Department of Mathematics, IST — Probability and Statistics Unit
Reliability and Quality Control

1st. TEST (“Epoca de Recurso”)
Duration: 1h30m

1st. Semester — 2011/12
2012/02/04 — 8AM, Room P1

e Please justify your answers.

e This test has one page and three questions. The total of points is 20.0.

1. Assume that a part of a domestic wastewater treatment station constitutes a system, with 6 components
and structure function given by:

(b(i) = 1- (1 — X1X2X3X6) X (1 — X1X2X5X0') X (1 — X1X4X5X6) X (1 — X1X3X4X5)
= - (=X % [1— (1~ Xo)(1— Xa)] x [1— (1 - X3)(1 - X5)] x [1 - (1 X)].

(a) Identify the minimal path sets and minimal cut sets, and draw a reliability block diagram as close
as possible of the system.

e Structure function
By considering X; ~ Bernoulli(p;), i = 1,...,6 and applying results (1.13) and (1.14), we can
conclude that the structure function of this system equals
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where P; (j =1,...,p*) and K; (j = 1,...,q) represent the p* minimal path sets and the ¢
minimal cut sets, respectively.

e Minimal path sets
P = {1,2,3,6}
Py = {1,2,5,6}
Ps = {1,4,5,6}
Ps = {1,3,4,6}

p* = 4 minimal path sets

e Minimal cut sets

Ki = {1}
Ko = {24}
Ks = {3,5}
Ke = {6}
q = 4 minimal cut sets

e Reliability block diagram (in terms of minimal path/cut sets)
By capitalizing on Theorem 1.30 and on the minimal path/cut sets, we can provide two
representations of the system:

Since
— the first reliability block diagram in terms of minimal path sets has repeated components
in the different series sub-systems and

— the reliability block diagram in terms of minimal cut sets has no repeated components in
the different parallel sub-systems,

this last representation seems to the closest to the original system.

e Obs. — Reliability block diagram (the original system!)

(b) Now, suppose that each of those 6 components are independent and have reliability p; = p =
0.95,i=1,...,6. Calculate the reliability of the system.

e Reliabilities of the components

pi=p=0951=1,...,6
p=(p1,.--,D6)

o Reliability of the system

Taking into account
— the reliabilities of the components,
— the fact that they operate in an independent fashion, and

— the structure function
(@)

o) @ [ (1 X)) x [1— (1 - Xa)(1 = X)) x [1— (1 - Xg)(1 - X)
x[1— (1 - Xg)],
where X; i Bernoulli(p; = p =0.95), i =1,...,6, we get the reliability of the system
rlp) = EBX)]

= F{I-(1-X)]x[1-0-X2)(1—Xqg)]x[1—(1—-X3)(1~—X5)]

(2.0)



x[1— (1 - X¢)]}
Xy poxy) x [1— BE(1— X2)E(1 — X4)] x [1 — B(1 — X3)E(1 — X5)] x E(Xg)
= px[1=(1=p)(1—pa)]x[1—(1=ps)(L—ps5)] xps
PP x[1—(1—-p)*
0.897993.
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(c) Obtain a lower and an upper bound (as strict as possible) for the reliability of the system, in case (2.5)
the 6 components operate in a positively associated fashion.

e Components
pi=p=095i=1,...,6
Since the 6 components form a coherent system and operate in a positively associated fashion,
we can apply Theorem 1.70, namely result (1.42).

e Minimal path sets
P = {1,2,3,6}
Py = {1,2,5,6}
Ps = {1,4,5,6}
P3 {1,3,4,6}

p* = 4 minimal path sets

e Minimal cut sets

Ky = {1}
Ky = {2,4}
Ks = {3,5}
Ky = {6}
q = 4 minimal cut sets
e Lower bound for the reliability 7(p)
(1.42)
r(p) > _max H Di
J=hep e,
= max p*ri
j=1,...p*
#P=4.Y A
P29 (.95
~ 0.814506.
e Upper bound for the reliability
(1.42)
r(p) < ‘min [1-— H (1—p)
= j=1,..., .
' i€
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2. The figure below is a reliability block diagram for a part of a computer system:

Assume that the durations (in 10% hours) of the 6 components, T; (i = 1,...,6), are independent

random variables with common Gamma(a = 5, = 1) distribution.

(a) Obtain the reliability function of this part of the computer system for a period of 9155 hours.

