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Group V — Independence and Bernoulli/Poisson processes 4.0 points = (1-p)"*p

2nd. Test 1st. Semester — 2010/11
Duration: 1h30m 2011/01/10 — 3PM, Room P8

e Please justify your answers.

1. A Bernoulli process with parameter p has already been used in the investigation of earths (2.0) and
100
4

magnetic field reversals,® with Bernoulli trials separated by 282 ky (i.e. 282 thousand years). _
( / P(S100 =4) = pt(1—p) "t

Prove that, given that the number of geomagnetic reversals in the first 100 Bernoulli trials

is equal to 4 (that is, {Si00 = 4}), the joint distribution of (T4, ...,Ty), the vector of the Thus,

number of 282 ky periods until the 1st., 2nd., 3rd. and Jth. geomagnetic reversals, is the 1
/ Y g g Py =ty,....Ty =t S0 =4) = —55v

()

which is indeed the distribution of a random sample of 4 numbers chosen without

same as the distribution of a random sample of 4 numbers chosen without replacement from
{1,2,...,100}.

e Bernoulli process replacement from {1,2,...,100}.

{X;, i e N} i Bernoulli(p)

N { 1, if there is a geomagnetic reversal during the it* 282 ky period 2. Suppose that customers arrive to do business at a bank according to a non-homogeneous (2.0)
;=

0, otherwise Poisson process with rate function A\(t) = 20 + 10 cos[2m(t — 9.5)], ¢ > 9.

e Ry What is the probability that twenty customers arrive between 9:30 and 10:30, and another

twenty arrive in the following half hour?
According to Prop. 3.83:

e Stochastic process
n {N(t),9 <t <17} ~ NHPP(A(t))
- Z Xi N(t) = number of arrivals at the bank until time ¢
. A(t) = intensity function = 20 + 10 cos[2n(t — 9.5)], 9 <¢ <17

S, = number of geomagnetic reversals in the last n 282 ky periods

~ Binomial(n,p), n € N;

T, = number of 282 ky periods until the k" geomagnetic reversal e Distribution
~ NegativeBinomial(k, p), k € N. In accordance to Def. 3.125, for 9 <t,t + s < 17,
t+s
e Requested probability N(t+ s) — N(t) ~ Poisson (/ A(z) dz) , (1)
¢

F011§t1<t2<t3<t4S100, P(T1:t17...7T4:t4‘5100:4) iscqualto:

T T s 2 and the process {N(t), 9 < ¢ < 17} has INDEPENDENT INCREMENTS.

=t1,..., Ty =t4, =

P(Ty=ty,...,Ta=1t4] Si00 =4) = : IP(S4—44) " )
100 —

e Requested probability

where Taking advantage of the independent increments and of result (1),

LA geomagnetic reversal is a change in the orientation of Earth’s magnetic field such that the positions of P[N(10'5) - N(Q'S) =20, N(ll) N N(IO'S) = 20} = P[N(10'5) B N(9'5) = 20}
magnetic north and magnetic south become interchanged (hitp://en.wikipedia.org/wiki/Geomagnetic_reversal). XP[N(II) — N(10.5) = 20]
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5 20
eJos’ M=) dz o [ 91'2'5 Mz) dz] e New r.v.

P[N(10.5) = N(9.5) = 20, N(11) — N(10.5) = 20] = 20 Xpm = MaX;=1, , X; = lifetime of the system that survives the longest
11 20 ey
efm.s A2)dz o [ 1101'5 )\(z) dz] ° Rewrltmg Xnn
X 20 ) X,.n can be rewritten in terms of the times between consecutive failures:
where:

10.5 105 Xn:n = X]:n+(X2:n_X]:n)+(X3:n_X2:n)+' : '+(anl:n_Xn72:n)+(Xn:n_Xn71:n)-
/ Mz)dz = / {20 + 10 cos[2m(z — 9.5)]} d=
9 9

5

= 20z]g%° +10 x % sin[2m(z — 9.5)]|s%
5. .
= 20x(10.5—-9.5) + p [sin(27) — sin(0)] (Schematics!)

= 2 Now, capitalizing on the lack of memory of the exponentially distributed lifetimes, we

can add that

1 11
/ Mz)dz = / {20 + 10 cos[2n(z — 9.5)]} d= d
1 10.5 KXoin = Xt + X1 + X + -+ Xio + X1,

1
= 202fig; +10 % 5 sinf2n(z — 9.5)] 1y,

where X1., ;11 ~ Exponential (%ﬂ) ,i=1,...,n, according to Prop. 3.60.2
5. .
= 20 x (11 —10.5) + = [sin(37) — sin(27)] e Requested expected value
= 10. n
E(Xn:n) = Z E(lef'L#l)
Hence, i=1
2020 1020 n 0
_ _ _ _ _ =209 10tV _ v
PIN(10.5) = N(9.5) =20, N(11) = N(10.5) = 20] = ¢ T x e o ; i
_ 6_30 220 1040 n 1
~ 1.657 x 107 =1
QED
. 2. Let X be a r.v. described as follows:
Group VI — Independence and expectation 7.0 points

o X = 0.3, with probability 0.2;

