
1

MyPoint - Feedback system for Smart Cities
João Rocheteau, Instituto Superior Técnico, joao.rocheteau@tecnico.ulisboa.pt November, 2023

Abstract—In contemporary societies, people increasingly grav-
itate toward large urban metropolises. This ongoing urbanization
exerts significant pressure on both the public transportation
sector and local authorities. Consequently, public transportation
service users often express dissatisfaction with the service’s
quality. Moreover, there is a pressing need to develop sustainable
mobility solutions that can mitigate the environmental impact of
the transportation and mobility sector.

This thesis investigated the feasibility, creation, testing, and
marketing of a full-stack real-time feedback and mobility infor-
mation system for cities, with integration with a data analytics
tool whose interface was made available to MobiCascais, a
municipal company operating in the public transportation sector.

The results proved that the system was functioning well for the
current production load. Load tests showed that over 50 clients
can use the service simultaneously. The community adoption at
this stage proved not enough to stress the system to its maximum.

Index Terms—mobility, feedback, feedback system, smart city

I. INTRODUCTION

IN modern societies, citizens tend to concentrate in large
urban metropolis where they expect to find better jobs,

better public infrastructures, services, and more diverse leisure
activities. Therefore, to promote economic growth, govern-
ments and local authorities must offer their inhabitants a good
quality of life to keep attracting people and business activities.

This sustained growth trend places significant strain on the
public transportation sector and local authorities. This height-
ened pressure is particularly challenging, as public transporta-
tion service customers express higher levels of dissatisfaction
with service quality when compared to other sectors, which
leads to fewer people using them [1]. Consequently, citizens
keep using their private cars, so greenhouse gas emissions
continue to increase, especially in large and crowded cities
that experience very high levels of pollution [2]. Therefore, it
is essential to understand the factors that impact the citizens’
perceptions of the public mobility service.

The expansion of technology allows authorities to be aware
of citizens’ perspectives by conducting large-scale surveys or
implementing feedback systems where they can report their
opinions. These tools have been essential to managing the
cities, solving problems, and increasing the quality of the
service provided by the local authorities. Moreover, these mo-
bility surveys provide a snapshot of mobility and transportation
services at a given time but fail to provide continuous and real-
time feedback

The massive adoption of smartphones and wide coverage
of LTE/5G cellular networks created new opportunities for
citizens’ participation, creating a user-centric network in which
people, organizations and intelligent objects interact to pursue
specific goals [3]. Within this scope, Mobile crowd-sensing

applications have gained popularity in recent years, becoming
an appealing paradigm for sensing and collecting data [4].

However, existing feedback systems are difficult to adapt to
mobility and transportation domains due to the dynamics of
these systems [5]. The problem of matching the transportation
used by the customer with the location reported in his com-
plaint is not trivial to solve: in some cases, there is no real-time
information about the vehicle location, or if it is available,
it may require significant processing to get the necessary
association for a unique vehicle association. In addition, the
range of elements that impact the perception of the quality
of the service goes far behind the vehicle. Including different
items and properties in such a system would provide a more
complete and accurate perspective of the users’ experience.

II. PROBLEM STATEMENT

A real-time feedback system for public transport and mobil-
ity can improve the quality of the service offered to the citizens
and, at the same time, contribute to a sustainable mobility
solution capable of reducing the environmental impact of the
transport and mobility sector. Nevertheless, these goals can
only be achieved if the system does not represent a burden
of work for local authorities and if citizens adhere to its use
in a responsible way. So, two important questions need to be
raised:

• Is it possible to design a system that is easy to implement
and to accommodate the specificities of each particular
city?

• Can citizens engage in service improvement through
extensive and responsible participation?

III. MOBILITY SUPPORT APPLICATIONS

Two uni-modal MaaS (Mobility as a service) solutions were
studied: Gira, a shared bike service offered by Lisbon’s city
council, and Eurail/Interrail Rail Planner, an app for planning
and booking train travel in Europe using Eurail or Interrail
pass. Gira allows users to find and rent bikes at designated
stations using a city map in the app, with the option to pay
for daily, monthly, or yearly subscriptions. Eurail/Interrail Rail
Planner allows users to plan routes, view train schedules, make
reservations, and view tickets in a paperless process. The app
has four main sections: Planner, Stations, My Trip, and My
Pass.

Four multi-modal MaaS solutions were also investigated:
Uber, Mobi Cascais, Moovit, and UbiGo.

Uber is a ride-sharing and transport information application
that allows users to see the best route to a destination using a
combination of different transports.

Mobi Cascais is a mobility management system for Cascais,
Portugal that offers a range of transportation services, includ-
ing tracking user movements, seeing transport information,



2

TABLE I
MOBILITY APPLICATIONS COMPARISON

Company RailP Gira Uber Mobi Moovit UbiGo
Type of transports 1 1 9 7+PT 9 4+PT

Booking Yes No Yes No No Yes
Payment No Yes Yes Yes No Yes

Multi-PT Pay No No No No No Yes
Subscription Yes No No No No Yes

Societal goals No No No No No No
Feedback system — Yes Yes No Yes —
Detailed feedback — No No No Yes —

providing information about network disruptions, or buying
tickets.

Moovit is a MaaS company and route planner that offers
information about the best routes and current transit options
using official and crowd-sourced data.

UbiGo was a multi-modal transportation service that offered
six types of transportation. It conducted a trial in Sweden
and found that it could reduce the need for private cars and
encourage people to change their transportation habits, but it
closed due to a lack of funding.

Table I summarizes the properties of the applications pre-
viously described. It contains the following characteristics:
the number of transports included in the application (PT
being public transports), the ability to book and pay while
using the service, the integration of a subscription package
to use various types of transportation, whether the application
has integrated social goals or not, if it has a user feedback
system implemented and finally if it provided more detailed
information than a simple star rating.

