Chapter 10

Time and frequency responses

We already know that we can use the Laplace transform (and its inverse) to find
out the output of any transfer function for any particular input. In this chap-
ter we study several usual particular cases. This allows us to find approximate
responses in many cases, and to characterise with simplicity more complex re-
sponses. It also paves the way to the important concept of frequency responses.

10.1 Time responses: steps and impulses as in-
puts

The following inputs are routinely used to test systems:

e The impulse:

ult) = 5(t) (10.1
£ [u(t) =1 (102
e The step, with amplitude d:
u(t) = dH(t) (10.3)
Zlu()] = 2 (10.4)

u(t) = H(t) (10.5)
czm@nzé (10.6)
e The ramp, with slope d:
u(t) =dt (10.7)
2] = 5 (10.8
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e In particular, the unit ramp, with slope 1:

u(t) =t (10.9)
2] = (10.10)
Parabola e The parabola, with second derivative 2d:
u(t) = dt* (10.11)
L) = i—f (10.12)
Parabola e In particular, the unit parabola, with second derivative 2:
u(t) =t (10.13)
ZLlult) = 533 (10.14)

You can either find the Laplace transforms above in Table[2.7], or calculate them
yourself.

Remark 10.1. Notice that:

t
e the unit step is the integral of the impulse: / o(t)dt = H(t);
0
t
e the unit ramp is the integral of the unit step: / H(t)dt = t;
0

t
1
e the unit parabola is not the integral of the unit ramp: / tdt = 5152 #+
0

t. O
Properties of §(t) Remark 10.2. Remember that while the Heaviside function H (¢) is a function,
§(t) is not a function and so are ¢ and 2, the Dirac delta §(¢) is not. It is a generalised function, and

the limit of the following family of functions:

L ifo<t<e
te)=<¢ - = 10.15
f(t€) {0, ift<OVt>e ( )
5(t) = lm f(t,€) (10.16)
e—0t
Since
“+o0 € € 1
/ f(te)dt = / f(t,e)dt = / —dt=1, Vee R" (10.17)
—00 0 o €
Its integral in R is 1 we have also
“+oo
/ o(t)dt =1 (10.18)

Unit ramp



Furthermore, for a continuous function g(t),

F(t.e) min g(t) < f(t,€)g(t) < (L €) max g(t)

é/fte Imng dt</fte t)dtg/of(t,e)orggé(eg(t)dt
(te)dt < (t,e)g(t) dt < t ) dt
< min g(t /f €) /f €)g max g( )/O f(te)

0<t<e 0<t<e
= t dt< t 10.19
(i g(t) / I(te)g Joax g(t) (10.19)

where we used (I0.I7). Making € — 0T, we get

/fte t)dt < ¢(0 (:)/fte (t)dt = ¢(0) (10.20)
A consequence of this is that
+oo
ZL5)] = / Stlestdt=e"=1 O (10.21)
0
The reasons why (I0.I)-(I0.I3) are routinely used as inputs to test systems
are:
e They are simple to create.
e (Calculations are simple, given their Laplace transforms.

e They can be used to model many real inputs exactly, and even more as
approximations.

Example 10.1. The following situations can be modelled as steps:

e A metal workpiece is taken from an oven and quenched in oil at a lower
temperature.

e A sluice gate is suddenly opened, letting water into an irrigation canal.

e A switch is closed and a tension is thereby applied to the motor that
rotates the joint of a welding robot.

e A finished part is dropped onto a conveyer belt.

e A car advancing at constant speed descends a sidewalk onto the street
pavement. O

Example 10.2. The following situations can be modelled as ramps:

e A deep space probe moves out of the solar system at constant speed along
a straight line in an inertial system of coordinates, due to inertia, far from
the gravitational influence of any close celestial body.

e A high-speed train moves from one station to another at cruiser speed.

e A welding robot creates a welding joint at constant speed, to ensure a
uniform thickness.
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Figure 10.1: Two functions that can be approximated by an impulse if ¢y = t;
(left) or ¢y = t3 (right).

Notice that, save for the first example, the ramp is limited in time: sooner or
later, the train and the welding robot will have to stop. In fact, unlimited ramps
are seldom found. O

Remark 10.3. The impulse is in fact impossible to create: there are no physical
quantities applied during no time at all, with an infinite intensity. However, the
impulse is a good approximation of inputs that have a very short duration.
Figure 0.0l shows two inputs in that situation: a sequence of two steps

ul(t) = kH(t*to) — kH(t*tl)
k, ifto<t<t

=<7 - - ~ k(t1 —tg)d(t 10.22
{0, ift<toVt>th (tr = t0)3(t) (1022)

and, even more realistically, a sequence of two ramps, approximated by

Hoo 1 1
5(t)/ UQ(t) dt = 5(t) 5k(t1 - to) + k(tQ — tl) + §k(t3 — t2)
0
k

= 5(t)§(t3 +to —t1 —to) (10.23)

Of course, any input with a form such as that of Figure[I0.Ilcan be approximated
by an impulse (multiplied by the integral over time of the input). [l

Remark 10.4. Unit steps are almost exclusively used because amplitude 1
makes calculations easier. Since we are assuming linearity, if the amplitude of
the step is d instead of 1, the output will be that for the unit step, multiplied
by d. The same can be said for unit ramps and unit parabolas. When steps (or
ramps, or parabolas) are applied experimentally, amplitude 1 may be too big or
too small, and a different one will have to be used instead. O

Example 10.3. Suppose you want to test a car’s suspension, when the wheel
climbs or descends a step. Obviously nobody with a sound mind would apply a
1 m step for this purpose (see Figure[[0.3). A 10 cm step would for instance be
far more reasonable. Of course, if our model is linear, we can apply a unit step,
knowing well that the result will be nonsense, and then simply scale down the
result. O

148



U0

Figure 10.2: General form of a function that can be approximated by an impulse
if t() ~ 1.

Figure 10.3: Would you test a car’s suspension like this? (Source: Wikimedia,
modified)
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Impulse response of a sys-
tem

Figure 10.4: The Rasteirinho mobile robot, without the laptop computer with
which it is controlled.

Example 10.4. The Rasteirinho (see Figure I0.4) is a mobile robot, of which
about a dozen units are used at IST in laboratory classes of different courses.
It is controlled by a laptop computer, fixed with velcro. Its maximum speed
depends on the particular unit; in most, it is around 80 cm/s. Consequently, it
is useless to try to make its position follow a unit ramp, which would correspond
to a 1 m/s velocity. Once more, we could simulate its behaviour with a linear
model for a unit ramp and then scale the output down. O

Example 10.5. In the WECs of Figures[3.2and B.3] the air inside the device is
compressed by the waves. A change of air pressure of 1 Pa is ludicrously small;
it is useless even to try to measure it. But if our model of the WEC is linear we
can simulate how much energy it produces when a unit step is applied in the air
pressure and then scale the result up to a more reasonable value of the pressure
variation. O

In what follows we will concentrate on the impulse and unit step responses,
and mention responses to unit ramps and steps with amplitudes which are not
1 whenever appropriate.