1. The lifetimes of n computer systems are assumed to be independent and exponentially (3.0) ) .
o X = 0.7, with probability 0.5,

distributed with expected value equal to 0. Let L = X,., be the lifetime of the system that

survives the longest. o X ~ Uniform([0.2,0.5] U [0.6,0.8]), with probability 0.5.
Show that E(L) = 077, =i Find E(X).
Hint: Write L as a sum of independent r.v., capitalize on the lack of memory property of e R.v

the exponential distribution and its closure under the minimum operation. . .
X = 0.3, with probability 0.2

e R.v. X = 0.7, with probability 0.3
X; = lifetime of computer system i,i=1,...,n X ~ Uniform([0.2,0.5] U [0.6,0.8]), with probability 0.5
XX i=1,2
X ~ Exponential(6~!)
PX>az)=e?'" £>0

e Defining X as a mixed r.v.

Let us consider:

2Also note that these summands are independent r.v. This fact is not relevant for the calculation of E(Xpn).
It would be if we had to obtain V(X,,.,).



e Upper bound to P(X > 2))
Since V(X) = A < 0o, X € L? and, thus, we can apply the one-sided Chebyshev

a = PX=03)+PX=07) inequality to obtain:

= 0.5 N P(X>2\) = P[X-X> VAV
92 2=03 = PIX - E(X)>a+/V(X)
Xd : P(Xd:.fb) = %, z=0.7 1
0, otherwise; < 1+ a2
1

l—a = (0.5-0.2)+(0.8—0.6) S
= 0.5 L+ <\/X)
X, £ Uniform([0.2,0.5] U[0.6,0.8]). 1

1+ A
Then we can indeed write the d.f. of X as a convex linear combination of the d.f. of Xy
and X,: (b) The minimum upper bound for P({X > k}) — using Chernoff’s inequality — is reached (2.0)
when t = In (f) , k> X\. Compare it with the upper bound in part (a), for a few (say 3)

Fy =ax Fx,+(1—a) x Fx, values of A.

(check it]). Hint: Use the fact that £ (') = eM¢'~1,
e Minimum Chernoff’s upper bound to P(X > 2))

* Requested expected value Using Chernoff’s bound in Prop. 4.99, we can state that

According to Cor. 4.75, E (etx)
P(X>k) < ——
E(X) = ax E(Xy)+ (1—-a)x E(X,) )\(if—l)
+o00 - &
= aXinxP(Xd:xi)Jr(l—a)X/ x X fx,(z)dz N etk
i —o0 Furthermore, the minimum the upper bound is reached when ¢ = In(k/X), k > A:
= ax(03x 22 107x 2 N
. - . o P(X > k) < eln(k/2)xk
0.5 1 0.8 1 AME-1
(1,a)><|:/ x X der/ x X dm} — 3
02 l1-a 0.6 1—a (E)k
‘TQ 0.5 .’,C2 0.8 k}/\
= 027+ | —| + — _ e
2 0.2 2 0.6 %)k
J— =4
= 0.27+40.245 by B
= 0.515. @
A
e\ A
- @)
Group VII — Expectation 5.0 points e Comparison of the two upper bounds to P(X > 2))
T x ich i ?
1. Suppose that the number of insurance claims made in a year (X) is a Poisson r.v. with 0>\1 5 96*9?) ol 090 gglO? Which 1? better?
expected value A > 0. : : : T
1 0.5 0.679570 H%
(a) Show that P({X > 2\}) < 5. (1.0) 4 0.2 0.213274 T
CA
e R.V. 5 0.166667 0.144935 >

X = number of insurance claims made in a year
X ~ Poisson(\), 0 < A < +oo

ot
(o]



2. Let X; be the light field being emitted from a laser at time t;, i = 1,2.

Laser light is said to be temporally coherent if X1 and Xo (0 < t1 < t2) are dependent r.v.

when ty — t1 is not too large.

Admit that the joint p.d.f. of X1 and X5 is given by

1 23 — 2px129 + 23

—= —) , 1,22 € IR.

1
————ex
2my/1 — p? p( 2 1—p?

Obtain the expected value of the light field at time ts, given that the light field at time t,

exceeds 0.5 and p = 0.75.

¢ Random vector

X = (X1, Xs)

X; = light field at time ¢;, i = 1,2
e Distribution

Since

le,x2(I1‘,$2) =

2 2
T] — 2pT1T2 + 75

1—p?