Note: Fgam =F 2)x).
ote Ganmm(a,)\)(x) X?Za)( I)

e Individual durations (in 10° hours) and common reliability function

T; i Gamma(a =5,A=1)i=1,...,6 with common reliability function

Rr,(t)

R(t)
1, t<0
1- FGamma(a,)\) (t) =1- Fx?ZQ> (2)‘t)7 t>0

e Duration of the system
T = min{ max{Ty, T, T3 }, Ty, max{T5,Ts } }

Reliability functions of max{T}, 75,73} and max{T5,Ts}

According to Example 2.6, namely result (2.5), the reliability functions of these two

independent r.v. are equal to

Rty 15,153 (t)

Rmax{Ts T6} (t)

e Ol

OZO ) Ry

Reliability function of 7" and requested reliability

Inspired by Example 2.5, we can conclude that the reliability function of the minimum of
the independent r.v. max{Ty,T», T3}, Ty and max{Ts,Ts} is the product of their reliability
functions. If to this we add the fact that, for a« =5, A =1 and ¢ = 9.155,

R(t)

table

1- FX%%)(Q)\t)
1- FX?I (18.31)

0)
1-0.95
0.05,

we successively get

Rr(t)

Rmin{ max{T1,TQ,T3},T47max{T5,Ta}}(t)
Rma_x{Tth,Tg}(t) X RT4 (t) X Rmax{Tg,Tg}(t)
{1 —[- R(t)]3} x R(t) x {1 - R(t)]Q}
[1-(1-005)] x0.05 x [1 - (1-005)°]
0.000695.

(3.0)



Alternative method

e Individual durations and common reliability function
T; i Gamma(a =5,A=1)i=1,...,6 with common reliability function
Rr(t) = R(t)
1, t<0
= { L= Foamma(an)(t) = 1= Fe, (2M), t>0

e Minimal cut sets

K1 = {1,2,3}
Py = {4}
P; = {5,6}
q¢ = 3 minimal cut sets

e Structure function

p(x) 2V ﬁ[l—n(l—xa},

j=1 i€K;

= [1-(1-=X)1—-X)(1-Xa)] x[1—(1-Xg)]x[1-(1-X5)(1—X)].

o Reliability
Since X = (X1,...,Xg), where X; indep Bernoulli(p; = p), i = 1,...,6, we obtain
r(p) = r(p1,---.ps)
= E[p(X)]
E{l-(1-X1)1-X)(1—-X3)] x[1—(1—-Xg)] x [1—(1—-X5)(1 - Xe)]}
1= (1 =p)A—=p2)(1—p3)] x psx[1 = (1=ps5)(1—pe)]
= -1 -p’Ixpx[1-(1-p)?

o Reliability function of 7' and requested reliability
Considering T" the duration of the system and noting that, for « =5, A =1 and t = 9.155,
R(t) = 1- FX?QQ) (2Xt)
= 1- Fx?m) (18.31)
1095
= 0.05,
we have:
Rr(t) = P(T>t)
=" r(Rq(t),...,Ra(t))
= 7r(R(t),...,R(t))
= {1-[1-ROP}xR(t) x {1~ [1-R®)"}
= [1-1-005°] x0.05x [1 = (1~ 0.05)’]
= 0.000695.

(b) Are the durations of the components IHR? What can be said about the stochastic ageing of the (3.0)
duration of this part of the computer system?

e Individual durations
T i Gamma(a =5,A=1),i=1,...,6.
e Stochastic ageing of T;

First note that a = 5 > 1. Therefore, according to the sufficient conditions derived in Exercise
3.18,1

T "% THR, i =1,...,6.
Now, if we apply Proposition 3.23, namely result (3.14), we can also add that
max{T1,T>, T3} € IHR
max{T5,Ts} € IHR.
Moreover, the system can me written is a series system with 3 independent sub-systems whose

durations are independent IHR r.v. Thus, by applying now result (3.11) from Proposition 3.23,
we can finally state that

T = min{max{Ty, Ty, T3}, Ty, max{T5,Ts}}
€ IHR.

(¢) Determine a lower bound and an upper bound for the expected value of the duration of this part of (3.0)
the computer system.
e Preliminaries
We are dealing with a coherent system characterized as follows:
o T THR i=1,...,6 TR i THRA i=1,...,6;
o p; = E(T;) = p* = E[Gamma(a = 5,A = 1)] = § = 5;

o the minimal path sets are

P = {1,4,5}
Py = {1,4,6}
P = {2,4,5}
Ps = {2,4,6}
Ps = {3,4,5}
Ps = {3,4,6}
¢ = 6 minimal path sets;

o the minimal cut sets are

K1 = {1,2,3}
Py = {4}
Ps = {5,6}
q¢ = 3 minimal cut sets.

Now, we can apply Theorem 3.69, and conclude obtain the a lower bound and an upper bound
for E(T)...