Theorem 10.1. The impulse response of a transfer function has a Laplace
transform which is the transfer function itself.

Proof. Since G(s) = 20 where G(s) is a transfer function, Y (s) is the Laplace

U(s)?
transform of the output, and U(s) is the Laplace transform of the input, and
since the Laplace transform of an impulse is 1, the result is immediate. O

Remark 10.5. This allows defining a system’s transfer function as the Laplace
transform of its output when the input is an impulse. This definition is an
alternative to Definition 1] found in many textbooks. O
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Corollary 10.1. The output of a transfer function G(s) for any input wu(t)
is equal to the convolution of the input with the transfer function’s impulse
response ¢g(t):

¢
y(t) = g(t) xu(t) = / g(t — T)u(r)dr (10.24)
0
Proof. This is an immediate result of Theorem [I0.1] and of (278)). O

Remark 10.6. It is usually easier to calculate the Laplace transform of the

input U(s) to find the Laplace of the output as Y'(s) = G(s)U(s) and then finally

the output as y(t) = £~ [G(s)U(s)], than to calculate the output directly as

y(t) = g(t) x u(t). O
The following MATLAB functions are useful to find time responses:

e step plots a system’s response to a unit step (and can return the values
plotted in vectors);

e impulse does the same for an impulse input;

e 1sim, already studied in Section [£2] can be used for any input.

Just like 1sim, both step and impulse use numerical methods to find the re-
sponses, rather than analytical computations.

Example 10.6. The impulse, unit step and unit ramp responses of a plant are
shown in Figure [10.5 and obtained as follows:

>> 8 = tf(’s?); G = 1/(s+1);

>> figure, impulse(G), figure, step(G)

>t =0 :0.01 : 6; figure, plot(t, 1sim(G, t, t))
>> xlabel(’t [s]’), ylabel(’output’)

>> title(’response to a unit ramp?’)

The time range is chosen automatically by step and impulse. |

Example 10.7. The response of the transfer function from Example [10.6] to a
step with amplitude 10 during 20 s can be found in two different manners, both
providing, of course, the same result:

>> [stepresp, timevector] = step(G, 20);
>t =0 : 0.01 : 20;

MATLAB s command
tmpulse
MATLAB’s command step

>> figure, plot(t, 1lsim(G, 10*ones(size(t)), t), timevector, 10*stepresp)

>> xlabel(’t [s]’), ylabel(’output’), title(’Step response’)

There is, in fact, a slight difference in the two plots shown in Figure[T0.6, because
function step chooses the sampling time automatically, and it is different from
the one explicitly fed to 1sim. O

10.2 Steady-state response and transient response
The impulse, unit step, and unit ramp responses of

1
G(S):s—i—l

from Example 0.6 shown in Figure as they are numerically calculated by
Matlab, can be found analytically as follows:

(10.25)
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Figure 10.5: Impulse, unit step and unit ramp responses of G(s) =

Example [10.6}
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Figure 10.6: Response of G(s) = 15 for a step with amplitude 10, from Exam-
ple I0.7

e Impulse response:

(10.26)

e Unit step response:

(10.27)

e Unit ramp response:

11 11 1
5—1{ +1—2} =g {——+—2+ +J =t—1+e"!
S S S S S

(10.28)

In each of them we can separate the terms that tend to zero as the time increases
from those that do not. The first make up what we call the transient response.
The latter make up what we call the steady-state response.

yit)= 0 + et (10.29)
steady-state transient

ys() = 1~ — et (10.30)
steady-state transient

yr(t)= t—1 + e7* (10.31)

steady-state transient
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Final value theorem

In other words, a time response y(t) can be separated into two parts, the tran-
sient response y;(t) and the steady-state response yss(t), such that

y(t) = y(t) + yss(t) (10.32)
t—ljgloo y(t) =0 (10.33)
(m Yss(t) #0 (10.34)

We also call transient to the period of time in which the response is dominated
by the transient response, and steady-state to the period of time in which the
transient response is neglectable and the response can be assumed equal to the
steady-state response. Whether a transient response can or cannot be neglected
depends on how precise our knowledge of the response has to be. Below in
Sections and we will see usual criteria for this.

The steady-state response can be:

e zero, as the impulse response of (I0.25]), shown in Figure (0.5}

e a non-null constant, as the unit step response of (I0.2H), shown in Fig-

ure (0.5

e an oscillation with constant amplitude, as the step response of m,
shown in Figure I0.7

e infinity, with the output increasing or decreasing monotonously, as the
unit step response of (I0.23), shown in Figure M0.5

e infinity, with the output oscillating with increasing amplitude, as the im-
pulse response of m, shown in Figure I0.71

What the steady-state response is depends on what the system is and on what
its input is.

Remark 10.7. Most systems never reach infinity. The probe of Example
can move away to outer space, but temperatures do no rise to infinite values
(before that the heat source is exhausted, or something will burn), robots reach
the end of their workspace, high electrical currents will activate a circuit breaker,
etc.; in other words, for big values of the variables involved, the linear model of
the system usually ceases in one way or another to be valid. O

Over the next sections we will learn several ways to calculate steady-state
responses without having to find an explicit expression for the output, and then
calculating its limit. When the steady-state response is constant or infinity, it
can be found from the final value theorem (Theorem [Z4)), i.e. applying (2.74).

Example 10.8. The steady-states of the impulse, step and ramp responses

(I0:26)- ([I0.28) are as follows:

1 - e 1 —t =

tilgtnoo vi®) ti}?oo € 0 (10.35)
. _ . ot

t_l}_lrmoo ys(t) = t_13+moo l—e 1 (10.36)
. T . -t _

t_l:TOO yr(t) = t_13+moot l1+e +00 (10.37)
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Figure 10.7: Time responses with oscillations: unit step response of m

(top) and impulse response of e (bottom).
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They can be found without the inverse Laplace transform using (2.74):

. . 1

At = ey =0 10:3%)
. 1

A0 =i 5= (10:59)
1

A =y e = O (10:40)

Example 10.9. Remember that (2.74) applies when the limit in time exists.
Figure[10.7 shows two cases where this limit clearly does not exist because of os-
cillations with an amplitude that does not decrease. But the two corresponding

limits are
lim y(t) = i L (10.41)
im =lims———— - = .
t—>+ooy s—)OS (82 —+ 1)(8 + 1) S
. T S o
t£+mooy(t) N 21_%5 (s24+1)2 > (10-42)

In the first case we got the average value of the steady-state response; in the
second, infinity. Neither case is a valid application of the final value theorem.
We need to know first if the time limit exists. O

The former example illustrates the importance of the concept of stability.
Bounded signal Definition 10.1. A signal z(¢) is bounded if 3K € R™ : V¢, |z(t)]| < K. O
BIBO stability Definition 10.2. A system is:

e stable if, for every input which is bounded, its output is bounded too;

e not stable if there is at least a bounded input for which its output is not
bounded.

