
Chapter 10

Time and frequeny responses

We already know that we an use the Laplae transform (and its inverse) to �nd

out the output of any transfer funtion for any partiular input. In this hap-

ter we study several usual partiular ases. This allows us to �nd approximate

responses in many ases, and to haraterise with simpliity more omplex re-

sponses. It also paves the way to the important onept of frequeny responses.

10.1 Time responses: steps and impulses as in-

puts

The following inputs are routinely used to test systems:

• The impulse: Impulse

u(t) = δ(t) (10.1)

L [u(t)] = 1 (10.2)

• The step, with amplitude d: Step

u(t) = dH(t) (10.3)

L [u(t)] =
d

s
(10.4)

• In partiular, the unit step, with amplitude 1: Unit step

u(t) = H(t) (10.5)

L [u(t)] =
1

s
(10.6)

• The ramp, with slope d: Ramp

u(t) = d t (10.7)

L [u(t)] =
d

s2
(10.8)

145



• In partiular, the unit ramp, with slope 1: Unit ramp

u(t) = t (10.9)

L [u(t)] =
1

s2
(10.10)

• The parabola, with seond derivative 2d:Parabola

u(t) = d t2 (10.11)

L [u(t)] =
2d

s3
(10.12)

• In partiular, the unit parabola, with seond derivative 2:Parabola

u(t) = t2 (10.13)

L [u(t)] =
2

s3
(10.14)

You an either �nd the Laplae transforms above in Table 2.1, or alulate them

yourself.

Remark 10.1. Notie that:

• the unit step is the integral of the impulse:

∫ t

0

δ(t) dt = H(t);

• the unit ramp is the integral of the unit step:

∫ t

0

H(t) dt = t;

• the unit parabola is not the integral of the unit ramp:

∫ t

0

t dt =
1

2
t2 6=

t2.

Remark 10.2. Remember that while the Heaviside funtion H(t) is a funtion,Properties of δ(t)
and so are t and t2, the Dira delta δ(t) is not. It is a generalised funtion, andδ(t) is not a funtion

the limit of the following family of funtions:

f(t, ǫ) =

{
1
ǫ
, if 0 ≤ t ≤ ǫ

0, if t < 0 ∨ t > ǫ
(10.15)

δ(t) = lim
ǫ→0+

f(t, ǫ) (10.16)

Sine

∫ +∞

−∞
f(t, ǫ) dt =

∫ ǫ

0

f(t, ǫ) dt =

∫ ǫ

0

1

ǫ
dt = 1, ∀ǫ ∈ R

+
(10.17)

we have alsoIts integral in R is 1

∫ +∞

−∞
δ(t) dt = 1 (10.18)
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Furthermore, for a ontinuous funtion g(t),

f(t, ǫ) min
0≤t≤ǫ

g(t) ≤ f(t, ǫ)g(t) ≤ f(t, ǫ) max
0≤t≤ǫ

g(t)

⇒
∫ ǫ

0

f(t, ǫ) min
0≤t≤ǫ

g(t) dt ≤
∫ ǫ

0

f(t, ǫ)g(t) dt ≤
∫ ǫ

0

f(t, ǫ) max
0≤t≤ǫ

g(t) dt

⇔ min
0≤t≤ǫ

g(t)

∫ ǫ

0

f(t, ǫ) dt ≤
∫ ǫ

0

f(t, ǫ)g(t) dt ≤ max
0≤t≤ǫ

g(t)

∫ ǫ

0

f(t, ǫ) dt

⇒ min
0≤t≤ǫ

g(t) ≤
∫ ǫ

0

f(t, ǫ)g(t) dt ≤ max
0≤t≤ǫ

g(t) (10.19)

where we used (10.17). Making ǫ → 0+, we get

g(0) ≤
∫ ǫ

0

f(t, ǫ)g(t) dt ≤ g(0) ⇔
∫ ǫ

0

f(t, ǫ)g(t) dt = g(0) (10.20)

A onsequene of this is that

L [δ(t)] =

∫ +∞

0

δ(t)e−st dt = e−s0 = 1 (10.21)

The reasons why (10.1)�(10.13) are routinely used as inputs to test systems

are:

• They are simple to reate.

• Calulations are simple, given their Laplae transforms.

• They an be used to model many real inputs exatly, and even more as

approximations.

Example 10.1. The following situations an be modelled as steps:

• A metal workpiee is taken from an oven and quenhed in oil at a lower

temperature.

• A sluie gate is suddenly opened, letting water into an irrigation anal.

• A swith is losed and a tension is thereby applied to the motor that

rotates the joint of a welding robot.

• A �nished part is dropped onto a onveyer belt.

• A ar advaning at onstant speed desends a sidewalk onto the street

pavement.

Example 10.2. The following situations an be modelled as ramps:

• A deep spae probe moves out of the solar system at onstant speed along

a straight line in an inertial system of oordinates, due to inertia, far from

the gravitational in�uene of any lose elestial body.

• A high-speed train moves from one station to another at ruiser speed.

• A welding robot reates a welding joint at onstant speed, to ensure a

uniform thikness.

147



  

k

t

u 1(t
)

t
0
                  t

1

k

t

u 2(t
)

t
0
        t

1
          t

2
        t

3

Figure 10.1: Two funtions that an be approximated by an impulse if t0 ≈ t1
(left) or t0 ≈ t3 (right).

Notie that, save for the �rst example, the ramp is limited in time: sooner or

later, the train and the welding robot will have to stop. In fat, unlimited ramps

are seldom found.

Remark 10.3. The impulse is in fat impossible to reate: there are no physial

quantities applied during no time at all, with an in�nite intensity. However, the

impulse is a good approximation of inputs that have a very short duration.

Figure 10.1 shows two inputs in that situation: a sequene of two steps

u1(t) = kH(t− t0)− kH(t− t1)

=

{

k, if t0 ≤ t ≤ t1

0, if t < t0 ∨ t > t1
≈ k(t1 − t0)δ(t) (10.22)

and, even more realistially, a sequene of two ramps, approximated by

δ(t)

∫ +∞

0

u2(t) dt = δ(t)

[
1

2
k(t1 − t0) + k(t2 − t1) +

1

2
k(t3 − t2)

]

= δ(t)
k

2
(t3 + t2 − t1 − t0) (10.23)

Of ourse, any input with a form suh as that of Figure 10.1 an be approximated

by an impulse (multiplied by the integral over time of the input).

Remark 10.4. Unit steps are almost exlusively used beause amplitude 1

makes alulations easier. Sine we are assuming linearity, if the amplitude of

the step is d instead of 1, the output will be that for the unit step, multiplied

by d. The same an be said for unit ramps and unit parabolas. When steps (or

ramps, or parabolas) are applied experimentally, amplitude 1 may be too big or

too small, and a di�erent one will have to be used instead.

Example 10.3. Suppose you want to test a ar's suspension, when the wheel

limbs or desends a step. Obviously nobody with a sound mind would apply a

1 m step for this purpose (see Figure 10.3). A 10 m step would for instane be

far more reasonable. Of ourse, if our model is linear, we an apply a unit step,

knowing well that the result will be nonsense, and then simply sale down the

result.
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Figure 10.2: General form of a funtion that an be approximated by an impulse

if t0 ≈ t1.

Figure 10.3: Would you test a ar's suspension like this? (Soure: Wikimedia,

modi�ed)
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Figure 10.4: The Rasteirinho mobile robot, without the laptop omputer with

whih it is ontrolled.

Example 10.4. The Rasteirinho (see Figure 10.4) is a mobile robot, of whih

about a dozen units are used at IST in laboratory lasses of di�erent ourses.

It is ontrolled by a laptop omputer, �xed with velro. Its maximum speed

depends on the partiular unit; in most, it is around 80 m/s. Consequently, it

is useless to try to make its position follow a unit ramp, whih would orrespond

to a 1 m/s veloity. One more, we ould simulate its behaviour with a linear

model for a unit ramp and then sale the output down.

