
Advanced Topics in Cybersecurity

Prof. Miguel L. Pardal

Miguel.Pardal@tecnico.ulisboa.pt

Friday, April 9th, 2021

Official TACib Page: Fénix

https://fenix.tecnico.ulisboa.pt/disciplinas/TACib46/2020-2021/2-semestre

 All information in this presentation can be superseded by what is in Fénix

SIRS

Agenda

- Course context and objectives
- Work methodology
- Evaluation
- Work plan

Course context and objectives

Advanced Topics in Cybersecurity

Cybersecurity

"the prevention of damage to, unauthorized use of, exploitation of, and the restoration of electronic information and communications **systems**, and the **information** they contain, in order to strengthen the confidentiality, integrity and availability of these systems."

Definition by **NIST**

(U.S. National Institute of Standards and Technology)

CIA properties

- Confidentiality
 - Absence of disclosure of data by non-authorized parties
- Integrity
 - Absence of invalid system or data modifications by non-authorized parties
- Availability
 - Readiness of the system to provide its service

Extended properties

- CIA properties:
 - Confidentiality
 - Integrity
 - Availability
- TIU properties:
 - Transparency
 - Intervenability
 - Unlinkability

Digital Citizenship

TIU properties

Transparency

- Control with whom data is shared, how long it is held, how it is audited
- Define the privacy risks

Intervenability

 The right to access, change, correct, block, revoke consent, and delete personal data

• Unlinkability

Allow the separation of informational contexts, such as work, personal, family, citizen, and social

Research topics

- Hardware security
- Software security
- Network security
- Cryptography
- Security protocols
- Authentication & Authorization

Course objectives

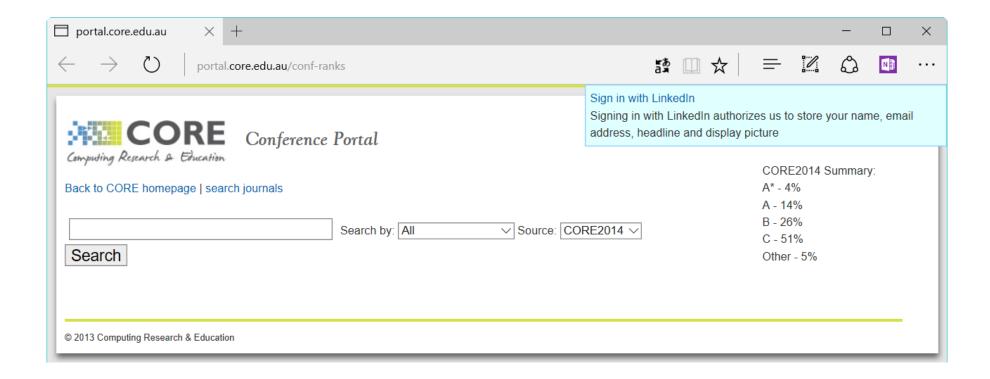
- Study some of the latest advancements in Cybersecurity, through a reading group
 - Read scientific papers
 - Take notes
 - Present
 - Discuss
- Learn from the best researchers
 - Gain insight for your own work

Work methodology

Advanced Topics in Cybersecurity

Research: standing on the shoulders of giants

- Our research is only possible because of the work of others before us
 - Actual People, Labs, Universities


Different types of publications

- Technical report
- Workshop paper
- Conference paper
- Book chapter
- Journal article
- Book

Maturity of published work

- First promising results
 - Workshop
- Ongoing work with evaluation
 - Conference
- Fully developed and innovative findings
 - Top conference
- Extended and completed work
 - Journal

Conference rankings

http://portal.core.edu.au/conf-ranks/

Top security conferences (CORE A*)

