
Department of Mathematics, IST — Section of Probability and Statistics

Probability Theory

2nd. Test 1st. Semester — 2010/11

Duration: 1h30m 2011/01/10 — 3PM, Room P8

• Please justify your answers.

• This test has two pages and four groups. The total of points: 20.0.

Group V — Independence and Bernoulli/Poisson processes 4.0 points

1. A Bernoulli process with parameter p has already been used in the investigation of earths (2.0)

magnetic field reversals,1 with Bernoulli trials separated by 282 ky (i.e. 282 thousand years).

Prove that, given that the number of geomagnetic reversals in the first 100 Bernoulli trials

is equal to 4 (that is, {S100 = 4}), the joint distribution of (T1, . . . , T4), the vector of the

number of 282 ky periods until the 1st., 2nd., 3rd. and 4th. geomagnetic reversals, is the

same as the distribution of a random sample of 4 numbers chosen without replacement from

{1, 2, . . . , 100}.

• Bernoulli process

{Xi, i ∈ N} i.i.d.∼ Bernoulli(p)

Xi =

{
1, if there is a geomagnetic reversal during the ith 282 ky period

0, otherwise

• R.v.

According to Prop. 3.83:

Sn = number of geomagnetic reversals in the last n 282 ky periods

=
n∑

i=1

Xi

∼ Binomial(n, p), n ∈ N;
Tk = number of 282 ky periods until the kthgeomagnetic reversal

∼ NegativeBinomial(k, p), k ∈ N.

• Requested probability

For 1 ≤ t1 < t2 < t3 < t4 ≤ 100, P (T1 = t1, . . . , T4 = t4 | S100 = 4) is equal to:

P (T1 = t1, . . . , T4 = t4 | S100 = 4) =
P (T1 = t1, . . . , T4 = t4, S100 = 4)

P (S100 = 4)
,

where

1A geomagnetic reversal is a change in the orientation of Earth’s magnetic field such that the positions of

magnetic north and magnetic south become interchanged (http://en.wikipedia.org/wiki/Geomagnetic reversal).
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P (T1 = t1, . . . , T4 = t4, S100 = 4) = P
[(
∩t1−1

i=1 {Xi = 0}
)
∩Xt1 = 1,

(
∩t2−1

i=t1+1{Xi = 0}
)
∩Xt2 = 1,

(
∩t3−1

i=t2+1{Xi = 0}
)
∩Xt3 = 1,

(
∩t4−1

i=t3+1{Xi = 0}
)
∩Xt4 = 1,

(
∩100

i=t4+1{Xi = 0}
)]

=
[
(1− p)t1−1 p

]
×
[
(1− p)t2−t1−1 p

]

×
[
(1− p)t3−t2−1 p

]
×
[
(1− p)t4−t3−1 p

]

×(1− p)100−t4

= (1− p)100−4 p4

and

P (S100 = 4) =

(
100

4

)
p4 (1− p)100−4.

Thus,

P (T1 = t1, . . . , T4 = t4 | S100 = 4) =
1(
100
4

) ,

which is indeed the distribution of a random sample of 4 numbers chosen without

replacement from {1, 2, . . . , 100}.

2. Suppose that customers arrive to do business at a bank according to a non-homogeneous (2.0)

Poisson process with rate function λ(t) = 20 + 10 cos[2π(t− 9.5)], t ≥ 9.

What is the probability that twenty customers arrive between 9:30 and 10:30, and another

twenty arrive in the following half hour?

• Stochastic process

{N(t), 9 ≤ t ≤ 17} ∼ NHPP (λ(t))

N(t) = number of arrivals at the bank until time t

λ(t) = intensity function = 20 + 10 cos[2π(t− 9.5)], 9 ≤ t ≤ 17

• Distribution

In accordance to Def. 3.125, for 9 ≤ t, t+ s ≤ 17,

N(t+ s)−N(t) ∼ Poisson

(∫ t+s

t

λ(z) dz

)
, (1)

and the process {N(t), 9 ≤ t ≤ 17} has Independent increments.