Example 10.5. In the WECs of Figures 3.2 and 3.3, the air inside the devie is

ompressed by the waves. A hange of air pressure of 1 Pa is ludirously small;

it is useless even to try to measure it. But if our model of the WEC is linear we

an simulate how muh energy it produes when a unit step is applied in the air

pressure and then sale the result up to a more reasonable value of the pressure

variation.

In what follows we will onentrate on the impulse and unit step responses,

and mention responses to unit ramps and steps with amplitudes whih are not

1 whenever appropriate.

Theorem 10.1. The impulse response of a transfer funtion has a LaplaeImpulse response of a sys-

tem transform whih is the transfer funtion itself.

Proof. Sine G(s) = Y (s)
U(s) , where G(s) is a transfer funtion, Y (s) is the Laplae

transform of the output, and U(s) is the Laplae transform of the input, and

sine the Laplae transform of an impulse is 1, the result is immediate.

Remark 10.5. This allows de�ning a system's transfer funtion as the Laplae

transform of its output when the input is an impulse. This de�nition is an

alternative to De�nition 4.1 found in many textbooks.
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Corollary 10.1. The output of a transfer funtion G(s) for any input u(t)
is equal to the onvolution of the input with the transfer funtion's impulse

response g(t):

y(t) = g(t) ∗ u(t) =
∫ t

0

g(t− τ)u(τ) dτ (10.24)

Proof. This is an immediate result of Theorem 10.1 and of (2.78).

Remark 10.6. It is usually easier to alulate the Laplae transform of the

input U(s) to �nd the Laplae of the output as Y (s) = G(s)U(s) and then �nally
the output as y(t) = L −1 [G(s)U(s)], than to alulate the output diretly as

y(t) = g(t) ∗ u(t).
The following Matlab funtions are useful to �nd time responses:

• step plots a system's response to a unit step (and an return the values

plotted in vetors);

• impulse does the same for an impulse input;

• lsim, already studied in Setion 4.2, an be used for any input.

Just like lsim, both step and impulse use numerial methods to �nd the re-

sponses, rather than analytial omputations.

Example 10.6. The impulse, unit step and unit ramp responses of a plant are Matlab's ommand

impulse

Matlab's ommand step

shown in Figure 10.5 and obtained as follows:

>> s = tf('s'); G = 1/(s+1);

>> figure, impulse(G), figure, step(G)

>> t = 0 : 0.01 : 6; figure, plot(t, lsim(G, t, t))

>> xlabel('t [s℄'), ylabel('output')

>> title('response to a unit ramp')

The time range is hosen automatially by step and impulse.

Example 10.7. The response of the transfer funtion from Example 10.6 to a

step with amplitude 10 during 20 s an be found in two di�erent manners, both

providing, of ourse, the same result:

>> [stepresp, timevetor℄ = step(G, 20);

>> t = 0 : 0.01 : 20;

>> figure, plot(t, lsim(G, 10*ones(size(t)), t), timevetor, 10*stepresp)

>> xlabel('t [s℄'), ylabel('output'), title('Step response')

There is, in fat, a slight di�erene in the two plots shown in Figure 10.6, beause

funtion step hooses the sampling time automatially, and it is di�erent from

the one expliitly fed to lsim.

10.2 Steady-state response and transient response

The impulse, unit step, and unit ramp responses of

G(s) =
1

s+ 1
(10.25)

from Example 10.6, shown in Figure 10.5 as they are numerially alulated by

Matlab, an be found analytially as follows:
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Figure 10.5: Impulse, unit step and unit ramp responses of G(s) = 1
s+1 , from

Example 10.6.
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ple 10.7.

• Impulse response:

yi(t) = L
−1

[
1

s+ 1

]

= e−t
(10.26)

• Unit step response:

ys(t) = L
−1

[
1

s+ 1

1

s

]

= 1− e−t
(10.27)

• Unit ramp response:

yr(t) = L
−1

[
1

s+ 1

1

s2

]

= L
−1

[

−1

s
+

1

s2
+

1

s+ 1

]

= t− 1 + e−t

(10.28)

In eah of them we an separate the terms that tend to zero as the time inreases

from those that do not. The �rst make up what we all the transient response. Transient

The latter make up what we all the steady-state response. Steady-state

yi(t) = 0
︸︷︷︸

steady-state

+ e−t

︸︷︷︸

transient

(10.29)

ys(t) = 1
︸︷︷︸

steady-state

− e−t

︸︷︷︸

transient

(10.30)

yr(t) = t− 1
︸ ︷︷ ︸

steady-state

+ e−t

︸︷︷︸

transient

(10.31)
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In other words, a time response y(t) an be separated into two parts, the tran-

sient response yt(t) and the steady-state response yss(t), suh that

y(t) = yt(t) + yss(t) (10.32)

lim
t→+∞

yt(t) = 0 (10.33)

lim
t→+∞

yss(t) 6= 0 (10.34)

We also all transient to the period of time in whih the response is dominated

by the transient response, and steady-state to the period of time in whih the

transient response is negletable and the response an be assumed equal to the

steady-state response. Whether a transient response an or annot be negleted

depends on how preise our knowledge of the response has to be. Below in

Setions 10.5 and 10.6 we will see usual riteria for this.

The steady-state response an be:

• zero, as the impulse response of (10.25), shown in Figure 10.5;

• a non-null onstant, as the unit step response of (10.25), shown in Fig-

ure 10.5;

• an osillation with onstant amplitude, as the step response of

1
(s2+1)(s+1) ,

shown in Figure 10.7;

• in�nity, with the output inreasing or dereasing monotonously, as the

unit step response of (10.25), shown in Figure 10.5;

• in�nity, with the output osillating with inreasing amplitude, as the im-

pulse response of

s
(s2+1)2 , shown in Figure 10.7.

What the steady-state response is depends on what the system is and on what

its input is.

Remark 10.7. Most systems never reah in�nity. The probe of Example 10.2

an move away to outer spae, but temperatures do no rise to in�nite values

(before that the heat soure is exhausted, or something will burn), robots reah

the end of their workspae, high eletrial urrents will ativate a iruit breaker,

et.; in other words, for big values of the variables involved, the linear model of

the system usually eases in one way or another to be valid.

Over the next setions we will learn several ways to alulate steady-state

responses without having to �nd an expliit expression for the output, and then

alulating its limit. When the steady-state response is onstant or in�nity, it

an be found from the �nal value theorem (Theorem 2.4), i.e. applying (2.74).Final value theorem

Example 10.8. The steady-states of the impulse, step and ramp responses

(10.26)�(10.28) are as follows:

lim
t→+∞

yi(t) = lim
t→+∞

e−t = 0 (10.35)

lim
t→+∞

ys(t) = lim
t→+∞

1− e−t = 1 (10.36)

lim
t→+∞

yr(t) = lim
t→+∞

t− 1 + e−t = +∞ (10.37)
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They an be found without the inverse Laplae transform using (2.74):

lim
t→+∞

yi(t) = lim
s→0

s
1

s+ 1
= 0 (10.38)

lim
t→+∞

ys(t) = lim
s→0

s
1

s+ 1

1

s
= 1 (10.39)

lim
t→+∞

yr(t) = lim
s→0

s
1

s+ 1

1

s2
= +∞ (10.40)

Example 10.9. Remember that (2.74) applies when the limit in time exists.

Figure 10.7 shows two ases where this limit learly does not exist beause of os-

illations with an amplitude that does not derease. But the two orresponding

limits are

lim
t→+∞

y(t) = lim
s→0

s
1

(s2 + 1)(s+ 1)

1

s
= 1 (10.41)

lim
t→+∞

y(t) = lim
s→0

s
s

(s2 + 1)2
= ∞ (10.42)

In the �rst ase we got the average value of the steady-state response; in the

seond, in�nity. Neither ase is a valid appliation of the �nal value theorem.

