Department of Mathematics, IST - Probability and Statistics Unit

Reliability and Quality Control

t. Test	1st. Semester - 2011/12
rration: 1h30m	2011/11/05-8AM, Room P1

- Please justify your answers.
- This test has one page and three questions. The total of points is $\mathbf{2 0 . 0}$.

1. Admit that a transponder ${ }^{1}$ crucially depends on a diamond structure (pictured on the left) with 7 components.

.

-

Diamond structure (left, question 1); crosslinked system (center, question 2); TTT plot (right, question 3).
(a) Prove that component 4 is not irrelevant, and provide an expression (do not simplify it!) for the (2 structure function of the diamond structure of the transponder

- Relevance of component 4

Component 4 is not irrelevant because there is at least a state vector \underline{x} such that:

$$
\phi\left(0_{4}, \underline{x}\right) \neq \phi\left(1_{4}, \underline{x}\right) .
$$

In fact, for

$$
\underline{x}=(1,0,0,1,0,0,1),
$$

we get

$$
\begin{aligned}
\phi\left(0_{4}, \underline{x}\right) & =\phi(1,0,0,0,0,0,1)=0 \\
& \neq \phi\left(1_{4}, \underline{x}\right)=\phi(1,0,0,1,0,0,1)=1
\end{aligned}
$$

because the system does not function when only components 1 and 7 operate, whereas it operates with components 1,4 and 7 functioning.

- Minimal path sets

$$
\begin{aligned}
& \mathcal{P}_{1}=\{1,2,3\} \\
& \mathcal{P}_{2}=\{1,4,7\} \\
& \mathcal{P}_{3}=\{1,4,5,3\}=\{1,3,4,5\} \\
& \mathcal{P}_{4}=\{1,2,5,7\} \\
& \mathcal{P}_{5}=\{6,7\} \\
& \mathcal{P}_{6}=\{6,4,2,3\}=\{2,3,4,6\} \\
& \mathcal{P}_{7}=\{6,5,3\}=\{3,5,6\} \\
& p^{*}=7 \text { minimal path sets }
\end{aligned}
$$

[^0]- Structure function

$$
\begin{aligned}
\phi(\underline{X}) \stackrel{T 1.30}{=} & 1-\prod_{j=1}^{p^{*}}\left(1-\prod_{i \in \mathcal{P}_{j}} X_{i}\right) \\
= & 1-\left(1-X_{1} X_{2} X_{3}\right)\left(1-X_{1} X_{4} X_{7}\right)\left(1-X_{1} X_{3} X_{4} X_{5}\right)\left(1-X_{1} X_{2} X_{5} X_{7}\right) \\
& \times\left(1-X_{6} X_{7}\right)\left(1-X_{2} X_{3} X_{4} X_{6}\right)\left(1-X_{3} X_{5} X_{6}\right) .
\end{aligned}
$$

(b) Now, admit that each of those 7 components have reliability $p_{i}=p=0.975, i=1, \ldots, 7$, and (2 operate in an independent fashion. Obtain a lower and an upper bound (as strict as possible) for the reliability of the diamond structure.

- Components

$p_{i}=p=0.975, i=1, \ldots, 7$
Since the 7 components form a coherent system and operate independently, we can apply Theorem 1.68.

- Minimal cut sets
$\mathcal{K}_{1}=\{1,6\}$
$\mathcal{K}_{2}=\{3,7\}$
$\mathcal{K}_{3}=\{2,4,6\}$
$\mathcal{K}_{4}=\{1,4,5,7\}$
$\mathcal{K}_{5}=\{3,4,5,6\}$
$\mathcal{K}_{6}=\{2,5,7\}$
$q=6$ minimal cut sets
- Lower bound for the reliability $r(\underline{p})$

$$
\begin{array}{rll}
r(\underline{p}) & \stackrel{T 1.68}{\geq} & \prod_{j=1}^{q}\left[1-\prod_{i \in \mathcal{K}_{j}}\left(1-p_{i}\right)\right] \\
& \stackrel{p_{i}=p}{=} & \prod_{j=1}^{q}\left[1-(1-p)^{\# \mathcal{K}_{j}}\right] \\
& =\left[1-(1-p)^{2}\right]^{2} \times\left[1-(1-p)^{3}\right]^{2} \times\left[1-(1-p)^{4}\right]^{2} \\
& \stackrel{p=0.975}{=} & 0.998718 .
\end{array}
$$

