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Abstract: As e-commerce flourishes, companies like Leroy Merlin (LM) grapple with surging demand 
for home deliveries, prompting a restructuring of logistics networks under mounting pressure to curb 
carbon emissions. Focusing on the practical case of LM in the Lisbon region, this study addresses the 
integration of electric vehicles (EVs) into fleets tasked with delivering heavy items. While challenges like 
limited range and high purchase costs are commonly highlighted, this research emphasizes the often-
overlooked factor of load capacity. A mixed integer linear programming (MILP) model was devised to 
optimize LM's home delivery routes with dual objectives: minimizing costs and reducing CO2 emissions. 
The model maintains a fixed fleet size but explores various compositions of both electric and internal 
combustion vehicles (ICVs). Incorporating a single depot, a heterogeneous fleet (HF), and multi-trip 
(MT) capabilities, the model utilizes a clustering method for medium to large-scale instances, followed 
by vehicle allocation. Results indicate the feasibility of integrating up to 3 EVs into the existing fleet 
without compromising service levels. In this scenario, carbon emissions could drop by 20%, and total 
feeding costs (fuel and electricity) would decrease by 13%. Furthermore, based on the Total Cost of 
Ownership metric (TCO), acquiring 3 EVs is financially advantageous over 3 ICVs after an 8-year period. 
Notably, a solution achieving a 40% reduction in emissions compared to the current scenario is 
attainable when prioritizing carbon emission reduction. 
Keywords:  Electric and conventional vehicle, heterogeneous fleet, vehicle routing problem, multi-trip, 
last mile delivery, home delivery, total cost of ownership.   

1. Introduction 

The European Union's ambitious goal of achieving 
carbon neutrality by 2050 grounded significantly 
on the transportation sector as 25% of 
greenhouse gas emissions come from both 
passenger and freight transport within the EU. 
Meanwhile, the last-mile delivery sector has 
experienced notable growth in recent years, 
following the developing trend of e-shopping and 
the widespread adoption of technologies. As 
companies witness a substantial shift from 
traditional brick-and-mortar retail to online sales, 
the demand for home deliveries has surged 
(Siragusa et al., 2022). This transition has, in turn, 
amplified the complexity of last-mile logistics, 
requiring meticulous stock management, order 
preparation, and shipping efforts. Delivering 
products to customers' doorsteps is traditionally a 
logistical challenge, making it one of the most 
expensive and environmentally damaging stages 
of supply chains. Urbanization is also impacting 
the home delivery sector as city residents are 
natural users of the online channel due to factors 

such as limited time, better internet connectivity, a 
lack of storage space and parking facilities (DHL, 
2019). The population migration offers 
opportunities and challenges as leveraging this 
high demand could prove economically 
advantageous. However, this trend has led to an 
increase in traffic congestion within city centers, 
presenting environmental challenges which 
governments and city planners constantly try to 
counteract. Within the sphere of last-mile logistics, 
several innovative solutions and trends have 
emerged, such as the deployment of autonomous 
vehicles, the establishment of proximity pickup 
points or the crowdsourcing. Among these trends, 
EVs stand out as a promising solution due to their 
lower emissions profile. While emissions during 
the manufacturing phase of EVs may be relatively 
higher, their operational phase's reduced 
emissions more than compensate for this 
discrepancy (European Environment Agency., 
2022). However, despite the evident advantages 
and the EU's ambitious environmental goals, the 
adoption of EVs in the transportation sector 
remains modest. In 2022, approximately 23% of 
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new vehicle registrations in the EU were electric 
cars, but only a share of just 3.1% for new van 
registrations (European Environmental Agency, 
2023). This dissertation addresses the application 
of electric vans in the home delivery segment, by 
handling a case study from one of Portugal's 
largest retail companies. 

2. Problem definition 

2.1. Supply chain overview 

LM is a French retail chain specialized in home 
improvement and “Do It Yourself” products. From 
a management point of view, it is divided into 8 
areas - Zonas de Vida (ZDV). In Portugal, there 
are 50 stores supplied by a national warehouse 
and 5 regional warehouses. Product flows occur 
between all these facilities as well as with 
suppliers. Stores sales are for LM the main source 
of income, as in 2022, more than 70% of total 
sales revenue came from in-store sales, where the 
customer leaves the store with the desired 
products. Despite that, the company operates as 
an omni-channel, complementing the store 
service with online and telephone sales. They also 
offer in-store pick-up services and home 
deliveries, which are important for reaching a 
larger number of customers and for when products 
are not available in store or are ordered online. 
When it comes to home deliveries, there are three 
types of flows, whose classification depends on 
the origin of the products and are independent of 
the channel used to make the purchase: shipped 
from warehouse (SFW) where orders satisfied by 
regional warehouse’s stock; shipped from store 
(SFS) where products are sent from a store to a 
regional warehouse before being sent to 
customers and shipped from partner (SFP). The 
SFW flow is prioritized, when possible, but due to 
the limited stock, over 10% of total sales were 
classified as SFS, and only about 1% for the other 
two flows. Therefore, the focus of this work is on 
the SFS flows which are carried out by 
subcontracted carriers, each with an exclusive 
fleet allocated to LM. Orders are categorized 
according to weight into three groups: parcels (up 
to 30 Kg), bulky items (30 to 300 Kg), and heavy 
bulky items (over 300 Kg). While parcel home 
deliveries are highly efficient, with same or next-
day service available through the national postal 
company (CTT) with a considerable use of 
alternative fuel vehicles, the process for heavier 

categories is significantly less developed and 
requires a different approach (multiple operators, 
larger vehicles, etc.), leaving plenty of room for 
improvement. 