We need to know �rst if the time limit exists.

The former example illustrates the importane of the onept of stability.

De�nition 10.1. A signal x(t) is bounded if ∃K ∈ R
+ : ∀t, |x(t)| < K.Bounded signal

De�nition 10.2. A system is:BIBO stability

• stable if, for every input whih is bounded, its output is bounded too;

• not stable if there is at least a bounded input for whih its output is not

bounded.

This de�nition of stability is known as bounded input, bounded output stabil-

ity (BIBO stability).

Theorem 10.2. A transfer funtion is stable if and only if all its poles are onAll poles of stable transfer

funtions are on the left

omplex half-plane

the left omplex half-plane.

Proof. We will prove this in two steps:

• A transfer funtion G(s) is stable if and only if its impulse response g(t)
is absolutely integrable, i.e. i� ∃M ∈ R+

∫ +∞

0

|g(t)| dt < M (10.43)

• A transfer funtion's impulse response is absolutely integrable if and only

if all its poles are on the left omplex half-plane.

Lemma 10.1. A transfer funtion is stable if and only if its impulse response

is absolutely integrable.
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Proof. Let us suppose that the impulse response g(t) is absolutely integrable,

and that ∫ +∞

0

|g(τ)| dτ = K (10.44)

Let us also suppose that the input u(t) is bounded, as required by the de�nition

of BIBO stability:

|u(t)| ≤ U, ∀t (10.45)

From (10.24) we get

|y(t)| = |g(t) ∗ u(t)| =
∣
∣
∣
∣

∫ t

0

g(τ)u(t− τ) dτ

∣
∣
∣
∣

≤
∫ t

0

|g(τ)u(t − τ)| dτ

≤
∫ t

0

|g(τ)| |u(t − τ)| dτ

≤ U

∫ t

0

|g(τ)| dτ ≤ UK (10.46)

So the output is bounded, proving that the ondition (impulse response abso-

lutely integrable) is su�ient.

Redutio ad absurdum proves that it is also neessary. Suppose that the

impulse response g(t) is not absolutely integrable; thus, there is a time instant

T ∈ R+
suh that

∫ T

0

|g(τ)| dτ = +∞ (10.47)

Now let the input u(t) be given by

u(T − t) = sign(g(t)) (10.48)

This is a bounded input, −1 ≤ u(t) ≤ 1, ∀t, and so, if the transfer funtion

were stable, the output would have to be bounded. But in time instant T

y(T ) =

∫ T

0

g(τ)u(t − τ) dτ =

∫ T

0

|g(τ)| dτ = +∞ (10.49)

and thus y(t) is not bounded. This shows that the ondition is not only su�ient

but also neessary.

Lemma 10.2. A transfer funtion's impulse response is absolutely integrable

if and only if all its poles are on the left omplex half-plane.

Proof. A transfer funtion G(s) has an impulse response given by L −1 [G(s)].
Transfer funtion G(s) an be expanded into a partial fration expansion, where

the frations have the poles of G(s) in the denominator. Poles an be divided

into four ases.

• The pole is real, p ∈ R, and simple. In this ase the fration

k
s−p

(where

k ∈ R is some real numerator) has the inverse Laplae transform k ept.
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� If p = 0, then lim
t→+∞

k ept = k. In this ase the impulse response is

not absolutely integrable, sine

∫ +∞

0

|k| dt = lim
t→+∞

|k|t = +∞ (10.50)

� If p > 0, the exponential tends to in�nity: lim
t→+∞

k ept = ±∞ (de-

pending on the sign of k). If in the last ase the response was not

absolutely integrable, even more so in this one.

� If p < 0, the exponential tends to zero: lim
t→+∞

k ept = 0. The impulse

response is absolutely integrable, sine

∫ +∞

0

∣
∣k ept

∣
∣ dt = k

∫ +∞

0

ept dt = k

[
1

p
ept
]+∞

0

=
k

p
(0 − 1) = −k

p
∈ R

+

(10.51)

• The pole is real and its multipliity n is 2 or higher. In this ase there will

be, in the expansion, frations of the form

kn

(s−p)n ,
kn−1

(s−p)n−1 ,
kn−2

(s−p)n−2 . . .
k1

s−p
.

(Here the ki ∈ R, i = 1 . . . n are the numerators in the expansion.) The

orresponding inverse Laplae transforms are of the form

ki

(i−1)! t
i−1ept, i =

1 . . . n.

� If p = 0, then the exponential tends to 1, but the power does diverge

to in�nity: lim
t→+∞

ki
(i − 1)!

ti−1ept = ±∞ (depending on the sign of

k), ∀i ≥ 2. So in this ase the impulse response is not absolutely

integrable, as seen above.

� If p > 0, then lim
t→+∞

ki
(i− 1)!

ti−1ept = ±∞, ∀i. Again, the impulse

response is not absolutely integrable.

� If p < 0, then lim
t→+∞

ki
(i− 1)!

ti−1ept = 0, ∀i, sine the e�et of the

exponential prevails. For the same reason, the impulse response is

absolute integrable, just as in (10.51).

• The pole is omplex, p = a+ bj ∈ C\R, a, b ∈ R, and simple. Remember

one more that omplex poles must appear in pairs of omplex onjugates,

sine all polynomial oe�ients are real (otherwise real inputs would ase

omplex outputs). In this ase the fration

k
s−p

= k
s−(a+bj) (where k ∈ C

is some omplex numerator) has the inverse Laplae transform

L
−1

[
k

s− p

]

= L
−1

[
k

s− (a+ bj)

]

= k ept = k eatebjt = k eatebjt

= k eat (cos bt+ j sin bt) (10.52)

and the fration

k̄
s−p̄

= k̄
s−(a−bj) (where z̄ is the omplex onjugate of

z ∈ C) has the inverse Laplae transform

L
−1

[
k̄

s− p̄

]

= L
−1

[
k̄

s− (a− bj)

]

= k̄ ep̄t = k̄ eate−bjt = k̄ eate−bjt

= k̄ eat (cos(−bt) + j sin(−bt)) = k̄ eat (cos bt− j sin bt)
(10.53)
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Their e�et on the impulse response is their sum:

L
−1

[
k

s− p

]

+ L
−1

[
k̄

s− p̄

]

= k eat (cos bt+ j sin bt) + k̄ eat (cos bt− j sin bt)

= (k + k̄) eat cos bt = 2ℜ(k) eat cos bt
(10.54)

Notie that the imaginary parts anel out, and we are left with osillations

having:

� period

2π
b
, where b is the positive imaginary part of the poles;

� amplitude 2ℜ(k)eat, where a is the real part of the poles. The ex-

ponential is the important term, sine it is the exponential that may

ause this term to vanish or diverge.

So:

� If a = 0, then the amplitude of the osillations remains onstant; they

do not go to zero neither do they diverge to an in�nite amplitude.

This means that the impulse response is not absolutely integrable,

sine

∫ +∞

0

|2ℜ(k) cos bt| dt = 2|ℜ(k)|
∫ +∞

0

|cos bt| dt

= 2|ℜ(k)| lim
n→+∞

n

∫ 2π
b

0

|cos bt| dt

= 4|ℜ(k)| lim
n→+∞

n

∫ π
b

0

sin bt dt

=
4|ℜ(k)|

b
lim

n→+∞
n [− cos bt]

π
b

0

=
8|ℜ(k)|

b
lim

n→+∞
n = +∞ (10.55)

� If a > 0, the amplitude of the osillations tends to in�nity. Conse-

quently the impulse response will not be absolutely integrable.

� If a < 0, the exponential tends to zero, and so will the osillations.

In this ase the impulse response is absolutely integrable, sine

∫ +∞

0

∣
∣2ℜ(k) eat cos bt

∣
∣ dt ≤ 2|ℜ(k)|

∫ +∞

0

eat dt (10.56)

and we end up with a ase similar to (10.51).

