Information and Communication Theory

Problem Set 4 - Solutions

2022

Department of Electrical and Computer Engineering, Instituto Superior Técnico, Lisboa, Portugal

- 1. $h(X) = log(\frac{e}{\lambda})$ bits
- 2. $h(X) = log(\frac{2e}{\lambda})$ bits
- 3. I(X;Y) = 1
- 4. $I(X;Y) = log(3) \frac{2}{3}$
- 5.
- 6.
- 7. $I(X;Y) = \frac{1}{2}log(1 + \frac{\tau^2}{\sigma^2})$

If the noise's variance σ^2 tends to 0, I(X;Y) tens to $+\infty$. If the noise's variance σ^2 tends to $+\infty$, I(X;Y) tens to 0.

- 8. $h(X) = \frac{1-a}{2}log(\frac{2}{1-a}) + \frac{1+a}{2}log(\frac{2}{1+a})$
- 9. $I(X, Y_1) = +\infty$, $I(X, Y_2) = 1$, $I(X; Y_1, Y_2) = +\infty$