Information and Communication Theory: Second Mini-Test

October 20, 2022

 \square

Name:

Number:

Duration: 45 minutes. Part I scores: correct answer = 3/2 point; wrong answer = -3/4 points.

Useful facts: $\log_a b = (\log_c b)/(\log_c a)$; $\log_2 3 \simeq 1.585$. Unless indicated otherwise, all logarithms are base-2.

Part I

- 1. Let $Y \in \{1, 2, 3, 4, 5\}$ be a source with $\mathbf{f}_Y = (1/3, 1/3, 1/6, 1/9, 1/18)$). The expected length of a Huffman **binary** code for this source is
 - a) < 2 bits/symbol;
 - **b)** = 2 bits/symbol;
 - c) > 2 bits/symbol.
- 2. Let $X \in \{a, b, c, d\}$ be a source such that $\mathbb{P}(X = a) = 0.4 3\alpha$, $\mathbb{P}(X = b) = \alpha + 0.1$, $\mathbb{P}(X = c) = \alpha + 0.2$, and $\mathbb{P}(X = d) = \alpha + 0.3$, where $\alpha \in [0, 0.1]$. Consider the binary code $\{C(a) = 00, C(b) = 01, C(c) = 10, C(d) = 11\}$.
 - a) C is a Huffman code for any $\alpha \in [0, 0.1]$;
 - **b)** C is not a Huffman code for $\alpha \in [0, 0.1]$;
 - c) C is a Huffman code for some, but not all, values $\alpha \in [0, 0.1]$.
- 3. Let X be the source defined in question 2, for $\alpha = 0$. The expected length of a Huffman **ternary** code for this source is
 - a) < 1.2 trits/symbol;
 - **b)** = 1.2 trits/symbol;
 - c) > 1.2 trits/symbol.
- 4. Let $Z \in \{1, 2, 3\}$ be a source with $\mathbf{f}_Z = (0.96, 0.02, 0.02)$, which has entropy $H(Z) \simeq 0.282$ bits/symbol. The expected length of an optimal **binary** code for the second-order extension of this source is
 - a) < 0.8 bits/symbol;
 - **b)** = 0.8 bits/symbol;
 - c) > 0.8 bits/symbol.
- 5. Let $X \in [-1, 1]$ be a random variable with uniform probability density function and Y = 2 X another random variable. Then, the corresponding differential entropies satisfy

a)	h(X) < h(Y);	
b)	h(X) = h(Y);	
c)	h(X) > h(Y).	

6. Let $X, Y \in [-1, 1]$ be two random variables with probability density functions (p.d.f.) $f_X(x) = (3/2)x^2$ and $f_Y(y) = (3/2)(1 - |x|)^2$, respectively. Then, the corresponding differential entropies satisfy (hint: draw de densities)

a) $h(X) < h(Y);$	
b) $h(X) = h(Y);$	=
c) $h(X) > h(Y)$.	

- 7. Let $X \in [-1,1]$ be the random variable defined in the previous question. Let Z be the random variable given by Z = 0, if $X \le 0$, and Z = 1, if X > 0. Then,
 - a) I(X;Z) < 1 bit/symbol;
 - **b)** I(X;Z) = 1 bit/symbol;
 - c) I(X;Z) > 1 bit/symbol.
- 8. The binary Elias delta codeword for the natural number 21 is
 - **a)** 000010101;
 - **b)** 0010110101;
 - c) 001010101.

Part II

- 1. Consider a real-values source X with probability density function $f_X(x) = 2 2x$, for $x \in [0, 1]$, and $f_X(x) = 0$, for $x \notin [0, 1]$, which has differential entropy $h(X) = (1/2) \log(e/4)$.
 - a) Find the differential entropy of the variable Z = 2 2X.
 - b) Find the differential entropy of the variable T, with probability density function given by

$$f_T(t) = \begin{cases} (2/3)(t+1) & \Leftarrow & t \in [-1, 0] \\ (2/3) & \Leftarrow & t \in [0, 1] \\ 0 & \Leftarrow & |t| > 1. \end{cases}$$

Important hint: draw the probability density function.

c) Let U be given by: U = 1, if $T \le 0$, and U = 2, if T > 0. Find the mutual information I(U;T).