
Department of Mathematics, IST — Probability and Statistics Unit
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• Please justify your answers.
• This test has one page and four questions. The total of points is 20.0.

1. Elaborate on the importance of craftsmen unions/guilds in Medieval Europe to ensure product and
service quality. (1.0)

• Importance of craftsmen guilds in Medieval Europe
From the end of the 13th century to the early 19th century, craftsmen across medieval Europe
were organized into unions called guilds. These guilds were responsible for developing strict rules
for product and service quality. Inspection committees enforced the rules by marking flawless
goods with a special mark or symbol.
Craftsmen themselves often placed a second mark on the goods they produced. At first this
mark was used to track the origin of faulty items. But over time the mark came to represent a
craftsman’s good reputation. For example, stonemasons marks symbolized each guild members
obligation to satisfy his customers and enhance the trades reputation.
Inspection marks and master-craftsmen marks served as proof of quality for customers throughout
medieval Europe. This approach to manufacturing quality was dominant until the Industrial
Revolution in the early 19th century.1

2. A p chart is going to be set to control the fraction of nonconforming switches in samples of size n.

(a) How large should n be so that the p chart will have a positive lower control limit LCL = p0 −
γ
√

p0(1− p0)/n? What is the importance of a positive lower control limit in such a context? (1.5)

• Obtaining a positive lower control limit
n : LCL > 0

p0 − γ

√
p0(1− p0)

n
> 0

√
p0(1− p0)

n
<

p0

γ

n > p0(1− p0)×
γ2

p2
0

n >
(1− p0)× γ2

p0

• Importance of a a positive lower control limit
When dealing with a p chart it is essential to have a positive lower control limit in order to
detect in a fairly quick fashion a decrease in the fraction of nonconforming items (i.e., quality
improvement), namely with ARL(δ < 0) < ARL(0)
In case the lower control limit is not positive, we deal with an upper one-sided p chart, whose
ARL in the presence of a decrease is surely and unreasonably larger than the in-control ARL
(i.e., ARL(δ < 0) < ARL(0)).

1Taken from http://www.asq.org/learn-about-quality/history-of-quality/overview/guilds.html (now a non operational link).
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(b) If 20 switches are inspected each day, the target fraction nonconforming is p0 = 0.02 and γ = 3,
what is the median of the time this chart needs to detect a shift in p to 0.04? Interpret this result. (2.0)

• Control statistic
YN = fraction of nonconforming switches in the N thsample of 20 switches, N ∈ IN

• Distributions
n× YN ∼ Binomial(n, p = p0), in control, where n = 20, p0 = 0.02
n× YN ∼ Binomial(n, p = p0 + δ), out of control, where δ (0 < δ < 1− p0) represents the
magnitude of the shift in p

• Control limits of the p chart

LCL = max




0, p0 − γ

√
p0(1− p0)

n






= max




0, 0.02− 3×

√
0.02× (1− 0.02)

20






= max{0,−0.0739149}
= 0

UCL = p0 + γ

√
p0(1− p0)

n

= 0.02 + 3×

√
0.02× (1− 0.02)

20
= 0.113915

• Probability of triggering a signal
ξ(δ) = P (YN %∈ [LCL,UCL] | δ)

YN≥0, LCL=0= P (n× YN > n× UCL | δ)
= 1− FBinomial(n,p=p0+δ)(n× UCL)
= 1− FBinomial(20,0.04)(20× 0.113915)
= 1− FBinomial(20,0.04)(2.2783)
= 1− FBinomial(20,0.04)(2)

table= 1− 0.9561
= 0.0439

• Run length
We are dealing with a Shewhart chart, thus, the number of samples collected until the chart
triggers a signal given δ, RL(δ), has the following distribution:

RL(δ) ∼ Geometric (ξ(δ)) .