This definition of stability is known as bounded input, bounded output stabil-
ity (BIBO stability). O

All poles of stable transfer Theorem 10.2. A transfer function is stable if and only if all its poles are on
functions are on the left the left complex half-plane.
complex half-plane . o

Proof. We will prove this in two steps:

e A transfer function G(s) is stable if and only if its impulse response g(t)
is absolutely integrable, i.e. iff IM € R™

/ )] d < M (10.43)
0

e A transfer function’s impulse response is absolutely integrable if and only
if all its poles are on the left complex half-plane.

O

Lemma 10.1. A transfer function is stable if and only if its impulse response
is absolutely integrable.
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Proof. Let us suppose that the impulse response g(¢) is absolutely integrable,
and that

+oo
/O lg(T)[dr = K (10.44)

Let us also suppose that the input u(t) is bounded, as required by the definition
of BIBO stability:

lu(t)] < U, Vt (10.45)
From (I0:24) we get

ly(®)] = lg(t) *u(t)] = ‘/0 g(r)ult —7)dr

< [ latryute =) ar

< [ o) ute =l ar

< U/ lg(m)|dr < UK (10.46)
0

So the output is bounded, proving that the condition (impulse response abso-
lutely integrable) is sufficient.

Reductio ad absurdum proves that it is also necessary. Suppose that the
impulse response g(t) is not absolutely integrable; thus, there is a time instant
T € R* such that

T
/ |g(7)d7 = +00 (10.47)
0
Now let the input u(t) be given by
uw(T —t) = sign(g(t)) (10.48)

This is a bounded input, —1 < u(t) < 1, V¢, and so, if the transfer function
were stable, the output would have to be bounded. But in time instant 7'

T T
y(T) = /0 g(Tu(t —7)dr = /0 lg(T)|dT = 400 (10.49)

and thus y(¢) is not bounded. This shows that the condition is not only sufficient
but also necessary. [l

Lemma 10.2. A transfer function’s impulse response is absolutely integrable
if and only if all its poles are on the left complex half-plane.

Proof. A transfer function G(s) has an impulse response given by 21 [G(s)].
Transfer function G(s) can be expanded into a partial fraction expansion, where
the fractions have the poles of G(s) in the denominator. Poles can be divided

into four cases.
e The pole is real, p € R, and simple. In this case the fraction % (where

k € R is some real numerator) has the inverse Laplace transform k e??.
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— If p =0, then lim ke’ = k. In this case the impulse response is
t——+o0

not absolutely integrable, since
+oo
/ |k| dt = lim |k[t = 400 (10.50)
0 t—+o0

— If p > 0, the exponential tends to infinity: lim ke?* = oo (de-

t——+o0
pending on the sign of k). If in the last case the response was not
absolutely integrable, even more so in this one.

— If p < 0, the exponential tends to zero: , 1i£rn kePt = 0. The impulse
—+00

response is absolutely integrable, since

/ |kept|dt:k/ eptdtk[—ept] =-0-1)=—-——€eR*
0 0 p 0 p p
(10.51)

e The pole is real and its multiplicity n is 2 or higher. In this case there will
. . . kn kpn— kn— k

be, in the expansion, fractions of the form R (Sip)rf,l , (Sfp)f,z S
(Here the k; € R, ¢ = 1...n are the numerators in the expansion.) The
corresponding inverse Laplace transforms are of the form G ki gi—lept o —

)l g
1...n.

— If p = 0, then the exponential tends to 1, but the power does diverge

(2

to infinity: lim t'"1eP! = +00 (depending on the sign of

t—=+oo (3 — 1)!
k), Vi > 2. So in this case the impulse response is not absolutely
integrable, as seen above.

4

— If p > 0, then lim ti71eP! = 400, Vi. Again, the impulse

t—+oo (i — 1)!
response is not absolutely integrable.

i

— If p < 0, then lim ti=1ePt = 0, Vi, since the effect of the

t—+oo (i — 1)!
exponential prevails. For the same reason, the impulse response is
absolute integrable, just as in (I0.5T]).

e The pole is complex, p = a + bj € C\R, a,b € R, and simple. Remember
once more that complex poles must appear in pairs of complex conjugates,
since all polynomial coefficients are real (otherwise real inputs would case
complex outputs). In this case the fraction ;% = % (where k € C

is some complex numerator) has the inverse Laplace transform

$—1|: k :|$—1|: k }keptkeatebjtkeatebjt

s—p s — (a+bj)
= ke (cos bt + jsinbt) (10.52)
and the fraction % = % (where z is the complex conjugate of

z € C) has the inverse Laplace transform

-1 k| _ -1 k — TPt — T pate—bit — T pat ,—bit
s—p s — (a—bj)
= ke (cos(—bt) + jsin(—bt)) = ke (cos bt — j sin bt)
(10.53)

158



Their effect on the impulse response is their sum:

k k -
Z1 [ } + 77t [ _] = ke (cosbt + jsinbt) + ke (cosbt — j sin bt)
§—D §—D

= (k + k) e cosbt = 2R (k) e cos bt
(10.54)

Notice that the imaginary parts cancel out, and we are left with oscillations
having:
— period 27”, where b is the positive imaginary part of the poles;

— amplitude 2R (k)e*, where a is the real part of the poles. The ex-
ponential is the important term, since it is the exponential that may
cause this term to vanish or diverge.

So:

— If a = 0, then the amplitude of the oscillations remains constant; they
do not go to zero neither do they diverge to an infinite amplitude.
This means that the impulse response is not absolutely integrable,
since

+o0 t+oo
/ 12R(k) cos b dt:2|§R(k)|/ lcos bt| dt
0 0
2

=2|R(k)| lim n/b |cos bt| dt
0

n—-+oo

z
=4|R(k)| lim n/ sin bt dt
0

n—-+oo

AR z
= ngr}rloon [— cosbt]$
= SRRl lim n =400 (10.55)
n—-+oo

— If @ > 0, the amplitude of the oscillations tends to infinity. Conse-
quently the impulse response will not be absolutely integrable.

— If a < 0, the exponential tends to zero, and so will the oscillations.
In this case the impulse response is absolutely integrable, since

+oo +o0
/ |2R (k) ™" cos bt| dt < 2R (k)| / e dt (10.56)
0 0

and we end up with a case similar to (I0.51)).

e The pole is complex and its multiplicity n is 2 or higher. This case is a

mixture of the last two. There will be terms of the form —-i—— +
— (s—(a-+bj))
(s—(:iibj))i’ i = 1...n. The corresponding inverse Laplace transform is

2(3?7(?),) t*=Le cosbt. So:

— If a = 0, then e = 1 but the amplitude of the oscillations still grows
to infinity, because of the power function, if ¢ > 2. So in this case
the impulse response will not be absolutely integrable.
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Unstable and marginally
stable systems

Unstable systems

Marginal stability

Marginally stable systems
have simple poles on the
1Maginary aris

Stable, marginally stable,
and unstable poles

— If a > 0, the amplitude of the oscillations tends to infinity. The same
conclusion follows.