• The pole is omplex and its multipliity n is 2 or higher. This ase is a

mixture of the last two. There will be terms of the form

ki

(s−(a+bj))i +

ki

(s−(a−bj))i , i = 1 . . . n. The orresponding inverse Laplae transform is

2ℜ(ki)
(i−1)! t

i−1eat cos bt. So:

� If a = 0, then eat = 1 but the amplitude of the osillations still grows

to in�nity, beause of the power funtion, if i ≥ 2. So in this ase

the impulse response will not be absolutely integrable.
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� If a > 0, the amplitude of the osillations tends to in�nity. The same

onlusion follows.

� If a < 0, the exponential tends to zero, and for large times its e�et

prevails; so the the impulse response will be absolutely integrable.

It is lear that one single term not tending exponentially to zero su�es to

prevent the impulse response from being absolutely integrable. Consequently,

the only way for the impulse response to tend to zero is that all poles should

have negative real parts; in other words, that all poles should lie on the left

omplex half-plane.

While some authors all unstable to all systems that are not stable, the

following distintion is urrent.

De�nition 10.3. A system is:Unstable and marginally

stable systems

• unstable if, for every input whih is bounded, its output is not bounded;

Unstable systems

• marginally stable if there are at least a bounded input for whih its out-Marginal stability

put is bounded and a bounded input for whih its output is not bounded.

Theorem 10.3. Marginally stable systems have no poles on the right omplexMarginally stable systems

have simple poles on the

imaginary axis

half-plane, and one or more simple poles on the imaginary axis.

Proof. It is lear from the proof of Lemma 10.2 that simple poles on the imag-

inary axis orrespond to:

• impulse responses whih are bounded:

� a pole at the origin has a onstant impulse response;

� a pair of omplex onjugate imaginary poles has onstant amplitude

sinusoidal osillations as impulse response;

• responses to bounded inputs whih are not bounded, sine systems with

suh poles are not stable.

A single pole p on the right omplex half-plane makes a system unstable, sine,

whatever the input may be, in the partial fration expansion of the output there

will be a fration of the form

k
s−p

, and the proof of Lemma 10.2 shows that suh

terms always diverge exponentially to in�nity. The same happens with multiple

poles on the imaginary axis.

The e�et of eah pole on the stability of a system justi�es the following

nomenlature.

De�nition 10.4. Poles are:Stable, marginally stable,

and unstable poles

• stable, when loated on the left omplex half-plane;

• marginally stable, when simple and loated on the imaginary axis;

• unstable, when multiple and loated on the imaginary axis, or when

loated on the right omplex half-plane.
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A system is:Stability depends on pole

loation • stable, when all its poles are stable;

• marginally stable, when it has no unstable poles, and one or more of its

poles are marginally stable;

• unstable, when it has one or more unstable poles.

Example 10.10. From the loation of the poles, we an onlude the following

about the stability of these transfer funtions:

• s+ 4

(s+ 1)(s+ 2)(s+ 3)
; poles: −1, −2, −3; stable transfer funtion

• s− 5

s2 + 6
; poles: ±

√
6j; marginally stable transfer funtion

• s+ 7

(s2 + 8)2
; poles: ±

√
8j (double); unstable transfer funtion

• (s− 12)(s+ 13)

(s+ 9)2(s2 + 20s+ 221)
; poles: ±−3 (double), −10±11j; stable transfer

funtion

• 14

s− 15
; poles: 15; unstable transfer funtion

• 16

s
; poles: 0; marginally stable transfer funtion

• −17

s2
; poles: 0 (double); unstable transfer funtion

• 18

s(s2 + 18)
; poles: 0, ±

√
18j; marginally stable transfer funtion

• 19

(s+ 20)(s+ 21)(s+ 22)(s− 23)
; poles: −20,−21,−22, 23; unstable trans-

fer funtion

Remark 10.8. Never forget that zeros have nothing to do with stability. Poles, not zeros, deter-

mine stability

10.3 Time responses: periodi inputs

Consider the weaving loom in Figure 10.8. The shuttle that arries the yarn

that will beome the weft thread moves without ease from the left to the right

and then bak. Meanwhile, half the warp threads are pulled up by a harness,

whih will then lower then while the other half goes up, and this too without

ease. The orresponding referenes are similar to those in Figure 10.9. They

are alled square wave and triangle wave, and are examples of periodi Square wave

Triangle wave

signals.

De�nition 10.5. A periodi signal is one for whih ∃T ∈ R+
Periodi signals

f(t+ T) = f(t), ∀t (10.57)

T = minT is the period of signal f(t).
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Figure 10.8: A weaving loom (soure:Wikimedia).
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Figure 10.9: A square wave and a triangle wave (both with period 1 and ampli-

tude 1).
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Remark 10.9. Notie that the di�erent values of T are in fat the integer

multiples of T , i.e.

f(t+ T ) = f(t), ∀t ⇒ f(t+ nT ) = f(t), ∀t, n ∈ N (10.58)

Triangle waves are also a useful alternative to ramps, sine they avoid the

inonveniene of an in�nitely large signal. Square waves are useful in experi-

mental settings for another reason: they allow seeing suessive step responses,

and onsequently allow measuring parameters several times in a row. For this

purpose, the period must be large enough for the transient regime to disappear.

Example 10.11. We an �nd the output of G(s) = 15
s+20 to a square wave with Matlab's ommand

squareperiod 1 s and amplitude 1 using Matlab as follows:

>> t = 0 : 0.001 : 3;

>> u = square(t*2*pi);

>> figure, plot(t,u, t,lsim(15/(s+20),u,t))

>> axis([0 3 -1.5 1.5℄)

>> xlabel('t [s℄'), ylabel('input and output'), legend({'input','output'})

Notie that the amplitude of the �rst step is 1 and the amplitude of the following

steps is the peak to peak amplitude, twie as big, viz. 2. Also notie that there

is a step every half period, i.e. every 0.5 s.

The period was appropriately hosen sine (as we shall see in Setion 10.5)

the transient response is pratially gone after 0.5 s. A period four times smaller

would not allow seeing a omplete step response. Both ases are shown in

Figure 10.10.

Another useful periodi signal is the sinusoid, whih appears naturally e.g.

when working with tides and with any phenomena that are the projetion onto

a plane of a irular movement on a perpendiular plane (and this inludes suh

di�erent things as motor vibrations or daily thermal variations).

Theorem 10.4. The stationary response y(t) of a stable linear plant G(s) Sinusoidal inputs ause si-

nusoidal outputs in steady

state

subjet to a sinusoidal input u(t) = sin(ωt) is

y(t) = |G(jω)| sin(ωt+ ∠G(jω)) (10.59)

where ∠z is the phase, or argument, of z ∈ C (also notated often as arg z), so
that z = |z|ej∠z

.

Proof. The output is

y(t) = L
−1 [Y (s)] (10.60)

and

Y (s) = G(s)U(s) = G(s)L [sin(ωt)] = G(s)
ω

s2 + ω2
= G(s)

ω

(s + jω)(s− jω)
(10.61)
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Figure 10.10: Response of G(s) =
15

s+ 20
to two square waves with di�erent

periods.
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If all poles pk, k = 1, . . . , n of G(s) are simple, we an perform a partial fration

expansion of Y (s) as follows:

Y (s) =
b0

s+ jω
+

b0
s− jω

+

n∑

k=1

bk
s− pk

⇒ y(t) = b0e
−jωt + b0e

jωt

︸ ︷︷ ︸

steady-state response yss(t)

+
n∑

k=1

bke
pkt

︸ ︷︷ ︸

transient

response yt(t)

(10.62)

We know that all terms in the transient response yt(t) belong there beause the
exponentials are vanishing, sine the poles are on the left omplex half-plane.