- Upper bound for the reliability

$$
\begin{array}{rll}
r(\underline{p}) & \stackrel{T 1.68}{\leq} & 1-\prod_{j=1}^{p^{*}}\left(1-\prod_{i \in \mathcal{P}_{j}} p_{i}\right) \\
& \stackrel{p_{i}=p}{=} & 1-\prod_{j=1}^{p^{*}}\left(1-p^{\# \mathcal{P}_{j}}\right) \\
& = & 1-\left(1-p^{2}\right) \times\left(1-p^{3}\right)^{3} \times\left(1-p^{4}\right)^{3} \\
& \stackrel{=0.975}{=} & 0.999999982 .
\end{array}
$$

- Obs.

Theorem 1.70 (Min-Max for positively associated) leads to a worse lower bound:

$$
r(\underline{p}) \stackrel{T 1.70}{\geq} \max _{j=1, \ldots, p^{*}} \prod_{i \in \mathcal{P}_{j}} p_{i}
$$

$$
\begin{aligned}
\stackrel{p_{i}=p}{=} & \max _{j=1, \ldots, p^{*}} p^{\# \mathcal{P}_{j}} \\
= & p^{\min _{j=1, \ldots, p^{*}} \# \mathcal{P}_{j}} \\
= & p^{2} \\
\stackrel{p=0.975}{=} & 0.950625 .
\end{aligned}
$$

A better upper bound can be obtained by using Theorem 1.70 (Min-Max):

$$
\begin{array}{rl}
r(\underline{p}) & \stackrel{T 1.70}{\leq} \min _{j=1, \ldots, q}\left[1-\prod_{i \in \mathcal{K}_{j}}\left(1-p_{i}\right)\right] \\
& =\min _{j=1, \ldots, q}\left[1-(1-p)^{\# \mathcal{K}_{j}}\right] \\
& =1-(1-p)^{\min _{j=1, \ldots, q} \# \mathcal{K}_{j}} \\
& =1-(1-p)^{2} \\
p=0.975 & 0.999375 .
\end{array}
$$

(c) Assume now that the durations (in 10^{3} days) of the 7 components are positively associated random $(\mathbf{2}$ variables with common Weibull distribution with scale parameter $\delta=1$ and shape parameter $\alpha=2$. Determine a lower and an upper bound (as strict as possible) for the reliability function of the same structure for a period of 2 years.

- Individual durations, common distribution and duration of the system
$T_{i}, i=1, \ldots, 7$ positively associated r.v.
$T_{i} \stackrel{i . i . d .}{\sim} W e i b u l l(\delta=1, \alpha=2)$
$R_{i}(t)=R(t)=e^{-t^{2}}, t \geq 0$
$T=$ duration of the system
Under these circumstances we can apply Theorem 2.22 to provide a lower and an upper bound for $R_{T}(t)$.
- Lower bound for the reliability function $R_{T}(t)$

$$
\begin{array}{rlrl}
R_{T}(t) & \stackrel{T 2.22}{\geq} & \max _{j=1, \ldots, p^{*}}\left[\prod_{i \in \mathcal{P}_{j}} R_{i}(t)\right] \\
& R_{i}(t) & =R(t) & \\
& \max _{j=1, \ldots, p^{*}}\left[R_{i}(t)\right]^{\# \mathcal{P}_{j}} \\
& = & & {[R(t)]^{\min _{j=1, \ldots, p^{*}} \# \mathcal{P}_{j}}} \\
& = & {[R(t)]^{2}} \\
& = & \left(e^{-t^{2}}\right)^{2} \\
t= & =\frac{2 \times 365}{1000} & e^{-2 \times\left(\frac{2 \times 365}{1000}\right)^{2}} \\
& \simeq & 0.344452 .
\end{array}
$$