• Requested probability

Taking advantage of the independent increments and of result (1),

P [N(10.5)−N(9.5) = 20, N(11)−N(10.5) = 20] = P [N(10.5)−N(9.5) = 20]

×P [N(11)−N(10.5) = 20]
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P [N(10.5)−N(9.5) = 20, N(11)−N(10.5) = 20] =
e
∫ 10.5
9.5 λ(z) dz ×

[∫ 10.5

9.5 λ(z) dz
]20

20

×
e
∫ 11
10.5 λ(z) dz ×

[∫ 11

10.5 λ(z) dz
]20

20
,

where:
∫ 10.5

9.5

λ(z) dz =

∫ 10.5

9.5

{20 + 10 cos[2π(z − 9.5)]} dz

= 20z|10.59.5 + 10× 1

2π
sin[2π(z − 9.5)]|10.59.5

= 20× (10.5− 9.5) +
5

π
[sin(2π)− sin(0)]

= 20;

∫ 11

10.5

λ(z) dz =

∫ 11

10.5

{20 + 10 cos[2π(z − 9.5)]} dz

= 20z|1110.5 + 10× 1

2π
sin[2π(z − 9.5)]|1110.5

= 20× (11− 10.5) +
5

π
[sin(3π)− sin(2π)]

= 10.

Hence,

P [N(10.5)−N(9.5) = 20, N(11)−N(10.5) = 20] = e−20 20
20

20!
× e−10 10

20

20!

=
e−30 220 1040

(20!)2

( 1.657× 10−4.

Group VI — Independence and expectation 7.0 points

1. The lifetimes of n computer systems are assumed to be independent and exponentially (3.0)

distributed with expected value equal to θ. Let L = Xn:n be the lifetime of the system that

survives the longest.

Show that E(L) = θ
∑n

i=1
1

n−i+1 .

Hint: Write L as a sum of independent r.v., capitalize on the lack of memory property of

the exponential distribution and its closure under the minimum operation.

• R.v.

Xi = lifetime of computer system i, i = 1, . . . , n

Xi
i.i.d.∼ X, i = 1, 2

X ∼ Exponential(θ−1)

P (X > x) = e−θ−1x, x ≥ 0
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• New r.v.

Xn:n = maxi=1,...,n Xi = lifetime of the system that survives the longest

• Rewriting Xn:n

Xn:n can be rewritten in terms of the times between consecutive failures:

Xn:n = X1:n+(X2:n−X1:n)+(X3:n−X2:n)+ · · ·+(Xn−1:n−Xn−2:n)+(Xn:n−Xn−1:n).

(Schematics!)

Now, capitalizing on the lack of memory of the exponentially distributed lifetimes, we

can add that

Xn:n
d
= X1:n +X1:n−1 +X1:n−2 + · · ·+X1:2 +X1:1,

where X1:n−i+1 ∼ Exponential
(
n−i+1

θ

)
, i = 1, . . . , n, according to Prop. 3.60.2

• Requested expected value

E(Xn:n) =
n∑

i=1

E(X1:n−i+1)

=
n∑

i=1

θ

n− i+ 1

= θ
n∑

i=1

1

n− i+ 1
.

QED

2. Let X be a r.v. described as follows:

• X = 0.3, with probability 0.2;

• X = 0.7, with probability 0.3;

• X ∼ Uniform([0.2, 0.5] ∪ [0.6, 0.8]), with probability 0.5.

Find E(X). (2.0)

• R.v.

X = 0.3, with probability 0.2

X = 0.7, with probability 0.3

X ∼ Uniform([0.2, 0.5] ∪ [0.6, 0.8]), with probability 0.5

• Defining X as a mixed r.v.

Let us consider:
2Also note that these summands are independent r.v. This fact is not relevant for the calculation of E(Xn:n).

It would be if we had to obtain V (Xn:n).
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α = P (X = 0.3) + P (X = 0.7)

= 0.5;

Xd : P (Xd = x) =






0.2
α , x = 0.3
0.3
α , x = 0.7

0, otherwise;

1− α = (0.5− 0.2) + (0.8− 0.6)

= 0.5;

Xa
d
= Uniform([0.2, 0.5] ∪ [0.6, 0.8]).

Then we can indeed write the d.f. of X as a convex linear combination of the d.f. of Xd

and Xa:

FX = α× FXd
+ (1− α)× FXa

(check it!).

• Requested expected value

According to Cor. 4.75,

E(X) = α× E(Xd) + (1− α)× E(Xa)

= α×
∑

i

xi × P (Xd = xi) + (1− α)×
∫ +∞

−∞
x× fXa(x) dx

= α×
(
0.3× 0.2

α
+ 0.7× 0.3

α

)

(1− α)×
[∫ 0.5

0.2

x× 1

1− α
dx+

∫ 0.8

0.6

x× 1

1− α
dx

]

= 0.27 +

(
x2

2

∣∣∣∣
0.5

0.2

+
x2

2

∣∣∣∣
0.8

0.6

)

= 0.27 + 0.245

= 0.515.

Group VII — Expectation 5.0 points

1. Suppose that the number of insurance claims made in a year (X) is a Poisson r.v. with

expected value λ > 0.