Out of those applications, none of them, except UbiGo in
the past, currently presents a flexible subscription that includes
several transportation means.

After analyzing several applications regarding transports, it
was possible to conclude that most of them had somewhat
of a map interface, at some point, that made it possible for
the end users to see where the stations and stops were (e.g.
Gira, Moovit, MobiCascais, Uber). Another critical feature in
MobiCascais and Moovit was the possibility of seeing the
expected time for public transport to pass through the station or
stop. Gira, Uber, and Moovit had a feedback system in place.
However, Gira and Uber didn’t present a detailed feedback
system on their infrastructures. Moovit developed its strategy
by providing detailed feedback given by users, for example,
the state of a metro line or the cleanliness of a determined
stop.

IV. FEEDBACK APPLICATIONS

Feedback applications are projects that rely on user feed-
back to provide good service. These applications include
Waze, a real-time traffic application that allows users to report
road conditions and other issues; TripAdvisor, a platform that
allows users to review their experiences with products and
services during their travels; Airbnb, a peer-to-peer accom-
modation platform that allows hosts and users to review each
other after a stay and finally Booking, a travelling platform
that allows customers costumers to reserve properties, flights

TABLE II
FEEDBACK APPLICATIONS COMPARISON

Characteristic Booking TripAdvisor Airbnb Waze
Photos X X X
Text X X X X

Overall evaluation X X X
Infrastructure X X X
Cleanliness X X X

Comfort X
Value for money X X X

Crowdedness X
Traffic-related X

Staff and service X X X
Location X X X

among other services. Table II summarizes each system’s
feedback characteristics.

After analyzing several solutions regarding feedback sys-
tems, it was possible to conclude that each solution had
its version implemented with parameters that were found
pertinent for a particular service. While travelling parameters
like host friendliness, cleanness, or location were pivotal,
for Waze, crowdedness, closures or the police location were
valued.

All travel-related businesses employed star ratings, and it
was discovered that some categories were repeated: staff-
related, cleanliness, location, and infrastructure condition.
Waze’s feedback system was distinct from the others, with
a three-level-based report mechanism based on the frequency
or impact of a determined event. This method proved to be
a quick review alternative that is adequate for the service
it provides because it does not necessitate a lot of mental
burdens, making it ideal for the road. It’s possible to conclude
that all the applications studied incorporated text input from
users, and most of them also permitted photos to ensure that
the information posted is reliable and helpful for other users.

V. REWARDING APPLICATIONS

Rewarding systems have been shown to effectively promote
the use of collaborative carpooling systems and multi-modal
mobility options. In a study published by Vieira et al., [6],
63% of participants found rewards to be a motivating factor in
using a carpooling app, with 47% stating that discounts were
the most preferred form of incentive.

A more recent study in 2019, conducted by Tsirimpa et al.
[7], found that rewards effectively promoted greener, multi-
modal transportation options, with monetary rewards found to
be more effective in promoting car-sharing and park-and-ride
solutions, and credits and reserved seats more effective in mo-
tivating the use of public transportation. Another study in the
Netherlands [8] showed that monetary rewards successfully
increased the use of e-bikes, with utilization rising from 0%
to 68% after half a year of participation.

Several applications have implemented rewarding mecha-
nisms to motivate users to use their services. Moovit allows
users to contribute and receive points that translate to levels,
increasing motivation to use the app. Waze also includes
gamification features such as points and levels based on



3

TABLE III
REWARDING APPLICATIONS COMPARISON

App Points Levels Alerts Badges Daily prize Ranking
Moovit X X X
Waze X X X X X

League of L. X X X X X
C.Royale X X X X X X

contributions, push notifications about relevant events and the
ability to earn badges and skins by helping other users.

The multiplayer online battle arena game League of Leg-
ends includes a ranking system that tracks players’ progress.
It awards them for moving up the ladder and daily rewards
to motivate users to keep playing. Clash Royale provides
daily and weekly missions to its players and has a ”trophy
mechanism” similar to a leaderboard and push notifications to
encourage progress in the game. It also includes the concept
of points and levels within the game.

Overall, every system had one constant: they had points
and levels. Waze was found to be, compared to Moovit, a
complete experience specifically because of the skins that
users unlock while ramping up points. Finally, both games
that were presented had a better rewarding experience. This
may be part of why they are among the most played games
worldwide, having several ways to engage users.

VI. ARCHITECTURE

A. Interactions

MyPoint aims to promote sustainable mobility by allowing
mobility managers to improve the service offered to the
citizens based on their feedback. In addition, local entities may
also participate in the system by rewarding user’s participation.
The system provides specific interfaces and applications for
each user type coordinated through a central server. Figure 1
overviews the system with its entities and their interactions.

Fig. 1. System entities and interactions

The main entities that interact with the systems are:
• myPoint admin: a member of myPoint staff that creates

and manages instances of the platform of each partner
city or local authority.

• Users: the cities’ inhabitants that access myPoint to
retrieve mobility information, report feedback or redeem
points at partner shops.

• Shop manager: entities that want to partner with my-
Point, allowing users to redeem the items they make
available in exchange for publicity.

• City manager: a member of the technical team of a part-
ner responsible for maintaining up-to-date information on
the city’s mobility assets.

• Mobility manager: a member of the operational team of
the city responsible for city mobility service. The team
will access reports on users’ feedback and use them to
improve the service.

B. Components

The central component of MyPoint is the central server,
which mediates all user interactions, offering endpoints for
regular clients to create, read, update, and delete information,
creating requests with specific information within its body. A
complete list of these endpoints is described in appendix [9].