- Upper bound for the reliability function $R_{T}(t)$

$$
\begin{array}{rll}
R_{T}(t) & \stackrel{T 2.22}{\leq} & \min _{j=1, \ldots, q}\left\{1-\prod_{i \in \mathcal{K}_{j}}\left[1-R_{i}(t)\right]\right\} \\
R_{i}(t)=R(t) & \min _{j=1, \ldots, q}\left\{1-[1-R(t)]^{\# \mathcal{K}_{j}}\right\} \\
& = & 1-[1-R(t)]^{\min _{j=1, \ldots, q} \# \mathcal{K}_{j}}
\end{array}
$$

$$
\begin{array}{rlrl}
& = & 1-[1-R(t)]^{2} \\
& = & 1-\left(1-e^{-t^{2}}\right)^{2} \\
t=\frac{2 \times 365}{\underline{1000}} & & 1-\left[1-e^{-\left(\frac{2 \times 365}{1000}\right)^{2}}\right]^{2} \\
& \simeq & & 0.829349 .
\end{array}
$$

2. A crosslinked system comprises 4 silicon photodiode ${ }^{2}$ detectors, as pictured above in the center. The durations (in 10^{4} hours) of these 4 detectors, $T_{i}(i=1, \ldots, 4)$ are i.i.d. random variables with common reliability function $R(t)=t^{-3}$, for $t \geq 1$, and $R(t)=1$, for $t<1$.
(a) Obtain the reliability function of the crosslinked system for a period of 87600 hours

- Individual durations and common reliability function
$T_{i}, i=1, \ldots, 4$, i.i.d. r.v. with reliability function

$$
R_{T_{i}}(t)=R(t)= \begin{cases}1, & t<1 \\ t^{-3}, & t \geq 1\end{cases}
$$

- Duration of the system
$T=\max \left\{\min \left\{T_{1}, \max \left\{T_{2}, T_{3}\right\}\right\}, T_{4}\right\}$
- Reliability function of $\max \left\{T_{2}, T_{3}\right\}$

According to Example 2.6, it is equal to

$$
R_{\max \left\{T_{2}, T_{3}\right\}}(t) \stackrel{R_{T_{i}}(t)=R(t)}{=} 1-[1-R(t)]^{2}
$$

- Reliability function of $\min \left\{T_{1}, \max \left\{T_{2}, T_{3}\right\}\right\}$

Following Example 2.5, we get

$$
\begin{array}{lll}
R_{\min \left\{T_{1}, \max \left\{T_{2}, T_{3}\right\}\right\}}(t) & = & R_{T_{1}}(t) \times R_{\max \left\{T_{2}, T_{3}\right\}}(t) \\
& R_{T_{i}}(t)=R(t) & \\
= & R(t) \times\left\{1-[1-R(t)]^{2}\right\}
\end{array}
$$

- Reliability function of T

$$
\begin{array}{rll}
R_{T}(t) & = & R_{\max \left\{\min \left\{T_{1}, \max \left\{T_{2}, T_{3}\right\}\right\}, T_{4}\right\}}(t) \\
& = & 1-\left[1-R_{\min \left\{T_{1}, \max \left\{T_{2}, T_{3}\right\}\right\}}(t)\right] \times\left[1-R_{T_{4}}(t)\right] \\
& \stackrel{R_{T_{i}}(t)=R(t)}{=} & 1-\left(1-R(t) \times\left\{1-[1-R(t)]^{2}\right\}\right) \times[1-R(t)]
\end{array}
$$

- Reliability for a period of 87600 hours

$$
\begin{aligned}
R_{T}(8.76) & =1-\left(1-R(8.76) \times\left\{1-[1-R(8.76)]^{2}\right\}\right) \times[1-R(8.76)] \\
& =1-\left\{1-8.76^{-3} \times\left[1-\left(1-8.76^{-3}\right)^{2}\right]\right\} \times\left(1-8.76^{-3}\right) \\
& \simeq 0.001492 .
\end{aligned}
$$

Alternative method

- Individual durations and common reliability function
$T_{i}, i=1, \ldots, 7$, i.i.d. r.v. with reliability function

$$
R_{i}(t)=R(t)= \begin{cases}1, & t<1 \\ t^{-3}, & t \geq 1\end{cases}
$$

[^1]- Minimal path sets

$$
\begin{aligned}
& \mathcal{P}_{1}=\{1,2\} \\
& \mathcal{P}_{2}=\{1,3\} \\
& \mathcal{P}_{3}=\{4\}
\end{aligned}
$$

