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• Please justify your answers.
• This test has one page and four questions. The total of points is 20.0.

1. Elaborate on the role of quality control during World War II in the USA. (1.0)

• Role of quality control during World War II in the USA
After entering World War II in December 1941, the United States enacted legislation to help
gear the civilian economy to military production. At that time, military contracts were typically
awarded to the manufacturer that submitted the lowest bid. Products were inspected on delivery
to ensure conformance to requirements.
During this period, quality became an important safety issue. Unsafe military equipment was
clearly unacceptable, and the U.S. armed forces inspected virtually every unit produced to ensure
that it was safe for operation. This practice required huge inspection forces and caused problems
in recruiting and retaining competent inspection personnel.
To ease the problems without compromising product safety, the armed forces began to use
sampling inspection to replace unit-by-unit inspection. With the aid of industry consultants,
particularly from Bell Laboratories, they adapted sampling tables and published them in a
military standard, known as Mil-Std-105. These tables were incorporated into the military
contracts so suppliers clearly understood what they were expected to produce.
The armed forces also helped suppliers improve quality by sponsoring training courses in Walter
Shewharts statistical quality control (SQC) techniques.
(Source: http://www.asq.org/learn-about-quality/history-of-quality/overview/wwii.html)

2. An upper one-sided c chart is used to monitor the number of surface imperfections on porcelain
enameled water heater cabinets. Suppose the target of the expected value of the number of those
imperfections in samples of size n is equal to λ0 = 2.

(a) Find the smallest upper control limit that ensures an in-control average run length (ARL) of at (1.5)
least 500 samples.

• Control statistic
YN = number of surface imperfections in the N th sample of n porcelain enameled water
heater cabinets, N ∈ IN

• Distribution
YN ∼ Poisson(λ0), in control, where λ0 = 2
YN ∼ Poisson(λ = λ0 + δ), out of control, where δ (δ > 0) represents the magnitude of
the shift in λ

• Control limits of the upper one-sided c chart
LCL = 0 (because we are dealing with an upper one-sided chart)

UCL = λ0 + γ
√

λ0

= 2 + γ ×
√

2

1

• Probability of triggering a signal
ξ(δ) = P (YN %∈ [LCL,UCL] | δ)

YN≥0, LCL=0= P (YN > UCL | δ)

= 1− FPoisson(λ=λ0+δ)(UCL)

• Run length and average run length
We are dealing with a Shewhart chart, thus, the number of samples collected until the chart
triggers a signal given δ, RL(δ), has the following distribution and average run length:

RL(δ) ∼ Geometric (ξ(δ))

ARL(δ) Table 9.2=
1

ξ(δ)
.

• Finding the requested upper control limit
UCL : ARL(0) ≥ ARL∗ = 500

ξ(0) ≤ 1
ARL∗

1− FPoisson(λ0)(UCL) ≤ 1
ARL∗

UCL ≥ F−1
Poisson(λ0)

(
1− 1

ARL∗

)

UCL ≥ inf
{
m ∈ IN0 : FPoisson(2)(m) ≥ 0.998

}

UCL ≥ 7
because

FPoisson(2)(6) table= 0.9955 ≤ 0.998

FPoisson(2)(7) table= 0.9989 ≥ 0.998.

(b) If the expected value of the number of imperfections shifts from λ0 = 2 to λ1 = 6, what is the (2.0)
probability of a valid signal within the first 10 samples? Comment.
• Shift

From λ0 = 2 to λ = λ0 + δ = 6, i.e., δ = 4.

• Probability of triggering a signal
If we adopt UCL = 7, we get

ξ(4)
(a)
= 1− FPoisson(λ=2+4)(7)

table= 1− 0.7440

= 0.2560.

• Requested probability
Since RL(δ) ∼ Geometric (ξ(δ)), we get

P [RL(δ) ≤ m] Table 9.2= 1− [1− ξ(δ)]m , m ∈ IN

= 1− (1− 0.2560)10

= 0.948033.

• Comment
The new value of the parameter (λ1 = 6) triples the target value (λ0 = 2); unsurprisingly, the
probability of a signal when we collect a sample (ξ(4)) is large and therefore the probability
of a signal within the first 10 samples is extremely high.
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(c) A manager has just proposed an upper one-sided CUSUM chart to detect increases from λ0 to λ1. (3.5)

How should he/she set this alternative chart with a reference value (an integer reference value close
to) λ1−λ0

ln(λ1/λ0) and how could he/she obtain the probability requested in (b)?

