
Chapter 10

Time and frequen
y responses

We already know that we 
an use the Lapla
e transform (and its inverse) to �nd

out the output of any transfer fun
tion for any parti
ular input. In this 
hap-

ter we study several usual parti
ular 
ases. This allows us to �nd approximate

responses in many 
ases, and to 
hara
terise with simpli
ity more 
omplex re-

sponses. It also paves the way to the important 
on
ept of frequen
y responses.

10.1 Time responses: steps and impulses as in-

puts

The following inputs are routinely used to test systems:

• The impulse: Impulse

u(t) = δ(t) (10.1)

L [u(t)] = 1 (10.2)

• The step, with amplitude d: Step

u(t) = dH(t) (10.3)

L [u(t)] =
d

s
(10.4)

• In parti
ular, the unit step, with amplitude 1: Unit step

u(t) = H(t) (10.5)

L [u(t)] =
1

s
(10.6)

• The ramp, with slope d: Ramp

u(t) = d t (10.7)

L [u(t)] =
d

s2
(10.8)
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• In parti
ular, the unit ramp, with slope 1: Unit ramp

u(t) = t (10.9)

L [u(t)] =
1

s2
(10.10)

• The parabola, with se
ond derivative 2d:Parabola

u(t) = d t2 (10.11)

L [u(t)] =
2d

s3
(10.12)

• In parti
ular, the unit parabola, with se
ond derivative 2:Parabola

u(t) = t2 (10.13)

L [u(t)] =
2

s3
(10.14)

You 
an either �nd the Lapla
e transforms above in Table 2.1, or 
al
ulate them

yourself.

Remark 10.1. Noti
e that:

• the unit step is the integral of the impulse:

∫ t

0

δ(t) dt = H(t);

• the unit ramp is the integral of the unit step:

∫ t

0

H(t) dt = t;

• the unit parabola is not the integral of the unit ramp:

∫ t

0

t dt =
1

2
t2 6=

t2.

Remark 10.2. Remember that while the Heaviside fun
tion H(t) is a fun
tion,Properties of δ(t)
and so are t and t2, the Dira
 delta δ(t) is not. It is a generalised fun
tion, andδ(t) is not a fun
tion

the limit of the following family of fun
tions:

f(t, ǫ) =

{
1
ǫ
, if 0 ≤ t ≤ ǫ

0, if t < 0 ∨ t > ǫ
(10.15)

δ(t) = lim
ǫ→0+

f(t, ǫ) (10.16)

Sin
e

∫ +∞

−∞
f(t, ǫ) dt =

∫ ǫ

0

f(t, ǫ) dt =

∫ ǫ

0

1

ǫ
dt = 1, ∀ǫ ∈ R

+
(10.17)

we have alsoIts integral in R is 1

∫ +∞

−∞
δ(t) dt = 1 (10.18)
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Furthermore, for a 
ontinuous fun
tion g(t),

f(t, ǫ) min
0≤t≤ǫ

g(t) ≤ f(t, ǫ)g(t) ≤ f(t, ǫ) max
0≤t≤ǫ

g(t)

⇒
∫ ǫ

0

f(t, ǫ) min
0≤t≤ǫ

g(t) dt ≤
∫ ǫ

0

f(t, ǫ)g(t) dt ≤
∫ ǫ

0

f(t, ǫ) max
0≤t≤ǫ

g(t) dt

⇔ min
0≤t≤ǫ

g(t)

∫ ǫ

0

f(t, ǫ) dt ≤
∫ ǫ

0

f(t, ǫ)g(t) dt ≤ max
0≤t≤ǫ

g(t)

∫ ǫ

0

f(t, ǫ) dt

⇒ min
0≤t≤ǫ

g(t) ≤
∫ ǫ

0

f(t, ǫ)g(t) dt ≤ max
0≤t≤ǫ

g(t) (10.19)

where we used (10.17). Making ǫ → 0+, we get

g(0) ≤
∫ ǫ

0

f(t, ǫ)g(t) dt ≤ g(0) ⇔
∫ ǫ

0

f(t, ǫ)g(t) dt = g(0) (10.20)

A 
onsequen
e of this is that

L [δ(t)] =

∫ +∞

0

δ(t)e−st dt = e−s0 = 1 (10.21)

The reasons why (10.1)�(10.13) are routinely used as inputs to test systems

are:

• They are simple to 
reate.

• Cal
ulations are simple, given their Lapla
e transforms.

• They 
an be used to model many real inputs exa
tly, and even more as

approximations.

Example 10.1. The following situations 
an be modelled as steps:

• A metal workpie
e is taken from an oven and quen
hed in oil at a lower

temperature.

• A slui
e gate is suddenly opened, letting water into an irrigation 
anal.

• A swit
h is 
losed and a tension is thereby applied to the motor that

rotates the joint of a welding robot.

• A �nished part is dropped onto a 
onveyer belt.

• A 
ar advan
ing at 
onstant speed des
ends a sidewalk onto the street

pavement.

Example 10.2. The following situations 
an be modelled as ramps:

• A deep spa
e probe moves out of the solar system at 
onstant speed along

a straight line in an inertial system of 
oordinates, due to inertia, far from

the gravitational in�uen
e of any 
lose 
elestial body.

• A high-speed train moves from one station to another at 
ruiser speed.

• A welding robot 
reates a welding joint at 
onstant speed, to ensure a

uniform thi
kness.
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Figure 10.1: Two fun
tions that 
an be approximated by an impulse if t0 ≈ t1
(left) or t0 ≈ t3 (right).

Noti
e that, save for the �rst example, the ramp is limited in time: sooner or

later, the train and the welding robot will have to stop. In fa
t, unlimited ramps

are seldom found.

Remark 10.3. The impulse is in fa
t impossible to 
reate: there are no physi
al

quantities applied during no time at all, with an in�nite intensity. However, the

impulse is a good approximation of inputs that have a very short duration.

Figure 10.1 shows two inputs in that situation: a sequen
e of two steps

u1(t) = kH(t− t0)− kH(t− t1)

=

{

k, if t0 ≤ t ≤ t1

0, if t < t0 ∨ t > t1
≈ k(t1 − t0)δ(t) (10.22)

and, even more realisti
ally, a sequen
e of two ramps, approximated by

δ(t)

∫ +∞

0

u2(t) dt = δ(t)

[
1

2
k(t1 − t0) + k(t2 − t1) +

1

2
k(t3 − t2)

]

= δ(t)
k

2
(t3 + t2 − t1 − t0) (10.23)

Of 
ourse, any input with a form su
h as that of Figure 10.1 
an be approximated

by an impulse (multiplied by the integral over time of the input).

Remark 10.4. Unit steps are almost ex
lusively used be
ause amplitude 1

makes 
al
ulations easier. Sin
e we are assuming linearity, if the amplitude of

the step is d instead of 1, the output will be that for the unit step, multiplied

by d. The same 
an be said for unit ramps and unit parabolas. When steps (or

ramps, or parabolas) are applied experimentally, amplitude 1 may be too big or

too small, and a di�erent one will have to be used instead.

Example 10.3. Suppose you want to test a 
ar's suspension, when the wheel


limbs or des
ends a step. Obviously nobody with a sound mind would apply a

1 m step for this purpose (see Figure 10.3). A 10 
m step would for instan
e be

far more reasonable. Of 
ourse, if our model is linear, we 
an apply a unit step,

knowing well that the result will be nonsense, and then simply s
ale down the

result.
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Figure 10.2: General form of a fun
tion that 
an be approximated by an impulse

if t0 ≈ t1.

Figure 10.3: Would you test a 
ar's suspension like this? (Sour
e: Wikimedia,

modi�ed)
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Figure 10.4: The Rasteirinho mobile robot, without the laptop 
omputer with

whi
h it is 
ontrolled.

Example 10.4. The Rasteirinho (see Figure 10.4) is a mobile robot, of whi
h

about a dozen units are used at IST in laboratory 
lasses of di�erent 
ourses.

It is 
ontrolled by a laptop 
omputer, �xed with vel
ro. Its maximum speed

depends on the parti
ular unit; in most, it is around 80 
m/s. Consequently, it

is useless to try to make its position follow a unit ramp, whi
h would 
orrespond

to a 1 m/s velo
ity. On
e more, we 
ould simulate its behaviour with a linear

model for a unit ramp and then s
ale the output down.