Users can access the server via their mobile application to
view all system facilities. They can click on the map or scan
a QR code to provide feedback or view information. Addi-
tionally, users can access features such as checking parking
and routes, viewing timetables, creating accounts, logging in,
and redeeming prizes. Users can also access MyPoint through
a web application; however, the functionalities are limited
to providing feedback on facilities and obtaining information
about stop timetables using the website’s link commonly
incorporated in QR Codes present in facilities.

Prizes can be obtained in events or stores around the city
using QR Codes. These transactions will occur if the user has
enough points, ensures that item and store details are correct,
and confirms the action.

To create items, stores and events, the stores’ managers must
contact the myPoint administrator to set up the partnership.
The MyPoint administrator creates a QR code for each product
the store associates with the system using a specific interface
created for administrative duties. Additionally, designated City
managers can also access certain parts of this interface to
update the mobility information for the city by uploading
GTFS files, a standard composed of a set of files that contain
details about stops, schedules, and routes.

Mobility managers can also view the state of their city
by accessing a dynamic report created by the system, which
retrieves information from the Central Server database. It is
possible to filter data to obtain the best insights dynamically,
allowing cities to know parameters for which facilities have
been performing below average and why or heat maps of
positive or negative streams of opinions.

C. Architecture overview

This section introduces all the project’s services, the group
of components and how they interact with the entities.

• Central Server: This remote component makes data
available to stakeholders daily.

– Entry point: Forwards entity requests to the relevant
endpoints that provide the requested services



4

Fig. 2. System architecture

– Data storage: The data storage component manages
customer information, transportation data, infrastruc-
ture details, and feedback. It accomplishes this by
employing a relational database, allowing for struc-
tured and organized storage of the relevant data.

– API: Interface for third-party clients to conveniently
retrieve and utilize valuable data derived from client
feedback and information about the current trans-
portation. Using the REST architectural style, the
API excels in its universality and ease of use with
HTTP requests, making it a good choice for this
project.

• Administrator Web Interface: This section presents
a vital functionality that increases the project’s main-
tainability, allowing users with privileged roles to view,
create, update and delete data. From this interface, all
stakeholders’ tickets can be answered, business oppor-
tunities can be addressed, and unusual occurrences can
be monitored. The staff can access all the required
information by accessing a set of available services.

• User interfaces: Composed of mobile and web user
applications, these interfaces connect the end user and the
services MyPoint provides through HTTP requests. De-
sign considerations, functionalities, and navigation were
addressed.

• Analytics interface: To show results to companies and
stakeholders and monitor the development of the system,
a PowerBI-based interface was created recurring to heat
maps, graphics and lists that displayed, in a dynamic
manner, all the information within the database of the
system, in which a connection is directly made. A general
description of the dashboard is provided.

• Security architecture: In each of the components re-
ferred, a security assessment is done to understand what
measures must be taken when implementing a solution
such as MyPoint. Mobile application authentication us-
ing JWT tokens, measures to mitigate common attacks
such as SQL Injections, Cross-Site Scripting (XSS), and

Cross-Site Request Forgery (CSRF), encryption of the
communication, and hashing of sensitive data at rest,
among others, are discussed.

VII. IMPLEMENTATION

After deciding the architecture used to build this solution,
it is now time to choose the appropriate technologies that
will allow the creation of the project in conformity with the
requirements.

A. Design options

During the development of the application, due to con-
straints and requirements, a few design options had to be taken
in order to ensure the final product was delivered on time
without compromising quality:

• Central System: Since this project only has one remote
server available, all the components: User web app, API,
Admin web page, User web page, and the database share
the same physical infrastructure; this solution doesn’t take
advantage of redundancy or load balancing.

• Android app: Due to a lack of time and infrastructure,
the mobile software front-end was only tested for the
Android operating system, which is the most widely used
in the phone market. However, it must be indicated that
the framework possesses the same codebase for iOS and
Android.

• Security-based approach: The creation of this system
was based on a security-by-design approach, as it is an
essential aspect of any system.

• Default visualization interface: At this moment, it was
decided to create a default data visualization interface
that companies could access to have real-time mobility
data.
Besides this, other aspects will be detailed during this
chapter’s implementation overview of the different ser-
vices.

B. Deployment and Entry Point

Since the service must be open to all people who use
it, whatever their location and whenever they want, these
components must be hosted remotely on a physical server.
With the help of the University of Lisbon’s VMCloud initiative
[10], the project received a Linux server with 2 VCPUs, 20
GB of Volume, and 4GB of RAM where the central server,
with both the API and the database, is implemented.

In order to receive and process the requests that arrive at
the central server, a web server is necessary. While Django,
the web framework used to create the central server services,
makes available a local web server, it is advised by their
documentation [11] not to be used within production since
it has not gone through security audits and performance tests
and instead should be used only during testing and debugging.

To solve this, Nginx, a popular open-source web server
and reverse proxy, handles the requests at the central server.
Among others, this technology [12] offers security features
such as the possibility of adding SSL termination, caching,



5

and load balancing that are pivotal to creating a scalable
and efficient system. Caching and load balancing were not
implemented due to budget and time constraints, whereas SSL
was.

Along with Nginx, Guicorn [13], a WSGI often used
within Python services, is used to process the requests Nginx
forwards, translate them to a format that the web application
can read, and return the response.

For the server implementation, these general steps were
done:

• In order to ensure good deployment practices and sep-
aration of concerns, it is vital to create a Linux user
specifically for handling the deployment process rather
than using the root user.

• It’s necessary to set up appropriate permissions for the
deploy user to access the remote code repository, in our
case, GitLab, to facilitate code deployment. It allows this
user to easily pull code developers created and deploy it
to the server.