• Reference value, k, of the upper one-sided CUSUM chart for Poisson data
It should be the closest integer to

λ1 − λ0

ln(λ1/λ0)
=

6− 2
ln(6/2)

= 3.64096,

that is, k = 4.

• Control statistic (no head-start)

ZN =
{

u = 0, N = 0
max{0, ZN−1 + (YN − k)}, N ∈ IN,

which is similar to the control statistic of an upper one-sided CUSUM chart for binomial data
in Example 10.9, equation (10.4).

• Control limits
LCL = 0 because we are dealing with an upper one-sided CUSUM chart for Poisson data.
The upper control limit should be an integer, UCLCUSUM = x, such that the in-control ARL
is fairly large, e.g. 200 samples. Obtaining x requires some numerical work...

• RL distribution
RL0(δ), the RL of this upper one-sided CUSUM chart, has a phase-type distribution with
parameters (e0,Q(δ)), where e0 = (1, 0, . . . , 0) is the first vector of the orthonormal basis of
IRx+1 and

Q(δ) = [pij(δ)]xi,j=0

=





Fδ(k) Pδ(k + 1) Pδ(k + 2) · · · Pδ(k + x)
Fδ(k − 1) Pδ(k) Pδ(k + 1) · · · Pδ(k + x− 1)
Fδ(k − 2) Pδ(k − 1) Pδ(k) · · · Pδ(k + x− 2)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Fδ(k − x) Pδ(k − x + 1) Pδ(k − x + 2) · · · Pδ(k)



 ,

where δ = λ1 − λ0 = 4 and Fδ and Pδ represent the c.d.f. and the p.f. of a r.v. with a
Poisson(λ0 + δ = λ1) distribution.

• Obtaining the probability requested in (b)
This RL-related quantity is equal to

P
[
RL0(δ) ≤ m

]
Table 9.2= 1− e$0 × [Q(δ)]m × 1, m ∈ IN,

where m = 10 and 1 = (1, 1, . . . , 1), a column vector of x + 1 ones. Obtaining this quantity
requires some programming but only depends on a power of a matrix and other trivial matrix
operations.

3. An automatic screw machine turns out round-head bolts with a specified diameter of 9.00 ± 0.04 mm.
The process has been operating in control at µ0 = 9 and σ0 = 0.02, and samples of size n = 4 are taken
from the manufacturing process every hour. A standard X̄ chart has been adopted and is run along
with an upper one-sided S2 chart with an in-control ARL, ARLσ(1), equal to 1000.

(a) Determine the limits of the standard X̄ chart in such a way that the in-control ARL of the joint (3.0)
scheme for µ and σ, ARLµ,σ(0, 1), equals 500 samples.
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• Quality characteristic
X = diameter of a round-dhead bolt
X ∼ Normal(µ,σ2)

• Control statistic
X̄N = mean of the N th random sample of size n

S2
N = variance of the N th random sample of size n, N ∈ IN

• Distribution
X̄N ∼ Normal

(
µ = µ0,

σ2

n = σ2
0

n

)
, in control, where µ0 = 9, σ0 = 0.02 and n = 4

X̄N ∼ Normal
(
µ = µ0 + δ × σ0√

n
, σ2

n = (θσ0)2

n

)
, out of control, where δ (δ %= 0) represents

the magnitude of the shift (a decrease or an increase!) in µ and θ (θ > 1) represents a shift
(an increase!) in the standard deviation σ.
(n−1)S2

N
σ2
0

∼ χ2
(n−1), in control

(n−1)S2
N

(θσ0)2 ∼ χ2
(n−1), out of control

• Control limits of the individual charts
LCLµ = µ0 − γµ

σ0√
n

UCLµ = µ0 + γµ
σ0√

n

LCLσ = 0
UCLσ = σ2

0
n−1 × γσ

• Probabilities of triggering signals
Taking into account the distribution of the control statistics, the individual charts for µ and
σ trigger signals with probabilities equal to