Example 10.5. In the WECs of Figures 3.2 and 3.3, the air inside the devi
e is


ompressed by the waves. A 
hange of air pressure of 1 Pa is ludi
rously small;

it is useless even to try to measure it. But if our model of the WEC is linear we


an simulate how mu
h energy it produ
es when a unit step is applied in the air

pressure and then s
ale the result up to a more reasonable value of the pressure

variation.

In what follows we will 
on
entrate on the impulse and unit step responses,

and mention responses to unit ramps and steps with amplitudes whi
h are not

1 whenever appropriate.

Theorem 10.1. The impulse response of a transfer fun
tion has a Lapla
eImpulse response of a sys-

tem transform whi
h is the transfer fun
tion itself.

Proof. Sin
e G(s) = Y (s)
U(s) , where G(s) is a transfer fun
tion, Y (s) is the Lapla
e

transform of the output, and U(s) is the Lapla
e transform of the input, and

sin
e the Lapla
e transform of an impulse is 1, the result is immediate.

Remark 10.5. This allows de�ning a system's transfer fun
tion as the Lapla
e

transform of its output when the input is an impulse. This de�nition is an

alternative to De�nition 4.1 found in many textbooks.
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Corollary 10.1. The output of a transfer fun
tion G(s) for any input u(t)
is equal to the 
onvolution of the input with the transfer fun
tion's impulse

response g(t):

y(t) = g(t) ∗ u(t) =
∫ t

0

g(t− τ)u(τ) dτ (10.24)

Proof. This is an immediate result of Theorem 10.1 and of (2.78).

Remark 10.6. It is usually easier to 
al
ulate the Lapla
e transform of the

input U(s) to �nd the Lapla
e of the output as Y (s) = G(s)U(s) and then �nally
the output as y(t) = L −1 [G(s)U(s)], than to 
al
ulate the output dire
tly as

y(t) = g(t) ∗ u(t).
The following Matlab fun
tions are useful to �nd time responses:

• step plots a system's response to a unit step (and 
an return the values

plotted in ve
tors);

• impulse does the same for an impulse input;

• lsim, already studied in Se
tion 4.2, 
an be used for any input.

Just like lsim, both step and impulse use numeri
al methods to �nd the re-

sponses, rather than analyti
al 
omputations.

Example 10.6. The impulse, unit step and unit ramp responses of a plant are Matlab's 
ommand

impulse

Matlab's 
ommand step

shown in Figure 10.5 and obtained as follows:

>> s = tf('s'); G = 1/(s+1);

>> figure, impulse(G), figure, step(G)

>> t = 0 : 0.01 : 6; figure, plot(t, lsim(G, t, t))

>> xlabel('t [s℄'), ylabel('output')

>> title('response to a unit ramp')

The time range is 
hosen automati
ally by step and impulse.

Example 10.7. The response of the transfer fun
tion from Example 10.6 to a

step with amplitude 10 during 20 s 
an be found in two di�erent manners, both

providing, of 
ourse, the same result:

>> [stepresp, timeve
tor℄ = step(G, 20);

>> t = 0 : 0.01 : 20;

>> figure, plot(t, lsim(G, 10*ones(size(t)), t), timeve
tor, 10*stepresp)

>> xlabel('t [s℄'), ylabel('output'), title('Step response')

There is, in fa
t, a slight di�eren
e in the two plots shown in Figure 10.6, be
ause

fun
tion step 
hooses the sampling time automati
ally, and it is di�erent from

the one expli
itly fed to lsim.

10.2 Steady-state response and transient response

The impulse, unit step, and unit ramp responses of

G(s) =
1

s+ 1
(10.25)

from Example 10.6, shown in Figure 10.5 as they are numeri
ally 
al
ulated by

Matlab, 
an be found analyti
ally as follows:
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s+1 , from

Example 10.6.
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Figure 10.6: Response of G(s) = 1
s+1 for a step with amplitude 10, from Exam-

ple 10.7.

• Impulse response:

yi(t) = L
−1

[
1

s+ 1

]

= e−t
(10.26)

• Unit step response:

ys(t) = L
−1

[
1

s+ 1

1

s

]

= 1− e−t
(10.27)

• Unit ramp response:

yr(t) = L
−1

[
1

s+ 1

1

s2

]

= L
−1

[

−1

s
+

1

s2
+

1

s+ 1

]

= t− 1 + e−t

(10.28)

In ea
h of them we 
an separate the terms that tend to zero as the time in
reases

from those that do not. The �rst make up what we 
all the transient response. Transient

The latter make up what we 
all the steady-state response. Steady-state

yi(t) = 0
︸︷︷︸

steady-state

+ e−t

︸︷︷︸

transient

(10.29)

ys(t) = 1
︸︷︷︸

steady-state

− e−t

︸︷︷︸

transient

(10.30)

yr(t) = t− 1
︸ ︷︷ ︸

steady-state

+ e−t

︸︷︷︸

transient

(10.31)
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In other words, a time response y(t) 
an be separated into two parts, the tran-

sient response yt(t) and the steady-state response yss(t), su
h that

y(t) = yt(t) + yss(t) (10.32)

lim
t→+∞

yt(t) = 0 (10.33)

lim
t→+∞

yss(t) 6= 0 (10.34)

We also 
all transient to the period of time in whi
h the response is dominated

by the transient response, and steady-state to the period of time in whi
h the

transient response is negle
table and the response 
an be assumed equal to the

steady-state response. Whether a transient response 
an or 
annot be negle
ted

depends on how pre
ise our knowledge of the response has to be. Below in

Se
tions 10.5 and 10.6 we will see usual 
riteria for this.

The steady-state response 
an be:

• zero, as the impulse response of (10.25), shown in Figure 10.5;

• a non-null 
onstant, as the unit step response of (10.25), shown in Fig-

ure 10.5;

• an os
illation with 
onstant amplitude, as the step response of

1
(s2+1)(s+1) ,

shown in Figure 10.7;

• in�nity, with the output in
reasing or de
reasing monotonously, as the

unit step response of (10.25), shown in Figure 10.5;

• in�nity, with the output os
illating with in
reasing amplitude, as the im-

pulse response of

s
(s2+1)2 , shown in Figure 10.7.

What the steady-state response is depends on what the system is and on what

its input is.

Remark 10.7. Most systems never rea
h in�nity. The probe of Example 10.2


an move away to outer spa
e, but temperatures do no rise to in�nite values

(before that the heat sour
e is exhausted, or something will burn), robots rea
h

the end of their workspa
e, high ele
tri
al 
urrents will a
tivate a 
ir
uit breaker,

et
.; in other words, for big values of the variables involved, the linear model of

the system usually 
eases in one way or another to be valid.

Over the next se
tions we will learn several ways to 
al
ulate steady-state

responses without having to �nd an expli
it expression for the output, and then


al
ulating its limit. When the steady-state response is 
onstant or in�nity, it


an be found from the �nal value theorem (Theorem 2.4), i.e. applying (2.74).Final value theorem

Example 10.8. The steady-states of the impulse, step and ramp responses

(10.26)�(10.28) are as follows:

lim
t→+∞

yi(t) = lim
t→+∞

e−t = 0 (10.35)

lim
t→+∞

ys(t) = lim
t→+∞

1− e−t = 1 (10.36)

lim
t→+∞

yr(t) = lim
t→+∞

t− 1 + e−t = +∞ (10.37)
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They 
an be found without the inverse Lapla
e transform using (2.74):

lim
t→+∞

yi(t) = lim
s→0

s
1

s+ 1
= 0 (10.38)

lim
t→+∞

ys(t) = lim
s→0

s
1

s+ 1

1

s
= 1 (10.39)

lim
t→+∞

yr(t) = lim
s→0

s
1

s+ 1

1

s2
= +∞ (10.40)

Example 10.9. Remember that (2.74) applies when the limit in time exists.

Figure 10.7 shows two 
ases where this limit 
learly does not exist be
ause of os-


illations with an amplitude that does not de
rease. But the two 
orresponding

limits are

lim
t→+∞

y(t) = lim
s→0

s
1

(s2 + 1)(s+ 1)

1

s
= 1 (10.41)

lim
t→+∞

y(t) = lim
s→0

s
s

(s2 + 1)2
= ∞ (10.42)

In the �rst 
ase we got the average value of the steady-state response; in the

se
ond, in�nity. Neither 
ase is a valid appli
ation of the �nal value theorem.