• PostgreSQL should be installed on the server, and a
remote database should be created. A database user with
the necessary permissions should also be added. This will
enable the server to store and retrieve data as needed.

• Since Django is programmed in Python, a virtual envi-
ronment is a standard approach that should be set up to
ensure that the application runs smoothly and without
conflicts between packages.

• Django should be configured to access the database by
inserting data such as the IP, ports, and user details.

• Jenkins must be installed to provide the capability of
deploying code automatically, as well as configured to
have the necessary permissions in the code repository
(explained in more detail in VII-E)

• For a secure and efficient communication setup, it is
crucial to deploy Nginx and Gunicorn services, acquire
a CA certificate, and configure all components to utilize
this certificate for encryption.

After successfully deploying the service remotely for testing
purposes, it must be prepared so people worldwide can use it.

SSL/TLS encryption is imperative to establish robust and
secure communication across all service components. This can
be achieved by acquiring a reputable Certificate Authority
(CA) certificate, which guarantees that all data exchanged
between the database and web services remains confidential
and protected from unauthorized access.

Certbot [14] is a popular, easy-to-use [15], open-source
tool for automatically configuring and managing SSL/TLS CA
certificates issued by Let’s Encrypt [16] for different services.
This tool was implemented in the remote server and was used
to make the connections to the database, API, Administrator
web application, User Web application and the Pipeline Web
service (explained in the next section) encrypted, trusted and
safe.

Since Let’s Encrypt certificates are only valid for 90 days,
certbot addresses this by creating a timer that runs twice daily
and automatically renews any certification within thirty days
of expiration.

C. Web framework
As mentioned before, web services are used to orches-

trate communication among the different components of the
MyPoint system. They provide an API that mediates access
to the central server and database from the different third-
party platforms, such as the MyPoint user mobile and all web
applications using HTTP messages.

With several Web frameworks in the market, with different
languages and capabilities, Django, based on Python, was cho-
sen to follow this project at this stage [17]. Django, currently
employed in companies such as Spotify and Instagram [18], is
one of the most popular solutions to create Web services. With
over 18 years of active support and a broad community, this
framework encourages rapid and pragmatic design due to its
structure, well-written documentation, an extensive ecosystem
of plugins and add-ons, and built-in security features.

Besides Django, the Django REST framework is installed
to ensure the creation of the REST API previously mentioned
[19]. A complete list of these endpoints is described in
appendix [9].

For the API, JWT (JSON Web Tokens) [20] was employed
to enable the system to function seamlessly across both web
and mobile applications by utilizing SimpleJWT [21]. In order
to restrict access to specific functionalities to only authorized
clients or admins, it is possible to verify the access token
present in the ”Authorization” header and check the user’s
permissions on different endpoints.

The API implements rate-limiting measures on all endpoints
to prevent abusive activities, following Django’s rate-limit
package. This limits the number of requests that a particular
person can make within a specific period.

Another security measure that is implemented by default
by Django is the hashing of user passwords. Upon a new
user creation, the Django framework applies SHA256 hashing
to the password, ensuring that user passwords are not seen
by either administrators or possible malicious stakeholders,
ensuring that this data is secure at rest [22].

D. Data Storage
During the project’s initial phase, the team decided to de-

velop and evaluate the data structure to ensure that crucial data
necessary for the proper functioning of services is accessible
to front-end applications.

As referenced in the last chapter, the data storage solution
that was found to be the best choice for the project’s require-
ments was one to possess a relational structure, meaning that
interactions with it would have to go through SQL. To create
this feature, PostgreSQL, a known and widely used relational
database management system, was used due to its open-source
nature, robustness, extensibility and broad community support
[23], as well as Pg4Admin, an open-source platform designed
for the administration and development of the DBMS [24]
that allowed the creation of its tables, rows and columns that
adhere to standard language structure.

E. CI/CD Pipeline
After implementing the database and web services, it is

crucial to prioritize the maintainability aspect of the project.



6

Since the code will be remotely deployed, it’s essential to have
a straightforward and accessible way of adding new features,
fixing bugs, and removing functionalities not well-received by
the public.

To ensure this, a CI/CD Pipeline was introduced, allowing
developers to push code from local environments to the central
server and enabling users to see real-time updates.

Jenkins, one of the most widely used automation tools
worldwide, was utilized to create this Pipeline. The third-
party plugin, Blue Ocean, provides a modern UI to display
the Pipeline’s state and identify any problems.

As part of the software development workflow automation
process, it is crucial to establish a connection between the
local developer and a remote code repository, such as GitLab
[25], so one can update the code. Besides the local connection,
it’s also necessary to create a link between the remote server
where Jenkins is installed and the same repository so it can
have all the permissions to detect changes and actively trigger
the pipeline process.

The process is comprised of three stages that must be
completed without errors to ensure that new code is deployed:

• The Build stage installs recently added packages locally.
• The Test stage runs Django tests to ensure the newly

added functionalities are bug-free before connecting to
the remote server.

• Finally, the Deploy stage connects to the remote server
and runs the deploy script created beforehand that is
already installed in the server.

F. Administrator Web application
Besides creating the endpoints to serve a wide range of

applications, the project decided to use the Django native
functionality of the Administrator web page and implement
it inside the central server. The framework presents a group
of default ”/admin” endpoints that render built-in web pages
where an overview of the production database is given based
on previously defined models. These endpoints are only al-
lowed for administrators or super users and require log-in.
This group of pre-defined URLs helped manage the service
as it presented a group of simple and intuitive web pages to
view data in the tables and accomplish CRUD operations while
being easily configurable. While most of the implementation
was covered by Django, a few functionalities were added in
the admin.py file within the MyPoint business application:

• CSV Exports: The system allows for CSV export of data
to improve the answering of tickets and sharing of infor-
mation in a clear and organized manner. Administrators
can select specific rows from any table and export them
in .csv format. This feature is designed to streamline
communication in a readable form.