ξµ(δ, θ) = P
(
X̄N %∈ [LCLµ, UCLµ] | δ, θ

)

= 1−
[

Φ
(

UCLµ − µ
σ√
n

)

− Φ
(

LCLµ − µ
σ√
n

)]

= 1−
[
Φ

(
γµ − δ

θ

)
− Φ

(−γµ − δ

θ

)]
, δ ∈ IR, θ ≥ 1,

ξσ(θ) = P
(
S2

N %∈ [LCLσ, UCLσ] | θ
)

= 1− Fχ2
(n−1)

[(n− 1) UCLσ

σ2

]

= 1− Fχ2
(n−1)

(
γσ

θ2

)
, θ ≥ 1,

respectively.
The joint scheme triggers a signal if either of the individual charts triggers an alarm. Moreover,
the control statistics of the individual charts are independent given (δ, θ). As a consequence,
the joint scheme for µ and σ triggers a signal with probability equal to:

ξµ,σ(δ, θ) = P
(
X̄N %∈ [LCLµ, UCLµ] or S2

N %∈ [LCLσ, UCLσ] | δ, θ
)

= ξµ(δ, θ) + ξσ(θ)− ξµ(δ, θ)× ξσ(θ).

• Run length of the joint scheme
We are dealing with a joint Shewhart scheme, therefore the number of samples collected until
the scheme triggers a signal given (δ, θ) satisfies

RLµ,σ(δ, θ) ∼ Geometric (ξµ,σ(δ, θ))
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ARLµ,σ(δ, θ) =
1

ξµ,σ(δ, θ)
.

• Obtaining γµ

Since RLσ(θ) ∼ Geometric (ξσ(θ)), and the in-control ARL of the chart for σ is equal to 1000,
i.e.,

ARLσ(1) = 1000

ξσ(1) =
1

1000
,

we have
γµ : ARLµ,σ(0, 1) = 500

ξµ(0, 1) + ξσ(1)− ξµ(0, 1)× ξσ(1) =
1

500

ξµ(0, 1) =
1

500 − ξσ(1)
1− ξσ(1)

1− [Φ (γµ)− Φ (−γµ)] =
1

500 − ξσ(1)
1− ξσ(1)

γµ = Φ−1



1−

1
500−

1
1000

1− 1
1000

2





γµ ) Φ−1(0.999499)

γµ
table= 3.29

• Control limits of the individual chart for µ

LCLµ = µ0 − γµ
σ0√
n

= 9− 3.29× 0.02√
4

= 8.9671

UCLµ = µ0 + γµ
σ0√
n

= 9 + 3.29× 0.02√
4

= 9.0329

(b) Obtain the probability that a shift from σ0 = 0.02 to σ =
√

16.27/6.251 × σ0 is detected by this (3.0)
joint scheme (exactly) at the fifth sample, assuming that µ remains in-control.
What is the probability of a misleading signal of Type III in this case?

• Remark
Before we proceed we need to obtain the constant γσ.

γσ : ARLσ(1) = ARL∗ = 1000

ξσ(1) =
1

ARL∗

1− Fχ2
(n−1)

(γσ) =
1

ARL∗

γσ = Fχ2
(4−1)

(1− 0.001)

γσ
table= 16.27.
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• Probability of a signal by the joint scheme for µ and σ

The joint scheme triggers a signal if either of the individual charts triggers an alarm. Moreover,
the control statistics of the individual charts are independent given (δ, θ). As a consequence,
the joint scheme for µ and σ triggers a signal with probability equal to:

ξµ,σ(δ, θ) = P
(
X̄N %∈ [LCLµ, UCLµ] or S2

N %∈ [LCLσ, UCLσ] | δ, θ
)

= ξµ(δ, θ) + ξσ(θ)− ξµ(δ, θ)× ξσ(θ).
When µ remains in control and a shift from σ0 to σ = θσ0 has occurred, we obtain:

ξµ(δ, θ) = 1−
[
Φ

(
γµ − δ

θ

)
− Φ

(−γµ − δ

θ

)]

(δ,θ)=(0,
√

16.27/6.251)
= 1−

[

Φ
(

3.29− 0
√

16.27/6.251

)

− Φ
(

−3.29− 0
√

16.27/6.251

)]

) 1− [Φ(2.04)− Φ(−2.04)]

= 2× [1− Φ(2.04)]
table= 2× (1− 0.9793)

= 0.0414

ξσ(θ) = 1− Fχ2
(n−1)

(
γσ

θ2

)

θ=
√

16.27/6.251
= 1− Fχ2

(4−1)

(
16.27

√
16.27/6.2512

)

= 1− Fχ2
(3)

(6.251)

table= 1− 0.9

= 0.1.