If there are multiple poles, the only di�erene is that there will be terms of the

form

bk
(i−1)! t

i−1epkt, i ∈ N in the transient response yt(t), whih will still, of

ourse, be vanishing with time. In either ase, the steady-state response is the

same.

From (10.61) we know that Y (s) = G(s) ω
(s+jω)(s−jω) , and from (10.62) we

know that Y (s) = b0
s+jω

+ b0
s−jω

+ L [yt(t)]. We an multiply both by s + jω
and obtain

G(s)
ω

s− jω
= b0 +

(
b0

s− jω
+ L [yt(t)]

)

(s+ jω) (10.63)

Now we evaluate this equality at s = −jω:

G(−jω)
ω

−2jω
= b0 (10.64)

Replaing b0 = G(−jω) 1
−2j and b0 = G(jω) 1

2j in yss(t) = b0e
−jωt + b0e

jωt
, we

obtain

yss(t) = G(−jω)
1

−2j
e−jωt +G(jω)

1

2j
ejωt

= |G(−jω)|ej∠G(−jω) 1

−2j
e−jωt + |G(jω)|ej∠G(jω) 1

2j
ejωt

= −|G(jω)|ej(∠G(−jω)−ωt) 1

2j
+ |G(jω)|ej(∠G(jω)+ωt) 1

2j

=
1

2j
|G(jω)|

(

ej(∠G(jω)+ωt) − ej(∠G(−jω)−ωt)
)

=
1

2j
|G(jω)|

(

cos (∠G(jω) + ωt) + j sin (∠G(jω) + ωt)

− cos
(

− (∠G(jω) + ωt)
)

− j sin
(

− (∠G(jω) + ωt)
))

=
1

2j
|G(jω)|

(

cos (∠G(jω) + ωt) + j sin (∠G(jω) + ωt)− cos (∠G(jω) + ωt) + j sin (∠G(jω) + ωt)
)

=
1

2j
|G(jω)|2j sin (∠G(jω) + ωt)

= |G(jω)| sin (ωt+ ∠G(jω)) (10.65)
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Figure 10.11: Vertial position of the AWS from Figure 3.2, simulated assuming

sinusoidal sea waves.

Corollary 10.2. Sine G(s) is not only stable but also linear, if the input is

u(t) = A sin(ωt) instead, the output is

y(t) = A|G(jω)| sin(ωt+ ∠G(jω)) (10.66)

Example 10.12. Figure 10.11 shows the simulated vertial position of the Wave

Energy Converter of Figure 3.2, the Arhimedes Wave Swing, when subjet to

sinusoidal waves of di�erent amplitudes. The devie is in steady-state, as is lear

both from the regularity of its movements and from the time already passed sine

the beginning of the simulation. As the input is sinusoidal, if the model were

linear, the output should be sinusoidal too. But the shape of the output is not

sinusoidal; it is not even symmetrial around its mean value; its amplitude does

not inrease linearly with the amplitude of the input. The model used to obtain

these simulation results is obviously non-linear.

10.4 Frequeny responses and the Bode diagram

(10.66) shows that, if a stable system G(s) has a sinusoidal input, the steady-

state output is related to the input through G(jω), whih is the Fourier trans-

form (2.87) of the di�erential equation desribing the system's dynamis:

• if the input is sinusoidal, the steady-state output is sinusoidal too;Frequeny, amplitude, and

phase of output for sinu-

soidal inputs

• if the input has frequeny ω, the steady-state output has frequeny ω too;

• if the input has amplitude A (or peak-to-peak amplitude 2A), the steady-
state output has amplitude A|G(jω)| (or peak-to-peak amplitude 2A|G(jω)|);

• if the input has phase θ at t = 0, the steady-state output has phase

θ + ∠G(jω) at t = 0.
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Remember that:

• the steady-state output is sinusoidal, but the transient is not: you must The transient is not sinu-

soidalwait for the transient to go away to have a sinusoidal output;

• unstable systems have transient responses that do not go away, so you will

never have a sinusoidal output;

• ω is the frequeny in radians per seond. ω is in rad/s

De�nition 10.6. Given a system G(s):

• its frequeny response is G(jω), a funtion of ω; Frequeny response

• its gain at frequeny ω is |G(jω)|; Gain

• its gain in deibel (denoted by symbol dB) is 20 log10 |G(jω)| (gain Gain in dB

|G(jω)| is often alled gain in absolute value, to avoid onfusion with the Gain in absolute value

gain in deibel);

• its phase at frequeny ω is ∠G(jω). Phase

Remark 10.10. These de�nitions are used even if G(s) is not stable. If the

system is stable:

• the gain is the ratio between the amplitude of the steady-state output and

the amplitude of the input;

• the phase is the di�erene in phase between the steady-state output sinu-

soid and the input sinusoid.

Example 10.13. Figure 10.12 shows the output of G(s) = 300(s+1)
(s+10)(s+100) for a

sinusoidal input of frequeny 1 rad/s, found as follows:

>> s = tf('s');

>> G = 300*(s+1)/((s+10)*(s+100));

>> t = 0 : 0.001 : 30;

>> figure, plot(t,sin(t), t,lsim(G,sin(t),t))

>> xlabel('time [s℄'), ylabel('output'), grid

The amplitude of the input is 1, by onstrution; the amplitude of the out-

put is 0.4219. So the gain at 1 rad/s is

0.4219
1 = 0.4219 in absolute value, or

20 log10 0.4219 = −7.50 dB. This maximum value is taking plae at 26 s, while

the orresponding maximum of the input takes plae later, at 4×2π+ π
2 = 26.7 s.

As the period is 2π = 6.28 s, the phase is

26.7−26
6.28 × 360◦ = 40◦.

Figure 10.12 also shows the output of G(s) when the frequeny is 200 rad/s:

>> t = 0 : 0.0001 : 0.2;

>> figure, plot(t,sin(200*t), t,lsim(G,sin(200*t),t))

>> xlabel('time [s℄'), ylabel('output'), grid

In that ase, the amplitude of the input is still 1 and the amplitude of the

output is 1.313. So the gain at 200 rad/s is

1.313
1 = 1.313 in absolute value, or

20 log10 1.313 = 2.37 dB. This maximum value is taking plae at 0.1703 s, while

the orresponding maximum of the input takes plae earlier, at 5× 2π
200 +

π
2

200 =
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0.1649 s. As the period is

2π
200 = 0.0314 s, the phase is

0.1649−0.1703
0.0314 × 360◦ =

−62◦.
In both ases, it is visible that the �rst osillations are not sinusoidal, beause

of both their shape and their varying amplitudes. In other words, the transient

has not yet disappeared by then.

In the example above, the amplitude of the output was larger than that of

the input in one ase, and smaller in the other. Also in one ase the extremes

of the output sinusoid took plae earlier than those of the input sinusoid, while

in the other ase it was the other way round.

De�nition 10.7. Given

• a stable system G(s),

• with sinusoidal input of frequeny ω and amplitude Au,

• with steady-state sinusoidal output also of frequeny ω and amplitude

Ay = Au|G(jω)|,

then:

• If the amplitude of the output is larger than the amplitude of the input,

Ay > Au, the system is amplifying its input:Ampli�ation

Ay > Au ⇒ |G(jω)| = Ay

Au

> 1 ⇒ 20 log10 |G(jω)| > 0 dB (10.67)

That is to say:

� the gain in absolute value is larger than 1;

� the gain in deibel is larger than 0 dB.

• If the amplitude of the output is smaller than the amplitude of the input,

Ay > Au, the system is attenuating its input:Attenuation

Ay < Au ⇒ |G(jω)| = Ay

Au

< 1 ⇒ 20 log10 |G(jω)| < 0 dB (10.68)

That is to say:

� the gain in absolute value is smaller than 1;

� the gain in deibel is smaller than 0 dB.