• Import of GTFS: Since this information could be up to
millions of lines, there is the possibility of uploading
GTFS files to the administrator webpage, which will au-
tomatically review the files and put them in the database
format, which is very similar.

• Deletion of all GTFS-related and feedback data: This
button was added to the webpage for rebuilding the
system.

• Deployment initial configuration: This button is useful
when a system is just starting, for example, when it is
first deployed, as it automatically creates all infrastruc-
ture types such as buses, rails and bus stops and their
categories and subcategories.

Besides this, Django’s default UI did not present a modern,
user-friendly design. To accomplish this, jazzmin [26], a
drop-in third-party package for the framework, improved user
experience by redesigning the platform but maintaining the
functionalities described before.

G. User Mobile application

The user mobile application plays a vital role in this project.
Apart from enabling users to give feedback and check their
schedules, it also provides parking information, rewards users
with points that they can redeem, and gives real-time traffic
updates with a dynamic map feature. Additionally, it allows
users to track a specific transport route and view its upcoming
stops. Flutter, a multi-platform open-source framework, was
used to create this component because of its ability to develop
for iOS, Android and Web, rapid widget-based development
and performance [27]. While this project is currently only
tested in Android, Flutter’s single code base should provide
a simple way to integrate the current application into iPhone
users.

The application will function based on the creation of HTTP
requests to the REST endpoints present in the API, which
will allow actions such as the retrieval of facilities, creation
of feedback, and management of log-ins, among other vital
operations.

Fig. 3. User Mobile app snapshots

After successfully testing the application in a real-world
environment and several different Android phones, bringing
the product from local settings to the market was essential. In
Android, the most famous application distribution channel is
the Google Play Store [28], present in most devices by default,
which connects clients to millions of applications worldwide.



7

This channel distributes the Google Play console, an in-
terface that is open to all developers at a price of around
25C, that allows the management of releases, monetization,
analytics, policies and performance of the project.

To comply with Google Play’s regulations [29], MyPoint
has implemented a privacy policy [30] that outlines the man-
agement of user data in addition to the app itself. The terms
and conditions of use can also be found at [31].

On September 19th, the application passed Google Play’s
testing and was released [32] under the ”Open testing” [33]
category in the Console. This means that the app is now
available for all platform users in Portugal; however, this
phase aims to identify and resolve any issues that may have
been missed during development or testing. Notably, feedback
during this phase is only visible to MyPoint’s administrators
and won’t affect public ratings.

H. User Web application

At a certain point of the planning phase, where requirements
of the mobile application were already defined, it was decided
to create a new interface based on the web that would intro-
duce users to the system in a prudent, more straightforward
approach without the need to install or trusting an application
that, at first, wouldn’t have much users and ratings. The
website is an important strategic point due to:

• It serves as a way to continue to engage in public
conversation.

• It’s an excellent way of advertising the mobile application
by redirecting users to install it.

• While it allows clients to give feedback and view sched-
ules, it only has some of the functionalities the mobile
application presents.

The website’s design adopts a ”mobile approach” that adheres
to the standard Android design metrics. This is because the
service aims to cater to users who access the interface by also
scanning a QR code on a marketing poster without having
the mobile version installed while on the street. This project
is a fork of the initial Mobile application Flutter code base,
having very similar design and interactions adapted to the
web. Given that most of the code utilized in creating the
mobile app pertains to this particular service, this segment will
summarise the alterations made to guarantee that the website
operates without issues while offering a seamless, positive user
experience.

I. Analytics interface

As data is collected, it’s necessary to have means to un-
derstand, visualize and analyze it. In compliance with the
requirements of the MobiCascais team, the tool chosen for
this effect was PowerBI. This interactive data visualization
tool allows companies to make reports based on several data
sources.

Within the context of this project, PowerBI directly connects
to the central server database and retrieves its data, which,
through filtering, creates its own schema with only the infor-
mation MyPoint deems necessary for third parties to be able

Fig. 4. User Web app snapshots

to use. The communication between the database and PowerBI
is encrypted.

A Report with key performance indicators was created
featuring important details as:

• The location and heat maps of feedbacks around the city
• The amount of authenticated and non-authenticated feed-

back
• The number of clients
• Number of feedback regarding each category and subcat-

egory
• Score of feedback
• Feedbacks by facility type
• Record of the last opinions recorded in the database

VIII. MARKETING AND POSTERS

After the system was implemented and ready for use by the
community, the project proceeded to its last stage: Marketing
and poster glueing.

During a previous conversation with MobiCascais, certain
infrastructures were provided to promote this project. As a
result, several marketing posters were created with a unique
QR code specific to each facility, using a Python script that
utilized infrastructure data to generate PDFs of the design
created.

During this phase, posters in all eight stops of MobiCascais
M43 [34] routes were implemented, as well as two buses
where users could scan the inherent QR Codes.

IX. EVALUATION AND RESULTS

During development, several tests were made to ensure the
correct functioning of the MyPoint services before going out
in production. While testing could have been more extensive,
the backend services were target of load, unit and integration
testing.

• Integration testing: Integration tests were performed dur-
ing the API development for most of the REST endpoints



8

created. These tests help understand whether a determined
set of functionalities works as expected.

• Unit testing: Tests were made to check if a URL resolves
correctly to a specific view class (http handler). Generally,
unit testing refers to testing a specific functionality.

• Load testing: These tests were performed to understand
the service capability regarding concurrent usage.