Then a signal is triggered by the joint scheme, when (δ, θ) =
(
0,

√
16.27/6.251

)
, with

probability:

ξµ,σ

(
0,

√
16.27/6.251

)
= ξµ

(
0,

√
16.27/6.251

)
+ ξσ

(√
16.27/6.251

)

−ξµ

(
0,

√
16.27/6.251

)
× ξσ

(√
16.27/6.251

)

) 0.0414 + 0.1− 0.0414× 0.1

= 0.13726.

• Requested probability

P
[
RLµ,σ

(
0,

√
16.27/6.251

)
= 5

]
Table 9.2=

[
1− ξµ,σ

(
0,

√
16.27/6.251

)]5−1

×ξµ,σ

(
0,

√
16.27/6.251

)

) (1− 0.13726)4 × 0.13726

) 0.076044

• Probability of a misleading signal of type III

PMSIII(θ)
Table 10.12=

1− [Φ(γµ/θ)− Φ(−γµ/θ)]
[
Fχ2

(n−1)
(γσ/θ2)

]−1

− [Φ(γµ/θ)− Φ(−γµ/θ)]
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=
1−

[
Φ

(
3.29√
16.27
6.251

)
− Φ

(
− 3.29√

16.27
6.251

)]

[
Fχ2

(3)

(
26.12√

26.12
6.251

)]−1

−
[
Φ

(
3.29√
26.12
11.03

)
− Φ

(
− 3.29√

26.12
11.03

)]

) 1− [Φ(2.04)− Φ(−2.04)]
[
Fχ2

(8)
(6.251)

]−1

− [Φ(2.04)− Φ(−2.04)]

(a)
=

0.0414
0.9−1 − (1− 0.0414)

) 0.271456.

(c) Prove that the following result holds for a joint Shewhart scheme for µ and σ: PMSIV (δ) = (1.0)
[1−ξµ(δ,1)]×ξσ(1)

ξµ,σ(δ,1) .

• Proof
Let us remind the reader that, for the Shewhart case, we have

ξµ(δ, 1) = 1− [Φ(γµ − δ)− Φ(−γµ − δ)]

ξσ(1) = 1− Fχ2
(n−1)

(γσ)

ξµ,σ(δ, 1) = ξµ(δ, 1) + ξσ(1)− ξµ(δ, 1)× ξσ(1).
Thus,

PMSIV (δ) Table 10.12=
1− Fχ2

(n−1)
(γσ)

[Φ(γµ − δ)− Φ(−γµ − δ)]−1 − Fχ2
(n−1)

(γσ)

=
[Φ(γµ − δ)− Φ(−γµ − δ)]×

[
1− Fχ2

(n−1)
(γσ)

]

1− [Φ(γµ − δ)− Φ(−γµ − δ)]× Fχ2
(n−1)

(γσ)

=
[1− ξµ(δ, 1)]× ξσ(1)

1− [1− ξµ(δ, 1)]× [1− ξσ(1)]

=
[1− ξµ(δ, 1)]× ξσ(1)

ξµ(δ, 1) + ξσ(1)− ξµ(δ, 1)× ξσ(1)

=
[1− ξµ(δ, 1)]× ξσ(1)

ξµ,σ(δ, 1)
.

4. Suppose that a vendor ships components in lots of size N = 5000. A single sampling plan with
rectifying inspection is being used with n = 50 and c = 2; rejected lots are screened and all defective
items reworked and returned to the lot.