• If the amplitude of the output and the amplitude of the input are the same,

Ay = Au, the system is neither amplifying nor attenuating its input:

Ay = Au ⇒ |G(jω)| = Ay

Au

= 1 ⇒ 20 log10 |G(jω)| = 0 dB (10.69)

That is to say:

� the gain in absolute value is 1;

� the gain in deibel is 0 dB.
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Figure 10.12: Response of G(s) =
300(s+ 1)
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to two sinusoids with dif-

ferent periods.
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Table 10.1: Gain values; Au is the amplitude of the input sinusoid and Ay is

the amplitude of the steady-state output sinusoid

Gain in absolute value Gain in deibel Amplitudes

Minimum value |G(jω)| = 0 20 log 10|G(jω)| = −∞ dB Ay = 0
Attenuation 0 < |G(jω)| < 1 20 log 10|G(jω)| < 0 dB Ay < Au

Input and output with same amplitude |G(jω)| = 1 20 log 10|G(jω)| = 0 dB Ay = Au

Ampli�ation |G(jω)| > 1 20 log 10|G(jω)| > 0 dB Ay > Au

Furthermore:

• If the extremes of the output take plae earlier than the orresponding

extremes of the input, the output leads in relation to the input; thisPhase lead

means that

∠G(jω) > 0 (10.70)

• If the extremes of the output take plae later than the orresponding

extremes of the input, the output lags in relation to the input; this meansPhase lag

that

∠G(jω) < 0 (10.71)

• If the extremes of the output and the orresponding extremes of the input

take plae at the same time, the output and the input are in phase; this

means that

∠G(jω) = 0 (10.72)

• If the maxima of the output and the minima of the input take plae at

the same time, and vie versa, the output and the input are in phasePhase opposition

opposition; this means that

∠G(jω) = ±180◦ = ±π rad (10.73)

Remark 10.11. Notie that, sine sinusoids are periodi, the phase is de�ned

up to 360◦ shifts: a 90◦ phase is undistinguishable from a −270◦ phase, or for

that matter from a 3690◦ phase or any 90◦ + k360◦, k ∈ Z phase. While eah

of these values an be in priniple arbitrarily hosen, it usual to make the phase

vary ontinuously (as muh as possible) with frequeny, starting from values for

low frequenies determined as we will see below in Setion 10.7.

Gain values an be summed up as shown in Table 10.1.

Example 10.14. Consider the responses to sinusoidal inputs ofG(s) = 1
s2+0.5s+1

in Figure 10.13.

• For ω = 0.5 rad/s:

� The amplitude of the output is larger than that of the input, so we

must have

|G(j0.5)| > 1 ⇔ 20 log10 |G(j0.5)| > 0 dB (10.74)
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� In fat, the gain is

|G(j0.5)| =
∣
∣
∣
∣

1

(j0.5)2 + 0.5j0.5 + 1

∣
∣
∣
∣
=

∣
∣
∣
∣

1

1− 0.25 + j0.25

∣
∣
∣
∣
=

1√
0.752 + 0.252

= 1.26

⇒ 20 log10 G(j0.5) = 20 log10 1.26 = 2 dB (10.75)

� The output is delayed in relation to the input, so we must have

∠G(j0.5) < 0.

� In fat, the phase is

∠G(j0.5) = ∠

(
1

0.75 + j0.25

)

= ∠1− ∠(0.75 + j0.25) = 0◦ − arctan
0.25

0.75
= −18◦

(10.76)

• For ω = 1 rad/s:

� The amplitude of the output is even larger now, so

|G(j)| > |G(j0.5)| = 1.26 ⇔ 20 log10 |G(j)| > 20 log10 G(j0.5) = 2 dB
(10.77)

� In fat, the gain is

|G(j)| =
∣
∣
∣
∣

1

j2 + 0.5j + 1

∣
∣
∣
∣
=

∣
∣
∣
∣

1

j0.5

∣
∣
∣
∣
=

1

0.5
= 2

⇒ 20 log10 G(j) = 20 log10 2 = 6 dB (10.78)

� The output is delayed in relation to the input. Furthermore, the

output rosses zero as the input is already at a peak or at a through.

So the phase is negative, and equal to −90◦.

� In fat,

∠G(j) = ∠

(
1

j0.5

)

= ∠1− ∠(j0.5) = 0◦ − 90◦ = −90◦ (10.79)

• For ω = 2 rad/s:

� The amplitude of the input is larger than that of the output, so we

must have

|G(j2)| < 1 ⇔ 20 log10 |G(j2)| < 0 dB (10.80)

� In fat, the gain is

|G(j2)| =
∣
∣
∣
∣

1

(2j)2 + 0.5j2 + 1

∣
∣
∣
∣
=

∣
∣
∣
∣

1

−3 + j

∣
∣
∣
∣
=

1√
9 + 1

= 0.316

⇒ 20 log10 G(j2) = 20 log10 10
− 1

2 = −10 dB (10.81)

� The output is delayed in relation to the input. Furthermore, input

and output are almost in phase opposition, but not yet. So we must

have 0◦ < ∠G(j2) < −180◦, but lose to the latter value.
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Figure 10.13: Responses of G(s) = 1
s2+0.5s+1 (blue) to input sinusoids (red)

with 0.5 rad/s (top), 1 rad/s (entre) and 2 rad/s (bottom).
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� In fat, the phase is

∠G(j2) = ∠

(
1

−3 + j

)

= ∠1− ∠(−3 + j) = 0◦ − arctan
1

−3
= −162◦

(10.82)

The Bode diagram, or Bode plot, is a graphial representation of the fre- Bode diagram

queny response of a system, as a funtion of frequeny. This diagram omprises

two plots:

• a top plot, showing the gain in dB (y�axis) as a funtion of frequeny in

a semi-logarithmi sale (x�axis);

• a bottom plot, showing the phase in degrees (y�axis) as a funtion of

frequeny in a semi-logarithmi sale (x�axis).

Frequeny is usually given in rad/s, but sometimes in Hz.

In the following setions we will learn how to plot by hand the Bode diagram

of any plant (or at least a reasonable approximation thereof); meanwhile, the

following Matlab ommands an be used instead:

• bode plots the Bode diagram of a system;

• freqresp alulates the frequeny response of a system.

Example 10.15. The Bode diagram in Figure 10.14 of G(s) = 300(s+1)
(s+10)(s+100) Matlab's ommand bode

from Example 10.13 is found as follows:

>> s = tf('s');

>> G = 300*(s+1)/((s+10)*(s+100));

>> figure, bode(G), grid

The gains and phases at ω = 1 rad/s and ω = 200 rad/s found in Example 10.13

an be observed in the diagram.

This way we �rst �nd the frequeny response and then use it to plot the Matlab's ommand

freqrespBode diagram:

>> [Gjw, w℄ = freqresp(G); % Gjw returned as a 3-dimensional tensor...

>> Gjw = squeeze(Gjw); % ...must now be squeezed to a vetor

>> figure, subplot(2,1,1), semilogx(w, 20*log10(abs(Gjw)))

>> grid, xlabel('frequeny [rad/s℄'), ylabel('gain [dB℄'), title('Bode diagram')

>> subplot(2,1,2), semilogx(w, rad2deg(unwrap(angle(Gjw))))

>> grid, ylabel('phase [degrees℄') % unwrap avoids jumps of 360 degrees

To �nd the gains and phases to on�rm those found found in Example 10.13:

>> Gjw = freqresp(G, [1 200℄)

Gjw(:,:,1) =

0.3294 + 0.2640i

Gjw(:,:,2) =

0.6525 - 1.1704i

>> gains = 20*log10(abs(Gjw))

gains(:,:,1) =
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Figure 10.14: Bode diagram of G(s) =
300(s+ 1)

(s+ 10)(s+ 100)
.