(a) Show that P ({X ≥ 2λ}) ≤ 1
1+λ . (1.0)

• R.v.

X = number of insurance claims made in a year

X ∼ Poisson(λ), 0 < λ < +∞
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• Upper bound to P (X ≥ 2λ)

Since V (X) = λ < ∞, X ∈ L2 and, thus, we can apply the one-sided Chebyshev

inequality to obtain:

P (X ≥ 2λ) = P [X − λ ≥
√
λ
√
λ]

= P [X − E(X) ≥ a
√
V (X)]

≤ 1

1 + a2

=
1

1 +
(√

λ
)2

=
1

1 + λ
.

(b) The minimum upper bound for P ({X ≥ k}) — using Chernoff ’s inequality — is reached (2.0)

when t = ln
(
k
λ

)
, k > λ. Compare it with the upper bound in part (a), for a few (say 3)

values of λ.

Hint: Use the fact that E
(
etX

)
= eλ(e

t−1).

• Minimum Chernoff ’s upper bound to P (X ≥ 2λ)

Using Chernoff’s bound in Prop. 4.99, we can state that

P (X ≥ k) ≤
E
(
etX

)

etk

=
eλ(e

t−1)

etk
.

Furthermore, the minimum the upper bound is reached when t = ln(k/λ), k > λ:

P (X ≥ k) ≤ eλ[e
ln(k/λ)−1]

eln(k/λ)×k

=
eλ(

k
λ−1)

(
k
λ

)k

=
ek−λ

(
k
λ

)k

k=2λ>λ
=

e2λ−λ

(
2λ
λ

)2λ

=
(e
4

)λ

.

• Comparison of the two upper bounds to P (X ≥ 2λ)

λ 1
1+λ

eλ

4λ Which is better?

0.1 0.909091 0.962107 1
1+λ

1 0.5 0.679570 1
1+λ

4 0.2 0.213274 1
1+λ

5 0.166667 0.144935 eλ

4λ
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2. Let Xi be the light field being emitted from a laser at time ti, i = 1, 2. (2.0)

Laser light is said to be temporally coherent if X1 and X2 (0 < t1 < t2) are dependent r.v.

when t2 − t1 is not too large.

Admit that the joint p.d.f. of X1 and X2 is given by

1

2π
√
1− ρ2

exp

(
−1

2

x2
1 − 2ρx1x2 + x2

2

1− ρ2

)
, x1, x2 ∈ IR.

Obtain the expected value of the light field at time t2, given that the light field at time t1
exceeds 0.5 and ρ = 0.75.

• Random vector

X = (X1, X2)

Xi = light field at time ti, i = 1, 2

• Distribution

Since

fX1,X2(x1, x2) =
1

2π
√
1− ρ2

exp

(
−1

2

x2
1 − 2ρx1x2 + x2

2

1− ρ2

)
, x1, x2 ∈ R,

Exercise 4.184 suggests that (X1, X2) has a bivariate normal distribution with µ1 =

µ2 = 0, σ1 = σ2 = 1 and correlation coefficient ρ ∈ (−1, 1).

• Requested expected value

According to Def. 4.202 (inverse Mill’s ratio),

E(X2 | X1 > x1) = ρ
φ(x1)

Φ(−x1)

x1=0.5, ρ=0.75
= 0.75×

1√
2π
e−

0.52

2

1− Φ(0.5)
table( 0.75× 0.352065

1− 0.6915
( 0.855912.

Group VIII — Convergence of sequences of r.v. 4.0 points

1. Let X2, X3, . . . be a sequence of independent r.v. such that

P ({Xi = x}) =






1
2i ln(i) , x = ±i

1− 1
i ln(i) , x = 0

0, otherwise.

Prove that X̄n = 1
n−1

∑n
i=2 Xi

q.m.→ 0. (1.5)

Hint: Use the fact that
∑n

i=2
i

ln(i) ≤
n2

ln(n) .
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• Sequence of independent r.v.

{X2, X3, . . . }

• P.f.

P (Xi = x) =






1
2i ln(i) , x = ±i

1− 1
i ln(i) , x = 0

0, otherwise.

• New r.v.

X̄n = 1
n−1

∑n
i=2 Xi, n = 2, 3, . . .

• Limiting distribution

X
d
= 0

• To prove

X̄n
q.m.→ 0

• Proof

Firstly, we have to check if X2, X3, · · · ∈ L2. Did is indeed true because, for i = 2, 3, . . . ,

E(X2
i ) = (−i)2 × 1

2i ln(i)
+ 02 ×

[
1− 1

i ln(i)

]
+ i2 × 1

2i ln(i)

= i2 × 1

i ln(i)

=
i

ln(i)
< +∞.