• Median of RL(δ)

F−1
RL(δ)(α) Table 9.2= inf

{
m ∈ IN : FRL(δ)(m) ≥ α

}

= 1− [1− ξ(δ)]m ≥ α

= [1− ξ(δ)]m ≤ 1− α

= m× ln [1− ξ(δ)] ≤ ln(1− α)
ln [1−ξ(δ)]<0

= m ≥ ln(1− α)
ln [1− ξ(δ)]
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α=0.5= m ≥ ln(1− 0.5)
ln(1− 0.0439)

= m ≥ 15.453459
= 16

• Comment
When the expected value of the fraction of nonconforming switches duplicates, in samples of
n = 20 switches, the probability of triggering a valid signal within the first 16 samples is at
least 50%, i.e., most of time.

(c) A statistician has just proposed an upper one-sided CUSUM to detect increases in the expected
number of nonconforming switches in samples of size n = 20.
How should she set this new chart and how could she obtain the median of the time this chart
needs to detect that shift from p0 = 0.02 to 0.04? (3.5)

• Reference value, k, of the upper one-sided CUSUM chart for binomial data
It should be the closest integer to

n×
ln

(
1−p0
1−p1

)

ln
[

(1−p0)×p1

(1−p1)×p0

] = 20×
ln

[
1−0.02
1−0.04

]

ln
[

(1−0.02)×0.04
(1−0.04)×0.02

]

= 0.577760
(see result (10.14)), that is, k = 1.

• Control statistic (no head-start)

ZN =
{

u = 0, N = 0
max{0, ZN−1 + (Y ′

N − k)}, N ∈ IN,

(see Example 10.9 and (10.4)), where Y ′
N = n× YN represents the number of nonconforming

switches in the N thsample of 20 switches, N ∈ IN

• Control limits
LCL = 0 because we are dealing with an upper one-sided CUSUM chart for binomial data.
The upper control limit should be an integer, UCL = x, such that the in-control ARL is fairly
large, e.g. 200 samples. Obtaining x requires some numerical work...

• Out-of-control transition probability matrix
Let

Q(δ) = [pij(θ)]xi,j=0

=





Fδ(k) Pδ(k + 1) Pδ(k + 2) · · · Pδ(k + x)
Fδ(k − 1) Pδ(k) Pδ(k + 1) · · · Pδ(k + x− 1)
Fδ(k − 2) Pδ(k − 1) Pδ(k) · · · Pδ(k + x− 2)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Fδ(k − x) Pδ(k − x + 1) Pδ(k − x + 2) · · · Pδ(k)



 ,

where δ = p1 − p0 = 0.02 and Fδ and Pδ represent the c.d.f. and the p.f. of a r.v. with a
Binomial(n = 20, p0 + δ = p1) distribution.
Then RL0(δ), the RL of this upper one-sided CUSUM chart, has a phase-type distribution
with parameters (e0,Q(δ)), where e0 = (1, 0, . . . , 0) is the first vector of the orthonormal basis
of IRx+1.

• Obtaining the median of the out-of-control RL
This RL-related quantity is equal to

F−1
RL(δ)(α) Table 9.2= inf

{
m ∈ IN : FRL0(δ)(m) ≥ α

}
,

where α = 0.5 and FRL0(δ)(m) = 1 − e%0 × [Q(δ)]m × 1, m ∈ IN , with 1 = (1, 1, . . . , 1), a
column vector of x + 1 ones.
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In the CUSUM case, there is no explicit solution for FRL0(δ)(m) ≥ α, thus, the median of RL
can be only obtained by extensive search, i.e., testing the values of m one by one until the
condition FRL0(δ)(m) ≥ α is fulfilled.

3. The fill volume of a soft drink beverage bottles is an important quality characteristic. The volume can
be approximately measured by placing a gauge over the crown and comparing the height of the liquid
in the neck of the bottle — a reading of zero corresponds to the correct fill height.

Assume that the reading has a normal distribution with parameters with target values µ0 = 0 and
σ0 = 0.1, and that samples of size n = 9 are taken from the manufacturing process every hour.
(a) After having set up an upper one-sided S2 chart that has an in-control ARL equal to 1000, obtain

the probability that a shift from σ0 = 0.1 to σ =
√

26.12/11.03×σ0 is detected by this chart within
3 hours. (2.5)

• Quality characteristic
X = reading (difference between the height of the liquid and the gauge)
X ∼ Normal(µ,σ2)

• Control statistic
S2

N = variance of the N th random sample of size n, N ∈ IN

• Distribution
(n−1)S2

N
σ2
0

∼ χ2
(n−1), in control

(n−1)S2
N

(θσ0)2 ∼ χ2
(n−1), out of control, where σ0 = 0.1, n = 9 θ, and (θ > 1) represents a shift

(an increase!) in the standard deviation σ.