Title 🔷	Acronym 🔷	Source 🛇	Rank 🔷	hasData? ♦	Primary FoR 🛇	Comments 🔷	Average Rating 🛇
ACM Conference on Computer and Communications Security	ccs	CORE2018	A*	Yes	0803	0	N/A
Usenix Network and Distributed System Security Symposium	NDSS	CORE2018	A*	Yes	0803	0	N/A
IEEE Symposium on Security and Privacy	S&P	CORE2018	A*	Yes	0802	0	N/A
Usenix Security Symposium	USENIX-Security	CORE2018	A*	Yes	0803	0	N/A
IEEE Computer Security Foundations Symposium (was CSFW)	CSF	CORE2018	A	Yes	0803	0	N/A
Annual Computer Security Applications Conference	ACSAC	CORE2018	A	No	0803	0	N/A
International Conference on the Theory and Application of Cryptology and Information Security	ASIACRYPT	CORE2018	A	Yes	0804	0	N/A
European Symposium On Research In Computer Security	ESORICS	CORE2018	А	No	0803	0	N/A
International Conference on Security in Pervasive Computing	ICSPC	CORE2018	A	No	0806	0	N/A
Privacy Enhancing Technologies Symposium (was International Worksho of Privacy Enhancing Technologies)		CORE2018	В	No	0803	2	5.0

ACM CCS topics

- Attacks
- Biometric Security
- Blockchain
- Certificates
- Cloud Security
- Cryptographic Primitives
- Cyber Threat
- Cyberphysical Security
- Encryption (Searchable, Updatable, Homomorphic, etc.)
- Fingerprinting
- Forensics
- Formal Analysis

- Fuzzing: Methods and Applications
- Internet Security
- Internet of Things
- Language Security
- ML (Machine Learning) for Security
- Mobile Security
- Passwords and Accounts
- Privacy
- Privacy-Preserving Techniques
- Protocols

- SDN (Software Defined Network) Security
- Secret Sharing
- Secure Computing
- Side Channels
- Signatures
- Software Security
- TEE (Trusted Execution Environment)
- User Study
- Web Censorship and Auditing
- Web Security
- Zero-Knowledge Proofs

Usenix NDSS

- Anti-malware techniques: detection, analysis, and prevention
- Cyber-crime defense and forensics (e.g., anti-phishing, antiblackmailing, anti-fraud techniques)
- Security for future Internet architectures and designs (e.g., Software-Defined Networking)
- Implementation, deployment and management of network security policies
- Integrating security in network protocols (e.g., routing, naming, and management)
- Cyber attack (e.g., APTs, botnets, DDoS) prevention, detection, investigation, and response
- Software/firmware analysis, customization, and transformation for systems security
- Privacy and anonymity in networks and distributed systems
- Security and privacy for blockchains and cryptocurrencies
- Public key infrastructures, key management, certification, and revocation

- Security for cloud/edge computing
- Security and privacy of mobile/smartphone platforms
- Security for cyber-physical systems (e.g., autonomous vehicles, industrial control systems)
- Security for emerging networks (e.g., home networks, IoT, body-area networks, VANETs)
- Security for large-scale, critical infrastructures (e.g., electronic voting, smart grid)
- Security and privacy of systems based on machine learning and Al
- Security of Web-based applications and services (e.g., social networking, crowd-sourcing)
- Special problems and case studies: e.g., tradeoffs between security and efficiency, usability, cost, and ethics
- Usable security and privacy
- Trustworthy Computing software and hardware to secure networks and systems

IEEE S&P CFP topics

IEEE S&P

- Access control and authorization
- Accountability
- Anonymity
- Application security
- Attacks and defenses
- Authentication
- Censorship resistance
- Cloud security
- Distributed systems security
- Economics of security and privacy
- Embedded systems security
- Forensics
- Hardware security

- Intrusion detection and prevention
- Malware and unwanted software
- Mobile and Web security and privacy
- Language-based security
- Network and systems security
- Privacy technologies and mechanisms
- Protocol security
- Secure information flow
- Security and privacy for the Internet of Things
- Security and privacy metrics
- Security and privacy policies
- Security architectures
- Usable security and privacy

