2) Class Administrativia
(3) Recap

Linear Algebra
Probability Theory Refresher
Optimization
(4) Introduction to Machine Learning

Probability theory

Probability theory

- "Essentially, all models are wrong, but some are useful"; G. Box, 1987

Probability theory

- "Essentially, all models are wrong, but some are useful"; G. Box, 1987
- The study of probability has roots in games of chance (dice, cards, ...)

Probability theory

- "Essentially, all models are wrong, but some are useful"; G. Box, 1987
- The study of probability has roots in games of chance (dice, cards, ...)

Probability theory

- "Essentially, all models are wrong, but some are useful"; G. Box, 1987
- The study of probability has roots in games of chance (dice, cards, ...)
- Natural tool to model uncertainty, information, knowledge, belief, ...

Probability theory

- "Essentially, all models are wrong, but some are useful"; G. Box, 1987
- The study of probability has roots in games of chance (dice, cards, ...)
- Natural tool to model uncertainty, information, knowledge, belief, ...
- ...thus also learning, inference, ...

What is probability?

- Classical definition: $\mathbb{P}(A)=\frac{N_{A}}{N}$
...with N mutually exclusive equally likely outcomes, N_{A} of which result in the occurrence of event A.

Example: $\mathbb{P}($ randomly drawn card is $\boldsymbol{\%})=13 / 52$.
Example: $\mathbb{P}($ getting 1 in throwing a fair die $)=1 / 6$.

What is probability?

- Classical definition: $\mathbb{P}(A)=\frac{N_{A}}{N}$
...with N mutually exclusive equally likely outcomes, N_{A} of which result in the occurrence of event A.

Example: $\mathbb{P}($ randomly drawn card is $\boldsymbol{\$})=13 / 52$.
Example: $\mathbb{P}($ getting 1 in throwing a fair die $)=1 / 6$.

- Frequentist definition: $\mathbb{P}(A)=\lim _{N \rightarrow \infty} \frac{N_{A}}{N}$
...relative frequency of occurrence of A in infinite number of trials.

What is probability?

- Classical definition: $\mathbb{P}(A)=\frac{N_{A}}{N}$
... with N mutually exclusive equally likely outcomes, N_{A} of which result in the occurrence of event A.

Example: $\mathbb{P}($ randomly drawn card is $\boldsymbol{\$})=13 / 52$.
Example: $\mathbb{P}($ getting 1 in throwing a fair die $)=1 / 6$.

- Frequentist definition: $\mathbb{P}(A)=\lim _{N \rightarrow \infty} \frac{N_{A}}{N}$
...relative frequency of occurrence of A in infinite number of trials.
- Subjective probability: $\mathbb{P}(A)$ is a degree of belief. de Finetti, 1930s ...gives meaning to \mathbb{P} ("Tomorrow it will rain").

Key concepts: Sample space and events

- Sample space $X=$ set of possible outcomes of a random experiment. Examples:
- Tossing two coins: $X=\{H H, T H, H T, T T\}$
- Roulette: $\mathcal{X}=\{1,2, \ldots, 36\}$
- Draw a card from a shuffled deck: $X=\{A \&, 2 \boldsymbol{\downarrow}, \ldots, Q \diamond, K \diamond\}$.

Key concepts: Sample space and events

- Sample space $X=$ set of possible outcomes of a random experiment. Examples:
- Tossing two coins: $\mathcal{X}=\{H H, T H, H T, T T\}$
- Roulette: $\mathcal{X}=\{1,2, \ldots, 36\}$
- Draw a card from a shuffled deck: $X=\{A \boldsymbol{\alpha}, 2 \boldsymbol{\phi}, \ldots, Q \diamond, K \diamond\}$.
- An event A is a subset of $X: A \subseteq X$.

Examples:

- "exactly one H in 2-coin toss": $A=\{T H, H T\} \subset\{H H, T H, H T, T T\}$.
- "odd number in the roulette": $B=\{1,3, \ldots, 35\} \subset\{1,2, \ldots, 36\}$.
- "drawn a \odot card" : $C=\{A \odot, 2 \odot, \ldots, K \odot\} \subset\{A \&, \ldots, K \diamond\}$

Kolmogorov's Axioms for Probability

- Probability is a function that maps events A into the interval $[0,1]$. Kolmogorov's axioms (1933) for probability \mathbb{P}

Kolmogorov's Axioms for Probability

- Probability is a function that maps events A into the interval $[0,1]$. Kolmogorov's axioms (1933) for probability \mathbb{P}
- For any $A, \mathbb{P}(A) \geq 0$

Kolmogorov's Axioms for Probability

- Probability is a function that maps events A into the interval $[0,1]$. Kolmogorov's axioms (1933) for probability \mathbb{P}
- For any $A, \mathbb{P}(A) \geq 0$
- $\mathbb{P}(X)=1$

Kolmogorov's Axioms for Probability

- Probability is a function that maps events A into the interval $[0,1]$. Kolmogorov's axioms (1933) for probability \mathbb{P}
- For any $A, \mathbb{P}(A) \geq 0$
- $\mathbb{P}(X)=1$
- If $A_{1}, A_{2} \ldots \subseteq X$ are disjoint events, then $\mathbb{P}\left(\bigcup_{i} A_{i}\right)=\sum_{i} \mathbb{P}\left(A_{i}\right)$

Kolmogorov's Axioms for Probability

- Probability is a function that maps events A into the interval $[0,1]$. Kolmogorov's axioms (1933) for probability \mathbb{P}
- For any $A, \mathbb{P}(A) \geq 0$
- $\mathbb{P}(X)=1$
- If $A_{1}, A_{2} \ldots \subseteq X$ are disjoint events, then $\mathbb{P}\left(\bigcup_{i} A_{i}\right)=\sum_{i} \mathbb{P}\left(A_{i}\right)$
- From these axioms, many results can be derived. Examples:
- $\mathbb{P}(\emptyset)=0$
- $C \subset D \Rightarrow \mathbb{P}(C) \leq \mathbb{P}(D)$
- $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$

Conditional Probability and Independence

- If $\mathbb{P}(B)>0, \quad \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

Conditional Probability and Independence
 - If $\mathbb{P}(B)>0, \quad \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

- Events A, B are independent $(A \Perp B) \Leftrightarrow \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.

Conditional Probability and Independence
 - If $\mathbb{P}(B)>0, \quad \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

- Events A, B are independent $(A \Perp B) \Leftrightarrow \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.
- Relationship with conditional probabilities:

$$
A \Perp B \Leftrightarrow \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{\mathbb{P}(A) \mathbb{P}(B)}{\mathbb{P}(B)}=\mathbb{P}(A)
$$

Conditional Probability and Independence
 - If $\mathbb{P}(B)>0, \quad \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

- Events A, B are independent $(A \Perp B) \Leftrightarrow \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.
- Relationship with conditional probabilities:

$$
A \Perp B \Leftrightarrow \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{\mathbb{P}(A) \mathbb{P}(B)}{\mathbb{P}(B)}=\mathbb{P}(A)
$$

- Example: $\mathcal{X}=$ " 52 cards", $A=\{3 @, 3 \boldsymbol{\$}, 3 \diamond, 3 \uparrow\}$, and $B=\{A \odot, 2 \odot, \ldots, K \bigcirc\} ;$ then, $\mathbb{P}(A)=1 / 13, \mathbb{P}(B)=1 / 4$

$$
\mathbb{P}(A \cap B)=\mathbb{P}(\{3 \odot\})=\frac{1}{52}
$$

Conditional Probability and Independence
 - If $\mathbb{P}(B)>0, \quad \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

- Events A, B are independent $(A \Perp B) \Leftrightarrow \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.
- Relationship with conditional probabilities:

$$
A \Perp B \Leftrightarrow \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{\mathbb{P}(A) \mathbb{P}(B)}{\mathbb{P}(B)}=\mathbb{P}(A)
$$

- Example: $X=$ " 52 cards", $A=\{3 @, 3 \boldsymbol{\$}, 3 \diamond, 3 \boldsymbol{\wedge}\}$, and $B=\{A \circlearrowleft, 2 \bigcirc, \ldots, K \bigcirc\} ;$ then, $\mathbb{P}(A)=1 / 13, \mathbb{P}(B)=1 / 4$

$$
\begin{aligned}
\mathbb{P}(A \cap B) & =\mathbb{P}(\{3 \varnothing\})=\frac{1}{52} \\
\mathbb{P}(A) \mathbb{P}(B) & =\frac{1}{13} \frac{1}{4}=\frac{1}{52}
\end{aligned}
$$

Conditional Probability and Independence
 - If $\mathbb{P}(B)>0, \quad \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