— If a < 0, the exponential tends to zero, and for large times its effect
prevails; so the the impulse response will be absolutely integrable.

It is clear that one single term not tending exponentially to zero suffices to
prevent the impulse response from being absolutely integrable. Consequently,
the only way for the impulse response to tend to zero is that all poles should
have negative real parts; in other words, that all poles should lie on the left
complex half-plane. O

While some authors call unstable to all systems that are not stable, the
following distinction is current.

Definition 10.3. A system is:
e unstable if, for every input which is bounded, its output is not bounded;

e marginally stable if there are at least a bounded input for which its out-
put is bounded and a bounded input for which its output is not bounded.
O

Theorem 10.3. Marginally stable systems have no poles on the right complex
half-plane, and one or more simple poles on the imaginary axis.

Proof. 1t is clear from the proof of Lemma [[0.2] that simple poles on the imag-
inary axis correspond to:

e impulse responses which are bounded:

— a pole at the origin has a constant impulse response;

— a pair of complex conjugate imaginary poles has constant amplitude
sinusoidal oscillations as impulse response;

e responses to bounded inputs which are not bounded, since systems with
such poles are not stable.

A single pole p on the right complex half-plane makes a system unstable, since,
whatever the input may be, in the partial fraction expansion of the output there
will be a fraction of the form ﬁ, and the proof of Lemma [[0.2] shows that such
terms always diverge exponentially to infinity. The same happens with multiple
poles on the imaginary axis. O

The effect of each pole on the stability of a system justifies the following
nomenclature.

Definition 10.4. Poles are:
e stable, when located on the left complex half-plane;
e marginally stable, when simple and located on the imaginary axis;

e unstable, when multiple and located on the imaginary axis, or when
located on the right complex half-plane. [l
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lity depends on pole A system is:

on e stable, when all its poles are stable;

e marginally stable, when it has no unstable poles, and one or more of its
poles are marginally stable;

e unstable, when it has one or more unstable poles.

Example 10.10. From the location of the poles, we can conclude the following
about the stability of these transfer functions:

4
J St ; poles: —1, —2, —3; stable transfer function
(s+1)(s+2)(s+3)
-5
. —82 s poles: +1/65; marginally stable transfer function
s
s+7 . ]
e — . poles: =1/8; (double); unstable transfer function
(2 + 57
(s —12)(s + 13) ) _ N
° 5T 9202 + 205 1 231 poles: +—3 (double), —10+115; stable transfer
function

14
T poles: 15; unstable transfer function
5 —

16
e —; poles: 0; marginally stable transfer function
s

7
* poles: 0 (double); unstable transfer function

18

e ——: poles: 0, +v/18j; marginally stable transfer function
s(s? +18)
19 1 20, —21, —22, 23 table t
° ; poles: —20, —21, — ; unstable trans-
(5 +20)(s + 21)(s + 22)(s — 23) ' ¥ T TR
fer function O

Remark 10.8. Never forget that zeros have nothing to do with stability. O Poles, not zeros, deter-
mine stability

10.3 Time responses: periodic inputs

Consider the weaving loom in Figure [[0.8 The shuttle that carries the yarn
that will become the weft thread moves without cease from the left to the right
and then back. Meanwhile, half the warp threads are pulled up by a harness,
which will then lower then while the other half goes up, and this too without
cease. The corresponding references are similar to those in Figure They
are called square wave and triangle wave, and are examples of periodic Square wave

signals. Triangle wave

Definition 10.5. A periodic signal is one for which 3T € R* Periodic signals
fE+%)=f(t), vt (10.57)

T = min T is the period of signal f(t). O
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Figure 10.9: A square wave and a triangle wave (both with period 1 and ampli-
tude 1).
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Remark 10.9. Notice that the different values of ¥ are in fact the integer
multiples of T, i.e.

FE+T) = f(t), Vt = f(t+nT) = f(t), Vt,ne N O (10.58)

Triangle waves are also a useful alternative to ramps, since they avoid the
inconvenience of an infinitely large signal. Square waves are useful in experi-
mental settings for another reason: they allow seeing successive step responses,
and consequently allow measuring parameters several times in a row. For this
purpose, the period must be large enough for the transient regime to disappear.

Example 10.11. We can find the output of G(s) = —2- to a square wave with MATLAB’s command

s+20
period 1 s and amplitude 1 using MATLAB as follows:

>t =0 : 0.001 : 3;

>> u = square(t*2x*pi);

>> figure, plot(t,u, t,lsim(15/(s+20),u,t))
>> axis([0 3 -1.5 1.5])

square

>> xlabel(’t [s]’), ylabel(’input and output’), legend({’input’,’output’})

Notice that the amplitude of the first step is 1 and the amplitude of the following
steps is the peak to peak amplitude, twice as big, viz. 2. Also notice that there
is a step every half period, i.e. every 0.5 s.

The period was appropriately chosen since (as we shall see in Section [[0.5])
the transient response is practically gone after 0.5 s. A period four times smaller

would not allow seeing a complete step response. Both cases are shown in
Figure [[0.10 O

Another useful periodic signal is the sinusoid, which appears naturally e.g.
when working with tides and with any phenomena that are the projection onto
a plane of a circular movement on a perpendicular plane (and this includes such

different things as motor vibrations or daily thermal variations).

Theorem 10.4. The stationary response y(t) of a stable linear plant G(s)
subject to a sinusoidal input w(t) = sin(wt) is

y(t) = |G(jw)]| sin(wt + LG (jw)) (10.59)

where Zz is the phase, or argument, of z € C (also notated often as arg z), so
that z = |z|e4>.

Proof. The output is

y(t) =LY (s)] (10.60)
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If all poles pg, k =1,...,n of G(s) are simple, we can perform a partial fraction
expansion of Y (s) as follows:

n

b bo b

S+ jw s —jw =5~ Dk

n
= y(t) = boe 7 + bl 4 Y byePrt (10.62)
—_————
steady-state response yss(t) \k:l ,

transient

response y;(t)

We know that all terms in the transient response y;(t) belong there because the
exponentials are vanishing, since the poles are on the left complex half-plane.
If there are multiple poles, the only difference is that there will be terms of the
form (iﬁk‘l)!ti_lel’kt, i € IN in the transient response y;(t), which will still, of
course, be vanishing with time. In either case, the steady-state response is the
same.