• Control limits of the upper one-sided S2− chart
LCLσ = 0
UCLσ = σ2

0
n−1 × γσ

• Probability of triggering a signal
Taking into account the distribution of the control statistic, the individual chart for σ triggers
a signal with probability equal to

ξσ(θ) = P
(
S2

N %∈ [LCLσ, UCLσ] | θ
)

= 1− Fχ2
(n−1)

[(n− 1) UCLσ

σ2

]

= 1− Fχ2
(n−1)

(
γσ

θ2

)
, θ ≥ 1.

• Run length of the chart
We are dealing with a Shewhart chart, therefore the number of samples collected until the
chart triggers a signal given θ = σ

σ0
, RLσ(θ), satisfies

RLσ(θ) ∼ Geometric (ξσ(θ))
P [RLσ(θ) ≤ m] = 1− [1− ξσ(θ)]m , m ∈ IN.

• Obtaining γσ and the upper control limit
γσ : ARLσ(1) = 1000

1
ξσ(1)

= 1000

1− Fχ2
(n−1)

(γσ) = 0.001

γσ = Fχ2
(9−1)

(1− 0.001)
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γσ
table= 26.12

UCLσ =
σ2

0

n− 1
× γσ

=
0.12

9− 1
× 26.12

= 0.032650.

• Requested probability
P [RLσ (θ) ≤ m] = 1− [1− ξσ(θ)]m

= 1−
{

1−
[
1− Fχ2

(n−1)

(
γσ

θ2

)]}m

= 1−
[
Fχ2

(n−1)

(
γσ

θ2

)]m

= 1−
[

Fχ2
(9−1)

(
26.12

√
26.12/11.032

)]3

= 1−
[
Fχ2

(8)
(11.03)

]3

table= 1− 0.83

= 0.488.

(b) A standard X̄ chart with 3.0902 sigma limits has been also adopted and is run along with the chart
upper one-sided S2 chart.
Calculate the probability that this joint scheme for µ and σ detects the shift described in line (a),
assuming that µ remains in-control.
What is the probability of a misleading signal of Type III in such a case? (3.0)

• An additional control statistic
X̄N = mean of the N th random sample of size n

• Distribution
X̄N ∼ Normal

(
µ = µ0,

σ2

n = σ2
0

n

)
, in control, where µ0 = 0, σ0 = 0.1 and n = 9

X̄N ∼ Normal
(
µ = µ0 + δ × σ0√

n
, σ2

n = (θσ0)2

n

)
, out of control, where δ (δ %= 0) represents

the magnitude of the shift (a decrease or an increase!) in µ and θ (θ > 1) represents a shift
(an increase!) in the standard deviation σ.

• Control limits of the standard X̄ chart
LCLµ = µ0 − γµ

σ0√
n

= −0.103007
UCLµ = µ0 + γµ

σ0√
n

= 0.103007, because µ0 = 0, σ0 = 0.1, n = 9 and γµ = 3.0902.

• Probability of triggering a signal
Taking into account the distribution of this control statistic, the individual chart for µ triggers
a signal with probability equal to

ξµ(δ, θ) = P
(
X̄N %∈ [LCLµ, UCLµ] | δ, θ

)

= 1−
[

Φ
(

UCLµ − µ
σ√
n

)

− Φ
(

LCLµ − µ
σ√
n

)]

= 1−
[
Φ

(
γµ − δ

θ

)
− Φ

(−γµ − δ

θ

)]
, δ ∈ IR, θ ≥ 1.