- Events A, B are independent $(A \Perp B) \Leftrightarrow \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.
- Relationship with conditional probabilities:

$$
A \Perp B \Leftrightarrow \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{\mathbb{P}(A) \mathbb{P}(B)}{\mathbb{P}(B)}=\mathbb{P}(A)
$$

- Example: $X=$ " 52 cards", $A=\{3 @, 3 \boldsymbol{\$}, 3 \diamond, 3 \boldsymbol{\wedge}\}$, and $B=\{A \circlearrowleft, 2 \bigcirc, \ldots, K \bigcirc\}$; then, $\mathbb{P}(A)=1 / 13, \mathbb{P}(B)=1 / 4$

$$
\begin{aligned}
\mathbb{P}(A \cap B) & =\mathbb{P}(\{3 \bigcirc\})=\frac{1}{52} \\
\mathbb{P}(A) \mathbb{P}(B) & =\frac{1}{13} \frac{1}{4}=\frac{1}{52} \\
\mathbb{P}(A \mid B) & =\mathbb{P}(" 3 " \mid " \cap \text { " })=\frac{1}{13}=\mathbb{P}(A)
\end{aligned}
$$

Law of Total Probability and Bayes Theorem

- Law of total probability: if A_{1}, \ldots, A_{n} are a partition of X

$$
\begin{aligned}
\mathbb{P}(B) & =\sum_{i} \mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right) \\
& =\sum_{i} \mathbb{P}\left(B \cap A_{i}\right)
\end{aligned}
$$

Law of Total Probability and Bayes Theorem

- Law of total probability: if A_{1}, \ldots, A_{n} are a partition of X

$$
\begin{aligned}
\mathbb{P}(B) & =\sum_{i} \mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right) \\
& =\sum_{i} \mathbb{P}\left(B \cap A_{i}\right)
\end{aligned}
$$

- Bayes' theorem: if $\left\{A_{1}, \ldots, A_{n}\right\}$ is a partition of \mathcal{X}

$$
\mathbb{P}\left(A_{i} \mid B\right)=\frac{\mathbb{P}\left(B \cap A_{i}\right)}{\mathbb{P}(B)}
$$

Discrete Random Variables

- Distribution function: $F_{X}(x)=\mathbb{P}(\{\omega \in X: X(\omega) \leq x\})$

Discrete Random Variables

- Distribution function: $F_{X}(x)=\mathbb{P}(\{\omega \in X: X(\omega) \leq x\})$

- Example: number of heads in tossing 2 coins; range $(X)=\{0,1,2\}$.

Discrete Random Variables

- Distribution function: $F_{X}(x)=\mathbb{P}(\{\omega \in X: X(\omega) \leq x\})$

- Example: number of heads in tossing 2 coins; range $(X)=\{0,1,2\}$.

- Probability mass function (discrete RV$): f_{X}(x)=\mathbb{P}(X=x)$,

$$
F_{X}(x)=\sum_{x_{i} \leq x} f_{X}\left(x_{i}\right)
$$

Important Discrete Random Variables

- Uniform: $X \in\left\{x_{1}, \ldots, x_{K}\right\}, \operatorname{pmf} f_{X}\left(x_{i}\right)=1 / K$.

Important Discrete Random Variables

- Uniform: $X \in\left\{x_{1}, \ldots, x_{K}\right\}$, pmf $f_{X}\left(x_{i}\right)=1 / K$.
- Bernoulli RV: $X \in\{0,1\}$, pmf $f_{X}(x)=\left\{\begin{array}{cc}p & \Leftarrow x=1 \\ 1-p & \Leftarrow x=0\end{array}\right.$

Can be written compactly as $f_{X}(x)=p^{x}(1-p)^{1-x}$.

Important Discrete Random Variables

- Uniform: $X \in\left\{x_{1}, \ldots, x_{K}\right\}$, pmf $f_{X}\left(x_{i}\right)=1 / K$.
- Bernoulli RV: $X \in\{0,1\}$, pmf $f_{X}(x)=\left\{\begin{array}{cl}p & \Leftarrow x=1 \\ 1-p & \Leftarrow x=0\end{array}\right.$

Can be written compactly as $f_{X}(x)=p^{x}(1-p)^{1-x}$.

- Binomial RV: $X \in\{0,1, \ldots, n\}$ (sum on n Bernoulli RVs)

$$
f_{X}(x)=\operatorname{Binomial}(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{(n-x)}
$$

Important Discrete Random Variables

- Uniform: $X \in\left\{x_{1}, \ldots, x_{K}\right\}, \operatorname{pmf} f_{X}\left(x_{i}\right)=1 / K$.
- Bernoulli RV: $X \in\{0,1\}$, pmf $f_{X}(x)=\left\{\begin{array}{cc}p & \Leftarrow x=1 \\ 1-p & \Leftarrow x=0\end{array}\right.$

Can be written compactly as $f_{X}(x)=p^{x}(1-p)^{1-x}$.

- Binomial RV: $X \in\{0,1, \ldots, n\}$ (sum on n Bernoulli RVs)

$$
f_{X}(x)=\operatorname{Binomial}(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{(n-x)}
$$

Binomial coefficients
(" n choose x "):

$$
\binom{n}{x}=\frac{n!}{(n-x)!x!}
$$

Continuous Random Variables

- Distribution function: $F_{X}(x)=\mathbb{P}(\{\omega \in \mathcal{X}: X(\omega) \leq x\})$

Continuous Random Variables

- Distribution function: $F_{X}(x)=\mathbb{P}(\{\omega \in \mathcal{X}: X(\omega) \leq x\})$

- Example: continuous RV with uniform distribution on $[a, b]$.

Continuous Random Variables

- Distribution function: $F_{X}(x)=\mathbb{P}(\{\omega \in \mathcal{X}: X(\omega) \leq x\})$

- Example: continuous RV with uniform distribution on $[a, b]$.

- Probability density function (pdf, continuous RV): $f_{X}(x)$

Continuous Random Variables

- Distribution function: $F_{X}(x)=\mathbb{P}(\{\omega \in X: X(\omega) \leq x\})$

- Example: continuous RV with uniform distribution on $[a, b]$.

- Probability density function (pdf, continuous RV): $f_{X}(x)$ $F_{X}(x)=\int_{-\infty}^{x} f_{X}(u) d u$,

Continuous Random Variables

- Distribution function: $F_{X}(x)=\mathbb{P}(\{\omega \in X: X(\omega) \leq x\})$

- Example: continuous RV with uniform distribution on $[a, b]$.

- Probability density function (pdf, continuous RV): $f_{X}(x)$

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(u) d u, \quad \mathbb{P}(X \in[c, d])=\int_{c}^{d} f_{X}(x) d x
$$

Continuous Random Variables

- Distribution function: $F_{X}(x)=\mathbb{P}(\{\omega \in \mathcal{X}: X(\omega) \leq x\})$

- Example: continuous RV with uniform distribution on $[a, b]$.

- Probability density function (pdf, continuous RV): $f_{X}(x)$

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(u) d u, \quad \mathbb{P}(X \in[c, d])=\int_{c}^{d} f_{X}(x) d x, \quad \mathbb{P}(X=x)=0
$$

Important Continuous Random Variables

- Uniform: $f_{X}(x)=\operatorname{Uniform}(x ; a, b)=\left\{\begin{array}{rll}\frac{1}{b-a} & \Leftarrow & x \in[a, b] \\ 0 & \Leftarrow & x \notin[a, b]\end{array}\right.$ (previous slide).