From (I0.61) we know that Y(s) = G(s)m, and from (I0:62) we
know that Y (s) = -2 + b4 g [y:(t)]. We can multiply both by s + jw

st+jw s—jw

and obtain
w bo ,
G(s)——— =bo + — + 2Ly ()] ) (s + jw) (10.63)
s — jw s — jw
Now we evaluate this equality at s = —jw:
G(—jw)—— = b (10.64)
J —2jw 0 ’

Replacing by = G(—jw)}% and by = G(jw)Qij in yes(t) = boe ™%t + boelt, we
obtain

1 . 1 .
— s —jwt - Jwt
yss(t) = G( jw)—_2je + G(jw)_Qje

) ) 1 ) ‘ 1
= |G(*jw)|ejéG(_Jw)__2j€_JWt + |G(jw)|egéG(Jw)2_jert
] ; 1 : ) 1
= —|G(jw)|eJ(LG(—Jw)—wt)2_j + |G(.jw)|e](4G(Jw)+wt)2_j
= %|G(jw)| (ej(éG(jw)-i-wt) _ ej(éG(—jw)_wt))
J
1

= 2—j|G(jw)| <cos (LG(jw) + wt) + jsin (LG(jw) + wt)

— cos ( — (£LG(jw) + wt)) — jsin ( — (£G(jw) + wt) ))

= 2ij|G(jw)| ( cos (LG(jw) + wt) + jsin (LG(jw) + wt) — cos (LG (jw) + wt) + j sin (LG (jw) + wt) )
2ij|G(jw)|2j sin (ZG(jw) + wt)
= |G(jw)| sin (wt + ZG(jw))O (10.65)
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time/s

Figure 10.11: Vertical position of the AWS from Figure[3.2] simulated assuming
sinusoidal sea waves.

Corollary 10.2. Since G(s) is not only stable but also linear, if the input is
u(t) = Asin(wt) instead, the output is

y(t) = A|G(jw)| sin(wt + LG (jw)) (10.66)

Example 10.12. Figure[[0.ITlshows the simulated vertical position of the Wave
Energy Converter of Figure B.2] the Archimedes Wave Swing, when subject to
sinusoidal waves of different amplitudes. The device is in steady-state, as is clear
both from the regularity of its movements and from the time already passed since
the beginning of the simulation. As the input is sinusoidal, if the model were
linear, the output should be sinusoidal too. But the shape of the output is not
sinusoidal; it is not even symmetrical around its mean value; its amplitude does
not increase linearly with the amplitude of the input. The model used to obtain
these simulation results is obviously non-linear. [l

10.4 Frequency responses and the Bode diagram
([I066) shows that, if a stable system G(s) has a sinusoidal input, the steady-

state output is related to the input through G(jw), which is the Fourier trans-
form (2.87) of the differential equation describing the system’s dynamics:

Frequency, amplitude, and e if the input is sinusoidal, the steady-state output is sinusoidal too;
phase of output for sinu-
soidal inputs o if the input has frequency w, the steady-state output has frequency w too;

e if the input has amplitude A (or peak-to-peak amplitude 2A4), the steady-
state output has amplitude A|G(jw)| (or peak-to-peak amplitude 2A|G(jw)|);

e if the input has phase 6 at ¢ = 0, the steady-state output has phase
0+ £G(jw) at t = 0.
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Remember that:

e the steady-state output is sinusoidal, but the transient is not: you must The transient is not sinu-
wait for the transient to go away to have a sinusoidal output; soidal

e unstable systems have transient responses that do not go away, so you will
never have a sinusoidal output;

e w is the frequency in radians per second. w is in rad/s
Definition 10.6. Given a system G(s):

e its frequency response is G(jw), a function of w; Frequency response

e its gain at frequency w is |G(jw)l; Gain

e its gain in decibel (denoted by symbol dB) is 20log, |G(jw)| (gain Gain in dB
|G(jw)| is often called gain in absolute value, to avoid confusion with the Gain in absolute value
gain in decibel);

e its phase at frequency w is ZG(jw). O Phase

Remark 10.10. These definitions are used even if G(s) is not stable. If the
system is stable:

e the gain is the ratio between the amplitude of the steady-state output and
the amplitude of the input;

e the phase is the difference in phase between the steady-state output sinu-

soid and the input sinusoid. [l
Example 10.13. Figure shows the output of G(s) = (sf’%))((is;-ll)om for a
sinusoidal input of frequency 1 rad/s, found as follows:
>> s = tf(’s?);
>> G = 300%(s+1)/((s+10)*(s+100));

>t =0 : 0.001 : 30;
>> figure, plot(t,sin(t), t,lsim(G,sin(t),t))
>> xlabel(’time [s]’), ylabel(’output’), grid

The amplitude of the input is 1, by construction; the amplitude of the out-
put is 0.4219. So the gain at 1 rad/s is %422 = 0.4219 in absolute value, or
20log;;0.4219 = —7.50 dB. This maximum value is taking place at 26 s, while
the corresponding maximum of the input takes place later, at 4 x27+3 = 26.7 s.
As the period is 27 = 6.28 s, the phase is 2667—27826 x 360° = 40°.

Figure [[0.12 also shows the output of G(s) when the frequency is 200 rad/s:

>t =0 :0.0001 : 0.2;
>> figure, plot(t,sin(200*t), t,lsim(G,sin(200*t),t))
>> xlabel(’time [s]’), ylabel(’output’), grid

In that case, the amplitude of the input is still 1 and the amplitude of the
output is 1.313. So the gain at 200 rad/s is % = 1.313 in absolute value, or
20log;y1.313 = 2.37 dB. This maximum value is taking place at 0.1703 s, while
the corresponding maximum of the input takes place earlier, at 5 x QQT“('J + 2% =

167



Amplification

Attenuation

0.1649 s. As the period is 2% = 0.0314 s, the phase is 24029201703 5 360° =

—62°

200

In both cases, it is visible that the first oscillations are not sinusoidal, because
of both their shape and their varying amplitudes. In other words, the transient
has not yet disappeared by then. [l

In the example above, the amplitude of the output was larger than that of
the input in one case, and smaller in the other. Also in one case the extremes
of the output sinusoid took place earlier than those of the input sinusoid, while
in the other case it was the other way round.

Definition 10.7. Given

then:

a stable system G(s),
with sinusoidal input of frequency w and amplitude A,,,

with steady-state sinusoidal output also of frequency w and amplitude
Ay = Au|G(w);

If the amplitude of the output is larger than the amplitude of the input,
A, > A,, the system is amplifying its input:

A
Ay, > Ay = |Gjw)| = A_y > 1= 20log, |G(jw)| > 0 dB (10.67)

That is to say:

— the gain in absolute value is larger than 1;

— the gain in decibel is larger than 0 dB.