Secondly, we have to check if X̄2, X̄3, · · · ∈ L2. This is also true because, for n = 2, 3, . . . ,

E(X̄2
n) = E



 1

(n− 1)2

(
n∑

i=2

Xi

)2




=
1

(n− 1)2
E

(
n∑

i=2

X2
i +

n∑

i=2

2∑

j=2, j %=i

XiXj

)

Xi⊥⊥Xj , i %=j
=

1

(n− 1)2

[
n∑

i=2

E(X2
i ) +

n∑

i=2

2∑

j=2, j %=i

E(Xi)E(Xj)

]

E(Xi)=E(Xj)=0
=

1

(n− 1)2

n∑

i=2

i

ln(i)

Hint
≤ 1

(n− 1)2
n2

ln(n)
< +∞.
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Finally, recall Def. 5.15 and we get

lim
n→+∞

E[(X̄n −X)2]
X

d
=0
= lim

n→+∞
E[(X̄n)

2]

= lim
n→+∞

1

(n− 1)2

n∑

i=2

i

ln(i)

Hint
≤ lim

n→+∞

1

(n− 1)2
n2

ln(n)
= 0,

i.e., X̄n
q.m.→ 0. QED

2. Let the interval [0, 1] be partitioned into n disjoint sub-intervals with lengths p1, . . . , pm (2.5)

(pi > 0,
∑m

i=1 pi = 1). Then the (Shannon) entropy3 of this partition is defined to be

h = −
∑m

i=1 pi × ln(pi).

Consider {X1, X2, . . . } a sequence of independent r.v. having the uniform distribution on

[0, 1], and let Zn(i) be the number of the X1, X2, . . . , Xn which lie in the ith interval in the

partition above.

Show that Wn = − 1
n

∑m
i=1 Zn(i)× ln(pi)

P→ h.4

Hint: Identify the joint distribution of (Zn(1), . . . , Zn(m)), and obtain E(Wn) and V (Wn).

• Sequence of i.i.d. r.v.

{X1, X2, . . . }
Xi

i.i.d.∼ Uniform([0, 1])

• Related r.v.

Zn(i) = number of the X1, X2, . . . , Xn which lie in the ithinterval in the partition of

[0, 1] with n disjoint sub-intervals with lengths p1, . . . , pm (pi > 0,
∑m

i=1 pi = 1), for

n ∈ N and i = 1, . . . ,m

• Marginal and joint distributions

Zn(i) ∼ Binomial(n, pi), i = 1, . . . ,m

(Zn(1), . . . , Zn(m)) ∼ Multinomialm−1(n, (p1, . . . , pm))

• Related sequence of r.v.

{W1,W2, . . . }
W ∗

n = − 1
n

∑m
i=1 Zn(i)×ln(pi), a weighted mean of the components of the random vector

(Zn(1), . . . , Zn(m))

3The (Shannon) entropy is a measure of the average information content one is missing when one does not

know the value of the r.v. (http://en.wikipedia.org/wiki/Entropy (information theory)).
4Almost sure convergence also holds. Moreover, W ∗

n = − 1
n

∑m
i=1 Zn(i) × ln(Zn(i)/n) is a consistent estimator

of the entropy.
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• Expected value and variance of Wn

E(Wn) = − 1

n

m∑

i=1

E[Zn(i)]× ln(pi)

= − 1

n

m∑

i=1

npi × ln(pi)

≡ h

= Shannon entropy

V (Wn)
(4.113)
=

1

n2

{
m∑

i=1

[ln(pi)]
2 × V [Zn(i)] + 2

m∑

i=1

m∑

j>i

ln(pi) ln(pj) cov(Zn(i), Zn(j))

}

=
1

n2

{
m∑

i=1

[ln(pi)]
2 × npi(1− pi) + 2

m∑

i=1

m∑

j>i

ln(pi) ln(pj) (−n pi pj)

}

=
1

n

m∑

i=1

[ln(pi)]
2 × pi(1− pi)−

2

n

m∑

i=1

m∑

j>i

ln(pi) ln(pj) pi pj

=
a

n
− 2b

n
→ 0

(The convergence follows from the fact that a and b are both finite.)

• To prove

Wn
P→ h

• Proof

The use of the Chebyshev-Bienaymé inequality leads to

lim
n→+∞

P (|Wn − h| > ε) = lim
n→+∞

P

[
|Wn − E(Wn)| >

ε√
V (Wn)

√
V (Wn)

]

≤ lim
n→+∞

1
[

ε√
V (Wn)

]2

=
1

ε2
lim

n→+∞
V (Wn)

= 0,

i.e., Wn
P→ h. QED
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