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• Please justify your answers.

• This test has one page and three questions. The total of points is 20.0.

1. Admit that a transponder1 crucially depends on a diamond structure (pictured on the left) with 7
components.
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Diamond structure (left, question 1); crosslinked system (center, question 2); TTT plot (right, question
3).

(a) Prove that component 4 is not irrelevant, and provide an expression (do not simplify it!) for the (2.5)
structure function of the diamond structure of the transponder.

• Relevance of component 4
Component 4 is not irrelevant because there is at least a state vector x such that:

φ(04, x) != φ(14, x).
In fact, for

x = (1, 0, 0, 1, 0, 0, 1),
we get

φ(04, x) = φ(1, 0, 0, 0, 0, 0, 1) = 0

!= φ(14, x) = φ(1, 0, 0, 1, 0, 0, 1) = 1,

because the system does not function when only components 1 and 7 operate, whereas it
operates with components 1, 4 and 7 functioning.

• Minimal path sets
P1 = {1, 2, 3}
P2 = {1, 4, 7}
P3 = {1, 4, 5, 3} = {1, 3, 4, 5}
P4 = {1, 2, 5, 7}
P5 = {6, 7}
P6 = {6, 4, 2, 3} = {2, 3, 4, 6}
P7 = {6, 5, 3} = {3, 5, 6}
p∗ = 7 minimal path sets

1Aircraft have transponders to assist in identifying them on radar and on other aircraft’s collision avoidance systems.
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• Structure function

φ(X) T1.30= 1−
p∗∏

j=1



1−
∏

i∈Pj

Xi





= 1− (1−X1X2X3)(1−X1X4X7)(1−X1X3X4X5)(1−X1X2X5X7)

×(1−X6X7)(1−X2X3X4X6)(1−X3X5X6).

(b) Now, admit that each of those 7 components have reliability pi = p = 0.975, i = 1, . . . , 7, and (2.0)
operate in an independent fashion. Obtain a lower and an upper bound (as strict as possible) for
the reliability of the diamond structure.

• Components
pi = p = 0.975, i = 1, . . . , 7
Since the 7 components form a coherent system and operate independently, we can apply
Theorem 1.68.

• Minimal cut sets
K1 = {1, 6}
K2 = {3, 7}
K3 = {2, 4, 6}
K4 = {1, 4, 5, 7}
K5 = {3, 4, 5, 6}
K6 = {2, 5, 7}

q = 6 minimal cut sets

• Lower bound for the reliability r(p)

r(p)
T1.68
≥

q∏

j=1



1−
∏

i∈Kj

(1− pi)





pi=p=
q∏

j=1

[
1− (1− p)#Kj

]

=
[
1− (1− p)2

]2
×

[
1− (1− p)3

]2
×

[
1− (1− p)4

]2

p=0.975= 0.998718.

• Upper bound for the reliability

r(p)
T1.68
≤ 1−

p∗∏

j=1



1−
∏

i∈Pj

pi





pi=p= 1−
p∗∏

j=1

(
1− p#Pj

)

= 1− (1− p2)× (1− p3)3 × (1− p4)3
p=0.975= 0.999999982.

• Obs.
Theorem 1.70 (Min-Max for positively associated) leads to a worse lower bound:

r(p)
T1.70
≥ max

j=1,...,p∗

∏

i∈Pj

pi

2



pi=p= max
j=1,...,p∗

p#Pj

= pminj=1,...,p∗ #Pj

= p2

p=0.975= 0.950625.

A better upper bound can be obtained by using Theorem 1.70 (Min-Max):

r(p)
T1.70
≤ min

j=1,...,q



1−
∏

i∈Kj

(1− pi)





= min
j=1,...,q

[
1− (1− p)#Kj

]

= 1− (1− p)minj=1,...,q #Kj

= 1− (1− p)2
p=0.975= 0.999375.