-7.4909

gains(:,:,2) =

2.5420

>> phases = rad2deg(unwrap(angle(Gjw)))

phases(:,:,1) =

38.7165

phases(:,:,2) =

-60.8590

Here's another way of �nd the same values:

>> w = [1 200℄;

>> Gjw = 300*(1i*w+1)./((1i*w+10).*(1i*w+100));

Gjw =

0.3271 + 0.2676i 0.6186 - 1.2212i

>> gains = 20*log10(abs(Gjw))

gains =

-7.4909 2.5420

>> phases = rad2deg(unwrap(angle(Gjw)))

phases =

38.7165 -60.8590

Notie the small di�erenes due to numerial errors.

Example 10.16. The Bode diagram in Figure 10.15 of G(s) = 1
s2+0.5s+1 from

Example 10.14 shows the gains and phases found in that example, that an also

be found as follows:

>> G = tf(1,[1 .5 1℄)

G =
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Figure 10.15: Bode diagram of

1

s2 + 0.5s+ 1
.

1

---------------

s^2 + 0.5 s + 1

Continuous-time transfer funtion.

>> figure,bode(G),grid on

>> Gjw = squeeze(freqresp(G, [.5 1 2℄))

Gjw =

1.2000 - 0.4000i

0.0000 - 2.0000i

-0.3000 - 0.1000i

>> gains = 20*log10(abs(Gjw))

gains =

2.0412

6.0206

-10.0000

>> phases = rad2deg(unwrap(angle(Gjw)))

phases =

-18.4349

-90.0000

-161.5651

Example 10.17. From the Bode diagram in Figure 10.16, even without know-

ing what transfer funtion it belongs to, we an onlude the following:

• At ω = 0.1 rad/s, the gain is 20 dB (i.e. 10
20
20 = 10 in absolute value) and
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the phase is 0◦ = 0 rad. So, if the input is

u(t) = 5 sin(0.1t+
π

6
) (10.83)

the steady-state output will be

y(t) = 5× 10 sin(0.1t+
π

6
) = 50 sin(0.1t+

π

6
) (10.84)

• At ω = 10 rad/s, the gain is 17 dB (i.e. 10
17
20 = 7.1 in absolute value) and

the phase is −45◦ = −π
4 rad. So, if the input is

u(t) = 5 sin(10t+
π

6
) (10.85)

the steady-state output will be

y(t) = 5× 7.1 sin(10t+
π

6
− π

4
) = 35.5 sin(10t− π

12
) (10.86)

• At ω = 100 rad/s, the gain is 0 dB (i.e. 100 = 1 in absolute value) and

the phase is −85◦ = −1.466 rad. So, if the input is

u(t) = 5 sin(100t+
π

6
) (10.87)

the steady-state output will be

y(t) = 5× 1 sin(100t+ 0.524− 1.466) = 5 sin(100t− 0.942) (10.88)

• At ω = 1000 rad/s, the gain is −20 dB (i.e. 10
−20

20 = 0.1 in absolute value)

and the phase is −90◦ = −π
2 rad. So, if the input is

u(t) = 5 sin(1000t+
π

6
) (10.89)

the steady-state output will be

y(t) = 5× 0.1 sin(1000t+
π

6
− π

2
) = 0.5 sin(1000t− π

3
) (10.90)

• The system is linear. So, if the input is

u(t) = 0.5 sin(0.1t+
π

6
) + 25 sin(1000t+

π

6
) (10.91)

the steady-state output will be

y(t) = 0.5× 10 sin(0.1t+
π

6
) + 25× 0.1 sin(1000t+

π

6
− π

2
) = 5 sin(0.1t+

π

6
) + 2.5 sin(1000t− π

3
(10.92)

Notie how the frequeny with the largest amplitude in the input now has

the smallest.
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Figure 10.16: Bode diagram of Example 10.17.

10.5 Time and frequeny responses of a �rst-order

system without zeros

Still to appear.

10.6 Time and frequeny responses of a seond-

order system without zeros

Still to appear.

10.7 Systems with more zeros and poles: fre-

queny responses

Still to appear.

10.8 Systems with more zeros and poles: stabil-

ity

Still to appear.

10.9 Systems with more zeros and poles: time

responses

Still to appear.
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Exerises

1. For eah of the following pairs of a transfer funtion and an input:

• �nd the Laplae transform of the input;

• �nd the Laplae transform of the output;

• �nd the value of the output for t ≫ 1 without using the inverse

Laplae transform;

• �nd the output as a funtion of time;

• separate that funtion of time into a transient and a steady state;

• on�rm the value of the output for t ≫ 1 found previously.

(a) G(s) =
10

s2 + 21s+ 20
and u(t) = 0.4, t > 0

(b) G(s) =
5

s+ 0.1
and u(t) = 2t, t > 0

() G(s) =
s

s2 + s+ 1
and u(t) = δ(t)

(d) G(s) =
s

s2 + s+ 1
and u(t) = 0.4, t > 0

(e) G(s) =
7

s
and u(t) = 0.4, t > 0

2. From the poles of the transfer funtions of Exerise 1 of Chapter 9, explain

whih of them are stable, unstable, or marginally stable.

3. Figure 10.17 shows the Bode diagrams of some transfer funtions. For eah

of them, read in the Bode diagram the values from whih you an alulate

the transfer funtion's steady state response to the following inputs:

• u(t) = sin(2t)

• u(t) = sin(2t+ π
2 )

• u(t) = sin(1000t)

• u(t) = 10 sin(1000t)

• u(t) = 1
3 sin(0.1t− π

4 ) + sin(2t+ π
2 )10 sin(1000t)

4. For eah of the following transfer funtions:

• �nd the orresponding Fourier transform;

• �nd the gain (both in absolute value and in deibel) and the phase

(in radians or degrees, as you prefer) at the indiated frequenies.

(a) G(s) =
5

s+ 0.1
and ω = 0.01, 0.1, 1 rad/s

(b) G(s) =
s

s2 + s+ 1
and ω = 0.1, 1, 10 rad/s

() G(s) =
7

s
and ω = 1, 10, 100 rad/s
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Figure 10.18: RAO of four heaving buoys of Exerise 5 (soure:

http://marine-eng.ir/artile-1-80-en.pdf).

5. In naval and oean engineering it is usual to all Response Amplitude RAO

Operator (RAO) to what we alled gain. It is often represented in abso-

lute value in a linear plot as a funtion of frequeny. Figure 10.18 shows

the RAO of four di�erent heaving buoys. Suppose that eah of them is

subjet to waves with an amplitude of 2 m and a frequeny of 2π rad/s.

What will be the amplitude of the osillation of eah buoy?

6. Use the Routh-Hurwitz riterion to �nd how many unstable poles eah of

the following transfer funtions has, and lassify eah system as stable,

marginally stable, or unstable.

(a)

s2 +
5

7
s− 10

s4 − 2s3 − 13s2 + 14s+ 24

(b)

s+ 2
s4 − 2s3 − 13s2 + 14s+ 24

()

s+ 2
s6 − 2s5 − 13s4 + 14s3 + 24s2

Hint: an you put anything in evi-

dene in the denominator?

(d)

s3 + 2s2 + s
s4 + 4s3 + 4s+ 5

(e)

s3 + 2s2 + s
s5 + 4s4 + 4s2 + 5s

(f)

s3 + 2s2 + s
2s3 − 6s+ 4

7. Find the ranges of values of K1,K2 ∈ R for whih the systems with the

following harateristi equations are stable.

(a) s3 + 3s2 + 10s+K1
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(b) s3 +K2s
2 + 10s+ 5

() s3 + 2s2 + (K1 + 1)s+K2

8. Consider transfer funtion G(s) =
10

10s+ 1
.

(a) When the input is a unit step, what will the steady state response

be?

(b) When the input is a step with amplitude 3, what will the steady state
response be?

() Without omputing an expression for the output, give a rough esti-

mate of how long it takes for the output to reah 20, when the input

is a step with amplitude 3.

(d) Without omputing an expression for the output, give a rough esti-

mate of the 2% settling time, when the input is a step with amplitude

3.

