Department of Mathematics, IST - Probability and Statistics Unit

Reliability and Quality Control

1st. TEST ("Época de Recurso")	1st. Semester $-2011 / \mathbf{1 2}$
Duration: 1 h 30 m	$\mathbf{2 0 1 2 / 0 2 / 0 4 - 8 \mathrm { AM } , \text { Room P1 }}$

- Please justify your answers.
- This test has one page and three questions. The total of points is $\mathbf{2 0 . 0}$.

1. Assume that a part of a domestic wastewater treatment station constitutes a system, with 6 components and structure function given by:

$$
\begin{aligned}
\phi(\underline{X}) & =1-\left(1-X_{1} X_{2} X_{3} X_{6}\right) \times\left(1-X_{1} X_{2} X_{5} X_{6}\right) \times\left(1-X_{1} X_{4} X_{5} X_{6}\right) \times\left(1-X_{1} X_{3} X_{4} X_{6}\right) \\
& =\left[1-\left(1-X_{1}\right)\right] \times\left[1-\left(1-X_{2}\right)\left(1-X_{4}\right)\right] \times\left[1-\left(1-X_{3}\right)\left(1-X_{5}\right)\right] \times\left[1-\left(1-X_{6}\right)\right]
\end{aligned}
$$

(a) Identify the minimal path sets and minimal cut sets, and draw a reliability block diagram as close (2.0) as possible of the system.

- Structure function

By considering $X_{i} \sim \operatorname{Bernoulli}\left(p_{i}\right), i=1, \ldots, 6$ and applying results (1.13) and (1.14), we can conclude that the structure function of this system equals

$$
\begin{aligned}
\phi(\underline{X}) & \stackrel{(1.13)}{=} \\
1 & -\prod_{j=1}^{p^{*}}\left(1-\prod_{i \in \mathcal{P}_{j}} X_{i}\right) \\
& \stackrel{(1.14)}{=} \prod_{j=1}^{q}\left[1-\prod_{i \in \mathcal{K}_{j}}\left(1-X_{i}\right)\right],
\end{aligned}
$$

where $\mathcal{P}_{j}\left(j=1, \ldots, p^{*}\right)$ and $\mathcal{K}_{j}(j=1, \ldots, q)$ represent the p^{*} minimal path sets and the q minimal cut sets, respectively.

- Minimal path sets

$$
\begin{aligned}
\mathcal{P}_{1} & =\{1,2,3,6\} \\
\mathcal{P}_{2} & =\{1,2,5,6\} \\
\mathcal{P}_{3} & =\{1,4,5,6\} \\
\mathcal{P}_{3} & =\{1,3,4,6\} \\
p^{*} & =4 \text { minimal path sets }
\end{aligned}
$$

- Minimal cut sets
$\mathcal{K}_{1}=\{1\}$
$\mathcal{K}_{2}=\{2,4\}$
$\mathcal{K}_{3}=\{3,5\}$
$\mathcal{K}_{4}=\{6\}$
$q=4$ minimal cut sets
- Reliability block diagram (in terms of minimal path/cut sets)

By capitalizing on Theorem 1.30 and on the minimal path/cut sets, we can provide two representations of the system:

Since

- the first reliability block diagram in terms of minimal path sets has repeated components in the different series sub-systems and
- the reliability block diagram in terms of minimal cut sets has no repeated components in the different parallel sub-systems,
this last representation seems to the closest to the original system.
- Obs. - Reliability block diagram (the original system!)

(b) Now, suppose that each of those 6 components are independent and have reliability $p_{i}=p=(\mathbf{2 . 0})$ $0.95, i=1, \ldots, 6$. Calculate the reliability of the system.
- Reliabilities of the components
$p_{i}=p=0.95, i=1, \ldots, 6$
$\underline{p}=\left(p_{1}, \ldots, p_{6}\right)$
- Reliability of the system