1 1
= exp ==
2m\/1 — p? p( 2

)7$l7$2 eRv

Exercise 4.184 suggests that (X7, X») has a bivariate normal distribution with p; =

p2 =0, 01 = 09 = 1 and correlation coefficient p € (—1,1).

e Requested expected value
According to Def. 4.202 (inverse Mill’s ratio),

¢(ﬂ71)
E(Xy | Xy > - AT
(X | X > ) pars
L e‘#
21=0.5, p=0.75 V2r
s 0.75 x 2T
“ 1= 5(0.5)
table 0.352065
~ 0.75 X ————
2 X 1206915
~ 0.855912.

Group VIII — Convergence of sequences of r.v.

1. Let X5, X3,... be a sequence of independent r.v. such that
1 .
2iIn(i)’ T =i
P{X;,=z}) = l—ﬁ, z=0
0, otherwise.

Prove that X, = ﬁ X 0.

Hint: Use the fact that Y, hl([) < m(i)

4.0 points

(2.0)

Sequence of independent r.v.
{)(27 X3./ e }

P.f.
1 L
2¢1n(z)° T =i
PXi=z)=1{ 1- qm, =0
0, otherwise.

New r.v.
K= LS X =23,
Limiting distribution

X<

To prove
q.m

X, 0

Proof

Firstly, we have to check if X5, X3, - -

€ L% Did is indeed true because, fori = 2,3, ..

E(X?)

Secondly, we have to check if X5, X3, - - -

2 1 5 1 -2 1
% g+ [~ ]+
.2 1
YD)

In(4)

< +o00.

_ e (Zx)

= E(ZX2+Z Z XX)

zZJZJ#z

X 1L X, i) 1 9
= —_— E(X})
CEYE 55 X;)
i=2 =2 j=2,j#i
(X;)=E(X;)=0 1 L
(n—1)2 ; In(7)
Hint 1 n?
- (n—1)2 In(n)
+00

€ L?. Thisis also true because, forn = 2,3, ..

iR

L]



Finally, recall Def. 5.15 and we get

lim E[(X,—X)7 S° lim E[(X.)?

n—+o00 n—+o00
I 1 i
= m ——— E —
n—r+ —1)2 In(4
n—too (n—1)2 <= In(i)
Hint 1 n?

i -
nrivo (n — 1)2 In(n)

= 0,

ie, X, 0. QED

2. Let the interval [0,1] be partitioned into n disjoint sub-intervals with lengths pi,...,pm (2.5)

(pi > 0,5 %, p; = 1). Then the (Shannon) entropy® of this partition is defined to be
h= -3 pi < In(py).

Consider {X1,Xa,...} a sequence of independent r.v. having the uniform distribution on
[0,1], and let Z,(i) be the number of the X1, X, ..., X,, which lie in the ith interval in the
partition above.

Show that W, = =13 7, (i) x In(p;) Ry

Hint: Identify the joint distribution of (Z,(1),...,Z,(m)), and obtain E(W,) and V(W,).

e Sequence of i.i.d. r.v.
{X1, Xy, }
X, R Uniform([0, 1])

o Related r.v.

Z,(i) = number of the X, X5, ..., X, which lie in the i**interval in the partition of
[0,1] with n disjoint sub-intervals with lengths pi,...,pm (p;i > 0, >_in, pi = 1), for
neNandi=1,....,m

e Marginal and joint distributions
Zn(i) ~ Binomial(n, p;), i = 1,...,m
(Z2,(1),...,Z,(m)) ~ Multinomial,,_1(n, (p1, - ., Pm))
e Related sequence of r.v.
{Wh, W, ...}
Wy =—1%"" Z,(i) xIn(p;), a weighted mean of the components of the random vector

(Zn(1); ... s Zn(m))

3The (Shannon) entropy is a measure of the average information content one is missing when one does not

know the value of the r.v. (http://en.wikipedia.org/wiki/Entropy_(information_theory)).
4 Almost sure convergence also holds. Moreover, W} = =13 7 (i) x In(Z,,(i)/n) is a consistent estimator

“n i=
of the entropy.

e Expected value and variance of W,

EW,) =

(4.113)

V(W)

m

_% Z E[Z,(1)] x In(p;)

1 m

—= npi x In(p;)
n i=1

h

Shannon entropy

> {Z[ln(pi)]z X VIZu0]+2 30 3 Inlpi) Wn(py) cou(Z, ), Zn(j))}
% {Z[ln(ipi)}? x npi(1—p;) + QZZM(]H) In(p;) (npipj)}
%Z[ln(pi)P x pi(1—p;) — %Z Zln(pi) In(p;) pi p;

a2 -

6L n

(The convergence follows from the fact that a and b are both finite.)

e To prove
W, 5 h

e Proof

The use of the Chebyshev-Bienaymé inequality leads to

lim P([W,—h|>¢) = lim P||Wy—E(W,)| > ——u \/V(W,)
n—+o00 n—-+oo V(Wn)
< lim ! 5
n—+o00

[ v(wn)}

S N

- 6727L—1>I-%I—100 ( n)

= 0,

ie, W, 5 h. QED
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