We need to know �rst if the time limit exists.

The former example illustrates the importan
e of the 
on
ept of stability.

De�nition 10.1. A signal x(t) is bounded if ∃K ∈ R
+ : ∀t, |x(t)| < K.Bounded signal

De�nition 10.2. A system is:BIBO stability

• stable if, for every input whi
h is bounded, its output is bounded too;

• not stable if there is at least a bounded input for whi
h its output is not

bounded.

This de�nition of stability is known as bounded input, bounded output stabil-

ity (BIBO stability).

Theorem 10.2. A transfer fun
tion is stable if and only if all its poles are onAll poles of stable transfer

fun
tions are on the left


omplex half-plane

the left 
omplex half-plane.

Proof. We will prove this in two steps:

• A transfer fun
tion G(s) is stable if and only if its impulse response g(t)
is absolutely integrable, i.e. i� ∃M ∈ R+

∫ +∞

0

|g(t)| dt < M (10.43)

• A transfer fun
tion's impulse response is absolutely integrable if and only

if all its poles are on the left 
omplex half-plane.

Lemma 10.1. A transfer fun
tion is stable if and only if its impulse response

is absolutely integrable.
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Proof. Let us suppose that the impulse response g(t) is absolutely integrable,

and that ∫ +∞

0

|g(τ)| dτ = K (10.44)

Let us also suppose that the input u(t) is bounded, as required by the de�nition

of BIBO stability:

|u(t)| ≤ U, ∀t (10.45)

From (10.24) we get

|y(t)| = |g(t) ∗ u(t)| =
∣
∣
∣
∣

∫ t

0

g(τ)u(t− τ) dτ

∣
∣
∣
∣

≤
∫ t

0

|g(τ)u(t − τ)| dτ

≤
∫ t

0

|g(τ)| |u(t − τ)| dτ

≤ U

∫ t

0

|g(τ)| dτ ≤ UK (10.46)

So the output is bounded, proving that the 
ondition (impulse response abso-

lutely integrable) is su�
ient.

Redu
tio ad absurdum proves that it is also ne
essary. Suppose that the

impulse response g(t) is not absolutely integrable; thus, there is a time instant

T ∈ R+
su
h that

∫ T

0

|g(τ)| dτ = +∞ (10.47)

Now let the input u(t) be given by

u(T − t) = sign(g(t)) (10.48)

This is a bounded input, −1 ≤ u(t) ≤ 1, ∀t, and so, if the transfer fun
tion

were stable, the output would have to be bounded. But in time instant T

y(T ) =

∫ T

0

g(τ)u(t − τ) dτ =

∫ T

0

|g(τ)| dτ = +∞ (10.49)

and thus y(t) is not bounded. This shows that the 
ondition is not only su�
ient

but also ne
essary.

Lemma 10.2. A transfer fun
tion's impulse response is absolutely integrable

if and only if all its poles are on the left 
omplex half-plane.

Proof. A transfer fun
tion G(s) has an impulse response given by L −1 [G(s)].
Transfer fun
tion G(s) 
an be expanded into a partial fra
tion expansion, where

the fra
tions have the poles of G(s) in the denominator. Poles 
an be divided

into four 
ases.

• The pole is real, p ∈ R, and simple. In this 
ase the fra
tion

k
s−p

(where

k ∈ R is some real numerator) has the inverse Lapla
e transform k ept.
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� If p = 0, then lim
t→+∞

k ept = k. In this 
ase the impulse response is

not absolutely integrable, sin
e

∫ +∞

0

|k| dt = lim
t→+∞

|k|t = +∞ (10.50)

� If p > 0, the exponential tends to in�nity: lim
t→+∞

k ept = ±∞ (de-

pending on the sign of k). If in the last 
ase the response was not

absolutely integrable, even more so in this one.

� If p < 0, the exponential tends to zero: lim
t→+∞

k ept = 0. The impulse

response is absolutely integrable, sin
e

∫ +∞

0

∣
∣k ept

∣
∣ dt = k

∫ +∞

0

ept dt = k

[
1

p
ept
]+∞

0

=
k

p
(0 − 1) = −k

p
∈ R

+

(10.51)

• The pole is real and its multipli
ity n is 2 or higher. In this 
ase there will

be, in the expansion, fra
tions of the form

kn

(s−p)n ,
kn−1

(s−p)n−1 ,
kn−2

(s−p)n−2 . . .
k1

s−p
.

(Here the ki ∈ R, i = 1 . . . n are the numerators in the expansion.) The


orresponding inverse Lapla
e transforms are of the form

ki

(i−1)! t
i−1ept, i =

1 . . . n.

� If p = 0, then the exponential tends to 1, but the power does diverge

to in�nity: lim
t→+∞

ki
(i − 1)!

ti−1ept = ±∞ (depending on the sign of

k), ∀i ≥ 2. So in this 
ase the impulse response is not absolutely

integrable, as seen above.

� If p > 0, then lim
t→+∞

ki
(i− 1)!

ti−1ept = ±∞, ∀i. Again, the impulse

response is not absolutely integrable.

� If p < 0, then lim
t→+∞

ki
(i− 1)!

ti−1ept = 0, ∀i, sin
e the e�e
t of the

exponential prevails. For the same reason, the impulse response is

absolute integrable, just as in (10.51).

• The pole is 
omplex, p = a+ bj ∈ C\R, a, b ∈ R, and simple. Remember

on
e more that 
omplex poles must appear in pairs of 
omplex 
onjugates,

sin
e all polynomial 
oe�
ients are real (otherwise real inputs would 
ase


omplex outputs). In this 
ase the fra
tion

k
s−p

= k
s−(a+bj) (where k ∈ C

is some 
omplex numerator) has the inverse Lapla
e transform

L
−1

[
k

s− p

]

= L
−1

[
k

s− (a+ bj)

]

= k ept = k eatebjt = k eatebjt

= k eat (cos bt+ j sin bt) (10.52)

and the fra
tion

k̄
s−p̄

= k̄
s−(a−bj) (where z̄ is the 
omplex 
onjugate of

z ∈ C) has the inverse Lapla
e transform

L
−1

[
k̄

s− p̄

]

= L
−1

[
k̄

s− (a− bj)

]

= k̄ ep̄t = k̄ eate−bjt = k̄ eate−bjt

= k̄ eat (cos(−bt) + j sin(−bt)) = k̄ eat (cos bt− j sin bt)
(10.53)
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Their e�e
t on the impulse response is their sum:

L
−1

[
k

s− p

]

+ L
−1

[
k̄

s− p̄

]

= k eat (cos bt+ j sin bt) + k̄ eat (cos bt− j sin bt)

= (k + k̄) eat cos bt = 2ℜ(k) eat cos bt
(10.54)

Noti
e that the imaginary parts 
an
el out, and we are left with os
illations

having:

� period

2π
b
, where b is the positive imaginary part of the poles;

� amplitude 2ℜ(k)eat, where a is the real part of the poles. The ex-

ponential is the important term, sin
e it is the exponential that may


ause this term to vanish or diverge.

So:

� If a = 0, then the amplitude of the os
illations remains 
onstant; they

do not go to zero neither do they diverge to an in�nite amplitude.

This means that the impulse response is not absolutely integrable,

sin
e

∫ +∞

0

|2ℜ(k) cos bt| dt = 2|ℜ(k)|
∫ +∞

0

|cos bt| dt

= 2|ℜ(k)| lim
n→+∞

n

∫ 2π
b

0

|cos bt| dt

= 4|ℜ(k)| lim
n→+∞

n

∫ π
b

0

sin bt dt

=
4|ℜ(k)|

b
lim

n→+∞
n [− cos bt]

π
b

0

=
8|ℜ(k)|

b
lim

n→+∞
n = +∞ (10.55)

� If a > 0, the amplitude of the os
illations tends to in�nity. Conse-

quently the impulse response will not be absolutely integrable.

� If a < 0, the exponential tends to zero, and so will the os
illations.