Important Continuous Random Variables

- Uniform: $f_{X}(x)=\operatorname{Uniform}(x ; a, b)=\left\{\begin{aligned} \frac{1}{b-a} & \Leftarrow x \in[a, b] \\ 0 & \Leftarrow x \notin[a, b]\end{aligned}\right.$ (previous slide).
- Gaussian: $f_{X}(x)=\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

Expectation of Random Variables

- Expectation: $\mathbb{E}(X)=\left\{\begin{array}{cl}\sum_{i} x_{i} f_{X}\left(x_{i}\right) & X \in\left\{x_{1}, \ldots, x_{K}\right\} \subset \mathbb{R} \\ \int_{-\infty}^{\infty} x f_{X}(x) d x & X \text { continuous }\end{array}\right.$

Expectation of Random Variables

- Expectation: $\mathbb{E}(X)=\left\{\begin{array}{cl}\sum_{i} x_{i} f_{X}\left(x_{i}\right) & X \in\left\{x_{1}, \ldots, x_{K}\right\} \subset \mathbb{R} \\ \int_{-\infty}^{\infty} x f_{X}(x) d x & X \text { continuous }\end{array}\right.$
- Example: Bernoulli, $f_{X}(x)=p^{x}(1-p)^{1-x}$, for $x \in\{0,1\}$.

$$
\mathbb{E}(X)=0(1-p)+1 p=p
$$

Expectation of Random Variables

- Expectation: $\mathbb{E}(X)=\left\{\begin{array}{cl}\sum_{i} x_{i} f_{X}\left(x_{i}\right) & X \in\left\{x_{1}, \ldots, x_{K}\right\} \subset \mathbb{R} \\ \int_{-\infty}^{\infty} x f_{X}(x) d x & X \text { continuous }\end{array}\right.$
- Example: Bernoulli, $f_{X}(x)=p^{x}(1-p)^{1-x}$, for $x \in\{0,1\}$.

$$
\mathbb{E}(X)=0(1-p)+1 p=p
$$

Expectation of Random Variables

- Expectation: $\mathbb{E}(X)=\left\{\begin{array}{cl}\sum_{i} x_{i} f_{X}\left(x_{i}\right) & X \in\left\{x_{1}, \ldots, x_{K}\right\} \subset \mathbb{R} \\ \int_{-\infty}^{\infty} x f_{X}(x) d x & X \text { continuous }\end{array}\right.$
- Example: Bernoulli, $f_{X}(x)=p^{x}(1-p)^{1-x}$, for $x \in\{0,1\}$.

$$
\mathbb{E}(X)=0(1-p)+1 p=p
$$

- Example: Gaussian, $f_{X}(x)=\mathcal{N}\left(x ; \mu, \sigma^{2}\right) . \quad \mathbb{E}(X)=\mu$.

Expectation of Random Variables

- Expectation: $\mathbb{E}(X)=\left\{\begin{array}{cl}\sum_{i} x_{i} f_{X}\left(x_{i}\right) & X \in\left\{x_{1}, \ldots, x_{K}\right\} \subset \mathbb{R} \\ \int_{-\infty}^{\infty} x f_{X}(x) d x & X \text { continuous }\end{array}\right.$
- Example: Bernoulli, $f_{X}(x)=p^{x}(1-p)^{1-x}$, for $x \in\{0,1\}$.

$$
\mathbb{E}(X)=0(1-p)+1 p=p
$$

- Example: Gaussian, $f_{X}(x)=\mathcal{N}\left(x ; \mu, \sigma^{2}\right) . \quad \mathbb{E}(X)=\mu$.
- Linearity of expectation:

$$
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y) ; \quad \mathbb{E}(\alpha X)=\alpha \mathbb{E}(X), \quad \alpha \in \mathbb{R}
$$

Expectation of Functions of Random Variables

- $\mathbb{E}(g(X))=\left\{\begin{aligned} \sum_{i} g\left(x_{i}\right) f_{X}\left(x_{i}\right) & X \text { discrete, } g\left(x_{1}\right) \\ \int_{-\infty}^{\infty} g(x) f_{X}(x) d x & X \text { continuous }\end{aligned}\right.$

Expectation of Functions of Random Variables

- $\mathbb{E}(g(X))=\left\{\begin{aligned} \sum_{i} g\left(x_{i}\right) f_{X}\left(x_{i}\right) & X \text { discrete, } g\left(x_{1}\right) \\ \int_{-\infty}^{\infty} g(x) f_{X}(x) d x & X \text { continuous }\end{aligned}\right.$
- Example: variance, $\operatorname{var}(X)=\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)$

Expectation of Functions of Random Variables

- $\mathbb{E}(g(X))=\left\{\begin{array}{cc}\sum_{i} g\left(x_{i}\right) f_{X}\left(x_{i}\right) & X \text { discrete, } g\left(x_{i}\right. \\ \int_{-\infty}^{\infty} g(x) f_{X}(x) d x & X \text { continuous }\end{array}\right.$
- Example: $\operatorname{variance,~} \operatorname{var}(X)=\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$
- Example: Bernoulli variance, $\mathbb{E}\left(X^{2}\right)=\mathbb{E}(X)=p$

Expectation of Functions of Random Variables

- $\mathbb{E}(g(X))=\left\{\begin{array}{cl}\sum_{i} g\left(x_{i}\right) f_{X}\left(x_{i}\right) & X \text { discrete, } g\left(x_{1}\right) \\ \int_{-\infty}^{\infty} g(x) f_{X}(x) d x & X \text { continuous }\end{array}\right.$
- Example: $\operatorname{variance,~} \operatorname{var}(X)=\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$
- Example: Bernoulli variance, $\mathbb{E}\left(X^{2}\right)=\mathbb{E}(X)=p$, thus $\operatorname{var}(X)=p(1-p)$.

Expectation of Functions of Random Variables

- $\mathbb{E}(g(X))=\left\{\begin{array}{cc}\sum_{i} g\left(x_{i}\right) f_{X}\left(x_{i}\right) & X \text { discrete, } g\left(x_{i}\right) \\ \int_{-\infty}^{\infty} g(x) f_{X}(x) d x & X \text { continuous }\end{array}\right.$
- Example: variance, $\operatorname{var}(X)=\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$
- Example: Bernoulli variance, $\mathbb{E}\left(X^{2}\right)=\mathbb{E}(X)=p$, thus $\operatorname{var}(X)=p(1-p)$.
- Example: Gaussian variance, $\mathbb{E}\left((X-\mu)^{2}\right)=\sigma^{2}$.

Expectation of Functions of Random Variables

- $\mathbb{E}(g(X))=\left\{\begin{array}{cc}\sum_{i} g\left(x_{i}\right) f_{X}\left(x_{i}\right) & x \text { discrete, } g\left(x_{i}\right) \\ \int_{-\infty}^{\infty} g(x) f_{X}(x) d x & x \text { continuous }\end{array}\right.$
- Example: variance, $\operatorname{var}(X)=\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$
- Example: Bernoulli variance, $\mathbb{E}\left(X^{2}\right)=\mathbb{E}(X)=p$, thus $\operatorname{var}(X)=p(1-p)$.
- Example: Gaussian variance, $\mathbb{E}\left((X-\mu)^{2}\right)=\sigma^{2}$.
- Probability as expectation of indicator, $1_{A}(x)= \begin{cases}1 & \multirow{1}{*}{\in A} \\ 0 & \Leftarrow x \notin A\end{cases}$

$$
\mathbb{P}(X \in A)=\int_{A} f_{X}(x) d x=\int 1_{A}(x) f_{X}(x) d x=\mathbb{E}\left(1_{A}(X)\right)
$$

Two (or More) Random Variables

- Joint pmf of two discrete RVs: $f_{X, Y}(x, y)=\mathbb{P}(X=x \wedge Y=y)$.

Extends trivially to more than two RVs .

Two (or More) Random Variables

- Joint pmf of two discrete RVs: $f_{X, Y}(x, y)=\mathbb{P}(X=x \wedge Y=y)$.

Extends trivially to more than two RV s.

- Joint pdf of two continuous RVs: $f_{X, Y}(x, y)$, such that

$$
\mathbb{P}((X, Y) \in A)=\iint_{A} f_{X, Y}(x, y) d x d y
$$

Extends trivially to more than two RV s.

Two (or More) Random Variables

- Joint pmf of two discrete RVs: $\quad f_{X, Y}(x, y)=\mathbb{P}(X=x \wedge Y=y)$.

Extends trivially to more than two RV s.

- Joint pdf of two continuous RVs: $f_{X, Y}(x, y)$, such that

$$
\mathbb{P}((X, Y) \in A)=\iint_{A} f_{X, Y}(x, y) d x d y
$$

Extends trivially to more than two RV s.

- Marginalization: $f_{Y}(y)=\left\{\begin{array}{cl}\sum_{x} f_{X, Y}(x, y), & \text { if } X \text { is discrete } \\ \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x, & \text { if } X \text { continuous }\end{array}\right.$

Two (or More) Random Variables

- Joint pmf of two discrete RVs: $f_{X, Y}(x, y)=\mathbb{P}(X=x \wedge Y=y)$.

Extends trivially to more than two RV s.

- Joint pdf of two continuous RVs: $f_{X, Y}(x, y)$, such that

$$
\mathbb{P}((X, Y) \in A)=\iint_{A} f_{X, Y}(x, y) d x d y
$$

Extends trivially to more than two RV s.

- Marginalization: $f_{Y}(y)=\left\{\begin{array}{cl}\sum_{x} f_{X, Y}(x, y), & \text { if } X \text { is discrete } \\ \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x, & \text { if } X \text { continuous }\end{array}\right.$
- Independence:
$X \Perp Y \Leftrightarrow f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$

Two (or More) Random Variables

- Joint pmf of two discrete RVs: $f_{X, Y}(x, y)=\mathbb{P}(X=x \wedge Y=y)$.