• Probability of a signal by the joint scheme for µ and σ
The joint scheme triggers a signal if either of the individual charts triggers an alarm. Moreover,
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the control statistics of the individual charts are independent given (δ, θ). As a consequence,
the joint scheme for µ and σ triggers a signal with probability equal to:

ξµ,σ(δ, θ) = P
(
X̄N %∈ [LCLµ, UCLµ] or S2

N %∈ [LCLσ, UCLσ] | δ, θ
)

= ξµ(δ, θ) + ξσ(θ)− ξµ(δ, θ)× ξσ(θ).
When µ remains in control and a shift from σ0 to σ = θσ0 has occurred, we get:

ξµ(δ, θ) = 1−
[
Φ

(
γµ − δ

θ

)
− Φ

(−γµ − δ

θ

)]

(δ,θ)=(0,
√

26.12/11.03)
= 1−

[

Φ
(

3.0902− 0
√

26.12/11.03

)

− Φ
(
−3.0902− 0

√
26.12/11.03

)]

) 1− [Φ(2.01)− Φ(−2.01)]
= 2× [1− Φ(2.01)]

table= 2× (1− 0.9778)
= 0.0444

ξσ(θ) = 1− Fχ2
(n−1)

(
γσ

θ2

)

θ=
√

26.12/11.03
= 1− Fχ2

(9−1)

(
26.12

√
26.12/11.032

)

(a)
= 1− 0.8
= 0.2.

Then a signal is triggered by the joint scheme, when (δ, θ) =
(
0,

√
26.12/11.03

)
, with

probability:

ξµ,σ

(
0,

√
26.12/11.03

)
= ξµ

(
0,

√
26.12/11.03

)
+ ξσ

(√
26.12/11.03

)

−ξµ

(
0,

√
26.12/11.03

)
× ξσ

(√
26.12/11.03

)

) 0.0444 + 0.2− 0.0444× 0.2
= 0.23552.

• Probability of a misleading signal of type III

PMSIII(θ)
Table 10.12=

1− [Φ(γµ/θ)− Φ(−γµ/θ)]
[
Fχ2

(n−1)
(γσ/θ2)

]−1

− [Φ(γµ/θ)− Φ(−γµ/θ)]

=
1−

[
Φ

(
3.0902√

26.12
11.03

)
− Φ

(
− 3.0902√

26.12
11.03

)]

[
Fχ2

(8)

(
26.12√

26.12
11.03

)]−1

−
[
Φ

(
3.0902√

26.12
11.03

)
− Φ

(
− 3.0902√

26.12
11.03

)]

) 1− [Φ(2.01)− Φ(−2.01)]
[
Fχ2

(8)
(11.03)

]−1

− [Φ(2.01)− Φ(−2.01)]

(a)
=

0.0444
0.8−1 − (1− 0.0444)

) 0.151020.

(c) Derive and interpret the following result for the Shewhart case: PMSIII(θ) = ξµ(0,θ)×[1−ξσ(θ)]
ξµ,σ(0,θ) . (1.5)

• Proof
Let us remind the reader that, for the Shewhart case, we have

6



ξµ(0, θ) = 1− [Φ(γµ/θ)− Φ(−γµ/θ)]
ξσ(θ) = 1− Fχ2

(n−1)
(γσ/θ2)

ξµ,σ(0, θ) = ξµ(0, θ) + ξσ(θ)− ξµ(0, θ)× ξσ(θ).
Thus,

PMSIII(θ) =
1− [Φ(γµ/θ)− Φ(−γµ/θ)]

[
Fχ2

(n−1)
(γσ/θ2)

]−1

− [Φ(γµ/θ)− Φ(−γµ/θ)]

=
{1− [Φ(γµ/θ)− Φ(−γµ/θ)]}×

{
1−

[
1− Fχ2

(n−1)
(γσ/θ2)

]}

1− (1− {1− [Φ(γµ/θ)− Φ(−γµ/θ)]})×
{

1−
[
1− Fχ2

(n−1)
(γσ/θ2)

]}

=
ξµ(0, θ)× [1− ξσ(θ)]

1− [1− ξµ(0, θ)]× [1− ξσ(θ)]

=
ξµ(0, θ)× [1− ξσ(θ)]

ξµ(0, θ) + ξσ(θ)− ξµ(0, θ)× ξσ(θ)

=
ξµ(0, θ)× [1− ξσ(θ)]

ξµ,σ(0, θ)
.