In this 
ase the impulse response is absolutely integrable, sin
e

∫ +∞

0

∣
∣2ℜ(k) eat cos bt

∣
∣ dt ≤ 2|ℜ(k)|

∫ +∞

0

eat dt (10.56)

and we end up with a 
ase similar to (10.51).

• The pole is 
omplex and its multipli
ity n is 2 or higher. This 
ase is a

mixture of the last two. There will be terms of the form

ki

(s−(a+bj))i +

ki

(s−(a−bj))i , i = 1 . . . n. The 
orresponding inverse Lapla
e transform is

2ℜ(ki)
(i−1)! t

i−1eat cos bt. So:

� If a = 0, then eat = 1 but the amplitude of the os
illations still grows

to in�nity, be
ause of the power fun
tion, if i ≥ 2. So in this 
ase

the impulse response will not be absolutely integrable.
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� If a > 0, the amplitude of the os
illations tends to in�nity. The same


on
lusion follows.

� If a < 0, the exponential tends to zero, and for large times its e�e
t

prevails; so the the impulse response will be absolutely integrable.

It is 
lear that one single term not tending exponentially to zero su�
es to

prevent the impulse response from being absolutely integrable. Consequently,

the only way for the impulse response to tend to zero is that all poles should

have negative real parts; in other words, that all poles should lie on the left


omplex half-plane.

While some authors 
all unstable to all systems that are not stable, the

following distin
tion is 
urrent.

De�nition 10.3. A system is:Unstable and marginally

stable systems

• unstable if, for every input whi
h is bounded, its output is not bounded;

Unstable systems

• marginally stable if there are at least a bounded input for whi
h its out-Marginal stability

put is bounded and a bounded input for whi
h its output is not bounded.

Theorem 10.3. Marginally stable systems have no poles on the right 
omplexMarginally stable systems

have simple poles on the

imaginary axis

half-plane, and one or more simple poles on the imaginary axis.

Proof. It is 
lear from the proof of Lemma 10.2 that simple poles on the imag-

inary axis 
orrespond to:

• impulse responses whi
h are bounded:

� a pole at the origin has a 
onstant impulse response;

� a pair of 
omplex 
onjugate imaginary poles has 
onstant amplitude

sinusoidal os
illations as impulse response;

• responses to bounded inputs whi
h are not bounded, sin
e systems with

su
h poles are not stable.

A single pole p on the right 
omplex half-plane makes a system unstable, sin
e,

whatever the input may be, in the partial fra
tion expansion of the output there

will be a fra
tion of the form

k
s−p

, and the proof of Lemma 10.2 shows that su
h

terms always diverge exponentially to in�nity. The same happens with multiple

poles on the imaginary axis.

The e�e
t of ea
h pole on the stability of a system justi�es the following

nomen
lature.

De�nition 10.4. Poles are:Stable, marginally stable,

and unstable poles

• stable, when lo
ated on the left 
omplex half-plane;

• marginally stable, when simple and lo
ated on the imaginary axis;

• unstable, when multiple and lo
ated on the imaginary axis, or when

lo
ated on the right 
omplex half-plane.
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A system is:Stability depends on pole

lo
ation • stable, when all its poles are stable;

• marginally stable, when it has no unstable poles, and one or more of its

poles are marginally stable;

• unstable, when it has one or more unstable poles.

Example 10.10. From the lo
ation of the poles, we 
an 
on
lude the following

about the stability of these transfer fun
tions:

• s+ 4

(s+ 1)(s+ 2)(s+ 3)
; poles: −1, −2, −3; stable transfer fun
tion

• s− 5

s2 + 6
; poles: ±

√
6j; marginally stable transfer fun
tion

• s+ 7

(s2 + 8)2
; poles: ±

√
8j (double); unstable transfer fun
tion

• (s− 12)(s+ 13)

(s+ 9)2(s2 + 20s+ 221)
; poles: ±−3 (double), −10±11j; stable transfer

fun
tion

• 14

s− 15
; poles: 15; unstable transfer fun
tion

• 16

s
; poles: 0; marginally stable transfer fun
tion

• −17

s2
; poles: 0 (double); unstable transfer fun
tion

• 18

s(s2 + 18)
; poles: 0, ±

√
18j; marginally stable transfer fun
tion

• 19

(s+ 20)(s+ 21)(s+ 22)(s− 23)
; poles: −20,−21,−22, 23; unstable trans-

fer fun
tion

Remark 10.8. Never forget that zeros have nothing to do with stability. Poles, not zeros, deter-

mine stability

10.3 Time responses: periodi
 inputs

Consider the weaving loom in Figure 10.8. The shuttle that 
arries the yarn

that will be
ome the weft thread moves without 
ease from the left to the right

and then ba
k. Meanwhile, half the warp threads are pulled up by a harness,

whi
h will then lower then while the other half goes up, and this too without


ease. The 
orresponding referen
es are similar to those in Figure 10.9. They

are 
alled square wave and triangle wave, and are examples of periodi
 Square wave

Triangle wave

signals.

De�nition 10.5. A periodi
 signal is one for whi
h ∃T ∈ R+
Periodi
 signals

f(t+ T) = f(t), ∀t (10.57)

T = minT is the period of signal f(t).
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Figure 10.8: A weaving loom (sour
e:Wikimedia).
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Figure 10.9: A square wave and a triangle wave (both with period 1 and ampli-

tude 1).
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Remark 10.9. Noti
e that the di�erent values of T are in fa
t the integer

multiples of T , i.e.

f(t+ T ) = f(t), ∀t ⇒ f(t+ nT ) = f(t), ∀t, n ∈ N (10.58)

Triangle waves are also a useful alternative to ramps, sin
e they avoid the

in
onvenien
e of an in�nitely large signal. Square waves are useful in experi-

mental settings for another reason: they allow seeing su

essive step responses,

and 
onsequently allow measuring parameters several times in a row. For this

purpose, the period must be large enough for the transient regime to disappear.

Example 10.11. We 
an �nd the output of G(s) = 15
s+20 to a square wave with Matlab's 
ommand

squareperiod 1 s and amplitude 1 using Matlab as follows:

>> t = 0 : 0.001 : 3;

>> u = square(t*2*pi);

>> figure, plot(t,u, t,lsim(15/(s+20),u,t))

>> axis([0 3 -1.5 1.5℄)

>> xlabel('t [s℄'), ylabel('input and output'), legend({'input','output'})

Noti
e that the amplitude of the �rst step is 1 and the amplitude of the following

steps is the peak to peak amplitude, twi
e as big, viz. 2. Also noti
e that there

is a step every half period, i.e. every 0.5 s.

The period was appropriately 
hosen sin
e (as we shall see in Se
tion 10.5)

the transient response is pra
ti
ally gone after 0.5 s. A period four times smaller

would not allow seeing a 
omplete step response. Both 
ases are shown in

Figure 10.10.

Another useful periodi
 signal is the sinusoid, whi
h appears naturally e.g.

when working with tides and with any phenomena that are the proje
tion onto

a plane of a 
ir
ular movement on a perpendi
ular plane (and this in
ludes su
h

di�erent things as motor vibrations or daily thermal variations).

Theorem 10.4. The stationary response y(t) of a stable linear plant G(s) Sinusoidal inputs 
ause si-

nusoidal outputs in steady

state

subje
t to a sinusoidal input u(t) = sin(ωt) is

y(t) = |G(jω)| sin(ωt+ ∠G(jω)) (10.59)

where ∠z is the phase, or argument, of z ∈ C (also notated often as arg z), so
that z = |z|ej∠z

.

Proof. The output is

y(t) = L
−1 [Y (s)] (10.60)

and

Y (s) = G(s)U(s) = G(s)L [sin(ωt)] = G(s)
ω

s2 + ω2
= G(s)

ω

(s + jω)(s− jω)
(10.61)
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Figure 10.10: Response of G(s) =
15

s+ 20
to two square waves with di�erent

periods.
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If all poles pk, k = 1, . . . , n of G(s) are simple, we 
an perform a partial fra
tion

expansion of Y (s) as follows:

Y (s) =
b0

s+ jω
+

b0
s− jω

+

n∑

k=1

bk
s− pk

⇒ y(t) = b0e
−jωt + b0e

jωt

︸ ︷︷ ︸

steady-state response yss(t)

+
n∑

k=1

bke
pkt

︸ ︷︷ ︸

transient

response yt(t)

(10.62)

We know that all terms in the transient response yt(t) belong there be
ause the
exponentials are vanishing, sin
e the poles are on the left 
omplex half-plane.