Taking into account

- the reliabilities of the components,
- the fact that they operate in an independent fashion, and
- the structure function
$\phi(\underline{X}) \stackrel{(a)}{=}\left[1-\left(1-X_{1}\right)\right] \times\left[1-\left(1-X_{2}\right)\left(1-X_{4}\right)\right] \times\left[1-\left(1-X_{3}\right)\left(1-X_{5}\right)\right]$

$$
\times\left[1-\left(1-X_{6}\right)\right]
$$

where $X_{i} \stackrel{i . i . d .}{\sim} \operatorname{Bernoulli}\left(p_{i}=p=0.95\right), i=1, \ldots, 6$, we get the reliability of the system
$r(\underline{p})=E[\phi(\underline{X})]$
$=E\left\{\left[1-\left(1-X_{1}\right)\right] \times\left[1-\left(1-X_{2}\right)\left(1-X_{4}\right)\right] \times\left[1-\left(1-X_{3}\right)\left(1-X_{5}\right)\right]\right.$

$$
\begin{array}{cl}
& \left.\times\left[1-\left(1-X_{6}\right)\right]\right\} \\
X_{i} \stackrel{\text { indep }}{=} & E\left(X_{1}\right) \times\left[1-E\left(1-X_{2}\right) E\left(1-X_{4}\right)\right] \times\left[1-E\left(1-X_{3}\right) E\left(1-X_{5}\right)\right] \times E\left(X_{6}\right) \\
= & p_{1} \times\left[1-\left(1-p_{2}\right)\left(1-p_{4}\right)\right] \times\left[1-\left(1-p_{3}\right)\left(1-p_{5}\right)\right] \times p_{6} \\
p_{i=p}^{=} & p^{2} \times\left[1-(1-p)^{2}\right]^{2} \\
\stackrel{p=0.95}{=} & 0.897993 .
\end{array}
$$

(c) Obtain a lower and an upper bound (as strict as possible) for the reliability of the system, in case the 6 components operate in a positively associated fashion.

- Components
$p_{i}=p=0.95, i=1, \ldots, 6$
Since the 6 components form a coherent system and operate in a positively associated fashion,
we can apply Theorem 1.70, namely result (1.42).
- Minimal path sets
$\mathcal{P}_{1}=\{1,2,3,6\}$
$\mathcal{P}_{2}=\{1,2,5,6\}$
$\mathcal{P}_{3}=\{1,4,5,6\}$
$\mathcal{P}_{3}=\{1,3,4,6\}$
$p^{*}=4$ minimal path sets
- Minimal cut sets
$\mathcal{K}_{1}=\{1\}$
$\mathcal{K}_{2}=\{2,4\}$
$\mathcal{K}_{3}=\{3,5\}$
$\mathcal{K}_{4}=\{6\}$
$q=4$ minimal cut sets
- Lower bound for the reliability $r(\underline{p})$

$$
\begin{array}{rll}
r(\underline{p}) & \stackrel{(1.42)}{\geq} & \max _{j=1, \ldots, p^{*}} \prod_{i \in \mathcal{P}_{j}} p_{i} \\
& \stackrel{p_{i}=p}{=} & \max _{j=1, \ldots, p^{*}} p^{\# \mathcal{P}_{j}} \\
& \# \mathcal{P}_{j}=4, \forall j & p^{4} \\
& \stackrel{y}{=}=0.95 & 0.95^{4} \\
& \simeq & 0.814506 .
\end{array}
$$

- Upper bound for the reliability

$$
\begin{array}{rll}
r(\underline{p}) & \stackrel{(1.42)}{\leq} & \min _{j=1, \ldots, q}\left[1-\prod_{i \in \mathcal{K}_{j}}\left(1-p_{i}\right)\right] \\
& \stackrel{p_{i}=p}{=} & \min _{j=1, \ldots, q}\left[1-(1-p)^{\# \mathcal{K}_{j}}\right] \\
& = & 1-(1-p)^{\min _{j=1, \ldots, q} \# \mathcal{K}_{j}} \\
& = & 1-(1-p)^{1} \\
p=0.95 & 0.95 .
\end{array}
$$

2. The figure below is a reliability block diagram for a part of a computer system:

Assume that the durations (in 10^{3} hours) of the 6 components, $T_{i}(i=1, \ldots, 6)$, are independent random variables with common $\operatorname{Gamma}(\alpha=5, \lambda=1)$ distribution.
(a) Obtain the reliability function of this part of the computer system for a period of 9155 hours.