Extends trivially to more than two RV s.

- Joint pdf of two continuous RVs: $f_{X, Y}(x, y)$, such that

$$
\mathbb{P}((X, Y) \in A)=\iint_{A} f_{X, Y}(x, y) d x d y
$$

Extends trivially to more than two RV s.

- Marginalization: $f_{Y}(y)=\left\{\begin{array}{cl}\sum_{x} f_{X, Y}(x, y), & \text { if } X \text { is discrete } \\ \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x, & \text { if } X \text { continuous }\end{array}\right.$
- Independence:

$$
X \Perp Y \Leftrightarrow f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \underset{\notin}{\nRightarrow} \mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y) .
$$

Conditionals and Bayes' Theorem

- Conditional pmf (discrete RVs):

$$
f_{X \mid Y}(x \mid y)=\mathbb{P}(X=x \mid Y=y)=\frac{\mathbb{P}(X=x \wedge Y=y)}{\mathbb{P}(Y=y)}=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

Conditionals and Bayes' Theorem

- Conditional pmf (discrete RVs):
$f_{X \mid Y}(x \mid y)=\mathbb{P}(X=x \mid Y=y)=\frac{\mathbb{P}(X=x \wedge Y=y)}{\mathbb{P}(Y=y)}=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$.
- Conditional pdf (continuous RVs): $f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$

Conditionals and Bayes' Theorem

- Conditional pmf (discrete RVs):
$f_{X \mid Y}(x \mid y)=\mathbb{P}(X=x \mid Y=y)=\frac{\mathbb{P}(X=x \wedge Y=y)}{\mathbb{P}(Y=y)}=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$.
- Conditional pdf (continuous RVs): $f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$
- Bayes' theorem: $f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)} \quad$ (pdf or pmf).

Conditionals and Bayes' Theorem

- Conditional pmf (discrete RVs):
$f_{X \mid Y}(x \mid y)=\mathbb{P}(X=x \mid Y=y)=\frac{\mathbb{P}(X=x \wedge Y=y)}{\mathbb{P}(Y=y)}=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$.
- Conditional pdf (continuous RVs): $f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$
- Bayes' theorem: $f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)} \quad$ (pdf or pmf).
- Also valid in the mixed case (e.g., X continuous, Y discrete).

Joint, Marginal, and Conditional Probabilities: An Example

- A pair of binary variables $X, Y \in\{0,1\}$, with joint pmf:

$f_{X, Y}(x, y)$	$Y=0$	$Y=1$
$X=0$	$1 / 5$	$2 / 5$
$X=1$	$1 / 10$	$3 / 10$

Joint, Marginal, and Conditional Probabilities: An Example

- A pair of binary variables $X, Y \in\{0,1\}$, with joint pmf:

$f_{X, Y}(x, y)$	$Y=0$	$Y=1$
$X=0$	$1 / 5$	$2 / 5$
$X=1$	$1 / 10$	$3 / 10$

- Marginals: $f_{X}(0)=\frac{1}{5}+\frac{2}{5}=\frac{3}{5}$,

$$
f_{X}(1)=\frac{1}{10}+\frac{3}{10}=\frac{4}{10},
$$

$$
f_{Y}(0)=\frac{1}{5}+\frac{1}{10}=\frac{3}{10}, \quad f_{Y}(1)=\frac{2}{5}+\frac{3}{10}=\frac{7}{10}
$$

Joint, Marginal, and Conditional Probabilities: An Example

- A pair of binary variables $X, Y \in\{0,1\}$, with joint pmf:

$f_{X, Y}(x, y)$	$Y=0$	$Y=1$
$X=0$	$1 / 5$	$2 / 5$
$X=1$	$1 / 10$	$3 / 10$

- Marginals: $f_{X}(0)=\frac{1}{5}+\frac{2}{5}=\frac{3}{5}$,
$f_{X}(1)=\frac{1}{10}+\frac{3}{10}=\frac{4}{10}$,

$$
f_{Y}(0)=\frac{1}{5}+\frac{1}{10}=\frac{3}{10}, \quad f_{Y}(1)=\frac{2}{5}+\frac{3}{10}=\frac{7}{10} .
$$

- Conditional probabilities:

$f_{X \mid Y}(x \mid y)$	$Y=0$	$Y=1$
$X=0$	$2 / 3$	$4 / 7$
$X=1$	$1 / 3$	$3 / 7$

$f_{Y \mid X}(y \mid x)$	$Y=0$	$Y=1$
$X=0$	$1 / 3$	$2 / 3$
$X=1$	$1 / 4$	$3 / 4$

An Important Multivariate RV: Multinomial

- Multinomial: $X=\left(X_{1}, \ldots, X_{K}\right), X_{i} \in\{0, \ldots, n\}$, such that $\sum_{i} X_{i}=n$,

$$
\left.\left.\begin{array}{rl}
f_{X}\left(x_{1}, \ldots, x_{K}\right)= & \left\{\begin{array}{c}
\binom{n}{x_{1} x_{2} \cdots x_{K}} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{K}} \\
0
\end{array}\right. \\
\Leftarrow \sum_{i} x_{i}=n \\
& \Leftarrow \sum_{i} x_{i} \neq n
\end{array}\right\} \begin{array}{c}
n \\
x_{1} x_{2} \cdots x_{K}
\end{array}\right)=\frac{n!}{x_{1}!x_{2}!\cdots x_{K}!}, ~ l
$$

Parameters: $p_{1}, \ldots, p_{K} \geq 0$, such that $\sum_{i} p_{i}=1$.

An Important Multivariate RV: Multinomial

- Multinomial: $X=\left(X_{1}, \ldots, X_{K}\right), X_{i} \in\{0, \ldots, n\}$, such that $\sum_{i} X_{i}=n$,

$$
\begin{aligned}
& f_{X}\left(x_{1}, \ldots, x_{K}\right)=\left\{\begin{array}{cc}
\left(\begin{array}{c}
\left(x_{1} x_{2} \cdots x_{K}\right.
\end{array}\right) p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{K}} & \Leftarrow \\
0 & \sum_{i} x_{i}=n \\
& \sum_{i} x_{i} \neq n
\end{array}\right. \\
&\binom{n}{x_{1} x_{2} \cdots x_{K}}=\frac{n!}{x_{1}!x_{2}!\cdots x_{K}!}
\end{aligned}
$$

Parameters: $p_{1}, \ldots, p_{K} \geq 0$, such that $\sum_{i} p_{i}=1$.

- Generalizes the binomial from binary to K-classes.

An Important Multivariate RV: Multinomial

- Multinomial: $X=\left(X_{1}, \ldots, X_{K}\right), X_{i} \in\{0, \ldots, n\}$, such that $\sum_{i} X_{i}=n$,

$$
\begin{aligned}
& f_{X}\left(x_{1}, \ldots, x_{K}\right)=\left\{\begin{array}{cc}
\binom{n}{x_{1} x_{2} \cdots x_{K}} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{K}} & \Leftarrow \\
0 & \sum_{i} x_{i}=n \\
\sum_{i} x_{i} \neq n
\end{array}\right. \\
&\binom{n}{x_{1} x_{2} \cdots x_{K}}=\frac{n!}{x_{1}!x_{2}!\cdots x_{K}!}
\end{aligned}
$$

Parameters: $p_{1}, \ldots, p_{K} \geq 0$, such that $\sum_{i} p_{i}=1$.

- Generalizes the binomial from binary to K-classes.
- Example: tossing n independent fair dice, $p_{1}=\cdots=p_{6}=1 / 6$. $x_{i}=$ number of outcomes with i dots. Of course, $\sum_{i} x_{i}=n$.

An Important Multivariate RV: Multinomial

- Multinomial: $X=\left(X_{1}, \ldots, X_{K}\right), X_{i} \in\{0, \ldots, n\}$, such that $\sum_{i} X_{i}=n$,

$$
\begin{aligned}
& f_{X}\left(x_{1}, \ldots, x_{K}\right)=\left\{\begin{array}{cc}
\binom{n}{x_{1} x_{2} \cdots x_{K}} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{K}} & \Leftarrow \\
0 & \sum_{i} x_{i}=n \\
\sum_{i} x_{i} \neq n
\end{array}\right. \\
&\binom{n}{x_{1} x_{2} \cdots x_{K}}=\frac{n!}{x_{1}!x_{2}!\cdots x_{K}!}
\end{aligned}
$$

Parameters: $p_{1}, \ldots, p_{K} \geq 0$, such that $\sum_{i} p_{i}=1$.