If there are multiple poles, the only di�eren
e is that there will be terms of the

form

bk
(i−1)! t

i−1epkt, i ∈ N in the transient response yt(t), whi
h will still, of


ourse, be vanishing with time. In either 
ase, the steady-state response is the

same.

From (10.61) we know that Y (s) = G(s) ω
(s+jω)(s−jω) , and from (10.62) we

know that Y (s) = b0
s+jω

+ b0
s−jω

+ L [yt(t)]. We 
an multiply both by s + jω
and obtain

G(s)
ω

s− jω
= b0 +

(
b0

s− jω
+ L [yt(t)]

)

(s+ jω) (10.63)

Now we evaluate this equality at s = −jω:

G(−jω)
ω

−2jω
= b0 (10.64)

Repla
ing b0 = G(−jω) 1
−2j and b0 = G(jω) 1

2j in yss(t) = b0e
−jωt + b0e

jωt
, we

obtain

yss(t) = G(−jω)
1

−2j
e−jωt +G(jω)

1

2j
ejωt

= |G(−jω)|ej∠G(−jω) 1

−2j
e−jωt + |G(jω)|ej∠G(jω) 1

2j
ejωt

= −|G(jω)|ej(∠G(−jω)−ωt) 1

2j
+ |G(jω)|ej(∠G(jω)+ωt) 1

2j

=
1

2j
|G(jω)|

(

ej(∠G(jω)+ωt) − ej(∠G(−jω)−ωt)
)

=
1

2j
|G(jω)|

(

cos (∠G(jω) + ωt) + j sin (∠G(jω) + ωt)

− cos
(

− (∠G(jω) + ωt)
)

− j sin
(

− (∠G(jω) + ωt)
))

=
1

2j
|G(jω)|

(

cos (∠G(jω) + ωt) + j sin (∠G(jω) + ωt)− cos (∠G(jω) + ωt) + j sin (∠G(jω) + ωt)
)

=
1

2j
|G(jω)|2j sin (∠G(jω) + ωt)

= |G(jω)| sin (ωt+ ∠G(jω)) (10.65)
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Figure 10.11: Verti
al position of the AWS from Figure 3.2, simulated assuming

sinusoidal sea waves.

Corollary 10.2. Sin
e G(s) is not only stable but also linear, if the input is

u(t) = A sin(ωt) instead, the output is

y(t) = A|G(jω)| sin(ωt+ ∠G(jω)) (10.66)

Example 10.12. Figure 10.11 shows the simulated verti
al position of the Wave

Energy Converter of Figure 3.2, the Ar
himedes Wave Swing, when subje
t to

sinusoidal waves of di�erent amplitudes. The devi
e is in steady-state, as is 
lear

both from the regularity of its movements and from the time already passed sin
e

the beginning of the simulation. As the input is sinusoidal, if the model were

linear, the output should be sinusoidal too. But the shape of the output is not

sinusoidal; it is not even symmetri
al around its mean value; its amplitude does

not in
rease linearly with the amplitude of the input. The model used to obtain

these simulation results is obviously non-linear.

10.4 Frequen
y responses and the Bode diagram

(10.66) shows that, if a stable system G(s) has a sinusoidal input, the steady-

state output is related to the input through G(jω), whi
h is the Fourier trans-

form (2.87) of the di�erential equation des
ribing the system's dynami
s:

• if the input is sinusoidal, the steady-state output is sinusoidal too;Frequen
y, amplitude, and

phase of output for sinu-

soidal inputs

• if the input has frequen
y ω, the steady-state output has frequen
y ω too;

• if the input has amplitude A (or peak-to-peak amplitude 2A), the steady-
state output has amplitude A|G(jω)| (or peak-to-peak amplitude 2A|G(jω)|);

• if the input has phase θ at t = 0, the steady-state output has phase

θ + ∠G(jω) at t = 0.
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Remember that:

• the steady-state output is sinusoidal, but the transient is not: you must The transient is not sinu-

soidalwait for the transient to go away to have a sinusoidal output;

• unstable systems have transient responses that do not go away, so you will

never have a sinusoidal output;

• ω is the frequen
y in radians per se
ond. ω is in rad/s

De�nition 10.6. Given a system G(s):

• its frequen
y response is G(jω), a fun
tion of ω; Frequen
y response

• its gain at frequen
y ω is |G(jω)|; Gain

• its gain in de
ibel (denoted by symbol dB) is 20 log10 |G(jω)| (gain Gain in dB

|G(jω)| is often 
alled gain in absolute value, to avoid 
onfusion with the Gain in absolute value

gain in de
ibel);

• its phase at frequen
y ω is ∠G(jω). Phase

Remark 10.10. These de�nitions are used even if G(s) is not stable. If the

system is stable:

• the gain is the ratio between the amplitude of the steady-state output and

the amplitude of the input;

• the phase is the di�eren
e in phase between the steady-state output sinu-

soid and the input sinusoid.

Example 10.13. Figure 10.12 shows the output of G(s) = 300(s+1)
(s+10)(s+100) for a

sinusoidal input of frequen
y 1 rad/s, found as follows:

>> s = tf('s');

>> G = 300*(s+1)/((s+10)*(s+100));

>> t = 0 : 0.001 : 30;

>> figure, plot(t,sin(t), t,lsim(G,sin(t),t))

>> xlabel('time [s℄'), ylabel('output'), grid

The amplitude of the input is 1, by 
onstru
tion; the amplitude of the out-

put is 0.4219. So the gain at 1 rad/s is

0.4219
1 = 0.4219 in absolute value, or

20 log10 0.4219 = −7.50 dB. This maximum value is taking pla
e at 26 s, while

the 
orresponding maximum of the input takes pla
e later, at 4×2π+ π
2 = 26.7 s.

As the period is 2π = 6.28 s, the phase is

26.7−26
6.28 × 360◦ = 40◦.

Figure 10.12 also shows the output of G(s) when the frequen
y is 200 rad/s:

>> t = 0 : 0.0001 : 0.2;

>> figure, plot(t,sin(200*t), t,lsim(G,sin(200*t),t))

>> xlabel('time [s℄'), ylabel('output'), grid

In that 
ase, the amplitude of the input is still 1 and the amplitude of the

output is 1.313. So the gain at 200 rad/s is

1.313
1 = 1.313 in absolute value, or

20 log10 1.313 = 2.37 dB. This maximum value is taking pla
e at 0.1703 s, while

the 
orresponding maximum of the input takes pla
e earlier, at 5× 2π
200 +

π
2

200 =
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0.1649 s. As the period is

2π
200 = 0.0314 s, the phase is

0.1649−0.1703
0.0314 × 360◦ =

−62◦.
In both 
ases, it is visible that the �rst os
illations are not sinusoidal, be
ause

of both their shape and their varying amplitudes. In other words, the transient

has not yet disappeared by then.

In the example above, the amplitude of the output was larger than that of

the input in one 
ase, and smaller in the other. Also in one 
ase the extremes

of the output sinusoid took pla
e earlier than those of the input sinusoid, while

in the other 
ase it was the other way round.

De�nition 10.7. Given

• a stable system G(s),

• with sinusoidal input of frequen
y ω and amplitude Au,

• with steady-state sinusoidal output also of frequen
y ω and amplitude

Ay = Au|G(jω)|,

then:

• If the amplitude of the output is larger than the amplitude of the input,

Ay > Au, the system is amplifying its input:Ampli�
ation

Ay > Au ⇒ |G(jω)| = Ay

Au

> 1 ⇒ 20 log10 |G(jω)| > 0 dB (10.67)

That is to say:

� the gain in absolute value is larger than 1;

� the gain in de
ibel is larger than 0 dB.

• If the amplitude of the output is smaller than the amplitude of the input,

Ay > Au, the system is attenuating its input:Attenuation

Ay < Au ⇒ |G(jω)| = Ay

Au

< 1 ⇒ 20 log10 |G(jω)| < 0 dB (10.68)

That is to say:

� the gain in absolute value is smaller than 1;

� the gain in de
ibel is smaller than 0 dB.