A. Unit testing

During the development phase, unit testing was conducted
to ensure all the URLs were going to the desired view and
no URL would route to the wrong functionalities. We used
Django’s REST Framework SimpleTest to ensure the URLs
were correctly resolved and routed to the specific request
handler.

B. Integration testing

Integration testing was performed using Django’s REST
Framework APITestCase module, allowing fake data, users,
roles, and request creations to test endpoint responses and
compare them to the desired output. Among others, this
verifications were made:

• Confirm if an endpoint is only accessible by the roles
permitted (e.g. admin-only endpoints)

• Confirm if clients can make the desired actions for what
the endpoint was created

• Confirm if the response body data, if required, possesses
the necessary information that the front end needs

• Confirm if the HTTP status code from the response is as
expected

C. Load testing

These tests were created using JMeter, an open-source
tool for analyzing and measuring the performance of various
services. It is important to note that these tests are all con-
ducted locally within the development machine and not in a
production environment. As a result, the performance values
in this section are expected to be better than they are due
to the controlled nature of the testing environment, potential
network transit times and other external factors that could
directly impact performance.

The computer used to host the backend server is comprised
of the following specifications:

• Processor: 11th Gen Intel(R) Core(TM) i5-11400H @
2.70GHz

• GPU: RTX 3050 Laptop version
• RAM: 16GB
• Disk: 500GB SSD
• OS: Windows 10 Home

Two tests are performed in order to evaluate the backend’s
performance:

• Simulating users: Request’s response time when having
multiple users loading and giving feedback within the
application - following a storyline approach

• Endpoint stress test: Have several requests at the same
time in a determined endpoint

This test comprises analyzing indicators regarding the sys-
tem by simulating the process that a user would have to do
to give feedback. The script created tried to emulate the user
behaviour by creating HTTP requests necessary to create an
action and adding random timers to simulate parts where users
might think.

1) The user loads the application and waits for the loading
screen: GET HTTP request

2) The user clicks on a facility somewhere in the map:
Random timer (3500,8000) ms

3) Users get the schedule of a facility: GET HTTP request
4) The user views the menu and sees where to create

feedback: Random timer (2500,5000) ms
5) User gives general feedback: POST HTTP request
6) Gets the categories and subcategories of a facility: GET

HTTP request
7) The user chooses a category and a subcategory: Random

timer (1500,5000)
8) User gives feedback: POST HTTP request

This script adds a new testing user each second, up to two hun-
dred. When the set of actions of a single client is completed, it
loops from step two to step eight, simulating a user that is still
using the app to give feedback on other facilities; therefore,
the results of this test comprise two hundred users actively
using the service after three minutes and 20 seconds. Figure
IX-C presents a chart that shows the profile of the average
time of requests during each second.

Fig. 5. Response Time vs. User Growth (one per second): Simulating User
Behavior

TABLE IV
STATISTICS OF THE USER BEHAVIOR TEST

Average Median 90% 95% 99% Er%
235ms 164ms 428ms 603ms 1361 ms 0.05%

However, this analysis fails to show what would happen
when the variability of users is consistent for a more extended
period; therefore, four more tests were created based on
the previously defined user behaviour but with groups of
50,100,150 users using the app simultaneously for 5 minutes.

Another essential test to understand the service’s load capa-
bilities is to test the request times for each endpoint. However,
this assessment was performed for only some endpoints,



9

TABLE V
TEST 2 - 50/100/150 SIMULTANEOUS, CONSTANT, USERS TEST

Users Average Median 90% 95% 99% Er%
50 251ms 142ms 405ms 1187ms 1545 ms 0.2
100 656ms 206ms 2395 3550ms 4102ms 2.41
150 1401ms 403ms 3581ms 8028ms 9138 ms 7.66

as clients do not utilize some and, therefore, do not hold
significant relevance for performance evaluation.

The tested endpoints encompass all the business logic
and data users request. They provide a solid foundation for
assessing the performance of both the database and the code
in the API, as the final time recorded indicates their overall
efficiency. The tests performed are based on 50,100,150, and
200 requests per second for each functionality using the local
and production setups. Since, at this stage, the project is
already up and running, only endpoints that do not create new
data are tested within the remote environment. The testing
results are present in appendix A.

From all the test results, the following conclusions were
taken:

• 150 and 200 request/s proved far too much for both the
local and remote setup, going way beyond the thresholds
defined (400ms for all endpoints [35], expect for loading
- ”/api/facilities/view/en” - which is higher ).

• It was found that the Django local web server had
processing limitations as several requests were dropped
due to server overload. However, the production setup
with Nginx and Guicorn, the entry point, proved to be
more efficient in handling more requests at the cost of a
higher time due to packet travel time.

• Four endpoints performed well above the threshold due
to the time spent processing the data:

– /api/busstop/information/asset - Get the schedules of
a determined facility

– /api/trip/trip value/stops/asset - From the stop a user
is it, retrieve the following stops of a determined trip

– /api/token/ - Get the refresh and access token
– api/feedback/ - Provide feedback

• Both giving feedback and retrieving the map of the next
stops are key functionalities that should be improved.

• As expected, the loading screen was the endpoint that
took longer; however, the under-load stress achieved
values of over 10 seconds.

