Information and Communication Theory: Second Mini-Test

October 20, 2022
Name: \qquad Number: \qquad
Duration: 45 minutes. Part I scores: correct answer $=3 / 2$ point; wrong answer $=-3 / 4$ points.

Useful facts: $\log _{a} b=\left(\log _{c} b\right) /\left(\log _{c} a\right) ; \log _{2} 3 \simeq 1.585$. Unless indicated otherwise, all logarithms are base-2.

Part I

1. Let $Y \in\{1,2,3,4,5\}$ be a source with $\left.\mathbf{f}_{Y}=(1 / 3,1 / 3,1 / 6,1 / 9,1 / 18)\right)$. The expected length of a Huffman binary code for this source is
a) <2 bits/symbol;
b) $=2 \mathrm{bits} / \mathrm{symbol}$;
c) >2 bits/symbol.
2. Let $X \in\{a, b, c, d\}$ be a source such that $\mathbb{P}(X=a)=0.4-3 \alpha, \mathbb{P}(X=b)=\alpha+0.1, \mathbb{P}(X=c)=\alpha+0.2$, and $\mathbb{P}(X=d)=\alpha+0.3$, where $\alpha \in[0,0.1]$. Consider the binary code $\{C(a)=00, C(b)=01, C(c)=10, C(d)=11\}$.
a) C is a Huffman code for any $\alpha \in[0,0.1]$;
b) C is not a Huffman code for $\alpha \in[0,0.1]$;
c) C is a Huffman code for some, but not all, values $\alpha \in[0,0.1]$.
3. Let X be the source defined in question 2 , for $\alpha=0$. The expected length of a Huffman ternary code for this source is
a) <1.2 trits/symbol;
b) $=1.2 \mathrm{trits} / \mathrm{symbol}$;
c) >1.2 trits/symbol.
4. Let $Z \in\{1,2,3\}$ be a source with $\mathbf{f}_{Z}=(0.96,0.02,0.02)$, which has entropy $H(Z) \simeq 0.282$ bits/symbol. The expected length of an optimal binary code for the second-order extension of this source is
a) $<0.8 \mathrm{bits} / \mathrm{symbol}$;
b) $=0.8 \mathrm{bits} /$ symbol;
c) $>0.8 \mathrm{bits} / \mathrm{symbol}$.
5. Let $X \in[-1,1]$ be a random variable with uniform probability density function and $Y=2-X$ another random variable. Then, the corresponding differential entropies satisfy
a) $h(X)<h(Y)$;
b) $h(X)=h(Y)$;
c) $h(X)>h(Y)$.
6. Let $X, Y \in[-1,1]$ be two random variables with probability density functions (p.d.f.) $f_{X}(x)=(3 / 2) x^{2}$ and $f_{Y}(y)=(3 / 2)(1-|x|)^{2}$, respectively. Then, the corresponding differential entropies satisfy (hint: draw de densities)
a) $h(X)<h(Y)$;
b) $h(X)=h(Y)$;
c) $h(X)>h(Y)$.
7. Let $X \in[-1,1]$ be the random variable defined in the previous question. Let Z be the random variable given by $Z=0$, if $X \leq 0$, and $Z=1$, if $X>0$. Then,
a) $I(X ; Z)<1 \mathrm{bit} / \mathrm{symbol}$;
b) $I(X ; Z)=1 \mathrm{bit} / \mathrm{symbol}$;
c) $I(X ; Z)>1$ bit/symbol.
8. The binary Elias delta codeword for the natural number 21 is
a) 000010101 ;
b) 0010110101 ;
c) 001010101 .

Part II

1. Consider a real-values source X with probability density function $f_{X}(x)=2-2 x$, for $x \in[0,1]$, and $f_{X}(x)=0$, for $x \notin[0,1]$, which has differential entropy $h(X)=(1 / 2) \log (e / 4)$.
a) Find the differential entropy of the variable $Z=2-2 X$.
b) Find the differential entropy of the variable T, with probability density function given by

$$
f_{T}(t)= \begin{cases}(2 / 3)(t+1) & \Leftarrow t \in[-1,0] \\ (2 / 3) & \Leftarrow t \in[0,1] \\ 0 & \Leftarrow|t|>1 .\end{cases}
$$

Important hint: draw the probability density function.
c) Let U be given by: $U=1$, if $T \leq 0$, and $U=2$, if $T>0$. Find the mutual information $I(U ; T)$.