• If the amplitude of the output and the amplitude of the input are the same,

Ay = Au, the system is neither amplifying nor attenuating its input:

Ay = Au ⇒ |G(jω)| = Ay

Au

= 1 ⇒ 20 log10 |G(jω)| = 0 dB (10.69)

That is to say:

� the gain in absolute value is 1;

� the gain in de
ibel is 0 dB.
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Figure 10.12: Response of G(s) =
300(s+ 1)
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ferent periods.
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Table 10.1: Gain values; Au is the amplitude of the input sinusoid and Ay is

the amplitude of the steady-state output sinusoid

Gain in absolute value Gain in de
ibel Amplitudes

Minimum value |G(jω)| = 0 20 log 10|G(jω)| = −∞ dB Ay = 0
Attenuation 0 < |G(jω)| < 1 20 log 10|G(jω)| < 0 dB Ay < Au

Input and output with same amplitude |G(jω)| = 1 20 log 10|G(jω)| = 0 dB Ay = Au

Ampli�
ation |G(jω)| > 1 20 log 10|G(jω)| > 0 dB Ay > Au

Furthermore:

• If the extremes of the output take pla
e earlier than the 
orresponding

extremes of the input, the output leads in relation to the input; thisPhase lead

means that

∠G(jω) > 0 (10.70)

• If the extremes of the output take pla
e later than the 
orresponding

extremes of the input, the output lags in relation to the input; this meansPhase lag

that

∠G(jω) < 0 (10.71)

• If the extremes of the output and the 
orresponding extremes of the input

take pla
e at the same time, the output and the input are in phase; this

means that

∠G(jω) = 0 (10.72)

• If the maxima of the output and the minima of the input take pla
e at

the same time, and vi
e versa, the output and the input are in phasePhase opposition

opposition; this means that

∠G(jω) = ±180◦ = ±π rad (10.73)

Remark 10.11. Noti
e that, sin
e sinusoids are periodi
, the phase is de�ned

up to 360◦ shifts: a 90◦ phase is undistinguishable from a −270◦ phase, or for

that matter from a 3690◦ phase or any 90◦ + k360◦, k ∈ Z phase. While ea
h

of these values 
an be in prin
iple arbitrarily 
hosen, it usual to make the phase

vary 
ontinuously (as mu
h as possible) with frequen
y, starting from values for

low frequen
ies determined as we will see below in Se
tion 10.7.

Gain values 
an be summed up as shown in Table 10.1.

Example 10.14. Consider the responses to sinusoidal inputs ofG(s) = 1
s2+0.5s+1

in Figure 10.13.

• For ω = 0.5 rad/s:

� The amplitude of the output is larger than that of the input, so we

must have

|G(j0.5)| > 1 ⇔ 20 log10 |G(j0.5)| > 0 dB (10.74)
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� In fa
t, the gain is

|G(j0.5)| =
∣
∣
∣
∣

1

(j0.5)2 + 0.5j0.5 + 1

∣
∣
∣
∣
=

∣
∣
∣
∣

1

1− 0.25 + j0.25

∣
∣
∣
∣
=

1√
0.752 + 0.252

= 1.26

⇒ 20 log10 G(j0.5) = 20 log10 1.26 = 2 dB (10.75)

� The output is delayed in relation to the input, so we must have

∠G(j0.5) < 0.

� In fa
t, the phase is

∠G(j0.5) = ∠

(
1

0.75 + j0.25

)

= ∠1− ∠(0.75 + j0.25) = 0◦ − arctan
0.25

0.75
= −18◦

(10.76)

• For ω = 1 rad/s:

� The amplitude of the output is even larger now, so

|G(j)| > |G(j0.5)| = 1.26 ⇔ 20 log10 |G(j)| > 20 log10 G(j0.5) = 2 dB
(10.77)

� In fa
t, the gain is

|G(j)| =
∣
∣
∣
∣

1

j2 + 0.5j + 1

∣
∣
∣
∣
=

∣
∣
∣
∣

1

j0.5

∣
∣
∣
∣
=

1

0.5
= 2

⇒ 20 log10 G(j) = 20 log10 2 = 6 dB (10.78)

� The output is delayed in relation to the input. Furthermore, the

output 
rosses zero as the input is already at a peak or at a through.

So the phase is negative, and equal to −90◦.

� In fa
t,

∠G(j) = ∠

(
1

j0.5

)

= ∠1− ∠(j0.5) = 0◦ − 90◦ = −90◦ (10.79)

• For ω = 2 rad/s:

� The amplitude of the input is larger than that of the output, so we

must have

|G(j2)| < 1 ⇔ 20 log10 |G(j2)| < 0 dB (10.80)

� In fa
t, the gain is

|G(j2)| =
∣
∣
∣
∣

1

(2j)2 + 0.5j2 + 1

∣
∣
∣
∣
=

∣
∣
∣
∣

1

−3 + j

∣
∣
∣
∣
=

1√
9 + 1

= 0.316

⇒ 20 log10 G(j2) = 20 log10 10
− 1

2 = −10 dB (10.81)

� The output is delayed in relation to the input. Furthermore, input

and output are almost in phase opposition, but not yet. So we must

have 0◦ < ∠G(j2) < −180◦, but 
lose to the latter value.
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Figure 10.13: Responses of G(s) = 1
s2+0.5s+1 (blue) to input sinusoids (red)

with 0.5 rad/s (top), 1 rad/s (
entre) and 2 rad/s (bottom).
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� In fa
t, the phase is

∠G(j2) = ∠

(
1

−3 + j

)

= ∠1− ∠(−3 + j) = 0◦ − arctan
1

−3
= −162◦

(10.82)

The Bode diagram, or Bode plot, is a graphi
al representation of the fre- Bode diagram

quen
y response of a system, as a fun
tion of frequen
y. This diagram 
omprises

two plots:

• a top plot, showing the gain in dB (y�axis) as a fun
tion of frequen
y in

a semi-logarithmi
 s
ale (x�axis);

• a bottom plot, showing the phase in degrees (y�axis) as a fun
tion of

frequen
y in a semi-logarithmi
 s
ale (x�axis).

Frequen
y is usually given in rad/s, but sometimes in Hz.

In the following se
tions we will learn how to plot by hand the Bode diagram

of any plant (or at least a reasonable approximation thereof); meanwhile, the

following Matlab 
ommands 
an be used instead:

• bode plots the Bode diagram of a system;

• freqresp 
al
ulates the frequen
y response of a system.

Example 10.15. The Bode diagram in Figure 10.14 of G(s) = 300(s+1)
(s+10)(s+100) Matlab's 
ommand bode

from Example 10.13 is found as follows:

>> s = tf('s');

>> G = 300*(s+1)/((s+10)*(s+100));

>> figure, bode(G), grid

The gains and phases at ω = 1 rad/s and ω = 200 rad/s found in Example 10.13


an be observed in the diagram.

This way we �rst �nd the frequen
y response and then use it to plot the Matlab's 
ommand

freqrespBode diagram:

>> [Gjw, w℄ = freqresp(G); % Gjw returned as a 3-dimensional tensor...

>> Gjw = squeeze(Gjw); % ...must now be squeezed to a ve
tor

>> figure, subplot(2,1,1), semilogx(w, 20*log10(abs(Gjw)))

>> grid, xlabel('frequen
y [rad/s℄'), ylabel('gain [dB℄'), title('Bode diagram')

>> subplot(2,1,2), semilogx(w, rad2deg(unwrap(angle(Gjw))))

>> grid, ylabel('phase [degrees℄') % unwrap avoids jumps of 360 degrees

To �nd the gains and phases to 
on�rm those found found in Example 10.13:

>> Gjw = freqresp(G, [1 200℄)

Gjw(:,:,1) =

0.3294 + 0.2640i

Gjw(:,:,2) =

0.6525 - 1.1704i

>> gains = 20*log10(abs(Gjw))

gains(:,:,1) =
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Figure 10.14: Bode diagram of G(s) =
300(s+ 1)

(s+ 10)(s+ 100)
.