2.2. Problem identification 

This study focuses on the integration of EVs into 
the home delivery operations aiming to reduce 
emissions. Although the company relies on 
carriers for deliveries, any additional costs 
incurred by carriers due to EV integration may 
lead to higher expenses. Therefore, the extent of 
this dissertation is narrowed down to the West 
Lisbon ZDV, where a single carrier handles 
deliveries for the bulky and heavy bulky 
categories. LM transports the products to the 
carrier's warehouse, centered on its area of 
activity, which has recorded the highest number of 
deliveries. The daily operations of the carrier 
involve route planning, product consolidation, and 
customer notification of expected delivery time 
interval. This carrier’s current exclusive fleet for 
the deliveries of LM consists of 7 heterogeneous 
ICVs. Deliveries exceeding 1500Kg are handled 
by subcontracted heavy-duty trucks. This works’ 
focus lies in studying the operational and financial 
impacts of replacing these large-sized vans in 
LM's fleet with EVs. Apart from the usually 
identified challenges, such as the limited range, 
the possible need for time-consuming in-route 
recharging or high acquisition costs, the primary 
concern lies on the potential reduction in payload 
capacity and volume, as the carrier handles heavy 
orders near the vehicles' maximum load limit. A 
linear optimization model is introduced to 
incorporate these EVs into the carrier's route 
planning, with the goal of obtaining insights into 
operational costs, emission reduction, and the 
fleet's capacity to manage daily deliveries, 
particularly during peak periods. This research 
seeks to set a benchmark for similar high-density 
home delivery areas and help reaching the goal of 
reducing 50% the emissions to the atmosphere in 
its home delivery operation by 2025. 

3. Literature Review 

3.1. Electric Vehicles 

The transition to EVs in last-mile logistics is a 
growing trend across various sectors, with 
ongoing research regarding their viability 
compared to ICVs reaching divergent 
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conclusions, also depending on the sector or type 
of usage they have. Anosike et al. (2021), in a 
detailed literature review on the challenges of 
adopting EVs on last-mile deliveries, identified 
four main categories that affect their adoption: 
operational, infrastructure, battery technology and 
costs. 

At the operational level, these vehicles are more 
exposed to the impacts of extreme weather 
conditions, such as heat (above 45°C) or cold 
(below 10°C), affecting battery efficiency. The use 
of climate control systems also seriously affects 
the maximum range (Margaritis et al., 2016). In 
addition, these vehicles have a lower charging 
capacity, and the penalty is harsher the larger the 
vehicle or the batteries used. EVs are more 
efficient in urban environments, where it is 
possible to take advantage of regenerative 
breaking and where drivers do not reach high 
speeds (Christensen et al., 2017). Range anxiety 
is also a widely discussed factor, since operators 
don't want to risk running out of battery and often 
maintain large battery buffers particularly in home 
delivery scenarios. 

Infrastructure wise, it is practically unanimous that 
to increase the adoption of EVs for both personal 
and business use, it is necessary to improve the 
public charging infrastructure which remains 
insufficient, lacking flexibility, and facing issues of 
station availability and high costs. Upgrades to the 
distribution network are also needed to deal with 
increased demand and charging behaviors. 
Furthermore, the energy mix used for electricity 
generation, which often relies on fossil fuels, 
remains a concern. Transitioning to renewable 
energy sources is crucial for reducing emissions 
(Schiffer et al., 2021). 

On the battery side, lithium-ion batteries are the 
dominant technology for EVs due to their high 
energy and power density. However, production 
technologies still need to be improved, as well as 
battery capacity and recharging, which at the 
moment still greatly damages lifespan if fast 
charging is used. Prolonging battery lifespan is 
essential, especially for high-usage scenarios like 
delivery services (Al-dal’ain et al., 2021). 

Acquisition costs remain a significant barrier to EV 
adoption. TCO metrics are used to estimate the 
overall costs of EV ownership, considering factors 
like purchase price, fuel/electricity consumption, 

insurance, maintenance, ownership taxes, and 
tolls (Siragusa et al., 2022). Maintenance costs 
are generally considered lower for EVs, but the 
availability of these services and uncertain repair 
costs can be obstacles. Electricity and fossil fuel 
prices are influenced by multiple factors, such as 
energy policies, changes in the energy mix, as 
well as inflation rates and geopolitical issues, 
making it difficult to predict the long-term cost 
competitiveness of EVs (White et al., 2022). In 
addition, battery deterioration must be considered, 
and the lack of long-term data and battery 
replacement costs can affect TCO. Business 
models such as battery swap stations can reduce 
these uncertainties and make EVs both more 
affordable and convenient (Schiffer et al., 2021). 