(c) Assume now that the durations (in 103 days) of the 7 components are positively associated random (2.5)
variables with common Weibull distribution with scale parameter δ = 1 and shape parameter α = 2.
Determine a lower and an upper bound (as strict as possible) for the reliability function of the same
structure for a period of 2 years.

• Individual durations, common distribution and duration of the system
Ti, i = 1, . . . , 7 positively associated r.v.
Ti

i.i.d.∼ Weibull(δ = 1, α = 2)
Ri(t) = R(t) = e−t2 , t ≥ 0

T = duration of the system

Under these circumstances we can apply Theorem 2.22 to provide a lower and an upper bound
for RT (t).

• Lower bound for the reliability function RT (t)

RT (t)
T2.22
≥ max

j=1,...,p∗




∏

i∈Pj

Ri(t)





Ri(t)=R(t)
= max

j=1,...,p∗
[Ri(t)]#Pj

= [R(t)]minj=1,...,p∗ #Pj

= [R(t)]2

=
(
e−t2

)2

t= 2×365
1000= e−2×( 2×365

1000 )2

& 0.344452.

• Upper bound for the reliability function RT (t)

RT (t)
T2.22
≤ min

j=1,...,q




1−
∏

i∈Kj

[1−Ri(t)]






Ri(t)=R(t)
= min

j=1,...,q

{
1− [1−R(t)]#Kj

}

= 1− [1−R(t)]minj=1,...,q #Kj
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= 1− [1−R(t)]2

= 1−
(
1− e−t2

)2

t= 2×365
1000= 1−

[
1− e−( 2×365

1000 )2
]2

& 0.829349.

2. A crosslinked system comprises 4 silicon photodiode2 detectors, as pictured above in the center. The
durations (in 104 hours) of these 4 detectors, Ti (i = 1, . . . , 4) are i.i.d. random variables with common
reliability function R(t) = t−3, for t ≥ 1, and R(t) = 1, for t < 1.

(a) Obtain the reliability function of the crosslinked system for a period of 87600 hours. (3.5)

• Individual durations and common reliability function
Ti, i = 1, . . . , 4, i.i.d. r.v. with reliability function

RTi(t) = R(t) =
{

1, t < 1
t−3, t ≥ 1

• Duration of the system
T = max{min{T1,max{T2, T3}}, T4}

• Reliability function of max{T2, T3}
According to Example 2.6, it is equal to

Rmax{T2,T3}(t)
RTi

(t)=R(t)
= 1− [1−R(t)]2

• Reliability function of min{T1,max{T2, T3}}
Following Example 2.5, we get

Rmin{T1,max{T2,T3}}(t) = RT1(t)×Rmax{T2,T3}(t)
RTi

(t)=R(t)
= R(t)×

{
1− [1−R(t)]2

}

• Reliability function of T

RT (t) = Rmax{min{T1,max{T2,T3}},T4}(t)

= 1−
[
1−Rmin{T1,max{T2,T3}}(t)

]
× [1−RT4(t)]

RTi
(t)=R(t)
= 1−

(
1−R(t)×

{
1− [1−R(t)]2

})
× [1−R(t)]

• Reliability for a period of 87600 hours
RT (8.76) = 1−

(
1−R(8.76)×

{
1− [1−R(8.76)]2

})
× [1−R(8.76)]

= 1−
{

1− 8.76−3 ×
[
1−

(
1− 8.76−3

)2
]}
× (1− 8.76−3)

& 0.001492.

Alternative method

• Individual durations and common reliability function
Ti, i = 1, . . . , 7, i.i.d. r.v. with reliability function

Ri(t) = R(t) =
{

1, t < 1
t−3, t ≥ 1

2A photodiode exhibits sensitivity to light, for instance by varying its electrical resistance like a photoresistor.
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• Minimal path sets
P1 = {1, 2}
P2 = {1, 3}
P3 = {4}

• Structure function

φ(X) T1.30= 1−
p∗∏

j=1



1−
∏

i∈Pj

Xi





= 1− (1−X1X2)(1−X1X3)(1−X4)

= 1− (1−X1X2 −X1X3 + X2
1X2X3)(1−X4)

X2
1=stX1= 1− (1−X1X2 −X1X3 + X1X2X3 −X4 + X1X2X4 + X1X3X4

−X1X2X3X4)

= X4 + X1X2 + X1X3 −X1X2X3 −X1X2X4 −X1X3X4 + X1X2X3X4.