-7.4909

gains(:,:,2) =

2.5420

>> phases = rad2deg(unwrap(angle(Gjw)))

phases(:,:,1) =

38.7165

phases(:,:,2) =

-60.8590

Here's another way of �nd the same values:

>> w = [1 200℄;

>> Gjw = 300*(1i*w+1)./((1i*w+10).*(1i*w+100));

Gjw =

0.3271 + 0.2676i 0.6186 - 1.2212i

>> gains = 20*log10(abs(Gjw))

gains =

-7.4909 2.5420

>> phases = rad2deg(unwrap(angle(Gjw)))

phases =

38.7165 -60.8590

Noti
e the small di�eren
es due to numeri
al errors.

Example 10.16. The Bode diagram in Figure 10.15 of G(s) = 1
s2+0.5s+1 from

Example 10.14 shows the gains and phases found in that example, that 
an also

be found as follows:

>> G = tf(1,[1 .5 1℄)

G =
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Figure 10.15: Bode diagram of

1

s2 + 0.5s+ 1
.

1

---------------

s^2 + 0.5 s + 1

Continuous-time transfer fun
tion.

>> figure,bode(G),grid on

>> Gjw = squeeze(freqresp(G, [.5 1 2℄))

Gjw =

1.2000 - 0.4000i

0.0000 - 2.0000i

-0.3000 - 0.1000i

>> gains = 20*log10(abs(Gjw))

gains =

2.0412

6.0206

-10.0000

>> phases = rad2deg(unwrap(angle(Gjw)))

phases =

-18.4349

-90.0000

-161.5651

Example 10.17. From the Bode diagram in Figure 10.16, even without know-

ing what transfer fun
tion it belongs to, we 
an 
on
lude the following:

• At ω = 0.1 rad/s, the gain is 20 dB (i.e. 10
20
20 = 10 in absolute value) and
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the phase is 0◦ = 0 rad. So, if the input is

u(t) = 5 sin(0.1t+
π

6
) (10.83)

the steady-state output will be

y(t) = 5× 10 sin(0.1t+
π

6
) = 50 sin(0.1t+

π

6
) (10.84)

• At ω = 10 rad/s, the gain is 17 dB (i.e. 10
17
20 = 7.1 in absolute value) and

the phase is −45◦ = −π
4 rad. So, if the input is

u(t) = 5 sin(10t+
π

6
) (10.85)

the steady-state output will be

y(t) = 5× 7.1 sin(10t+
π

6
− π

4
) = 35.5 sin(10t− π

12
) (10.86)

• At ω = 100 rad/s, the gain is 0 dB (i.e. 100 = 1 in absolute value) and

the phase is −85◦ = −1.466 rad. So, if the input is

u(t) = 5 sin(100t+
π

6
) (10.87)

the steady-state output will be

y(t) = 5× 1 sin(100t+ 0.524− 1.466) = 5 sin(100t− 0.942) (10.88)

• At ω = 1000 rad/s, the gain is −20 dB (i.e. 10
−20

20 = 0.1 in absolute value)

and the phase is −90◦ = −π
2 rad. So, if the input is

u(t) = 5 sin(1000t+
π

6
) (10.89)

the steady-state output will be

y(t) = 5× 0.1 sin(1000t+
π

6
− π

2
) = 0.5 sin(1000t− π

3
) (10.90)

• The system is linear. So, if the input is

u(t) = 0.5 sin(0.1t+
π

6
) + 25 sin(1000t+

π

6
) (10.91)

the steady-state output will be

y(t) = 0.5× 10 sin(0.1t+
π

6
) + 25× 0.1 sin(1000t+

π

6
− π

2
) = 5 sin(0.1t+

π

6
) + 2.5 sin(1000t− π

3
(10.92)

Noti
e how the frequen
y with the largest amplitude in the input now has

the smallest.
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Figure 10.16: Bode diagram of Example 10.17.

10.5 Time and frequen
y responses of a �rst-order

system without zeros

Still to appear.

10.6 Time and frequen
y responses of a se
ond-

order system without zeros

Still to appear.

10.7 Systems with more zeros and poles: fre-

quen
y responses

Still to appear.

10.8 Systems with more zeros and poles: stabil-

ity

Still to appear.

10.9 Systems with more zeros and poles: time

responses

Still to appear.
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Exer
ises

1. For ea
h of the following pairs of a transfer fun
tion and an input:

• �nd the Lapla
e transform of the input;

• �nd the Lapla
e transform of the output;

• �nd the value of the output for t ≫ 1 without using the inverse

Lapla
e transform;

• �nd the output as a fun
tion of time;

• separate that fun
tion of time into a transient and a steady state;

• 
on�rm the value of the output for t ≫ 1 found previously.

(a) G(s) =
10

s2 + 21s+ 20
and u(t) = 0.4, t > 0

(b) G(s) =
5

s+ 0.1
and u(t) = 2t, t > 0

(
) G(s) =
s

s2 + s+ 1
and u(t) = δ(t)

(d) G(s) =
s

s2 + s+ 1
and u(t) = 0.4, t > 0

(e) G(s) =
7

s
and u(t) = 0.4, t > 0

2. From the poles of the transfer fun
tions of Exer
ise 1 of Chapter 9, explain

whi
h of them are stable, unstable, or marginally stable.

3. Figure 10.17 shows the Bode diagrams of some transfer fun
tions. For ea
h

of them, read in the Bode diagram the values from whi
h you 
an 
al
ulate

the transfer fun
tion's steady state response to the following inputs:

• u(t) = sin(2t)

• u(t) = sin(2t+ π
2 )

• u(t) = sin(1000t)

• u(t) = 10 sin(1000t)

• u(t) = 1
3 sin(0.1t− π

4 ) + sin(2t+ π
2 )10 sin(1000t)

4. For ea
h of the following transfer fun
tions:

• �nd the 
orresponding Fourier transform;

• �nd the gain (both in absolute value and in de
ibel) and the phase

(in radians or degrees, as you prefer) at the indi
ated frequen
ies.

(a) G(s) =
5

s+ 0.1
and ω = 0.01, 0.1, 1 rad/s

(b) G(s) =
s

s2 + s+ 1
and ω = 0.1, 1, 10 rad/s

(
) G(s) =
7

s
and ω = 1, 10, 100 rad/s
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Figure 10.18: RAO of four heaving buoys of Exer
ise 5 (sour
e:

http://marine-eng.ir/arti
le-1-80-en.pdf).

5. In naval and o
ean engineering it is usual to 
all Response Amplitude RAO

Operator (RAO) to what we 
alled gain. It is often represented in abso-

lute value in a linear plot as a fun
tion of frequen
y. Figure 10.18 shows

the RAO of four di�erent heaving buoys. Suppose that ea
h of them is

subje
t to waves with an amplitude of 2 m and a frequen
y of 2π rad/s.

What will be the amplitude of the os
illation of ea
h buoy?

6. Use the Routh-Hurwitz 
riterion to �nd how many unstable poles ea
h of

the following transfer fun
tions has, and 
lassify ea
h system as stable,

marginally stable, or unstable.

(a)

s2 +
5

7
s− 10

s4 − 2s3 − 13s2 + 14s+ 24

(b)

s+ 2
s4 − 2s3 − 13s2 + 14s+ 24

(
)

s+ 2
s6 − 2s5 − 13s4 + 14s3 + 24s2

Hint: 
an you put anything in evi-

den
e in the denominator?

(d)

s3 + 2s2 + s
s4 + 4s3 + 4s+ 5

(e)

s3 + 2s2 + s
s5 + 4s4 + 4s2 + 5s

(f)

s3 + 2s2 + s
2s3 − 6s+ 4

7. Find the ranges of values of K1,K2 ∈ R for whi
h the systems with the

following 
hara
teristi
 equations are stable.

(a) s3 + 3s2 + 10s+K1
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(b) s3 +K2s
2 + 10s+ 5

(
) s3 + 2s2 + (K1 + 1)s+K2

8. Consider transfer fun
tion G(s) =
10

10s+ 1
.

(a) When the input is a unit step, what will the steady state response

be?

(b) When the input is a step with amplitude 3, what will the steady state
response be?

(
) Without 
omputing an expression for the output, give a rough esti-

mate of how long it takes for the output to rea
h 20, when the input

is a step with amplitude 3.

(d) Without 
omputing an expression for the output, give a rough esti-

mate of the 2% settling time, when the input is a step with amplitude

3.

(e) Cal
ulate the output as a fun
tion of time, using an inverse Lapla
e

transform, and �nd the exa
t values of the estimations from the last

two questions.

