Information and Communication Theory 2022

Problem Set 5

Department of Electrical and Computer Engineering, Instituto Superior Técnico, Lisboa, Portugal

1. Compute the capacity of a series connection of two binary symmetric channels.
2. Consider the parallel of two independent channels $\left(\mathcal{X}_{1}, p_{1}(y \mid x), \mathcal{Y}_{1}\right)$ and $\left(\mathcal{X}_{2}, p_{2}(y \mid x), \mathcal{Y}_{2}\right)$, i.e., the channel

$$
\left(\mathcal{X}_{1} \times \mathcal{X}_{2}, p\left(y_{1} \mid x_{1}\right) p\left(y_{2} \mid x_{2}\right), \mathcal{Y}_{1} \times \mathcal{Y}_{2}\right) .
$$

what is the capacity of this channel?
3. Consider N channels with $|\mathcal{X}|=|\mathcal{Y}|$ and non-maximal capacity, i.e., $C<\log |\mathcal{X}|$, connected in series. Show that the capacity of the resulting channel converges to zero as N goes to infinity. Hint: use the data processing inequality.
4. Compute the capacity and the maximizing $p(x)$ for the Z channel.

5. Consider a channel obtained by taking two conditional independent looks at the output of a channel of capacity C, for each input: Y_{1} and Y_{2}. Show that the resulting capacity $C^{\prime} \leq 2 C$. Hint: begin by showing that $I\left(X ; Y_{1}, Y_{2}\right)=2 I\left(X ; Y_{1}\right)-I\left(Y_{1} ; Y_{2}\right)$.
6. A symmetric channel is one in which every row of the channel matrix is a permutation of every other row and every column is a permutation of every other column. Show that in this case, the capacity is

$$
C=\log |\mathcal{Y}|-H \text { (any row of the channel matrix). }
$$

7. Show that the same result applies to weakly symmetric channels, where the columns are only required to sum to he same number.
8. Show that the repetition code of $R=1 / 3$ is a $\operatorname{Hamming}(n, k)$ code. Find r, n, k, and the matrices \mathbf{H} and \mathbf{G}.
9. Consider a Hamming (7, 4) code in systematic form. Decode the word (1011011).
10. A Hamming code is a particular case of the more general family of linear codes, i.e., where the code words are generated as $\mathbf{x}=\mathbf{m G}$. Show that for any binary linear code,
a) the zero word is a valid codeword;
b) $d_{\text {min }}$ is the weight (number of 1 s) is the minimum-weight code word.
11. Assuming a Hamming $(7,4)$ code is used on a BSC with probability of error α, what is the probability of an erroneous decoding?
12. Consider the multi-path channel where the noises Z_{1} an Z_{2} follow a Gaussian joint probability density function with zero mean and covariance \mathbf{K}

where σ^{2} is the noise variance and ρ the correlation coefficient. Find the capacity of the channel. What is the capacity for $\rho=1, \rho=0, \rho=-1$; interpret the results.
13. Continuous channel with discrete input: consider a channel with input $X \in\{0,1\}$ and ouput $Y=X+Z$, where $Z \in[0, a]$ with uniform density. Assuming $a>1$, find the capacity of the channel. Repeat for $a<1$ and interpret the result.