• Reliability
Since X = (X1, . . . ,X4), where Xi

indep∼ Bernoulli(pi), i = 1, 2, 3, 4, we get:
r(p) = r(p1, . . . , p4)

= E[φ(X)]

= p4 + p1p2 + p1p3 − p1p2p3 − p1p2p4 − p1p3p4 + p1p2p3p4
pi=p= p + 2p2 − 3p3 + p4

• Reliability function
Considering T the duration of the crosslinked system, we have:

RT (t) = P (T > t)
N2.8= r(R1(t), . . . , R4(t))

= r(R(t), . . . , R(t))

= R(t) + 2[R(t)]2 − 3[R(t)]3 + [R(t)]4

R(t)=t−3

= t−3 + 2(t−3)2 − 3(t−3)3 + (t−3)4
t=8.76= 0.001492.

(b) Are the durations Ti DHRA? What can be said about the stochastic ageing of the duration of the (3.0)
crosslinked system?

• Individual durations and common reliability function
Ti, i = 1, . . . , 7, i.i.d. r.v. with reliability function

Ri(t) = R(t) =
{

1, t < 1
t−3, t ≥ 1

• Common p.d.f.

f(t) = −dR(t)
dt

=
{

0, t < 1
3t−4, t ≥ 1

• Common hazard rate function

λ(t) =
f(t)
R(t)
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=
{

0, t < 1
3t−4

t−3 = 3
t , t ≥ 1

• Obs.
Ti !∈ DHR because λ(t) is not a decreasing function for t ≥ 0 (even though it is decreasing
for t ≥ 1).

• Investigating the DHRA character of the Ti’s
1
t
Λ(t) =

1
t

∫ t

0
λ(u) du

=
{

0, t < 1
1
t

∫ t
1

3
u du = 3 ln(t)

t , t ≥ 1

d1
t Λ(t)
dt

=
3
t2

[1− ln(t)] , t ≥ 1

=
{
≥ 0, 1≤t ≤ e

≤ 0, t ≥ e

• Conclusion
1
t Λ(t) is not a monotonous function for t ≥ 0, thus Ti !∈ DHRA.

• Stochastic ageing of T

According to Table 3.2, the DHRA property of the components of a system is not necessarily
preserved after the formation of a coherent system. Thus, even if the Ti were DHRA we could
not add anything about the stochastic ageing of T , the duration of the (coherent) crosslinked
system.

(c) Calculate the common value of µi = E(Ti) = µ∗ and obtain a lower limit for the expected value of (2.0)
the duration of the parallel sub-system with components 2 and 3, falsely assuming that Ti ∈ DHRA.

• Common expected value

µ∗
Ti≥0=

∫ +∞

0
R(t) dt

=
∫ 1

0
1 dt +

∫ +∞

1
t−3 dt

= 1− t−2

2

∣∣∣∣∣

+∞

1

=
3
2

• Lower bound for µP = E(max T2, T3)
Since T2 and T3 are independent r.v. (therefore positively associated) and we are falsely
assuming that they are both DHRA, we can apply Theorem 3.64 (Equation (3.57) with the
inequality reversed) and get

µP = E(max T2, T3)

≥
∫ +∞

0

[

1−
n∏

i=1

(
1− e−t/µi

)]

dt

n=2, µi=µ∗=3/2
=

∫ +∞

0

[
1−

(
1− e−2t/3

)2
]

dt

=
∫ +∞

0

(
2e−2t/3 − e−4t/3

)
dt
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= −3e−2t/3
∣∣∣
+∞

0
+

3
4
e−4t/3

∣∣∣∣
+∞

0

= 3− 3
4

=
9
4
.