(f) Suppose that the input is now a unit step again. What will the

new value of the 2% settling time be? Hint: is the system linear or

non-linear?

9. Sket
h the following step responses, marking, whenever they exist,

• the settling time a

ording to the 5% 
riterion,

• the settling time a

ording to the 2% 
riterion,

• the steady-state value.

(a) G(s) =
15

s+ 5
, for input u(t) = 4H(t)

(b) G(s) =
10

s− 1
, for input u(t) = H(t)

(
) G(s) =
1

2s+ 1
, for input u(t) = −H(t)

(d) G(s) =
−2

4s+ 1
, for input u(t) = 10H(t)

(e) G(s) =
10

s
, for input u(t) = H(t)

10. Sket
h the Bode diagrams of the following transfer fun
tions, indi
ating

• the gain for low frequen
ies,

• the frequen
y at whi
h the gain is 3 dB below the gain for low fre-

quen
ies,

• the slope of the gain for high frequen
ies,

• the phase for low frequen
ies,

• the phase for high frequen
ies,
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• the frequen
y at whi
h the phase is the average of those two values.

Hint: you do not need to draw the exa
t evolution of the phase; ap-

proximate it by three straight lines: a horizontal one for low frequen
ies,

another horizontal one for high frequen
ies, and then 
onne
t these two

by a straight line two de
ades wide. You 
an also approximate the gain

by two straight lines, but do not forget to mark the frequen
y at whi
h

the gain has de
reased 3 dB.

(a) G(s) =
15

s+ 5

(b) G(s) =
1

s+ 10

(
) G(s) =
1

2s+ 1

(d) G(s) =
2

4s+ 1

(e) G(s) =
10

s

11. Find analyti
ally the unit step responses of G1(s) =
100

s+ 10
and G2(s) =

s+ 100

s+ 10
. Sket
h them both in the same plot, marking the 5% settling time

for ea
h. Plot separately the di�eren
e between them. Then do the same

for G3(s) =
8

s+ 12
and G4(s) =

s+ 8

s+ 12
.

12. Let G(s) =
1

s+ 1
.

(a) Consider the unit step response of G(s). What is the settling time,

a

ording to the 5% 
riterion?

(b) Find analyti
ally the unit ramp response y(t) of G(s).

(
) Find the analyti
al expression of the steady-state yss(t) of that re-
sponse y(t).

(d) How long does it take for

∣
∣
∣
yss(t)−y(t)

y(t)

∣
∣
∣ to be less than 5%? In other

words, �nd how long it takes for the unit ramp response to be within

a 5% wide band around its steady state.

13. A �rst order system

K
s+p

has the response tabulated in Table 10.2, when

its input is a unit step applied at instant t = 0.5 s. Find the gain K and

the pole p. Hint: subtra
t the response from the steady state value; you

should now have an exponential with a negative power. Plot its logarithm

and adjust a straight line.

14. Prove that, if G(s) =
b0

s2 + a1s+ a0
is stable, its step response has deriva-

tive zero at t = 0. Do this as follows:

(a) Use a table of Lapla
e transforms to �nd the unit step response of

1
(s+a)(s+b) . Cal
ulate its derivative, proving thus the thesis for the


ase of two real poles.
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Table 10.2: Unit step response of Exer
ise 13.

time output

0.0 0.0000

0.1 0.0000

0.2 0.0000

0.3 0.0000

0.4 0.0000

0.5 0.0000

0.6 0.0632

0.7 0.0865

time output

0.8 0.0950

0.9 0.0982

1.0 0.0993

1.1 0.0998

1.2 0.0999

1.3 0.1000

1.4 0.1000

1.5 0.1000

(b) Use a table of Lapla
e transforms to �nd the unit step response of

1
(s+a)2 . Cal
ulate its derivative, proving thus the thesis for the 
ase

of a double real pole.

(
) Use a table of Lapla
e transforms to �nd the unit step response of

ω2
n

s2+2ξωns+ω2
n
. Cal
ulate its derivative, proving thus the thesis for the


ase of a double real pole.

15. For ea
h of the transfer fun
tions below, and for the 
orresponding step

input, �nd, if they exist:

• the natural frequen
y ωn and the damping fa
tor ξ,

• the steady state value yss,

• the delay time td and the rise time tr,

• the peak time tp and the maximum overshoot Mp (expressed in per-


entage),

• the 5% and the 2% settling times (use the expressions for the expo-

nential envelope of the os
illations),

• the lo
ation of the poles,

and sket
h the step response.

(a) G(s) =
7

s2 + 0.4s+ 1
, for input u(t) = 0.1H(t)

(b) G(s) =
1

s2 + 5.1s+ 9
, for input u(t) = 18H(t)

(
) G(s) =
1

2s2 + 8
, for input u(t) = H(t)

(d) G(s) =
10

s2 − s+ 1
, for input u(t) = 2H(t)

(e) G(s) =
0.3

s2 + 4s− 1
, for input u(t) = 15H(t)

16. Sket
h the Bode diagrams of the following transfer fun
tions, indi
ating

• the gain for low frequen
ies,

• the resonant peak value, and the frequen
y at whi
h it is lo
ated, if

indeed there is one,
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• the slope of the gain for high frequen
ies,

• the phase for low frequen
ies,

• the phase for high frequen
ies,

• the frequen
y at whi
h the phase is the average of those two values.

Hint: you do not need to draw the exa
t evolution of the phase; ap-

proximate it by three straight lines: a horizontal one for low frequen
ies,

another horizontal one for high frequen
ies, and then 
onne
t these two

by a straight line two de
ades wide. You 
an also approximate the gain

by two straight lines, but if there is a resonant peak mark it in your plot.

(a) G(s) =
1

s2 + 20s+ 100

(b) G(s) =
7

s2 + 0.4s+ 1

(
) G(s) =
1

s2 + 5.1s+ 9

(d) G(s) =
1

2s2 + 8

17. Find the se
ond order transfer fun
tions that, for a unit step input, have:

(a) tp = 0.403 s, Mp = 16.3%, yss = 0.8

(b) tp = 0.907 s, y(tp) = 11.63, yss = 10

(
) tr = 0.132 s, ts2% = 2.0 s, yss = 0.5

18. Consider the me
hani
al system in Figure 10.19. When f(t) = 8.9 N,

t ≥ 0, the output has tp = 1 s, Mp = 9.7%, and yss = 3× 10−2
m.

(a) Find the values of massM , vis
ous damping 
oe�
ient B, and spring
sti�ness K.

(b) Suppose we want the same steady-state regime and the same settling

time, but a maximum overshoot of 0.15%. What should the new

values of M , B and K be?

19. Plot the Bode diagrams of the following plants:

(a) G(s) =
−4s+ 20

s3 + 0.4s2 + 4s

(b)

d3y(t)

dt3
+ 16

d2y(t)

dt2
+ 65

dy(t)

dt
+ 50y(t) = 100

du(t)

dt
+ 50u(t)

(
) G(s) =
120(s+ 1)

s(s+ 2)2(s+ 3)

(d) G(s) =
s2

(s+ 0.5)(s+ 10)

(e) G(s) =
10s

(s+ 10)(s2 + s+ 2)

(f) G(s) =
(s+ 4)(s+ 20)

(s+ 1)(s+ 80)
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Figure 10.19: System of Exer
ise 18.

20. Establish a 
orresponden
e between the three Bode diagrams and the three

unit step responses in Figure 10.20.

21. Establish a 
orresponden
e between the three Bode diagrams and the three

unit step responses in Figure 10.21.

22. Find the transfer fun
tions 
orresponding to the Bode diagrams in Fig-

ure 10.22.

23. Consider the following transfer fun
tions:

G1(s) =
5050s+ 10000

s2 + 101s+ 100
(10.93)

G2(s) =
100s+ 10000

s2 + 101s+ 100
(10.94)

(a) Find their poles.

(b) Whi
h pole is faster? Why?

(
) Whi
h of the two transfer fun
tions will respond faster to a unit step?

Why?
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Figure 10.20: Bode diagrams and unit step responses of Exer
ise 20.
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Figure 10.21: Bode diagrams and unit step responses of Exer
ise 21.
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Figure 10.22: Bode diagrams of Exer
ise 22.
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