- Individual durations (in 10^{3} hours) and common reliability function
$T_{i} \stackrel{i . i . d .}{\sim} \operatorname{Gamma}(\alpha=5, \lambda=1) i=1, \ldots, 6$ with common reliability function $R_{T_{i}}(t)=R(t)$

$$
= \begin{cases}1, & t<0 \\ 1-F_{\operatorname{Gamma}(\alpha, \lambda)}(t)=1-F_{\chi_{(2 \alpha)}^{2}}(2 \lambda t), & t \geq 0\end{cases}
$$

- Duration of the system
$T=\min \left\{\max \left\{T_{1}, T_{2}, T_{3}\right\}, T_{4}, \max \left\{T_{5}, T_{6}\right\}\right\}$
- Reliability functions of $\max \left\{T_{1}, T_{2}, T_{3}\right\}$ and $\max \left\{T_{5}, T_{6}\right\}$

According to Example 2.6, namely result (2.5), the reliability functions of these two independent r.v. are equal to

$$
\begin{array}{rll}
R_{\max \left\{T_{1}, T_{2}, T_{3}\right\}}(t) & \stackrel{R_{T_{i}}(t)=R(t)}{=} & 1-[1-R(t)]^{3} \\
R_{\max \left\{T_{5}, T_{6}\right\}}(t) & \stackrel{R_{T_{i}}(t)=R(t)}{=} & 1-[1-R(t)]^{2} .
\end{array}
$$

- Reliability function of T and requested reliability

Inspired by Example 2.5, we can conclude that the reliability function of the minimum of the independent r.v. $\max \left\{T_{1}, T_{2}, T_{3}\right\}, T_{4}$ and $\max \left\{T_{5}, T_{6}\right\}$ is the product of their reliability functions. If to this we add the fact that, for $\alpha=5, \lambda=1$ and $t=9.155$,

$$
\begin{aligned}
R(t) & =1-F_{\chi_{(2 \alpha)}^{2}}(2 \lambda t) \\
& =1-F_{\chi_{(10)}^{2}}(18.31) \\
& \stackrel{\text { table }}{=} 1-0.95 \\
& =0.05,
\end{aligned}
$$

we successively get
$R_{T}(t)=R_{\min \left\{\max \left\{T_{1}, T_{2}, T_{3}\right\}, T_{4}, \max \left\{T_{5}, T_{6}\right\}\right\}}(t)$
$=R_{\max \left\{T_{1}, T_{2}, T_{3}\right\}}(t) \times R_{T_{4}}(t) \times R_{\max \left\{T_{5}, T_{6}\right\}}(t)$
$=\left\{1-[1-R(t)]^{3}\right\} \times R(t) \times\left\{1-[1-R(t)]^{2}\right\}$
$=\left[1-(1-0.05)^{3}\right] \times 0.05 \times\left[1-(1-0.05)^{2}\right]$
$=0.000695$.

Alternative method

- Individual durations and common reliability function
$T_{i} \stackrel{i . i . d .}{\sim} \operatorname{Gamma}(\alpha=5, \lambda=1) i=1, \ldots, 6$ with common reliability function

$$
\begin{array}{rlr}
R_{T_{i}}(t) & =R(t) \\
& = \begin{cases}1, & t<0 \\
1-F_{\operatorname{Gamma}(\alpha, \lambda)}(t)=1-F_{\chi_{(2 \alpha)}^{2}}(2 \lambda t), & t \geq 0\end{cases}
\end{array}
$$

- Minimal cut sets
$\mathcal{K}_{1}=\{1,2,3\}$
$\mathcal{P}_{2}=\{4\}$
$\mathcal{P}_{3}=\{5,6\}$
$q=3$ minimal cut sets
- Structure function
$\phi(\underline{X})$

$$
\stackrel{(1.14)}{=} \prod_{j=1}^{q}\left[1-\prod_{i \in \mathcal{K}_{j}}\left(1-X_{i}\right)\right], \quad \begin{array}{ll}
= & {\left[1-\left(1-X_{1}\right)\left(1-X_{2}\right)\left(1-X_{3}\right)\right] \times\left[1-\left(1-X_{4}\right)\right] \times\left[1-\left(1-X_{5}\right)\left(1-X_{6}\right)\right] .}
\end{array}
$$

- Reliability

Since $\underline{X}=\left(X_{1}, \ldots, X_{6}\right)$, where $X_{i} \stackrel{\text { indep }}{\sim} \operatorname{Bernoulli}\left(p_{i}=p\right), i=1, \ldots, 6$, we obtain

$$
r(\underline{p})=r\left(p_{1}, \ldots, p_{6}\right)
$$

$=E[\phi(\underline{X})]$
$=E\left\{\left[1-\left(1-X_{1}\right)\left(1-X_{2}\right)\left(1-X_{3}\right)\right] \times\left[1-\left(1-X_{4}\right)\right] \times\left[1-\left(1-X_{5}\right)\left(1-X_{6}\right)\right]\right\}$
$=\left[1-\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{3}\right)\right] \times p_{4} \times\left[1-\left(1-p_{5}\right)\left(1-p_{6}\right)\right]$
$=\left[1-(1-p)^{3}\right] \times p \times\left[1-(1-p)^{2}\right]$