If the amplitude of the output is smaller than the amplitude of the input,
A, > A,, the system is attenuating its input:

A
Ay < Ay = |G(jw)| = A—y <1=20log;, |G(jw) <0dB  (10.68)

That is to say:

— the gain in absolute value is smaller than 1;
— the gain in decibel is smaller than 0 dB.
If the amplitude of the output and the amplitude of the input are the same,

A, = A,, the system is neither amplifying nor attenuating its input:

A
Ay = Ay = |G(jw)] = FL =1 = 20log;y [G(jw)| =0 dB  (10.69)

u

That is to say:

— the gain in absolute value is 1;

— the gain in decibel is 0 dB.
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Figure 10.12: Response of G(s) = (5 + 10)(s + 100)

to two sinusoids with dif-

ferent periods.
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Table 10.1: Gain values; A, is the amplitude of the input sinusoid and A, is
the amplitude of the steady-state output sinusoid

Gain in absolute value Gain in decibel Amplitudes
Minimum value |G(jw)| =0 2010og 10|G(jw)| = —oco dB Ay =0
Attenuation 0<|G(jw)| <1 201og 10|G(jw)| < 0 dB Ay < Ay
Input and output with same amplitude G(jw)| =1 201og 10|G(jw)| = 0 dB Ay = A,
Amplification G(jw)| > 1 201og 10|G(jw)| > 0 dB Ay, > A,

Phase lead

Phase lag

Phase opposition

Furthermore:

If the extremes of the output take place earlier than the corresponding
extremes of the input, the output leads in relation to the input; this
means that

ZG(jw) >0 (10.70)

If the extremes of the output take place later than the corresponding
extremes of the input, the output lags in relation to the input; this means
that

ZG(jw) < 0 (10.71)

If the extremes of the output and the corresponding extremes of the input
take place at the same time, the output and the input are in phase; this
means that

ZG(jw) =0 (10.72)
If the maxima of the output and the minima of the input take place at

the same time, and vice versa, the output and the input are in phase
opposition; this means that

/G (jw) = £180° = £ rad O (10.73)

Remark 10.11. Notice that, since sinusoids are periodic, the phase is defined
up to 360° shifts: a 90° phase is undistinguishable from a —270° phase, or for
that matter from a 3690° phase or any 90° + k360°, k € Z phase. While each
of these values can be in principle arbitrarily chosen, it usual to make the phase
vary continuously (as much as possible) with frequency, starting from values for
low frequencies determined as we will see below in Section [I0.7 O

Gain values can be summed up as shown in Table [0l

Example 10.14. Consider the responses to sinusoidal inputs of G(s) =

in Figure I0.13
e For w = 0.5 rad/s:

— The amplitude of the output is larger than that of the input, so we
must have

IG(j0.5)] > 1 & 20log,, |G(j0.5)| > 0 dB (10.74)
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— In fact, the gain is

1 1 1
G(j0.5)| = = = =1.26
IG(50.5)] (j0.5)2 + 0.5;50.5 + 1 ' ' 1-0.25+50.25|  /0.752 + 0.252
= 201log,, G(j0.5) = 201og;; 1.26 = 2 dB (10.75)

— The output is delayed in relation to the input, so we must have
ZG(j0.5) < 0.

— In fact, the phase is

1
0.75+ j0.25

2
) — /1— 2(0.75 + j0.25) = 0° — arctan 22> — _18°

Z/G(j0.5) = £ ( oE =
(10.76)

e For w=1rad/s:

— The amplitude of the output is even larger now, so

IG(j)] > |G(j0.5)] = 1.26 & 201og,, |G(j)| > 20log;o G(j0.5) = 2 dB
(10.77)

— In fact, the gain is
1 1 1
GO j2+0.5j+1‘ ’j0.5’ 5

= 20log;( G(j) =201log,,2 =6 dB (10.78)

— The output is delayed in relation to the input. Furthermore, the
output crosses zero as the input is already at a peak or at a through.
So the phase is negative, and equal to —90°.

— In fact,

£G(j) 4( !

) = Z£1— £(j0.5) = 0° — 90° = —90°  (10.
j0_5> (j0.5) = 0° — 90 90°  (10.79)

e For w=2rad/s:

— The amplitude of the input is larger than that of the output, so we
must have

IG(j2)| < 1 < 201log,, |G(j2)| < 0 dB (10.80)

— In fact, the gain is

1 1 1
G(j2)| = = = =0.316
G2 (2j)2+0.5j2+1‘ ‘—3+j‘ VO+1
= 201log;, G(j2) = 201og,, 1072 = —10 dB (10.81)

— The output is delayed in relation to the input. Furthermore, input
and output are almost in phase opposition, but not yet. So we must
have 0° < ZG(j2) < —180°, but close to the latter value.
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Linear Simulation Results
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— In fact, the phase is

1
~3+

£G(j2) = £ (
(10.82)

The Bode diagram, or Bode plot, is a graphical representation of the fre-
quency response of a system, as a function of frequency. This diagram comprises
two plots:

e a top plot, showing the gain in dB (y—axis) as a function of frequency in
a semi-logarithmic scale (z—axis);

e a bottom plot, showing the phase in degrees (y—axis) as a function of
frequency in a semi-logarithmic scale (z—axis).

Frequency is usually given in rad/s, but sometimes in Hz.

In the following sections we will learn how to plot by hand the Bode diagram
of any plant (or at least a reasonable approximation thereof); meanwhile, the
following MATLAB commands can be used instead:

e bode plots the Bode diagram of a system:;

e freqresp calculates the frequency response of a system.

Example 10.15. The Bode diagram in Figure [0.14 of G(s) = %
from Example is found as follows:

>> s = tf(’s?);
>> G = 300%(s+1)/((s+10)*(s+100));
>> figure, bode(G), grid

The gains and phases at w = 1 rad/s and w = 200 rad/s found in Example T0.13
can be observed in the diagram.

This way we first find the frequency response and then use it to plot the
Bode diagram:

1
) =/1—-/4(-3+4+j)=0°— arctan—3 =-162° O

Bode diagram

MATLAB’s command bode

MATLAB s command
freqresp

>> [Gjw, w] = freqresp(G); % Gjw returned as a 3-dimensional tensor...

>> Gjw = squeeze(Gjw); % ...must now be squeezed to a vector
>> figure, subplot(2,1,1), semilogx(w, 20*logl0(abs(Gjw)))

>> grid, xlabel(’frequency [rad/s]’), ylabel(’gain [dB]’), title(’Bode diagram’)

>> subplot(2,1,2), semilogx(w, rad2deg(unwrap(angle(Gjw))))

>> grid, ylabel(’phase [degrees]’) J, unwrap avoids jumps of 360 degrees

To find the gains and phases to confirm those found found in Example

>> Gjw = freqresp(G, [1 200])
Gjw(:,:,1) =

0.3294 + 0.26401
Gjw(:,:,2) =

0.6525 - 1.1704i
>> gains = 20*logl0(abs(Gjw))
gains(:,:,1) =
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Bode Diagram
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Figure 10.14: Bode diagram of G(s) =

-7.4909
gains(:,:,2) =
2.5420
>> phases = rad2deg(unwrap(angle(Gjw)))
phases(:,:,1) =
38.7165
phases(:,:,2) =
-60.8590

Here’s another way of find the same values:

>> w = [1 200];
>> Gjw = 300*(1li*xw+1)./((1i*w+10) .*x(1i*w+100));
Gjw =
0.3271 + 0.26761 0.6186 - 1.2212i
>> gains = 20*logl0(abs(Gjw))
gains =
-7.4909 2.5420
>> phases = rad2deg(unwrap(angle(Gjw)))
phases =
38.7165 -60.8590

Notice the small differences due to numerical errors.