(a) Find the level p of lot quality that will be accepted approximately 9.48% of the time. (1.5)

• Single sampling plan (for attributes)
N = 5000 (lot size)
n = 50 (sample size)
c = 2 (acceptance number)

• Auxiliary r.v. and its approximate distributions
D = number of nonconforming components in the sample

a∼ Binomial(n, p)
n>20,p<0.1∼ Poisson(np)
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• Obtaining the requested level p of lot quality
p : P (D ≤ c) ) 0.0948

FPoisson(λ=np)(c) ) 0.0948
Now, consulting the tables of the c.d.f. of the Poisson distribution, namely checking what
value of the parameter λ satisfies FPoisson(λ=np)(c) ) 0.0948, we obtain

FPoisson(λ=np=5.40)(2) ) 0.0948

50× p = 5.40

p = 0.108.

(b) Suppose that incoming lots are p = 0.005 nonconforming. Calculate the average outgoing quality (1.0)
(AOQ) at this point. Comment.

• Average outgoing quality (AOQ) of a single sampling plan with rectifying
inspection

AOQ(p)
(13.14)

=
p (N − n) Pa(p)

N

=
p (N − n)

N
× P (D ≤ c)

) p (N − n)
N

× FBinomial(n,p)(c)

=
0.005× (5000− 50)

100
×

2∑

d=0

(
50
d

)

× 0.005d × (1− 0.005)100−x

[Alternatively,

AOQ(p)
Mathematica) 0.004940
n>20, p<0.1

) p (N − n)
N

× FPoisson(np)(c)

=
0.005× (5000− 50)

100
× FPoisson(50×0.005=0.25)(2)

table=
0.005× (5000− 50)

100
× 0.9978

= 0.00493911.]

• Comment
With a p = 0.005 nonconforming, rectifying inspection is useless because it is responsible for
an insignificant relative decrease in the fraction nonconforming of

|p−AOQ|
p

× 100% =
|0.005− 0.004940|

0.005
× 100%

) 1.203499%.

(c) Now, admit that the vendor decided to adopt instead a sampling plan by variables with an upper (2.5)
specification limit (U) and known standard deviation σ.
Set such a plan with risk points (p1, 1− α) = (1%, 0.95) and (p2, β) = (10%, 0.15).
State and interpret the acceptance rule of this plan.

• Sampling plan by variables with known variance
nσ (sample size)
kσ (acceptance constant)
σ (known standard deviation)
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U (upper specification limit)

• Producer’s and consumer’s risk points
(p1, 1− α) = (1%, 0.95)
(p2, β) = (10%, 0.15)
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• Obtaining nσ and kσ

According to (13.32),

(nσ, kσ) :





nσ =

[
Φ−1(1−α)−Φ−1(β)
Φ−1(p2)−Φ−1(p1)

]2

kσ = Φ−1(p2)Φ−1(1−α)−Φ−1(p1)Φ−1(β)
Φ−1(β)−Φ−1(1−α) .





nσ =

[
Φ−1(0.95)−Φ−1(0.15)
Φ−1(0.1)−Φ−1(0.01)

]2

kσ = Φ−1(0.1)Φ−1(0.95)−Φ−1(0.01)Φ−1(0.15)
Φ−1(0.15)−Φ−1(0.95) .





nσ

table=
[

1.6449−(−1.0364)
(−1.2816)−(−2.3263)

]2
= 6.587303

kσ
table= (−1.2816)×1.6449−(−2.3263)×(−1.0364)

(−1.0364)−1.6449 = 1.685407.

If we take nσ = *6.587303+ = 7 and kσ = 1.685407 then
Pa(p1) = Φ

{√
nσ

[
−kσ − Φ−1(p1)

]}

= Φ
{√

7
[
−1.685407− Φ−1(0.01)

]}

) Φ(1.69)
table= 0.9545

≥ 1− α = 0.95

Pa(p2) = Φ
{√

nσ

[
−kσ − Φ−1(p2)

]}

= Φ
{√

7
[
−1.685407− Φ−1(0.10)

]}

) Φ(−1.07)
table= 1− 0.8577

= 0.1423

≤ β = 0.15.

• Acceptance rule
For this sampling plan, we have

Q =
U − X̄

σ
≥ kσ,

where Q is called the quality index and X̄ represents the mean of the random sample of size
nσ.

• Interpretation of the acceptance rule
If Q = U−X̄

σ ≥ kσ, we would accept the lot because the sample data imply that the lot
mean is sufficiently far below the upper specification limit (U) to ensure that the lot fraction
nonconforming is satisfactory.

10