- Generalizes the binomial from binary to K-classes.
- Example: tossing n independent fair dice, $p_{1}=\cdots=p_{6}=1 / 6$.

$$
x_{i}=\text { number of outcomes with } i \text { dots. Of course, } \sum_{i} x_{i}=n .
$$

- For $n=1$, sometimes called categorical or multinoulli.

For $n=1$, one and only one $x_{i}=1$, others are 0 , thus $\binom{n}{x_{1} \cdots}=1$.

An Important Multivariate RV: Gaussian

- Multivariate Gaussian: $X \in \mathbb{R}^{n}$,

$$
f_{X}(x)=\mathcal{N}(x ; \mu, C)=\frac{1}{\sqrt{\operatorname{det}(2 \pi C)}} \exp \left(-\frac{1}{2}(x-\mu)^{T} C^{-1}(x-\mu)\right)
$$

An Important Multivariate RV: Gaussian

- Multivariate Gaussian: $X \in \mathbb{R}^{n}$,

$$
f_{X}(x)=\mathcal{N}(x ; \mu, C)=\frac{1}{\sqrt{\operatorname{det}(2 \pi C)}} \exp \left(-\frac{1}{2}(x-\mu)^{T} C^{-1}(x-\mu)\right)
$$

- Parameters: vector $\mu \in \mathbb{R}^{n}$ and matrix $C \in \mathbb{R}^{n \times n}$. Expected value: $\mathbb{E}(X)=\mu$. Meaning of C : next slide.

An Important Multivariate RV: Gaussian

- Multivariate Gaussian: $X \in \mathbb{R}^{n}$,

$$
f_{X}(x)=\mathcal{N}(x ; \mu, C)=\frac{1}{\sqrt{\operatorname{det}(2 \pi C)}} \exp \left(-\frac{1}{2}(x-\mu)^{T} C^{-1}(x-\mu)\right)
$$

- Parameters: vector $\mu \in \mathbb{R}^{n}$ and matrix $C \in \mathbb{R}^{n \times n}$. Expected value: $\mathbb{E}(X)=\mu$. Meaning of C : next slide.

Covariance, Correlation, and all that...

- Covariance between two RVs:

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

Covariance, Correlation, and all that...

- Covariance between two RVs:

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

- Relationship with variance: $\operatorname{var}(X)=\operatorname{cov}(X, X)$.

Covariance, Correlation, and all that...

- Covariance between two RVs:

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

- Relationship with variance: $\operatorname{var}(X)=\operatorname{cov}(X, X)$.

Covariance, Correlation, and all that...

- Covariance between two RVs:

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

- Relationship with variance: $\operatorname{var}(X)=\operatorname{cov}(X, X)$.
- $X \Perp Y \Leftrightarrow f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$

Covariance, Correlation, and all that...

- Covariance between two RVs:

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

- Relationship with variance: $\operatorname{var}(X)=\operatorname{cov}(X, X)$.
- $X \Perp Y \Leftrightarrow f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \underset{ }{\nLeftarrow} \operatorname{cov}(X, Y)=0$

Covariance, Correlation, and all that...

- Covariance between two RVs:

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

- Relationship with variance: $\operatorname{var}(X)=\operatorname{cov}(X, X)$.
- $X \Perp Y \Leftrightarrow f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \stackrel{\Rightarrow}{\nLeftarrow} \operatorname{cov}(X, Y)=0$
- Covariance matrix of multivariate $\mathrm{RV}, X \in \mathbb{R}^{n}$:

$$
\operatorname{cov}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))(X-\mathbb{E}(X))^{T}\right]=\mathbb{E}\left(X X^{T}\right)-\mathbb{E}(X) \mathbb{E}(X)^{T}
$$

Covariance, Correlation, and all that...

- Covariance between two RVs:

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

- Relationship with variance: $\operatorname{var}(X)=\operatorname{cov}(X, X)$.
- $X \Perp Y \Leftrightarrow f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \underset{\nLeftarrow}{\nRightarrow} \operatorname{cov}(X, Y)=0$
- Covariance matrix of multivariate $\mathrm{RV}, X \in \mathbb{R}^{n}$:

$$
\operatorname{cov}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))(X-\mathbb{E}(X))^{T}\right]=\mathbb{E}\left(X X^{T}\right)-\mathbb{E}(X) \mathbb{E}(X)^{T}
$$

- Covariance of Gaussian RV, $f_{X}(x)=\mathcal{N}(x ; \mu, C) \Rightarrow \operatorname{cov}(X)=C$

More on Expectations and Covariances

Let $A \in \mathbb{R}^{n \times n}$ be a matrix and $a \in \mathbb{R}^{n}$ a vector.

More on Expectations and Covariances

Let $A \in \mathbb{R}^{n \times n}$ be a matrix and $a \in \mathbb{R}^{n}$ a vector.

- If $\mathbb{E}(X)=\mu$ and $Y=A X$, then $\mathbb{E}(Y)=A \mu$;

More on Expectations and Covariances

Let $A \in \mathbb{R}^{n \times n}$ be a matrix and $a \in \mathbb{R}^{n}$ a vector.

- If $\mathbb{E}(X)=\mu$ and $Y=A X$, then $\mathbb{E}(Y)=A \mu$;
- If $\operatorname{cov}(X)=C$ and $Y=A X$, then $\operatorname{cov}(Y)=A C A^{T}$;

More on Expectations and Covariances

Let $A \in \mathbb{R}^{n \times n}$ be a matrix and $a \in \mathbb{R}^{n}$ a vector.

- If $\mathbb{E}(X)=\mu$ and $Y=A X$, then $\mathbb{E}(Y)=A \mu$;
- If $\operatorname{cov}(X)=C$ and $Y=A X$, then $\operatorname{cov}(Y)=A C A^{T}$;
- If $\operatorname{cov}(X)=C$ and $Y=a^{T} X \in \mathbb{R}$, then $\operatorname{var}(Y)=a^{T} C a \geq 0$;

More on Expectations and Covariances

Let $A \in \mathbb{R}^{n \times n}$ be a matrix and $a \in \mathbb{R}^{n}$ a vector.

- If $\mathbb{E}(X)=\mu$ and $Y=A X$, then $\mathbb{E}(Y)=A \mu$;
- If $\operatorname{cov}(X)=C$ and $Y=A X$, then $\operatorname{cov}(Y)=A C A^{T}$;
- If $\operatorname{cov}(X)=C$ and $Y=a^{T} X \in \mathbb{R}$, then $\operatorname{var}(Y)=a^{T} C a \geq 0$;
- If $\operatorname{cov}(X)=C$ and $Y=C^{-1 / 2} X$, then $\operatorname{cov}(Y)=I$;

More on Expectations and Covariances

Let $A \in \mathbb{R}^{n \times n}$ be a matrix and $a \in \mathbb{R}^{n}$ a vector.

- If $\mathbb{E}(X)=\mu$ and $Y=A X$, then $\mathbb{E}(Y)=A \mu$;
- If $\operatorname{cov}(X)=C$ and $Y=A X$, then $\operatorname{cov}(Y)=A C A^{T}$;
- If $\operatorname{cov}(X)=C$ and $Y=a^{T} X \in \mathbb{R}$, then $\operatorname{var}(Y)=a^{T} C a \geq 0$;
- If $\operatorname{cov}(X)=C$ and $Y=C^{-1 / 2} X$, then $\operatorname{cov}(Y)=I$;
- If $f_{X}(x)=\mathcal{N}(x ; 0, I)$ and $Y=\mu+C^{1 / 2} X$, then $f_{Y}(y)=\mathcal{N}(y ; \mu, C)$;

More on Expectations and Covariances

Let $A \in \mathbb{R}^{n \times n}$ be a matrix and $a \in \mathbb{R}^{n}$ a vector.

- If $\mathbb{E}(X)=\mu$ and $Y=A X$, then $\mathbb{E}(Y)=A \mu$;
- If $\operatorname{cov}(X)=C$ and $Y=A X$, then $\operatorname{cov}(Y)=A C A^{T}$;
- If $\operatorname{cov}(X)=C$ and $Y=a^{T} X \in \mathbb{R}$, then $\operatorname{var}(Y)=a^{T} C a \geq 0$;
- If $\operatorname{cov}(X)=C$ and $Y=C^{-1 / 2} X$, then $\operatorname{cov}(Y)=I$;
- If $f_{X}(x)=\mathcal{N}(x ; 0, I)$ and $Y=\mu+C^{1 / 2} X$, then $f_{Y}(y)=\mathcal{N}(y ; \mu, C)$;
- If $f_{X}(x)=\mathcal{N}(x ; \mu, C)$ and $Y=C^{-1 / 2}(X-\mu)$, then $f_{Y}(y)=\mathcal{N}(y ; 0, I)$.

Entropy and all that...