Example 10.16. The Bode diagram in Figure I0.15 of G(s) =

1
s240.55+1

O

from

Example [[0.74] shows the gains and phases found in that example, that can also

be found as follows:

>> G = tf(1,[1 .5 1])
G =
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Bode Diagram
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Fi 10.15: Bode di f—.
igure ode diagram of — 0551

s2 + 0.5s +1
Continuous-time transfer function.

>> figure,bode(G),grid on
>> Gjw = squeeze(freqresp(G, [.5 1 2]))
Gjw =
1.2000 - 0.40001
0.0000 - 2.00001
-0.3000 - 0.1000i
>> gains = 20*logl0(abs(Gjw))
gains =
2.0412
6.0206
-10.0000
>> phases = rad2deg(unwrap(angle(Gjw)))
phases =
-18.4349
-90.0000
-161.5651

O

Example 10.17. From the Bode diagram in Figure [[0.16] even without know-
ing what transfer function it belongs to, we can conclude the following;:

e At w = 0.1 rad/s, the gain is 20 dB (i.e. 102 = 10 in absolute value) and
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the phase is 0° = 0 rad. So, if the input is
. T
u(t) = 5sin(0.1¢ + E) (10.83)
the steady-state output will be

y(t) = 5 x 10sin(0.1¢ + %) = 50sin(0.1t + %) (10.84)

At w = 10 rad/s, the gain is 17 dB (i.e. 1020 = 7.1 in absolute value) and

the phase is —45° = —7 rad. So, if the input is

u(t) = 5sin(10¢ + %) (10.85)

the steady-state output will be

™

y(t) = 5 x 7.1sin(10¢ + % — ) = 35.5sin(10t — %) (10.86)

S

At w = 100 rad/s, the gain is 0 dB (i.e. 10° = 1 in absolute value) and
the phase is —85° = —1.466 rad. So, if the input is

u(t) = 5sin(100t + %) (10.87)
the steady-state output will be

y(t) =5 x 1sin(100t + 0.524 — 1.466) = 5sin(100t — 0.942)  (10.88)

At w = 1000 rad/s, the gain is —20 dB (i.e. 102 = 0.1 in absolute value)
and the phase is —90° = —Z rad. So, if the input is

2
u(t) = 5sin(1000¢ + %) (10.89)
the steady-state output will be

y(t) = 5 x 0.1sin(1000¢ + % - g) = 0.5sin(1000t — g) (10.90)

The system is linear. So, if the input is
. T . ™
u(t) = 0.5sin(0.1¢ + E) + 25sin(1000¢ + E) (10.91)

the steady-state output will be

y(t) = 0.5 x 10sin(0.1¢ + %) +25 x 0.1sin(1000¢ + — — =) = 5sin(0.1¢ + %) + 2.55in(1000¢ — —

6 2
(10.92)

Notice how the frequency with the largest amplitude in the input now has
the smallest. O
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Figure 10.16: Bode diagram of Example [[0.17

10.5 Time and frequency responses of a first-order
system without zeros

Still to appear.

10.6 Time and frequency responses of a second-
order system without zeros

Still to appear.

10.7 Systems with more zeros and poles: fre-
quency responses

Still to appear.

10.8 Systems with more zeros and poles: stabil-
ity

Still to appear.

10.9 Systems with more zeros and poles: time
responses

Still to appear.
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Exercises
1. For each of the following pairs of a transfer function and an input:

e find the Laplace transform of the input;
e find the Laplace transform of the output;

e find the value of the output for ¢ > 1 without using the inverse
Laplace transform;

e find the output as a function of time;
e separate that function of time into a transient and a steady state;

e confirm the value of the output for ¢ > 1 found previously.

(a) G(s) = % and u(t) =0.4, t >0
(b) G(s) = — g7 and u(t) =26, ¢ >0

(c) G(s) = ﬁ and u(t) = 8(t)

(d) G(s) = ﬁ and u(t) = 0.4, t >0

(e) G(s) = g and u(t) = 0.4, £ >0

2. From the poles of the transfer functions of Exercise[Ilof Chapter[@ explain
which of them are stable, unstable, or marginally stable.

3. Figure[I0.I7shows the Bode diagrams of some transfer functions. For each
of them, read in the Bode diagram the values from which you can calculate
the transfer function’s steady state response to the following inputs:

o u(t) =sin(2t)

o u(t) =sin(2t + %)

o u(t) = sin(1000¢)

e u(t) = 10sin(1000t)

e u(t) = £sin(0.1¢ — F) + sin(2¢ + 5)10sin(1000¢)

4. For each of the following transfer functions:

e find the corresponding Fourier transform;

e find the gain (both in absolute value and in decibel) and the phase
(in radians or degrees, as you prefer) at the indicated frequencies.

(a) G(s) = +50.1 and w = 0.01,0.1,1 rad/s
(b) G(s) = ﬁ and w =0.1,1,10 rad/s

(¢) G(s) = © and w = 1,10,100 rad/s
S
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Figure 10.17: Bode diagrams of Exercise Bl
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Figure 10.18: RAO of four heaving buoys of Exercise (source:
http://marine-eng.ir/article-1-80-en.pdf).

5. In naval and ocean engineering it is usual to call Response Amplitude RAO
Operator (RAO) to what we called gain. It is often represented in abso-
lute value in a linear plot as a function of frequency. Figure shows
the RAO of four different heaving buoys. Suppose that each of them is
subject to waves with an amplitude of 2 m and a frequency of 27 rad/s.
What will be the amplitude of the oscillation of each buoy?

6. Use the Routh-Hurwitz criterion to find how many unstable poles each of
the following transfer functions has, and classify each system as stable,
marginally stable, or unstable.

s? + gs —10
@) T i
b s+ 2
() st —25% — 1357 + 145+ 24
9 . . .
(c) T 55 1§Si_+ 4% 1 2452 Hint: can you put anything in evi-

dence in the denominator?
3 2
d s° +2s"+ s
(d) P+ 43 +4s+5
(e) 2 +2s°+s
s° + 45 + 452 + 55
3 2
£y o+ 25+ s
®) 253 — 65 +4

7. Find the ranges of values of K1, Ko € R for which the systems with the
following characteristic equations are stable.

(a) s*+3s? 4+ 10s + K3
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(b)
()

8. Consider transfer function G(s) =

(a)

s34+ K382 +10s+ 5
34282+ (K1 + 1)s + Ko

10
T 10s+1°

When the input is a unit step, what will the steady state response
be?

When the input is a step with amplitude 3, what will the steady state
response be?

Without computing an expression for the output, give a rough esti-
mate of how long it takes for the output to reach 20, when the input
is a step with amplitude 3.