- Structure function

$$
\begin{array}{rll}
\phi(\underline{X}) & \stackrel{T 1.30}{=} & 1-\prod_{j=1}^{p^{*}}\left(1-\prod_{i \in \mathcal{P}_{j}} X_{i}\right) \\
& = & 1-\left(1-X_{1} X_{2}\right)\left(1-X_{1} X_{3}\right)\left(1-X_{4}\right) \\
& = & 1-\left(1-X_{1} X_{2}-X_{1} X_{3}+X_{1}^{2} X_{2} X_{3}\right)\left(1-X_{4}\right) \\
& \stackrel{X_{1}^{2}=s t X_{1}}{=} & 1-\left(1-X_{1} X_{2}-X_{1} X_{3}+X_{1} X_{2} X_{3}-X_{4}+X_{1} X_{2} X_{4}+X_{1} X_{3} X_{4}\right. \\
& \left.-X_{1} X_{2} X_{3} X_{4}\right) \\
& =X_{4}+X_{1} X_{2}+X_{1} X_{3}-X_{1} X_{2} X_{3}-X_{1} X_{2} X_{4}-X_{1} X_{3} X_{4}+X_{1} X_{2} X_{3} X_{4} .
\end{array}
$$

- Reliability

Since $\underline{X}=\left(X_{1}, \ldots, X_{4}\right)$, where $X_{i} \stackrel{\text { indep }}{\sim} \operatorname{Bernoulli}\left(p_{i}\right), i=1,2,3,4$, we get:

$$
\begin{aligned}
r(\underline{p}) & =r\left(p_{1}, \ldots, p_{4}\right) \\
& =E[\phi(\underline{X})] \\
& =p_{4}+p_{1} p_{2}+p_{1} p_{3}-p_{1} p_{2} p_{3}-p_{1} p_{2} p_{4}-p_{1} p_{3} p_{4}+p_{1} p_{2} p_{3} p_{4} \\
& \stackrel{p_{i}=p}{=}
\end{aligned} p^{2}+2 p^{2}-3 p^{3}+p^{4} .
$$

- Reliability function

Considering T the duration of the crosslinked system, we have:

$$
\begin{array}{rcl}
R_{T}(t) & = & P(T>t) \\
& \stackrel{N 2.8}{=} & r\left(R_{1}(t), \ldots, R_{4}(t)\right) \\
& = & r(R(t), \ldots, R(t)) \\
& = & R(t)+2[R(t)]^{2}-3[R(t)]^{3}+[R(t)]^{4} \\
& R(t)=t^{-3} \\
& t=8.76 & t^{-3}+2\left(t^{-3}\right)^{2}-3\left(t^{-3}\right)^{3}+\left(t^{-3}\right)^{4} \\
& 0.001492 .
\end{array}
$$

(b) Are the durations T_{i} DHRA? What can be said about the stochastic ageing of the duration of the ${ }_{(3}$ crosslinked system?

- Individual durations and common reliability function
$T_{i}, i=1, \ldots, 7$, i.i.d. r.v. with reliability function

$$
R_{i}(t)=R(t)= \begin{cases}1, & t<1 \\ t^{-3}, & t \geq 1\end{cases}
$$

- Common p.d.f.

$$
\begin{aligned}
f(t) & =-\frac{d R(t)}{d t} \\
& = \begin{cases}0, & t<1 \\
3 t^{-4}, & t \geq 1\end{cases}
\end{aligned}
$$

- Common hazard rate function

$$
\lambda(t)=\frac{f(t)}{R(t)}
$$

$$
= \begin{cases}0, & t<1 \\ \frac{3 t^{-4}}{t^{-3}}=\frac{3}{t}, & t \geq 1\end{cases}
$$

- Obs.
$T_{i} \notin D H R$ because $\lambda(t)$ is not a decreasing function for $t \geq 0$ (even though it is decreasing for $t \geq 1$).
- Investigating the DHRA character of the T_{i} 's

$$
\begin{aligned}
\frac{1}{t} \Lambda(t) & =\frac{1}{t} \int_{0}^{t} \lambda(u) d u \\
& = \begin{cases}0, & t<1 \\
\frac{1}{t} \int_{1}^{t} \frac{3}{u} d u=\frac{3 \ln (t)}{t}, & t \geq 1\end{cases} \\
\frac{d \frac{1}{t} \Lambda(t)}{d t} & =\frac{3}{t^{2}}[1-\ln (t)], t \geq 1 \\
& = \begin{cases}\geq 0, & 1 \leq t \leq e \\
\leq 0, & t \geq e\end{cases}
\end{aligned}
$$