- Reliability function of T and requested reliability

Considering T the duration of the system and noting that, for $\alpha=5, \lambda=1$ and $t=9.155$,

$$
R(t)=1-F_{\chi_{(2 \alpha)}^{2}}(2 \lambda t)
$$

$$
=1-F_{\chi_{(10)}^{2}}(18.31)
$$

$$
\stackrel{\text { table }}{=} 1-0.95
$$

$$
=0.05
$$

we have:

$$
\begin{aligned}
R_{T}(t) & =P(T>t) \\
& \stackrel{N 2.8}{=} r\left(R_{1}(t), \ldots, R_{4}(t)\right) \\
& =r(R(t), \ldots, R(t)) \\
& =\left\{1-[1-R(t)]^{3}\right\} \times R(t) \times\left\{1-[1-R(t)]^{2}\right\} \\
& =\left[1-(1-0.05)^{3}\right] \times 0.05 \times\left[1-(1-0.05)^{2}\right]
\end{aligned}
$$

$=0.000695$.
(b) Are the durations of the components IHR? What can be said about the stochastic ageing of the (3.0 duration of this part of the computer system?

- Individual durations
$T_{i} \stackrel{i . i . d .}{\sim} \operatorname{Gamma}(\alpha=5, \lambda=1), i=1, \ldots, 6$.
- Stochastic ageing of T_{i}

First note that $\alpha=5>1$. Therefore, according to the sufficient conditions derived in Exercise $3.18,{ }^{1}$

$$
T_{i} \stackrel{i . i . d .}{\sim} I H R, i=1, \ldots, 6 .
$$

Now, if we apply Proposition 3.23, namely result (3.14), we can also add that

$$
\max \left\{T_{1}, T_{2}, T_{3}\right\} \in I H R
$$

$$
\max \left\{T_{5}, T_{6}\right\} \in I H R .
$$

Moreover, the system can me written is a series system with 3 independent sub-systems whose durations are independent IHR r.v. Thus, by applying now result (3.11) from Proposition 3.23, we can finally state that
$T=\min \left\{\max \left\{T_{1}, T_{2}, T_{3}\right\}, T_{4}, \max \left\{T_{5}, T_{6}\right\}\right\}$
$\in I H R$.
(c) Determine a lower bound and an upper bound for the expected value of the duration of this part of (3.0) the computer system.

- Preliminaries

We are dealing with a coherent system characterized as follows:

- $T_{i} \stackrel{i . i . d}{\sim} I H R, i=1, \ldots, 6 \xrightarrow{\text { Prop. } 3.36} T_{i} \stackrel{i . i . d .}{\sim} I H R A, i=1, \ldots, 6$;
- $\mu_{i}=E\left(T_{i}\right)=\mu^{*}=E[\operatorname{Gamma}(\alpha=5, \lambda=1)]=\frac{\alpha}{\lambda}=5$;
- the minimal path sets are

$$
\begin{aligned}
\mathcal{P}_{1} & =\{1,4,5\} \\
\mathcal{P}_{2} & =\{1,4,6\} \\
\mathcal{P}_{3} & =\{2,4,5\} \\
\mathcal{P}_{4} & =\{2,4,6\} \\
\mathcal{P}_{5} & =\{3,4,5\} \\
\mathcal{P}_{6} & =\{3,4,6\} \\
q & =6 \text { minimal path sets; }
\end{aligned}
$$

- the minimal cut sets are

$$
\begin{aligned}
\mathcal{K}_{1} & =\{1,2,3\} \\
\mathcal{P}_{2} & =\{4\} \\
\mathcal{P}_{3} & =\{5,6\} \\
q & =3 \text { minimal cut sets. }
\end{aligned}
$$

Now, we can apply Theorem 3.69, and conclude obtain the a lower bound and an upper bound for $E(T) \ldots$

[^0]- Lower bound for $E(T)$

$$
\begin{aligned}
\mu & =E(T) \\
& \geq \max _{j=1, \ldots, p}\left\{\left(\sum_{i \in \mathcal{P}_{j}} \mu_{i}^{-1}\right)^{-1}\right\} \\
\left.\stackrel{\mu_{i}}{ }=\mu^{*}\right\} & \max _{j=1, \ldots, p}\left\{\left(\frac{\# \mathcal{P}_{j}}{\mu^{*}}\right)^{-1}\right\} \\
& =\frac{\mu^{*}}{\min _{j=1, \ldots, p}\left\{\# \mathcal{P}_{j}\right\}} \\
& =\frac{\mu^{*}}{3} \\
& =\frac{5}{3} .
\end{aligned}
$$