D. Results

The project went on production officially on October 1st,
2023 and having now 28 days since the release, we highlight
some of the following results:

• 32 Feedbacks were retrieved
• thirteen of whom were rated as five stars
• five of whom were rated as four stars
• five of whom were rated as three stars
• three of whom were rated as two stars
• six of whom were rated as one-star
• 50% of the feedback received was from the General

category

• 15.63% of the feedback received was from the Security
category

• 15.63% of the feedback received was from the Quality
of Service category

• 18.75% of the feedback received was from the Mainte-
nance category

• 26 out of the 32 feedbacks were about bus stops
• 6 client accounts were created
• 4 out of the total number of feedbacks were created by

logged-in users
The results have shown that, at this point, the community’s

adoption of the service is not significantly pronounced. With
only 32 feedback submissions, the data suggests that the
marketing efforts have not been effective in persuading people
to try any of the applications. Ineffective marketing could
have several causes, such as the difficulty in scanning the
available QR codes due to their placement within the buses
and the fact that the M43 route only has one ”traditional” stop,
most of which were rudimentary with no seating, leading to
inconspicuous placement, potentially making some feedback
seem unreliable.

X. CONCLUSION

The MyPoint project was focused on studying the feasi-
bility of a real-time mobility and feedback system for public
transport and mobility that would be accessible to citizens.
The aim was not only to provide a convenient solution
for commuters and valuable information to mobility entities
but also to contribute to sustainable mobility practices that
could help reduce the environmental impact of the transport
and mobility sector. The results obtained demonstrated that
the service worked well, providing fascinating insights into
the data obtained while also guaranteeing sufficient response
times. The service managed to hold the current workload;
however, retrieving only 32 feedbacks, the stress needed to
be more meaningful to provide concrete conclusions.

Overall, user interaction could have been more significant,
having only six registered accounts, proving some distrust at
this project stage and ineffective marketing strategies.

REFERENCES

[1] V. I. Rosca, “The impact of public transportation investments made
by the municipality of bucharest upon quality of life,” Journal of
Community Positive Practices, vol. 18, no. 3, pp. 39–49, Sep. 2018.
[Online]. Available: http://www.jppc.ro/index.php/jppc/article/view/137

[2] P. Labee, S. Rasouli, and F. Liao, “The implications of mobility as a
service for urban emissions,” Transportation Research Part D: Transport
and Environment, vol. 102, p. 103128, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1361920921004235

[3] M. H. Miraz, M. Ali, P. S. Excell, and R. Picking, “A review on internet
of things (iot), internet of everything (ioe) and internet of nano things
(iont),” in 2015 Internet Technologies and Applications (ITA), 2015, pp.
219–224.

[4] A. Capponi, C. Fiandrino, B. Kantarci, L. Foschini, D. Kliazovich, and
P. Bouvry, “A survey on mobile crowdsensing systems: Challenges,
solutions, and opportunities,” IEEE communications surveys & tutorials,
vol. 21, no. 3, pp. 2419–2465, 2019.

[5] R. Utriainen and M. Pöllänen, “Review on mobility as a service
in scientific publications,” Research in Transportation Business &
Management, vol. 27, pp. 15–23, 2018, special Issue on Mobility as
a Service. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2210539518300336



10

[6] V. Vieira, A. Fialho, V. Martinez, J. Brito, L. Brito, and A. Duran,
“An exploratory study on the use of collaborative riding based on
gamification as a support to public transportation,” in 2012 Brazilian
Symposium on Collaborative Systems, 2012, pp. 84–93, (Accessed [17-
10-2023]).

[7] A. Tsirimpa, A. Polydoropoulou, I. Pagoni, and I. Tsouros, “A
reward-based instrument for promoting multimodality,” Transportation
Research Part F: Traffic Psychology and Behaviour, vol. 65, pp.
121–140, 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1369847819300786

[8] J. de Kruijf, D. Ettema, C. B. Kamphuis, and M. Dijst, “Evaluation
of an incentive program to stimulate the shift from car commuting to
e-cycling in the netherlands,” Journal of Transport & Health, vol. 10,
pp. 74–83, 2018. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2214140517306564

[9] MyPoint. (2023) Api docs. (Accessed [13-10-2023]). [Online].
Available: https://mypoint.vps.tecnico.ulisboa.pt/doc/

[10] Instituto Superior Técnico. (2023) Vm cloud - what is vmcloud.
(Accessed [30-10-2023]). [Online]. Available: https://iaas.projects.dsi.
tecnico.ulisboa.pt/index.html#what-is-vmcloud-

[11] Django. (2023) Django documentation - introduction to
django tutorial: The development server. (Accessed [17-10-
2023]). [Online]. Available: https://docs.djangoproject.com/en/4.2/intro/
tutorial01/#the-development-server

[12] Nginx. (2023) Nginx - features. (Accessed [19-10-2023]). [Online].
Available: https://nginx.org/en/

[13] Gunicorn. (2023) Gunicorn - python web server gateway interface
http server. (Accessed [19-10-2023]). [Online]. Available: https:
//gunicorn.org/

[14] E. F. F. (EFF). (2023) Certbot - eff’s free, automated, and open
certificate authority. (Accessed [19-10-2023]). [Online]. Available:
https://certbot.eff.org/

[15] C. Tiefenau, E. von Zezschwitz, M. Häring, K. Krombholz, and
M. Smith, “A usability evaluation of let’s encrypt and certbot: Usable
security done right,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’19.
New York, NY, USA: Association for Computing Machinery, 2019,
p. 1971–1988. [Online]. Available: https://doi.org/10.1145/3319535.
3363220

[16] L. Encrypt. (2023) Let’s encrypt - free ssl/tls certificates. (Accessed
[18-10-2023]). [Online]. Available: https://letsencrypt.org/

[17] Django. (2023) Django official website - home page. (Accessed
[13-10-2023]). [Online]. Available: https://www.djangoproject.com/

[18] I. A. Bairagi, A. Sharma, B. K. Rana, and A. Singh, “Uno: A
web application using django,” in 2021 3rd International Conference
on Advances in Computing, Communication Control and Networking
(ICAC3N), 2021, pp. 1371–1374, (Accessed [12-10-2023]).