Entropy of a discrete RV $X \in\{1, \ldots, K\}: H(X)=-\sum_{x=1}^{K} f_{X}(x) \log f_{X}(x)$

Entropy and all that...

Entropy of a discrete $\mathrm{RV} X \in\{1, \ldots, K\}: H(X)=-\sum_{x=1}^{K} f_{X}(x) \log f_{X}(x)$

- Positivity: $H(X) \geq 0$;

$$
H(X)=0 \Leftrightarrow f_{X}(i)=1, \text { for exactly one } i \in\{1, \ldots, K\}
$$

Entropy and all that...

Entropy of a discrete $\mathrm{RV} X \in\{1, \ldots, K\}: H(X)=-\sum_{x=1}^{K} f_{X}(x) \log f_{X}(x)$

- Positivity: $H(X) \geq 0$;

$$
H(X)=0 \Leftrightarrow f_{X}(i)=1, \text { for exactly one } i \in\{1, \ldots, K\}
$$

- Upper bound: $H(X) \leq \log K$;

$$
H(X)=\log K \Leftrightarrow f_{X}(x)=1 / k, \text { for all } x \in\{1, \ldots, K\}
$$

Entropy and all that...

Entropy of a discrete $\mathrm{RV} X \in\{1, \ldots, K\}: H(X)=-\sum_{x=1}^{K} f_{X}(x) \log f_{X}(x)$

- Positivity: $H(X) \geq 0$;

$$
H(X)=0 \Leftrightarrow f_{X}(i)=1, \text { for exactly one } i \in\{1, \ldots, K\}
$$

- Upper bound: $H(X) \leq \log K$;

$$
H(X)=\log K \Leftrightarrow f_{X}(x)=1 / k, \text { for all } x \in\{1, \ldots, K\}
$$

- Measure of uncertainty/randomness of X

Entropy and all that...

Entropy of a discrete RV $X \in\{1, \ldots, K\}: H(X)=-\sum_{X=1}^{K} f_{X}(x) \log f_{X}(x)$

- Positivity: $H(X) \geq 0$;

$$
H(X)=0 \Leftrightarrow f_{X}(i)=1, \text { for exactly one } i \in\{1, \ldots, K\}
$$

- Upper bound: $H(X) \leq \log K$;

$$
H(X)=\log K \Leftrightarrow f_{X}(x)=1 / k, \text { for all } x \in\{1, \ldots, K\}
$$

- Measure of uncertainty/randomness of X

Continuous RV X, differential entropy: $h(X)=-\int f_{X}(x) \log f_{X}(x) d x$

Entropy and all that...

Entropy of a discrete RV $X \in\{1, \ldots, K\}: H(X)=-\sum_{x=1}^{K} f_{X}(x) \log f_{X}(x)$

- Positivity: $H(X) \geq 0$;

$$
H(X)=0 \Leftrightarrow f_{X}(i)=1, \text { for exactly one } i \in\{1, \ldots, K\}
$$

- Upper bound: $H(X) \leq \log K$;

$$
H(X)=\log K \Leftrightarrow f_{X}(x)=1 / k, \text { for all } x \in\{1, \ldots, K\}
$$

- Measure of uncertainty/randomness of X

Continuous RV X, differential entropy: $h(X)=-\int f_{X}(x) \log f_{X}(x) d x$

- $h(X)$ can be positive or negative. Example, if $f_{X}(x)=\operatorname{Uniform}(x ; a, b), h(X)=\log (b-a)$.

Entropy and all that...

$$
\text { Entropy of a discrete } \mathrm{RV} X \in\{1, \ldots, K\}: H(X)=-\sum_{x=1}^{K} f_{X}(x) \log f_{X}(x)
$$

- Positivity: $H(X) \geq 0$;

$$
H(X)=0 \Leftrightarrow f_{X}(i)=1, \text { for exactly one } i \in\{1, \ldots, K\}
$$

- Upper bound: $H(X) \leq \log K$;

$$
H(X)=\log K \Leftrightarrow f_{X}(x)=1 / k, \text { for all } x \in\{1, \ldots, K\}
$$

- Measure of uncertainty/randomness of X

Continuous RV X, differential entropy: $h(X)=-\int f_{X}(x) \log f_{X}(x) d x$

- $h(X)$ can be positive or negative. Example, if $f_{X}(x)=\operatorname{Uniform}(x ; a, b), h(X)=\log (b-a)$.
- If $f_{X}(x)=\mathcal{N}\left(x ; \mu, \sigma^{2}\right)$, then $h(X)=\frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)$.

Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

$$
D\left(f_{X} \| g_{X}\right)=\sum_{x=1}^{K} f_{X}(x) \log \frac{f_{X}(x)}{g_{X}(x)}
$$

Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

$$
D\left(f_{X} \| g_{X}\right)=\sum_{x=1}^{K} f_{X}(x) \log \frac{f_{X}(x)}{g_{X}(x)}
$$

Positivity: $D\left(f_{X} \| g_{X}\right) \geq 0$
$D\left(f_{X} \| g_{X}\right)=0 \Leftrightarrow f_{X}(x)=g_{X}(x)$, for $x \in\{1, \ldots, K\}$

Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

$$
D\left(f_{X} \| g_{X}\right)=\sum_{x=1}^{K} f_{X}(x) \log \frac{f_{X}(x)}{g_{X}(x)}
$$

Positivity: $D\left(f_{X} \| g_{X}\right) \geq 0$

$$
D\left(f_{X} \| g_{X}\right)=0 \Leftrightarrow f_{X}(x)=g_{X}(x), \text { for } x \in\{1, \ldots, K\}
$$

KLD between two pdf:

$$
D\left(f_{X} \| g_{X}\right)=\int f_{X}(x) \log \frac{f_{X}(x)}{g_{X}(x)} d x
$$

Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

$$
D\left(f_{X} \| g_{X}\right)=\sum_{x=1}^{K} f_{X}(x) \log \frac{f_{X}(x)}{g_{X}(x)}
$$

Positivity: $D\left(f_{X} \| g_{X}\right) \geq 0$

$$
D\left(f_{X} \| g_{X}\right)=0 \Leftrightarrow f_{X}(x)=g_{X}(x), \text { for } x \in\{1, \ldots, K\}
$$

KLD between two pdf:

$$
D\left(f_{X} \| g_{X}\right)=\int f_{X}(x) \log \frac{f_{X}(x)}{g_{X}(x)} d x
$$

Positivity: $D\left(f_{X} \| g_{X}\right) \geq 0$ $D\left(f_{X} \| g_{X}\right)=0 \Leftrightarrow f_{X}(x)=g_{X}(x)$, almost everywhere

Recommended Reading

- A. Maleki and T. Do, "Review of Probability Theory", Stanford University, 2017 (https://tinyurl.com/pz7p9g5)
- L. Wasserman, "All of Statistics: A Concise Course in Statistical Inference", Springer, 2004.

Outline

(1) Introduction

(2) Class Administrativia
(3) Recap

Linear Algebra
Probability Theory Refresher
Optimization
(4) Introduction to Machine Learning

Minimizing a function

- We are given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Goal: find x^{*} that minimizes $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Minimizing a function

- We are given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Goal: find x^{*} that minimizes $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Global minimum: for any $x \in \mathbb{R}^{n}, f\left(x^{*}\right) \leq f(x)$.

Minimizing a function

- We are given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Goal: find x^{*} that minimizes $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Global minimum: for any $x \in \mathbb{R}^{n}, f\left(x^{*}\right) \leq f(x)$.
- Local minimum: for any $\left\|x-x^{*}\right\| \leq \delta \Rightarrow f\left(x^{*}\right) \leq f(x)$.
- Are local minima also global minima?

Convex Functions

- Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

Convex Functions

- Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- f is a convex function, if, for any $\lambda \in[0,1]$, and any x, x^{\prime},

$$
f\left(\lambda x+(1-\lambda) x^{\prime}\right) \leq \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right)
$$

Convex Functions

- Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- f is a convex function, if, for any $\lambda \in[0,1]$, and any x, x^{\prime},

$$
f\left(\lambda x+(1-\lambda) x^{\prime}\right) \leq \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right)
$$

- f is a strictly convex function, if, for any $\lambda \in] 0,1\left[\right.$, and any x, x^{\prime},

$$
f\left(\lambda x+(1-\lambda) x^{\prime}\right)<\lambda f(x)+(1-\lambda) f\left(x^{\prime}\right)
$$

non-convex

convex
strictly convex

convex, not strictly

Relationship Between Convexity and Minimization

- Goal: find x^{*} that minimizes $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Relationship Between Convexity and Minimization

- Goal: find x^{*} that minimizes $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- If f is convex and x^{*} is a local minimizer, then it is also a global minimizer.