Without computing an expression for the output, give a rough esti-
mate of the 2% settling time, when the input is a step with amplitude
3.

Calculate the output as a function of time, using an inverse Laplace
transform, and find the exact values of the estimations from the last
two questions.

Suppose that the input is now a unit step again. What will the
new value of the 2% settling time be? Hin¢: is the system linear or
non-linear?

9. Sketch the following step responses, marking, whenever they exist,

the settling time according to the 5% criterion,
the settling time according to the 2% criterion,

the steady-state value.

G(s) = ;}_—55, for input w(t) = 4H(t)

1
G(s) = fol, for input w(t) = H(t)
1 . _
G(s) = CYSEE for input u(t) = —H(t)
(s) = yPEE for input w(t) = 10H (t)

G(s) = 15_0’ for input u(t) = H(t)

10. Sketch the Bode diagrams of the following transfer functions, indicating

the gain for low frequencies,

the frequency at which the gain is 3 dB below the gain for low fre-
quencies,

the slope of the gain for high frequencies,
the phase for low frequencies,

the phase for high frequencies,
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11.

12.

13.

14.

e the frequency at which the phase is the average of those two values.

Hint: you do not need to draw the exact evolution of the phase; ap-
proximate it by three straight lines: a horizontal one for low frequencies,
another horizontal one for high frequencies, and then connect these two
by a straight line two decades wide. You can also approximate the gain
by two straight lines, but do not forget to mark the frequency at which
the gain has decreased 3 dB.

(@) G(s) =
(b) Gls) = —+=
(©) G(s) = 251+1
(@) Gls) = 452+1
@) G5 =2

100
Find analytically the unit step responses of G;(s) = and Ga(s) =
S

+10
1
st 00. Sketch them both in the same plot, marking the 5% settling time

S
for each. Plot separately the difference between them. Then do the same

8 s+8
for G5(s) = P and Gu(s) = T2
1
Let G(s) = Pk

(a) Consider the unit step response of G(s). What is the settling time,
according to the 5% criterion?

(b) Find analytically the unit ramp response y(t) of G(s).

(c) Find the analytical expression of the steady-state yss(¢t) of that re-
sponse y(t).

(d) How long does it take for ‘%Z)y(t) to be less than 5%? In other

words, find how long it takes for the unit ramp response to be within
a 5% wide band around its steady state.

A first order system % has the response tabulated in Table [0.2] when
its input is a unit step applied at instant ¢ = 0.5 s. Find the gain K and
the pole p. Hint: subtract the response from the steady state value; you
should now have an exponential with a negative power. Plot its logarithm
and adjust a straight line.

b
Prove that, if G(S) = ﬁ
S a1 s ap

tive zero at ¢ = 0. Do this as follows:

is stable, its step response has deriva-

(a) Use a table of Laplace transforms to find the unit step response of
Wl(ﬂb)' Calculate its derivative, proving thus the thesis for the
case of two real poles.
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Table 10.2: Unit step response of Exercise [[3

time | output time | output
0.0 | 0.0000 0.8 | 0.0950
0.1 | 0.0000 0.9 | 0.0982
0.2 | 0.0000 1.0 | 0.0993
0.3 | 0.0000 1.1 | 0.0998
0.4 | 0.0000 1.2 | 0.0999
0.5 | 0.0000 1.3 | 0.1000
0.6 | 0.0632 1.4 | 0.1000
0.7 | 0.0865 1.5 | 0.1000

(b) Use a table of Laplace transforms to find the unit step response of
ﬁ. Calculate its derivative, proving thus the thesis for the case
of a double real pole.

(c) Use a table of Laplace transforms to find the unit step response of

ﬁﬂm. Calculate its derivative, proving thus the thesis for the
case of a double real pole.

15. For each of the transfer functions below, and for the corresponding step
input, find, if they exist:
e the natural frequency w,, and the damping factor &,
e the steady state value yss,
e the delay time t; and the rise time ¢,

e the peak time ¢, and the maximum overshoot M, (expressed in per-
centage),

e the 5% and the 2% settling times (use the expressions for the expo-
nential envelope of the oscillations),

e the location of the poles,

and sketch the step response.

(a) G(s) = m for input u(t) = 0.1H(t)
(b) G(s) = m for input u(t) = 18H(t)
(¢) G(s) = 28%8 for input w(t) = H()

(d) G(s) = ﬁ, for input w(t) = 2H(t)

(¢) G(s) = 52;)4% for input u(t) = 15H (1)

16. Sketch the Bode diagrams of the following transfer functions, indicating

e the gain for low frequencies,

e the resonant peak value, and the frequency at which it is located, if
indeed there is one,
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the slope of the gain for high frequencies,

the phase for low frequencies,
e the phase for high frequencies,

e the frequency at which the phase is the average of those two values.

Hint: you do not need to draw the exact evolution of the phase; ap-
proximate it by three straight lines: a horizontal one for low frequencies,
another horizontal one for high frequencies, and then connect these two
by a straight line two decades wide. You can also approximate the gain
by two straight lines, but if there is a resonant peak mark it in your plot.

(@) G() = 50
() Gl) = o
©) G(s) =
(@) G = 5

17. Find the second order transfer functions that, for a unit step input, have:

(a) t, = 0.403 s, M, = 16.3%, yss = 0.8
(b) t, = 0.907 s, y(t,) = 11.63, yss = 10
(c) t, =0.132 s, tyo9, = 2.0 s, yss = 0.5

18. Consider the mechanical system in Figure When f(t) = 89 N,
t > 0, the output has t, = 1's, M, = 9.7%, and yss = 3 x 1072 m.

(a) Find the values of mass M, viscous damping coefficient B, and spring
stiffness K.

(b) Suppose we want the same steady-state regime and the same settling
time, but a maximum overshoot of 0.15%. What should the new
values of M, B and K be?

19. Plot the Bode diagrams of the following plants:

—4s + 20
(@) G0) = F0a2 + 45
0 G 0 S = 0
_ 120 +1)
(C) G(S) - S(S T 2)2(3 + 3)
(@) G6) = oG +10)
10s
© G = i 157 2)
1) Gla) = (s + 4)(s + 20)

(s +1)(5 +80)
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20.

21.

22.

23.

Figure 10.19: System of Exercise [I8

Establish a correspondence between the three Bode diagrams and the three
unit, step responses in Figure [10.20

Establish a correspondence between the three Bode diagrams and the three
unit step responses in Figure [0.27]

Find the transfer functions corresponding to the Bode diagrams in Fig-
ure [10.22)

Consider the following transfer functions:

5050s + 10000

s2 4 101s + 100
100s + 10000

s2 +101s+ 100

Gi(s) = (10.93)

Ga(s) = (10.94)

(a) Find their poles.
(b) Which pole is faster? Why?

(c) Which of the two transfer functions will respond faster to a unit step?
Why?
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Figure 10.21: Bode diagrams and unit step responses of Exercise 211
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