• Interpretation
In case we are dealing with a joint Shewhart scheme for µ and σ, the probability of a misleading
signal of Type III coincides with the probability of a signal being triggered by the individual
chart for µ but not by the individual chart for σ, conditional to a signal triggered by the joint
scheme.

4. A soft drink producer has established an upper specification on the contents of the 33cl bottles at 37cl.
If 1% (or less) of the contents of these bottles are below this limit the producer wishes to accept and
dispatch the lot with probability (of at least) 0.95 (i.e., p1 = 1%, 1−α = 0.95), while if 10% (or more)
of the contents of the bottles are above this limit the producer would like to accept and dispatch the lot
with probability (of at most) 0.15 (i.e., p2 = 10%, β = 0.15).

(a) Find an appropriate sampling plan for attributes. (3.5)

• Producer’s and consumer’s risk points
(p1, 1− α) = (1%, 0.95)
(p2, β) = (10%, 0.15)

• Obtaining the acceptance number and sample size
According to Wetherill and Brown (1991), the acceptance number c and sample size n of
a sampling plan for attributes, associated to risk points (p1, 1 − α) and (p2, β), can be
approximately obtained:2

◦ c should be taken as the smallest integer satisfying
r(c) ≤ p2

p1
,

where r(c) =
F−1

χ2
2(c+1)

(1−β)

F−1

χ2
2(c+1)

(α)
;

◦ n should be taken as the smallest integer satisfying

2See page 129 of the lecture notes, in particular, formulae (13.11), (13.10) and (13.12).
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F−1
χ2

2(c+1)
(1− β)

2p2
≤ n ≤

F−1
χ2

2(c+1)
(α)

2p1
,

namely the ceiling of the lower bound above,



F−1
χ2

2(c+1)
(1− β)

2p2




.

Since

c r(c) =
F−1

χ2
2(c+1)

(1−β)

F−1

χ2
2(c+1)

(α)
Is r(c) ≤ p2

p1
= 10?

0
F−1

χ2
2(0+1)

(1−0.15)

F−1

χ2
2(0+1)

(0.05)

table= 3.794
0.103 = 36.835 NO!

1
F−1

χ2
2(1+1)

(1−0.15)

F−1

χ2
2(1+1)

(0.05)

table= 6.745
0.711 = 9.487 YES!

we get c = 1. Moreover,

n =





F−1
χ2

2(1+1)
(1− 0.15)

2× 0.1





table=
⌈ 6.745
2× 0.1

⌉

= *33.725+
= 34.

• [Obs. The lot should be accept iff the number of cans with content larger than 37cl, in a
sample of n = 34 cans, does not exceed c = 1.]

(b) Assume that the variance of the bottle contents is known and that the producer adopted instead a
sampling plan by variables with nσ = 7 and kσ = 1.685411.
Obtain the lot acceptance probabilities of this sampling plan by variables for p1 = 1% and p2 =
10%.3 Which sampling plan would you favour? (1.5)

• Requested lot acceptance probabilities

p Pa(p)Φ
{√

nσ
[
−kσ − Φ−1(p)

]}

p1 = 0.01 Φ
{√

7
[
−1.685411− Φ−1(0.01)

]}
) Φ(1.70) table= 0.9554 ≥ 1− α = 0.95

p2 = 0.10 Φ
{√

7
[
−1.685411− Φ−1(0.10)

]}
) Φ(−1.07) table= 1− 0.8577 = 0.1423 ≤ β = 0.15

• [Obs.: The lot should be accept iff Q = U−x̄
σ ≥ kσ, where Q is the quality index, U = 37

is the upper specification limit, x̄ represents the mean of a sample with size nσ = 7, and
kσ = 1.685411.]

• Favourite sampling plan
The sampling plan by variables (SPV) requires a considerably smaller sample (nσ = 7) than
the sampling plan for attributes n = 34, thus, should the SPV be favoured.

3Result (13.34) should be read as follows: Pa(p) = · · · = Φ
{√

nσ

[
−kσ − Φ−1(p)

]}
.
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