Information and Communication Theory Problem Set 5 - Solutions

2022
Department of Electrical and Computer Engineering, Instituto Superior Técnico, Lisboa, Portugal

1. $C=1-H(q+p-2 p q, 1-(q+p-2 p q)), q$ and p being the error probabilities of each BSC. Note that the capacity, C, of two channels with capacities C_{1} and C_{2} satisfies $C \leq \min \left\{C_{1}, C_{2}\right\}$.
2. $C=C_{1}+C_{2}$
3. Hint: A monotonic decreasing sequence will converge to its greatest lower bound.
4. $P(X=1)=\frac{3}{5}, P(X=1)=\frac{2}{5}, C \approx 0.32$
5.
6. Hint: $H(Y \mid X)=H($ row $)$. Show that for X uniform, Y will be uniform as well, leading to $H(Y)=$ $\log (|\mathcal{Y}|)$
7. Hint: Note that in the previous demonstration we only used the fact that the sum of the columns were the same and not necessarily permutations of each other.
8. $r=2, n=3, k=1, G=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right] H=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
9. (a) Hint: the codewords form a linear space
(b) Hint: the Hamming distance between two words is the weight (number of 1s) of their sum
10. $1-P(0$ errors $)-P(1$ error $)=1-(1-\alpha)^{7}+7 \alpha(1-\alpha)^{6}$
11. $C=\frac{1}{2} \log \left(1+\frac{4 P}{2 \sigma^{2}(1+\rho)}\right)$
12. For $a>1, C=\frac{1}{a} H(p, 1-p)$, with $p=P(X=1)$.

For $a<1, C=\stackrel{a}{H}(p, 1-p)$.