- Conclusion
$\frac{1}{t} \Lambda(t)$ is not a monotonous function for $t \geq 0$, thus $T_{i} \notin D H R A$.
- Stochastic ageing of T

According to Table 3.2, the DHRA property of the components of a system is not necessarily preserved after the formation of a coherent system. Thus, even if the T_{i} were $D H R A$ we could not add anything about the stochastic ageing of T, the duration of the (coherent) crosslinked system.
(c) Calculate the common value of $\mu_{i}=E\left(T_{i}\right)=\mu^{*}$ and obtain a lower limit for the expected value of (2 the duration of the parallel sub-system with components 2 and 3, falsely assuming that $T_{i} \in D H R A$.

- Common expected value

$$
\begin{aligned}
\mu^{*} & \stackrel{T_{i} \geqq 0}{=} \int_{0}^{+\infty} R(t) d t \\
& =\int_{0}^{1} 1 d t+\int_{1}^{+\infty} t^{-3} d t \\
& =1-\left.\frac{t^{-2}}{2}\right|_{1} ^{+\infty} \\
& =\frac{3}{2}
\end{aligned}
$$

- Lower bound for $\mu_{P}=E\left(\max T_{2}, T_{3}\right)$

Since T_{2} and T_{3} are independent r.v. (therefore positively associated) and we are falsely assuming that they are both $D H R A$, we can apply Theorem 3.64 (Equation (3.57) with the inequality reversed) and get

$$
\begin{array}{rlr}
\mu_{P} & = & E\left(\max T_{2}, T_{3}\right) \\
& \geq & \int_{0}^{+\infty}\left[1-\prod_{i=1}^{n}\left(1-e^{-t / \mu_{i}}\right)\right] d t \\
n=2, \mu_{i}=\mu^{*}=3 / 2 & \int_{0}^{+\infty}\left[1-\left(1-e^{-2 t / 3}\right)^{2}\right] d t \\
& = & \int_{0}^{+\infty}\left(2 e^{-2 t / 3}-e^{-4 t / 3}\right) d t
\end{array}
$$

$$
\begin{aligned}
& =-\left.3 e^{-2 t / 3}\right|_{0} ^{+\infty}+\left.\frac{3}{4} e^{-4 t / 3}\right|_{0} ^{+\infty} \\
& =3-\frac{3}{4} \\
& =\frac{9}{4} .
\end{aligned}
$$

3. (a) A sample of 9 specimens of a titanium alloy were subjected to a fatigue test to determine time to crack initiation. The observed times of crack initiation (in units of 10^{3} cycles) were 18, 32, 39, 53, 59, 68, 77, 78, 93, and the TTT plot pictured above on the right.
i) Exemplify the obtention of the TTT plot, by using just 4 points and the fact that the total time (1 in test is 517 (in units of 10^{3} cycles).

- Failure times

$T_{i}=$ time (in units of 10^{3}) of crack initiation of specimen $i, i=1, \ldots, 9$

- Complete data
$\underline{t}=(18,32,39,53,59,68,77,78,93)$
- Total time on test up to time $t_{(i)}$

$$
\tau\left(t_{(i)}\right)=\sum_{j=1}^{i}(n-j+1)\left[t_{(j)}-t_{(j-1)}\right]
$$