Usenix Security topics overview

USENIX SECURITY SYMPOSIUM

- System security
- Network security
- Security analysis
- Data-driven security and measurement studies
- Privacy-enhancing technologies and anonymity
- Usable security and privacy
- Language-based security
- Hardware security
- Research on surveillance and censorship
- Social issues and security
- Applications of cryptography

Latest proceedings

- ACM CCS 2020 https://dl.acm.org/doi/proceedings/10.1145/3372297
- Usenix NDSS 2020 https://www.ndss-symposium.org/ndss-program/2020-program/
- IEEE Security & Privacy 2020 https://www.computer.org/csdl/proceedings/sp/2020/1dAAQaOrrva
- Usenix Security 2020
 https://www.usenix.org/conference/usenixsecurity20/technical-sessions

Evaluation

Advanced Topics in Cybersecurity

Evaluation methodology

- Paper presentation (50%)
- Paper notes (30%)
- Participation (20%)

Evaluation methodology in detail

- Paper presentation (50%)
 - 2 papers for each student
 - Prepare slides, present paper
 - Answer detailed questions about paper
- Paper notes (30%)
 - Write and submit notes for each paper not presented
 - Notes are graded
 - Grade is calculated from the average
- Participation (20%)
 - Class discussion
 - Questions asked

Paper presentation

- Objective
 - Present very clearly the main idea (problem and solution) of the paper and give some interesting insights
 - 20 minutes presentation, followed by discussion
- Mandatory: use slides
 - E.g., PowerPoint
- Grading criteria:
 - Does the audience understand the idea/insights?
 - What is the problem? How does the paper solve it?
 - Present the most interesting but not all experimental results?
 - Slides illustrate and support the talk? Are they well organized? Are there diagrams to help convey difficult ideas?
 - Is the presentation fluid? With good time management?
 - Is the presenter able to answer (hard) questions about the paper?

Paper notes

- Title, Authors
- Reviewer: name and initials
- Link to publication page
- Contribution
 - What are the major issues addressed in this publication?
 - What are the main contributions (as stated by the authors)?
- Strengths
- Weaknesses

- Points of interest
 - System characteristics, assumptions
 - Examples or scenarios
 - Evaluation data sets
 - (something else that may be useful)
- See also
 - link to related publications
- Comparison
 - Is this work relevant for your work?
 - How is your work distinct from this work?

Template for scientific paper notes

Comments on paper-identifier

Title: paper title

Authors: author names

Reviewers: reviewer-names (reviewer-initials)

Link to publication page

Min: 300 words

Max: 600 words

Template in MarkDown format:

https://gist.github.com/miguelpardal/6e0d5bb94171765db79476e41aafff7d

Work plan

Advanced Topics in Cybersecurity

To-Do

- Pick class timeslot
- For each student presentation:
 - Pick a date
 - Select candidate papers to present
 - Prepare slides and present
 - Answer questions about paper
- Paper selection is made one week in advance, for each paper
- Also, on the other weeks:
 - Read paper of the week and write notes using template
 - Submit notes
 - Participate in discussion
 - Ask questions

Deadlines

- Pick class timeslot today
- Pick presentation dates today
- Select paper to present until Monday, April 12th
 - Send 3 candidate papers, sorted by preference (favorite first)
 - I will select one to assure topic diversity
- Prepare slides until lecture
 - I can provide feedback, if requested until one working day before class
- Paper notes until one working day before class
 - If lectures are on Mondays, this means **Friday** before the lecture, **14:00**

Presentation schedule

See latest version at:

https://tinyurl.com/tacib21-2

Date	Presenter initials	Paper
April 9 th	MP	(introduction)
April 16 th	GB	(announced on April 12 th)
April 23 rd	JG	(announced on April 19 th)
April 30 th	GB	(announced on April 26 th)
May 7 th	JG	(announced on May 3 rd)

Final Information

- Theoretical lectures chair:
 - Prof. Miguel Pardal
- To ask questions, send notes, and slides:
 - Email: Miguel.Pardal@tecnico.ulisboa.pt
 - ➤ Subject prefix: [TACib] ...

Coursework:
 Presentation + Paper Notes + Participation