3. (a) A sample of 9 specimens of a titanium alloy were subjected to a fatigue test to determine time to
crack initiation. The observed times of crack initiation (in units of 103 cycles) were 18, 32, 39,
53, 59, 68, 77, 78, 93, and the TTT plot pictured above on the right.

i) Exemplify the obtention of the TTT plot, by using just 4 points and the fact that the total time (1.5)
in test is 517 (in units of 103 cycles).
• Failure times

Ti = time (in units of 103)of crack initiation of specimen i, i = 1, . . . , 9

• Complete data
t = (18, 32, 39, 53, 59, 68, 77, 78, 93)

• Total time on test up to time t(i)

τ
(
t(i)

)
=

i∑

j=1

(n− j + 1)
[
t(j) − t(j−1)

]

• Abcissae of the TTT plot
i
n , i = 0, 1, . . . , n

• Ordinates of the TTT plot
τ(t(i))
τ(t(n))

, i = 1, . . . , n, where τ
(
t(n)

)
= 517; equal to 0, for i = 0.

• Four points of the TTT plot

i i
n τ

(
t(i)

)
=

∑i
j=1(n− j + 1)

[
t(j) − t(j−1)

]
τ(t(i))
τ(t(n))

0 0 0 0
1 1

9 = 0.(1) (9− 1 + 1)× 18 = 162 162
517 & 0.313

2 2
9 = 0.(2) 162 + (9− 2 + 1)× (32− 18) = 274 274

517 & 0.530
3 3

9 = 0.(3) 274 + (9− 3 + 1)× (39− 32) = 323 323
517 & 0.625

ii) What sort of stochasting ageing does this TTT plot suggest for the time to crack initiation? (0.5)

• Suggested stochastic ageing
The TTT plot is concave. This suggests a IHR behavior of the time to crack initiation.

(b) A life test for a new insulating material used 25 specimens. The specimens were tested (2.5)
simultaneously at 30kV , the test was run until 15 of the specimens failed, and the ordered failure
times (t(i)) recorded as: 1.08, 12.20, 17.80, 19.10, 26.00, 27.90, 28.20, 32.20, 35.90, 43.50, 44.00,
45.20, 45.70, 46.30, 47.80 (with

∑15
i=1 t(i) = 472.88).

After having specified some convenient distribution assumption, obtain a 95% confidence interval
for the 80% quantile of the failure time (T ) distribution, F−1

T (0.80).

7

• Distribution assumption
Ti

i.i.d.∼ Exponential(λ), i = 1, . . . , 25

• Life test
Since the end of the test was determined by r = 15th failure and nothing in this exercise
suggests that the n = 25 specimens were replaced during the life test (they “were tested
simultaneously”), we are dealing with a
◦ Type II/item censored testing without replacement.

• Unknown parameter
λ

• Censored data
(t(1), . . . , t(r)) = (1.08, 12.20, . . . , 46.30, 47.8015)
n = 25
r = 15
∑15

i=1 t(i) = 472.88

• Cumulative total time in test

t̃
D5.17=

r∑

i=1

t(i) + (n− r)× t(r)

= 472.88 + (25− 15)× 47.80

= 950.88

• Confidence interval for λ

CI(1−α)×100%(λ) = [λl;λU ]

=




Fχ2

(2r)
(α/2)

2× t̃
;
Fχ2

(2r)
(1− α/2)

2× t̃





CI95%(λ) =




Fχ2

(30)
(0.025)

2× 950.88
;
Fχ2

(30)
(0.975)

2× 950.88





=
[ 16.79
1901.76

;
46.98

1901.76

]

& [0.008829; 0.024703]

• Another unknown parameter
F−1

T (0.80) = − 1
λ ln(1− 0.80), which is a decreasing function of λ > 0.

• Confidence interval for F−1
T (0.80)

CI95%

(
F−1

T (0.80)
)

=
[ 1
λU

ln(1− 0.80);
1
λL

ln(1− 0.80)
]

& [65.150376; 182.296882].
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