(e) Calulate the output as a funtion of time, using an inverse Laplae

transform, and �nd the exat values of the estimations from the last

two questions.

(f) Suppose that the input is now a unit step again. What will the

new value of the 2% settling time be? Hint: is the system linear or

non-linear?

9. Sketh the following step responses, marking, whenever they exist,

• the settling time aording to the 5% riterion,

• the settling time aording to the 2% riterion,

• the steady-state value.

(a) G(s) =
15

s+ 5
, for input u(t) = 4H(t)

(b) G(s) =
10

s− 1
, for input u(t) = H(t)

() G(s) =
1

2s+ 1
, for input u(t) = −H(t)

(d) G(s) =
−2

4s+ 1
, for input u(t) = 10H(t)

(e) G(s) =
10

s
, for input u(t) = H(t)

10. Sketh the Bode diagrams of the following transfer funtions, indiating

• the gain for low frequenies,

• the frequeny at whih the gain is 3 dB below the gain for low fre-

quenies,

• the slope of the gain for high frequenies,

• the phase for low frequenies,

• the phase for high frequenies,
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• the frequeny at whih the phase is the average of those two values.

Hint: you do not need to draw the exat evolution of the phase; ap-

proximate it by three straight lines: a horizontal one for low frequenies,

another horizontal one for high frequenies, and then onnet these two

by a straight line two deades wide. You an also approximate the gain

by two straight lines, but do not forget to mark the frequeny at whih

the gain has dereased 3 dB.

(a) G(s) =
15

s+ 5

(b) G(s) =
1

s+ 10

() G(s) =
1

2s+ 1

(d) G(s) =
2

4s+ 1

(e) G(s) =
10

s

11. Find analytially the unit step responses of G1(s) =
100

s+ 10
and G2(s) =

s+ 100

s+ 10
. Sketh them both in the same plot, marking the 5% settling time

for eah. Plot separately the di�erene between them. Then do the same

for G3(s) =
8

s+ 12
and G4(s) =

s+ 8

s+ 12
.

12. Let G(s) =
1

s+ 1
.

(a) Consider the unit step response of G(s). What is the settling time,

aording to the 5% riterion?

(b) Find analytially the unit ramp response y(t) of G(s).

() Find the analytial expression of the steady-state yss(t) of that re-
sponse y(t).

(d) How long does it take for

∣
∣
∣
yss(t)−y(t)

y(t)

∣
∣
∣ to be less than 5%? In other

words, �nd how long it takes for the unit ramp response to be within

a 5% wide band around its steady state.

13. A �rst order system

K
s+p

has the response tabulated in Table 10.2, when

its input is a unit step applied at instant t = 0.5 s. Find the gain K and

the pole p. Hint: subtrat the response from the steady state value; you

should now have an exponential with a negative power. Plot its logarithm

and adjust a straight line.

14. Prove that, if G(s) =
b0

s2 + a1s+ a0
is stable, its step response has deriva-

tive zero at t = 0. Do this as follows:

(a) Use a table of Laplae transforms to �nd the unit step response of

1
(s+a)(s+b) . Calulate its derivative, proving thus the thesis for the

ase of two real poles.
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Table 10.2: Unit step response of Exerise 13.

time output

0.0 0.0000

0.1 0.0000

0.2 0.0000

0.3 0.0000

0.4 0.0000

0.5 0.0000

0.6 0.0632

0.7 0.0865

time output

0.8 0.0950

0.9 0.0982

1.0 0.0993

1.1 0.0998

1.2 0.0999

1.3 0.1000

1.4 0.1000

1.5 0.1000

(b) Use a table of Laplae transforms to �nd the unit step response of

1
(s+a)2 . Calulate its derivative, proving thus the thesis for the ase

of a double real pole.

() Use a table of Laplae transforms to �nd the unit step response of

ω2
n

s2+2ξωns+ω2
n
. Calulate its derivative, proving thus the thesis for the

ase of a double real pole.

15. For eah of the transfer funtions below, and for the orresponding step

input, �nd, if they exist:

• the natural frequeny ωn and the damping fator ξ,

• the steady state value yss,

• the delay time td and the rise time tr,

• the peak time tp and the maximum overshoot Mp (expressed in per-

entage),

• the 5% and the 2% settling times (use the expressions for the expo-

nential envelope of the osillations),

• the loation of the poles,

and sketh the step response.

(a) G(s) =
7

s2 + 0.4s+ 1
, for input u(t) = 0.1H(t)

(b) G(s) =
1

s2 + 5.1s+ 9
, for input u(t) = 18H(t)

() G(s) =
1

2s2 + 8
, for input u(t) = H(t)

(d) G(s) =
10

s2 − s+ 1
, for input u(t) = 2H(t)

(e) G(s) =
0.3

s2 + 4s− 1
, for input u(t) = 15H(t)

16. Sketh the Bode diagrams of the following transfer funtions, indiating

• the gain for low frequenies,

• the resonant peak value, and the frequeny at whih it is loated, if

indeed there is one,
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• the slope of the gain for high frequenies,

• the phase for low frequenies,

• the phase for high frequenies,

• the frequeny at whih the phase is the average of those two values.

Hint: you do not need to draw the exat evolution of the phase; ap-

proximate it by three straight lines: a horizontal one for low frequenies,

another horizontal one for high frequenies, and then onnet these two

by a straight line two deades wide. You an also approximate the gain

by two straight lines, but if there is a resonant peak mark it in your plot.

(a) G(s) =
1

s2 + 20s+ 100

(b) G(s) =
7

s2 + 0.4s+ 1

() G(s) =
1

s2 + 5.1s+ 9

(d) G(s) =
1

2s2 + 8

17. Find the seond order transfer funtions that, for a unit step input, have:

(a) tp = 0.403 s, Mp = 16.3%, yss = 0.8

(b) tp = 0.907 s, y(tp) = 11.63, yss = 10

() tr = 0.132 s, ts2% = 2.0 s, yss = 0.5

18. Consider the mehanial system in Figure 10.19. When f(t) = 8.9 N,

t ≥ 0, the output has tp = 1 s, Mp = 9.7%, and yss = 3× 10−2
m.

(a) Find the values of massM , visous damping oe�ient B, and spring
sti�ness K.

(b) Suppose we want the same steady-state regime and the same settling

time, but a maximum overshoot of 0.15%. What should the new

values of M , B and K be?

19. Plot the Bode diagrams of the following plants:

(a) G(s) =
−4s+ 20

s3 + 0.4s2 + 4s

(b)

d3y(t)

dt3
+ 16

d2y(t)

dt2
+ 65

dy(t)

dt
+ 50y(t) = 100

du(t)

dt
+ 50u(t)

() G(s) =
120(s+ 1)

s(s+ 2)2(s+ 3)

(d) G(s) =
s2

(s+ 0.5)(s+ 10)

(e) G(s) =
10s

(s+ 10)(s2 + s+ 2)

(f) G(s) =
(s+ 4)(s+ 20)

(s+ 1)(s+ 80)
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Figure 10.19: System of Exerise 18.

20. Establish a orrespondene between the three Bode diagrams and the three

unit step responses in Figure 10.20.

21. Establish a orrespondene between the three Bode diagrams and the three

unit step responses in Figure 10.21.

22. Find the transfer funtions orresponding to the Bode diagrams in Fig-

ure 10.22.

23. Consider the following transfer funtions:

G1(s) =
5050s+ 10000

s2 + 101s+ 100
(10.93)

G2(s) =
100s+ 10000

s2 + 101s+ 100
(10.94)

(a) Find their poles.

(b) Whih pole is faster? Why?

() Whih of the two transfer funtions will respond faster to a unit step?

Why?
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Figure 10.20: Bode diagrams and unit step responses of Exerise 20.
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Figure 10.21: Bode diagrams and unit step responses of Exerise 21.
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