- Upper bound for $E(T)$

$$
\begin{aligned}
\mu & =E(T) \\
& \leq \min _{j=1, \ldots, q} \int_{0}^{+\infty}\left[1-\prod_{i \in \mathcal{K}_{j}}\left(1-e^{-t / \mu_{i}}\right)\right] d t \\
\mu_{i} & =\mu^{*} \\
& =\min _{j=1, \ldots, q} \int_{0}^{+\infty}\left[1-\left(1-e^{-t / \mu^{*}}\right)^{\# \mathcal{K}_{j}}\right] d t \\
& =\int_{0}^{+\infty}\left[1-\left(1-e^{-t / \mu^{*}}\right)^{\min _{j=1, \ldots, q} \# \mathcal{K}_{j}}\right] d t \\
& =\int_{0}^{+\infty}\left[1-\left(1-e^{-t / \mu^{*}}\right)^{1}\right] d t \\
& =\left.\left(\mu^{*} e^{-t / \mu^{*}}\right)\right|_{0} ^{+\infty} d t \\
& =\mu^{*} \\
& =5 .
\end{aligned}
$$

3. The time in minutes to breakdown (failure) for an insulating fluid is under study. After 100 minutes, there were 7 breakdowns at the following times (in minutes): 7.74, 17.05, 20.46, 21.02, 22.66, 43.40, 47.30.
(a) What do you think about the suggestion of using an exponential distribution to model the data? Obtain the p-value of an appropriated hypotheses test.

- Life test

Since the test had a scheduled end after exactly $t_{0}=100$ minutes and the exercise suggests just an insulating fluid repeatedly tested, we are dealing with a

- Type I/item censored testing with replacement.
- R.v.
$T_{(i)}=$ time of the $i^{\text {th }}$ breakdown of the insulating fluid
$Z_{i}=T_{(i)}-T_{(i-1)}=$ time between the $i^{\text {th }}$ and $(i-1)^{\text {th }}$ breakdown of the insulating fluid $Z_{i} \stackrel{i . i . d .}{\sim} Z, i \in \mathbb{N}$

- Censored data

$n=1$
$r=10$ breakdowns during the life test
$\left(t_{(1)}, \ldots, t_{(r)}\right)=(7.74,17.05,20.46,21.02,22.66,43.40,47.30)$
$\left(z_{1}, \ldots, z_{r}\right)=(7.74,17.05-7.74,20.46-17.05,21.02-20.46,22.66-21.02,43.40-22.66,47.30-$ $43.40)=(7.74,9.31,3.41,0.56,1.64,20.74,3.9)$

- Cumulative total time in test

According to Definition 5.17, the cumulative total time in test is given by:

$$
\begin{aligned}
\tilde{t} & =n \times t_{0} \\
& =1 \times 100 \\
& =100 \mathrm{Km}
\end{aligned}
$$

- Hypotheses
$H_{0}: Z \sim \operatorname{Exponential}(\lambda)$
$H_{1}: Z \sim \operatorname{Weibull}\left(\lambda^{-1}, \alpha\right), \alpha \neq 1$

- Significance level

α_{0}

- Test statistic (Bartlett's test)

$$
\begin{aligned}
B_{r} & \stackrel{(5.19)}{=} \frac{2 r}{1+\frac{r+1}{6 r}}\left[\ln \left(\frac{\sum_{i=1}^{r} Z_{i}}{r}\right)-\frac{1}{r} \sum_{i=1}^{r} \ln \left(Z_{i}\right)\right] \\
\stackrel{a}{\sim}_{H_{0}} & \chi_{(r-1)}^{2}
\end{aligned}
$$

- Rejection region of H_{0}

$$
W=\left(0, F_{\chi_{(r-1)}^{2}}^{-1}\left(\alpha_{0} / 2\right)\right) \cup\left(F_{\chi_{(r-1)}^{2}}^{-1}\left(1-\alpha_{0} / 2\right),+\infty\right)
$$

- Decision (based on the p-value)