[19] Django REST Framework. (2023) Django rest framework - home
page. (Accessed [13-10-2023]). [Online]. Available: https://www.
django-rest-framework.org/

[20] M. Jones, J. Bradley, and N. Sakimura, “Json web token (jwt),” IETF,
RFC 7519, 2015. [Online]. Available: https://tools.ietf.org/html/rfc7519

[21] Django REST framework SimpleJWT. (2023) Django simplejwt
documentation. (Accessed [30-10-2023]). [Online]. Available: https:
//django-rest-framework-simplejwt.readthedocs.io/en/latest/

[22] Django. (2023) Django documentation - passwords. (Accessed [20-
10-2023]). [Online]. Available: https://docs.djangoproject.com/en/4.2/
topics/auth/passwords/

[23] PostgreSQL. (2023) Postgresql - official website. (Accessed [13-10-
2023]). [Online]. Available: https://www.postgresql.org/

[24] PGAdmin. (2023) pgadmin - home page. (Accessed [30-10-2023]).
[Online]. Available: https://www.openapis.org/

[25] GitLab. (2023) Gitlab documentation. (Accessed [19-10-2023]).
[Online]. Available: https://docs.gitlab.com/

[26] Django. (2023) Django jazzmin documentation. (Accessed [13-10-
2023]). [Online]. Available: https://django-jazzmin.readthedocs.io/

[27] K. Kishore, S. Khare, V. Uniyal, and S. Verma, “Performance and
stability comparison of react and flutter: Cross-platform application
development,” in 2022 International Conference on Cyber Resilience
(ICCR), 2022, pp. 1–4.

[28] Google. (2023) How google play works. (Accessed [30-10-2023]).
[Online]. Available: https://play.google/howplayworks/

[29] Google. (2023) Google play store - developer policy center.
(Accessed [30-10-2023]). [Online]. Available: https://play.google.com/
about/developer-content-policy/

[30] MyPoint. (2023) Privacy policy. (Accessed [30-10-2023]). [Online].
Available: https://mypoint.vps.tecnico.ulisboa.pt/privacypolicy

[31] MyPoint. (2023) Terms of service. (Accessed [30-10-2023]). [Online].
Available: https://mypoint.vps.tecnico.ulisboa.pt/termsconditions

[32] MyPoint . (2023) Google play store - mypoint app. (Accessed
[30-10-2023]). [Online]. Available: https://play.google.com/store/apps/
details?id=com.mypoint.mypointfrontend

[33] Google. (2023) Google play store - open testing. (Accessed [30-
10-2023]). [Online]. Available: https://play.google.com/console/about/
opentesting/

[34] M. Cascais. (2023) Mobi cascais - autocarros municipais - horários
e percursos. (Accessed [19-10-2023]). [Online]. Available: https:
//mobi.cascais.pt/geral/autocarros-municipais-horarios-percursos

[35] D. Green, C. Hargood, and F. Charles, “Contemporary issues in in-
teractive storytelling authoring systems,” in Interactive Storytelling,
R. Rouse, H. Koenitz, and M. Haahr, Eds. Cham: Springer International
Publishing, 2018, pp. 506–508.

APPENDIX

TABLE VI
LOCAL ENDPOINT STRESS TEST - 50, 100, 150 AND 200 USERS

Endpoint HTTP method 50 requests/1000ms 100 requests/1000ms
Avg Med 99% Er% Avg Med 99% Er%

1 GET 50 35 149 0 64 55 170 0
2 GET 49 36 151 0 66 55 168 0
3 GET 75 54 173 0 454 388 1085 0
4 GET 260 286 451 0 1106 1076 2019 0
5 GET 2479 2522 2855 0 4663 4878 5845 7
6 GET 56 42 152 0 103 84 267 0
7 GET – – – – – – – –
8 POST 63 47 161 0 110 112 224 0
9 POST 47 36 147 0 65 57 177 0
10 POST 519 556 792 0 1262 955 2588 0
11/ POST 3 3 39 0 2 2 3 0
12 POST 1740 1656 3279 0 2071 2030 3741 43
13 POST 61 53 167 0 213 207 562 0
14 POST 70 48 165 0 131 126 263 0

Endpoint HTTP method 150 requests/1000ms 200 requests/1000ms
Avg Med 99% Er% Avg Med 99% Er%

1 GET 396 267 1562 0 474 262 1578 0
2 GET 250 226 650 0 514 370 1321 0
3 GET 802 812 1881 0 1248 1378 2491 6.5
4 GET 1473 1510 2912 8.67 1632 2011 2805 28
5 GET 3941 4392 6236 36 3439 2041 6218 53.50
6 GET 340 267 1085 0 642 410 1717 0
7 GET – – – – – – – –
8 POST 374 272 1196 0 648 687 1697 0
9 POST 273 198 749 0 549 301 1575 0
10 POST 1707 1901 3191 17.33 1839 2036 3023 40.50
11 POST 2 2 3 0 2 3 3 0
12 POST 2091 2028 3615 64.67 2116 2032 3865 73.50
13 POST 538 306 1608 0 924 776 2141 0
14 POST 413 279 1183 0 688 693 2082 0

1) /api/client/account/
2) /api/facility/view/{asset}/{lng code}
3) /api/categories/{asset type}/{lng code}
4) /api/trip/{trip value}/stops/{asset}
5) /api/busstop/information/{asset}
6) /api/item/{item id}/
7) /api/facilities/view/en
8) /api/item/{item id}/
9) /api/excursion

10) /api/token/
11) /api/token/refresh/
12) /api/feedback/
13) /api/feedback/carpark
14) /api/feedback/carpark/validate