- Abcissae of the TTT plot
$\frac{i}{n}, i=0,1, \ldots, n$
- Ordinates of the TTT plot
$\frac{\tau\left(t_{(i)}\right)}{\tau\left(t_{(n)}\right)}, i=1, \ldots, n$, where $\tau\left(t_{(n)}\right)=517$; equal to 0 , for $i=0$.
- Four points of the TTT plot

i	$\frac{i}{n}$	$\tau\left(t_{(i)}\right)=\sum_{j=1}^{i}(n-j+1)\left[t_{(j)}-t_{(j-1)}\right]$	$\frac{\tau\left(t_{(i)}\right)}{\tau\left(t_{(n)}\right)}$
0	0	0	0
1	$\frac{1}{9}=0 .(1)$	$(9-1+1) \times 18=162$	$\frac{152}{517} \simeq 0.313$
2	$\frac{2}{9}=0 .(2)$	$162+(9-2+1) \times(32-18)=274$	$\frac{274}{517} \simeq 0.530$
3	$\frac{3}{9}=0 .(3)$	$274+(9-3+1) \times(39-32)=323$	$\frac{323}{517} \simeq 0.625$

ii) What sort of stochasting ageing does this TTT plot suggest for the time to crack initiation?

- Suggested stochastic ageing

The TTT plot is concave. This suggests a $I H R$ behavior of the time to crack initiation.
(b) A life test for a new insulating material used 25 specimens. The specimens were tested (2 simultaneously at $30 k V$, the test was run until 15 of the specimens failed, and the ordered failure times $\left(t_{(i)}\right)$ recorded as: 1.08, 12.20, 17.80, 19.10, 26.00, 27.90, 28.20, 32.20, 35.90, 43.50, 44.00, 45.20, 45.70, 46.30, 47.80 (with $\sum_{i=1}^{15} t_{(i)}=472.88$).

After having specified some convenient distribution assumption, obtain a 95% confidence interval for the 80% quantile of the failure time (T) distribution, $F_{T}^{-1}(0.80)$.

- Distribution assumption

$T_{i} \stackrel{i . i . d .}{\sim} \operatorname{Exponential}(\lambda), i=1, \ldots, 25$

- Life test

Since the end of the test was determined by $r=15^{\text {th }}$ failure and nothing in this exercise suggests that the $n=25$ specimens were replaced during the life test (they "were tested simultaneously"), we are dealing with a

- Type II/item censored testing without replacement.

- Unknown parameter

λ

- Censored data
$\left(t_{(1)}, \ldots, t_{(r)}\right)=(1.08,12.20, \ldots, 46.30,47.8015)$
$n=25$
$r=15$
$\sum_{i=1}^{15} t_{(i)}=472.88$
- Cumulative total time in test

$$
\begin{aligned}
\tilde{t} & \stackrel{D 5.17}{=} \sum_{i=1}^{r} t_{(i)}+(n-r) \times t_{(r)} \\
& =472.88+(25-15) \times 47.80 \\
& =950.88
\end{aligned}
$$

- Confidence interval for λ

$$
\begin{aligned}
C I_{(1-\alpha) \times 100 \%}(\lambda) & =\left[\lambda_{l} ; \lambda_{U}\right] \\
& =\left[\frac{F_{\chi_{(2 r)}^{2}}(\alpha / 2)}{2 \times \tilde{t}} ; \frac{F_{\chi_{(2 r)}^{2}}^{2}(1-\alpha / 2)}{2 \times \tilde{t}}\right] \\
C I_{95 \%}(\lambda) & =\left[\frac{F_{\chi_{(30)}^{2}}^{2}(0.025)}{2 \times 950.88} ; \frac{F_{\chi_{(30)}^{2}}(0.975)}{2 \times 950.88}\right] \\
& =\left[\frac{16.79}{1901.76} ; \frac{46.98}{1901.76}\right] \\
& \simeq[0.008829 ; 0.024703]
\end{aligned}
$$

- Another unknown parameter
$F_{T}^{-1}(0.80)=-\frac{1}{\lambda} \ln (1-0.80)$, which is a decreasing function of $\lambda>0$.
- Confidence interval for $F_{T}^{-1}(0.80)$

$$
C I_{95 \%}\left(F_{T}^{-1}(0.80)\right)=\left[\frac{1}{\lambda_{U}} \ln (1-0.80) ; \frac{1}{\lambda_{L}} \ln (1-0.80)\right]
$$

$$
\simeq \quad[65.150376 ; 182.296882] .
$$

[^0]: ${ }^{1}$ Aircraft have transponders to assist in identifying them on radar and on other aircraft's collision avoidance systems.

[^1]: ${ }^{2}$ A photodiode exhibits sensitivity to light, for instance by varying its electrical resistance like a photoresistor