10r by proving that T; i ILR,i=1,...,6, ie., the common p.d.f. is log-concave and then applying Proposition 3.36 to

conclude that the r.v. are IHR.



e Lower bound for E(T) e Censored data

uw = ET) n=1
-1 r = 10 breakdowns during the life test
> ‘max (Z Nil) (tys - t@y) = (7.74,17.05, 20.46, 21.02, 22.66, 43.40, 47.30)
J=hep |\ e (2155 2r) = (7.74,17.05—7.74,20.46 —17.05, 21.02—20.46, 22.66 — 21.02, 43.40— 22.66, 47.30 —
p— max <#Pj>71 43.40) = (7.74,9.31,3.41,0.56, 1.64,20.74, 3.9)
J=l,...p w* e Cumulative total time in test
- w* According to Definition 5.17, the cumulative total time in test is given by:
minj—y .y {#7P;} i = nxt
= % = 1x100
5 = 100Km
3 e Hypotheses
e Upper bound for E(T) Hy : Z ~ Exponential()\)
p = E(T) Hy : Z ~ Weibull( A1 ), a # 1
< min /+OQ 1- 11 (1 _ e—L/,ul) dt e Significance level
i=Lea Jo i€k %)
Hi=p” _nllin /+°o 1_ (1 _ e—t/u*)#}cf dt e Test statistic (Bartlett’s test)
J=1,....q 0 T . T
(5.19) or 2zl Zl> 1
" min,;_ B, = . ] N In(Z;
_ /+oo [17(1767””*) =1,..., q#K:]:| dt T 1+7g;‘1 |:n< r T’; Il( ")
0 a 2
r+00 a1 ~Ho  X(r—1
- / [k(pf“ﬂ)]dt ooy
0+ e Rejection region of Hy
100
= [ Temra W= (0Fg (ao/2)u(Fg (1= a0/2)4)
0 X{(r—1) X{(r—1)
_ * —t/u*) toeo . .
= nre 0 e Decision (based on the p-value)
= o The observed value of the test statistic is
5 b r <ZL“’”> lil (=)
= . = n - — n(z;
2x7 47.3 1
v [m (—) I x 9.812122]
3. The time in minutes to breakdown (failure) for an insulating fluid is under study. After 100 minutes, 1+ 65 7 7
there were 7 breakdowns at the following times (in minutes): 7.74, 17.05, 20.46, 21.02, 22.66, 43.40, ~ 5.984294.
47.30. Since the rejection region is two-sided
_ = 2% min{p,p*
(a) What do you think about the suggestion of using an exponential distribution to model the data? (2.0) p — value 2 mindp™, p*}
Obtain the p-value of an appropriated hypotheses test. where
- = F b
o Life test p B, Ho (0r)
Since the test had a scheduled end after exactly tg = 100 minutes and the exercise suggests = Fxfr,1>(5'984294)
just an insulating fluid repeatedly tested, we are dealing with a = Fxfﬁ) (5.984294)
o Type I/item censored testing with replacement. Egcel ) 5os048
e R.v. [e  (0.500,0.600)]
T(;) = time of the i*" breakdown of the insulating fluid [ Fp, 11, (br)
Zi = T3y — T(;—1) = time between the i*" and (i — 1)*" breakdown of the insulating fluid 1 _
= -Pp

Z;"% 7 e N
~  1-0.575048



= 0.424952
[e  (0.400,0.500)]
[because Fx_f;) (0.500) = 5.346 < 5.984294 < 6.211 = Fx_?;) (0.600)].
Therefore we should:
— not reject Hy for any significance level o < 2 x 42.4952% ~ 95%, namely at all usual
significance levels (1%, 5%, 10%);
— reject Hy for any significance level o > 95%.

[We should: not reject Hy for any significance level o < 80.0%, namely at all usual significance
levels (1%, 5%, 10%).]

(b) After having specified a convenient distribution assumption, obtain a UMVU estimate and a 90% (2.5)
confidence interval for the reliability of the time to breakdown for a period of 50 minutes.

e Distribution assumption

Z; i Exponential(\), i =1,...,7.

This is fairly reasonable since we did not reject Hp in (a).
¢ Unknown parameter

Ryz(t) = e~**, which is a decreasing function of A > 0

e Unbiased estimate of Rz(t)
According to Table 5.14, the UMVUE of Rp(t) is, for t = 50 < £ = 100 and r > 0, equal to

Ry(t) = (lff_lxt)r

1 7
= (1-— x5
( 100 ><00>

0.007813.

R

e Confidence interval for )\
According to Table 5.16 of the lecture notes,

Cla_ayx100%(A) = [Ars Al
F! 2) F3;' (1-a/2
_ x(22,.>(0‘/ ). X@M)( a/2)
2xt 2%t
F5l(0.05) F,' (0.95)
0190%()\) (2 e ; 0o

2x1x100" 2 x 1 x 100
[6.571~ 2(5.3(]]
200 ' 200
= [0.032855;0.1315).
e Confidence interval for Ry(t)
Clag (Rz (1)) =[xt e ext]

=50 [(ﬁo. 1315%50, . 4).032555@0}

~  [0.001395; 0.193447].