Relationship Between Convexity and Minimization

- Goal: find x^{*} that minimizes $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- If f is convex and x^{*} is a local minimizer, then it is also a global minimizer.
- If f is strictly convex and x^{*} is a local minimizer, then it is also the unique global minimizer.

Relationship Between Convexity and Minimization

- Goal: find x^{*} that minimizes $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- If f is convex and x^{*} is a local minimizer, then it is also a global minimizer.
- If f is strictly convex and x^{*} is a local minimizer, then it is also the unique global minimizer.

Gradients and Minimization

- Given $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (differentiable), the gradient of f at x :

$$
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right] \in \mathbb{R}^{n}
$$

Gradients and Minimization

- Given $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (differentiable), the gradient of f at x :

$$
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right] \in \mathbb{R}^{n}
$$

- Relationship between gradient and minimization

$$
x^{*} \text { is local minimizer } \underset{\nLeftarrow}{\Rightarrow} \nabla f\left(x^{*}\right)=0
$$

Gradients and Minimization

- Given $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (differentiable), the gradient of f at x :

$$
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right] \in \mathbb{R}^{n}
$$

- Relationship between gradient and minimization

$$
x^{*} \text { is local minimizer } \underset{\nLeftarrow}{\Rightarrow} \nabla f\left(x^{*}\right)=0
$$

local max

saddle point

Gradients and Minimization

- Given $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (differentiable), the gradient of f at x :

$$
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right] \in \mathbb{R}^{n}
$$

- Relationship between gradient and minimization

$$
x^{*} \text { is local minimizer } \underset{\nLeftarrow}{\Rightarrow} \nabla f\left(x^{*}\right)=0
$$

Hessians and Convexity

- Given $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (differentiable), the Hessian of f at x :

$$
\nabla^{2} f(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

Hessians and Convexity

- Given $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (differentiable), the Hessian of f at x :

$$
\nabla^{2} f(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

- Relationship between Hessian and convexity:
\checkmark Positive semi-definite Hessian $\Leftrightarrow f$ is convex
\checkmark Positive definite Hessian $\Leftrightarrow f$ is strictly convex.

More on Gradients

- Gradient of quadratic form $f(x)=x^{T} A x: \nabla f(x)=\left(A+A^{T}\right) x$

More on Gradients

- Gradient of quadratic form $f(x)=x^{T} A x: \nabla f(x)=\left(A+A^{T}\right) x$
- ...if A symmetric: $\nabla f(x)=2 A x$

More on Gradients

- Gradient of quadratic form $f(x)=x^{T} A x: \nabla f(x)=\left(A+A^{T}\right) x$
- ...if A symmetric: $\nabla f(x)=2 A x$
- .Particular case: $f(x)=x^{T} x=\|x\|_{2}^{2}$, then $\nabla f(x)=2 x$

More on Gradients

- Gradient of quadratic form $f(x)=x^{T} A x: \nabla f(x)=\left(A+A^{T}\right) x$
- ...if A symmetric: $\nabla f(x)=2 A x$
- .Particular case: $f(x)=x^{T} x=\|x\|_{2}^{2}$, then $\nabla f(x)=2 x$
- If $f(x)=x^{T} b=b^{T} x$, then $\nabla f(x)=b$

More on Gradients

- Gradient of quadratic form $f(x)=x^{T} A x: \nabla f(x)=\left(A+A^{T}\right) x$
- ...if A symmetric: $\nabla f(x)=2 A x$
- .Particular case: $f(x)=x^{\top} x=\|x\|_{2}^{2}$, then $\nabla f(x)=2 x$
- If $f(x)=x^{T} b=b^{T} x$, then $\nabla f(x)=b$
- If $g(x)=f(A x)$, then $\nabla g(x)=A^{T} \nabla f(A x)$

More on Gradients

- Gradient of quadratic form $f(x)=x^{T} A x: \nabla f(x)=\left(A+A^{T}\right) x$
- ...if A symmetric: $\nabla f(x)=2 A x$
- .Particular case: $f(x)=x^{\top} x=\|x\|_{2}^{2}$, then $\nabla f(x)=2 x$
- If $f(x)=x^{T} b=b^{T} x$, then $\nabla f(x)=b$
- If $g(x)=f(A x)$, then $\nabla g(x)=A^{T} \nabla f(A x)$
- If $g(x)=f(a \odot x)$, then $\nabla g(x)=a \odot \nabla f(a \odot x)$

More on Gradients

- Gradient of quadratic form $f(x)=x^{T} A x: \nabla f(x)=\left(A+A^{T}\right) x$
- ...if A symmetric: $\nabla f(x)=2 A x$
- .Particular case: $f(x)=x^{\top} x=\|x\|_{2}^{2}$, then $\nabla f(x)=2 x$
- If $f(x)=x^{T} b=b^{T} x$, then $\nabla f(x)=b$
- If $g(x)=f(A x)$, then $\nabla g(x)=A^{T} \nabla f(A x)$
- If $g(x)=f(a \odot x)$, then $\nabla g(x)=a \odot \nabla f(a \odot x)$
- In simple cases, we can find minima analytically: $f(x)=\|A x-y\|_{2}^{2}$

$$
\nabla f(x)=2 A^{T}(A x-y)=0 \Rightarrow x^{*}=\left(A^{T} A\right)^{-1} A^{T} y
$$

Gradient Descent

- Goal: minimize $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, for differentiable f

Gradient Descent

- Goal: minimize $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, for differentiable f
- Take small steps in the negative gradient direction until a stopping criterion is met:

$$
x^{(t+1)} \leftarrow x^{(t)}-\eta_{(t)} \nabla f\left(x^{(t)}\right)
$$

Gradient Descent

- Goal: minimize $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, for differentiable f
- Take small steps in the negative gradient direction until a stopping criterion is met:

$$
x^{(t+1)} \leftarrow x^{(t)}-\eta_{(t)} \nabla f\left(x^{(t)}\right)
$$

- Choosing the step-size: crucial for convergence and performance.

Gradient Descent

- Goal: minimize $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, for differentiable f
- Take small steps in the negative gradient direction until a stopping criterion is met:

$$
x^{(t+1)} \leftarrow x^{(t)}-\eta_{(t)} \nabla f\left(x^{(t)}\right)
$$

- Choosing the step-size: crucial for convergence and performance.
- GD may work well, or not so well. There are many ways to improve it.

Recommended Reading

- Z. Kolter and C. Do, "Linear Algebra Review and Reference", Stanford University, 2015 (https://tinyurl.com/44x2qj4)

Outline

(1) Introduction

(2) Class Administrativia
(3) Recap

Linear Algebra
Probability Theory Refresher
Optimization
(4) Introduction to Machine Learning

Machine Learning

Tom Mitchell's definition:

- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."
- In a nutshell: learn from data; improve performance with experience

This comes in many flavours:

- Supervised learning
- Unsupervised learning
- Self-supervised learning
- Reinforcement learning
- Active learning

Formulate the problem; get data; learn the model from the data; evaluate.

Example Tasks

Binary classification: given an e-mail: is it spam or not-spam?
Multi-class classification: given a news article, determine its topic (politics, sports, etc.)

Regression: how much time a person will spend reading this article?

https://www.approximatelycorrect.com/2020/10/26/
superheroes-of-deep-learning-vol-1-machine-learning-yearning/

https://www.approximatelycorrect.com/2020/10/26/
superheroes-of-deep-learning-vol-1-machine-learning-yearning/

https://www.approximatelycorrect.com/2020/10/26/ superheroes-of-deep-learning-vol-1-machine-learning-yearning/

https://www.approximatelycorrect.com/2020/10/26/ superheroes-of-deep-learning-vol-1-machine-learning-yearning/

Let's Start Simple

- Example 1 - sequence: $\star \diamond$; ;
- Example 2 - sequence: $\star \diamond \triangle$;
- Example 3 - sequence: $\star \triangle \boldsymbol{\varphi}$;
- Example 4 - sequence: $\diamond \triangle$;
label: -1
label: -1
label: +1
label: +1
(Credits: Ryan McDonald)

Let's Start Simple

- Example 1 - sequence: $\star \diamond$;
- Example 2 - sequence: $\star \odot \triangle$;
- Example 3 - sequence: $\star \triangle \boldsymbol{\phi}$;
- Example 4 - sequence: $\diamond \triangle$;
label: -1
label: -1
label: +1
label: +1
- New sequence: $\star \diamond \circ$; label ?
(Credits: Ryan McDonald)

Let's Start Simple

- Example 1 - sequence: $\star \diamond$;
- Example 2 - sequence: $\star \odot \triangle$;
- Example 3 - sequence: $\star \triangle \boldsymbol{\phi}$;
- Example 4 - sequence: $\diamond \triangle$;
label: -1
label: -1
label: +1
label: +1
- New sequence: $\star \diamond \circ$; label -1
- New sequence: $\star \diamond \rho$; label ?
(Credits: Ryan McDonald)

Let's Start Simple

- Example 1 - sequence: $\star \diamond$;
- Example 2 - sequence: $\star \odot \triangle$;
- Example 3 - sequence: $\star \triangle \boldsymbol{\phi}$;
- Example 4 - sequence: $\diamond \triangle$;
label: -1
label: -1
label: +1
label: +1
- New sequence: $\star \diamond \circ$; label -1
- New sequence: $\star \diamond \wp$; label -1
- New sequence: $\star \triangle$; label ?
(Credits: Ryan McDonald)

Let's Start Simple

- Example 1 - sequence: $\star \diamond$;
- Example 2 - sequence: $\star \odot \triangle$;
- Example 3 - sequence: $\star \triangle \boldsymbol{\varphi}$;
- Example 4 - sequence: $\diamond \triangle$;
label: -1
label: -1
label: +1
label: +1
- New sequence: $\star \diamond \circ$; label -1
- New sequence: $\star \diamond \diamond$; label -1
- New sequence: $\star \triangle \circ$; label ?