The observed value of the test statistic is

$$
\begin{aligned}
b_{r} & =\frac{2 r}{1+\frac{r+1}{6 r}}\left[\ln \left(\frac{\sum_{i=1}^{r} z_{i}}{r}\right)-\frac{1}{r} \sum_{i=1}^{r} \ln \left(z_{i}\right)\right] \\
& \simeq \frac{2 \times 7}{1+\frac{7+1}{6 \times 7}} \times\left[\ln \left(\frac{47.3}{7}\right)-\frac{1}{7} \times 9.812122\right] \\
& \simeq 5.984294 .
\end{aligned}
$$

Since the rejection region is two-sided

$$
p-\text { value }=2 \times \min \left\{p^{-}, p^{+}\right\}
$$

where

$$
p^{-}=F_{B_{r} \mid H_{0}}\left(b_{r}\right)
$$

$$
\simeq F_{\chi_{(r-1)}^{2}}(5.984294)
$$

$=F_{\chi_{(6)}^{2}}(5.984294)$
Excel 0.575048
$[\epsilon \quad(0.500,0.600)]$
$p^{+}=1-F_{B_{r} \mid H_{0}}\left(b_{r}\right)$
$=1-p^{-}$
$\simeq 1-0.575048$
$=0.424952$
$[\in \quad(0.400,0.500)]$
[because $\left.F_{\chi_{(6)}^{2}}^{-1}(0.500)=5.346<5.984294<6.211=F_{\chi_{(6)}^{2}}^{-1}(0.600)\right]$.
Therefore we should:

- not reject H_{0} for any significance level $\alpha \leq 2 \times 42.4952 \% \simeq 95 \%$, namely at all usual significance levels ($1 \%, 5 \%, 10 \%$);
- reject H_{0} for any significance level $\alpha>95 \%$.
[We should: not reject H_{0} for any significance level $\alpha \leq 80.0 \%$, namely at all usual significance levels $(1 \%, 5 \%, 10 \%)$.]
(b) After having specified a convenient distribution assumption, obtain a UMVU estimate and a 90% confidence interval for the reliability of the time to breakdown for a period of 50 minutes.
- Distribution assumption
$Z_{i} \stackrel{i . i . d .}{\sim} \operatorname{Exponential}(\lambda), i=1, \ldots, 7$.
This is fairly reasonable since we did not reject H_{0} in (a).
- Unknown parameter
$R_{Z}(t)=e^{-\lambda t}$, which is a decreasing function of $\lambda>0$
- Unbiased estimate of $R_{Z}(t)$

According to Table 5.14, the UMVUE of $R_{T}(t)$ is, for $t=50<\tilde{t}=100$ and $r>0$, equal to $\tilde{R}_{Z}(t)=\left(1-\tilde{t}^{-1} \times t\right)^{r}$

$$
\begin{aligned}
& =\left(1-\frac{1}{100} \times 50\right)^{7} \\
& \simeq 0.007813 .
\end{aligned}
$$

- Confidence interval for λ

According to Table 5.16 of the lecture notes,
$C I_{(1-\alpha) \times 100 \%}(\lambda)=\left[\lambda_{L} ; \lambda_{U}\right]$
$=\left[\frac{F_{\chi_{(2 r)}^{2}(\alpha / 2)}^{-1} ; \frac{F_{\chi_{(2 r+2)}^{2}}^{-1}(1-\alpha / 2)}{2 \times \tilde{t}} ;}{2}\right]$
$C I_{90 \%}(\lambda) \stackrel{(a)}{=}\left[\frac{F_{\chi_{(14)}^{-1}(0.05)}}{2 \times 1 \times 100} ; \frac{F_{\chi_{(16)}^{2}}^{-1}(0.95)}{2 \times 1 \times 100}\right]$
$=\left[\frac{6.571}{200} ; \frac{26.30}{200}\right]$
$=[0.032855 ; 0.1315]$.

- Confidence interval for $R_{Z}(t)$

$$
\begin{aligned}
C I_{90 \%}\left(R_{Z}(t)\right) & =\left[e^{-\lambda_{U} \times t} ; e^{-\lambda_{L} \times t}\right] \\
& \stackrel{t=50}{=}\left[e^{-0.1315 \times 50} ; e^{-0.032855 \times 50}\right] \\
& \simeq[0.001395 ; 0.193447] .
\end{aligned}
$$

[^0]: ${ }^{1}$ Or by proving that $T_{i} \stackrel{i . i . d .}{\sim} I L R, i=1, \ldots, 6$, i.e., the common p.d.f. is log-concave and then applying Proposition 3.36 to conclude that the r.v. are IHR.