Why can we do this?
(Credits: Ryan McDonald)

Let's Start Simple: Machine Learning

- Example 1 - sequence: $\star \diamond$;
- Example 2 - sequence: $\star \odot \triangle$;
- Example 3 - sequence: $\star \triangle \boldsymbol{\phi}$;
- Example 4 - sequence: $\diamond \triangle$;
label: -1
label: -1
label: +1
label: +1
- New sequence: $\star \diamond \supset$; label -1

$$
\begin{gathered}
\text { Label -1 Label }+1 \\
P(-1 \mid \star)=\frac{\operatorname{count}(\star \text { and }-1)}{\operatorname{count}(\star)}=\frac{2}{3}=0.67 \text { vs. } P(+1 \mid \star)=\frac{\operatorname{count}(\star \text { and }+1)}{\operatorname{count}(\star)}=\frac{1}{3}=0.33 \\
P(-1 \mid \diamond)=\frac{\operatorname{count}(\diamond \operatorname{and}-1)}{\operatorname{count}(\diamond)}=\frac{1}{2}=0.5 \mathrm{vs} . P(+1 \mid \diamond)=\frac{\operatorname{count}(\diamond \text { and }+1)}{\operatorname{count}(\diamond)}=\frac{1}{2}=0.5 \\
P(-1 \mid \odot)=\frac{\operatorname{count}(\odot \text { and }-1)}{\operatorname{count}(\odot)}=\frac{1}{1}=1.0 \mathrm{vs} . P(+1 \mid \varnothing)=\frac{\operatorname{count}(\odot \text { and }+1)}{\operatorname{count}(\odot)}=\frac{0}{1}=0.0
\end{gathered}
$$

(Credits: Ryan McDonald)

Let's Start Simple: Machine Learning

- Example 1 - sequence: $\star \diamond$;
- Example 2 - sequence: $\star \diamond \triangle$;
- Example 3 - sequence: $\star \triangle \boldsymbol{\phi}$;
- Example 4 - sequence: $\diamond \triangle$;
label: -1
label: -1
label: +1
label: +1
- New sequence: $\star \triangle$; label ?

$$
\begin{gathered}
\text { Label }-1 \quad \text { Label }+1 \\
P(-1 \mid \star)=\frac{\operatorname{count}(\star \text { and }-1)}{\operatorname{count}(\star)}=\frac{2}{3}=0.67 \text { vs. } P(+1 \mid \star)=\frac{\operatorname{count}(\star \text { and }+1)}{\operatorname{count}(\star)}=\frac{1}{3}=0.33 \\
P(-1 \mid \triangle)=\frac{\operatorname{count}(\triangle \text { and }-1)}{\operatorname{count}(\triangle)}=\frac{1}{3}=0.33 \mathrm{vs.} P(+1 \mid \triangle)=\frac{\operatorname{count}(\triangle \text { and }+1)}{\operatorname{count}(\triangle)}=\frac{2}{3}=0.67 \\
P(-1 \mid \circ)=\frac{\operatorname{count}(\circ \text { and }-1)}{\operatorname{count}(\circ)}=\frac{1}{2}=0.5 \mathrm{vs.} P(+1 \mid \circ)=\frac{\operatorname{count}(\circ \text { and }+1)}{\operatorname{count}(\circ)}=\frac{1}{2}=0.5
\end{gathered}
$$

(Credits: Ryan McDonald)

Machine Learning

(1) Define a model/distribution of interest
(2) Make some assumptions if needed
(3) Fit the model to the data

Machine Learning

(1) Define a model/distribution of interest
(2) Make some assumptions if needed
(3) Fit the model to the data

- Model: $P($ label \mid sequence $)=P\left(\right.$ label $_{\text {symbol }}^{1}, \ldots$ symbol $\left._{n}\right)$
- Prediction for new sequence $=\operatorname{argmax}_{\text {label }} P$ (label|sequence)
- Assumption (naive Bayes):

$$
P\left(\text { symbol }_{1}, \ldots, \text { symbol }_{n} \mid \text { label }\right)=\prod_{i=1}^{n} P\left(\text { symbol }_{i} \mid \text { label }\right)
$$

- Fit the model to the data: count!! (simple probabilistic modeling)

Some Notation: Inputs and Outputs

- Input $x \in X$
- e.g., a news article, a sentence, an image, ...
- Output $y \in y$
- e.g., spam/not spam, a topic, the object in the image (cat? dog?); a segmentation of the image (pedestrian; car; grass; background)
- Input/Output pair: $(x, y) \in X \times y$
- e.g., a news article together with a topic
- e.g., a image together with an object
- e.g., an image partitioned into segmentation regions

Many Flavours

- Supervised learning: pairs (x, y) are provided at training time (the main focus of this class)
- Examples: perceptron, SVMs, decision trees, nearest neighbor, neural networks, ...
- Caveat: the labels y may be hard or expensive to annotate
- Unsupervised learning: only x is provided; the model needs to figure out what the labels are without any supervision
- Examples: clustering, PCA, ...
- Reinforcement learning: x is provided, and the model can act on the environment to obtain a reward (but doesn't get to know y)
- Example: a robot acting on an environment trying to achieve a goal
- Active learning: the model requests which data points to label next.

CLASSICAL MACHINE LEARNING

SUPERVISED

"Divide the ties by length"

UNSUPERVISED

"Make the best outfits from the given clothes"

Supervised Learning

- We are given a labeled dataset of input/output pairs:

$$
\mathcal{D}=\left\{\left(x_{n}, y_{n}\right)\right\}_{n=1}^{N} \subseteq X \times y
$$

- Goal: learn a predictor $h: X \rightarrow y$ that generalizes well to arbitrary inputs.
- At test time, given $x \in \mathcal{X}$, we predict

$$
\widehat{y}=h(x)
$$

- Hopefully, $\widehat{y} \approx y$ most of the time.

Tasks/problems have different names depending on what y is...

Regression deals with continuous output variables:

- Simple regression: $y=\mathbb{R}$
- e.g., given a news article, how much time a user will spend reading it?
- Multivariate regression: $y=\mathbb{R}^{K}$
- e.g., predict the $\mathrm{X}-\mathrm{Y}$ coordinates in an image where the user will click

Classification

Tasks/problems have different names depending on what y is...

Classification deals with discrete output variables:

- Binary classification: $y=\{ \pm 1\}$
- e.g., spam detection
- Multi-class classification: $y=\{1,2, \ldots, K\}$
- e.g., topic classification
- Structured classification: y exponentially large and structured
- e.g., machine translation, caption generation, image segmentation

Classification

Tasks/problems have different names depending on what y is...

Classification deals with discrete output variables:

- Binary classification: $y=\{ \pm 1\}$
- e.g., spam detection
- Multi-class classification: $y=\{1,2, \ldots, K\}$
- e.g., topic classification
- Structured classification: y exponentially large and structured
- e.g., machine translation, caption generation, image segmentation
- Later in this course!

Sometimes reductions are convenient:

- logistic regression reduces classification to regression
- one-vs-all reduces multi-class to binary
- greedy search reduces structured classification to multi-class
... but other times it's better to tackle the problem in its native form.

More later!

Conclusions

- Machine learning allows computer programs to learn from data (observations, interventions, ...) and improve performance with experience
- Can be supervised, unsupervised, self-supervised, reinforced, etc.
- Tasks can be (binary or multi-class) classification, regression, or more nuanced

Thank you!

Questions?