3.2. Electric-Vehicle Routing Problem (E-
VRP) 

Integrating EVs into fleets requires replanning the 
routes formed and the models used. The literature 
review presented concentrates on an extension: 
Heterogenous Fleet Vehicle Routing Problem with 
Multi Trips (HFVRPMT) and follows the framework 
established by Kucukoglu et al. (2021). 

Problem features  

Within this context, two main types of problems 
are addressed: Fleet Size and Mix (FSM) and 
Fixed Fleet Models (FF). Schiffer et al. (2021) 
tackle FSM problems, focusing on investment 
decisions regarding EVs or conventional ICVs. 
They explore scenarios considering individual 
vehicle characteristics and operating costs, 
aiming to determine the optimal time and vehicle 
type for investment. Zhang et al. (2023) go further 
by incorporating different vehicle categories 
based on load capacities. Ewert et al. (2021) 
introduce an indeterminate fleet, representing a 
case where the investment burden is shifted to 
logistics service providers. 

Al-dal’ain et al. (2021), explore different FF 
compositions and develop a model to calculate 
operating costs for each composition. This 
information is then used as input for a replacement 
model, considering a time horizon of several 
years. Sethanan et al. (2020) focus only on 
planning routes for a FF, including, in addition to 
deliveries, inbound flows (pick-up). They also 
consider the MT feature, where vehicles can make 
multiple round trips within a planning period. This 
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concept, sometimes referred to in the literature as 
multi-tour, can be introduced as an arbitrary 
number of trips in certain problems (Ewert et al., 
2021; Sethanan et al., 2020; Zhao et al., 2019; 
Zhou et al., 2021) or be limited to a maximum in 
each planning period (Setiawan et al., 2019; Zhen 
et al., 2020). Zhen et al. (2020) incorporate the 
multi-Depot feature and release dates in their 
model. 

The energy consumption is a crucial factor, 
primarily influencing computational complexity. In 
the articles reviewed energy consumption, 
whether for diesel or electricity, is considered 
proportional to the distance traveled, following a 
linear and deterministic pattern. However, to bring 
the models closer to reality, it is crucial to develop 
non-linear consumption patterns that depend on 
factors such as the weight transported, the 
elevation of the terrain or the speed of the vehicle 
Kucukoglu et al. (2021). 

Moreover, given that recharging EVs is still time-
consuming and less available when compared to 
refueling ICVs, charging planning a pivotal aspect 
of E-VRPs. Charging policies include full or partial 
charging, where EVs must recharge battery to the 
maximum capacity (Zhao et al., 2019) or can leave 
at any point respectively (Schiffer et al., 2021; 
Zhou et al., 2021). Other authors consider the EVs 
maximum range but do not allow for recharging 
during the planning period (Al-dal’ain et al., 2021). 

Time constraints are a fundamental element as in 
home delivery planning, companies provide time 
windows to customers. In addition, it is necessary 
to consider at least time limits or maximum 
working periods for drivers, reflecting legal 
limitations (Sethanan et al., 2020). Most models 
include time limits and time windows for deliveries 
to customers. Time windows are usually treated 
as rigid constraints, meaning deliveries must 
occur within specified time periods but their 
violation can also be allowed by introducing 
penalty costs (Zhao et al., 2019; Zhou et al., 
2021).  

Objective Functions 

E-VRP objective functions primarily revolve 
around minimization objectives. Whitin single 
objective functions, (Sethanan et al., 2020) 
minimize the distance traveled, (Zhen et al., 2020) 
focus on minimizing vehicle travel time rather than 
distance, offering a more realistic approach. 

(Setiawan et al., 2019) focus on the minimization 
of feeding costs. 

Multiple objective functions capture a wider array 
of costs and environmental factors, commonly 
incorporating costs associated with emissions 
from usage (Al-dal’ain et al., 2021) and even adopt 
the well-to-wheel methodology, encompassing 
GHG emissions related to fuel production and 
usage (Ewert et al., 2021; Zhang et al., 2023). In 
contrast, residual vehicle value or less frequently 
included as an objective.  

Solution Approaches 

E-VRPs are inherently NP-hard problems, making 
the attainment of exact solutions for medium or 
large-scale instances highly challenging. 
Consequently, the literature predominantly relies 
on heuristic and metaheuristic solution methods 
and exact methods are exclusively employed, with 
a limited focus on small instances. Schiffer et al. 
(2021) combines optimal investment decisions 
with metaheuristics for route planning. Zhang et al. 
(2023) uses Particle Swarm Optimization (PSO) 
with chaos elements for improved optimization. 
Zhen et al. (2020) enhances PSO with Local 
Search with Variable Neighborhood Descent. 
Sethanan et al. (2020) creates a hybrid 
optimization algorithm by combining Genetic 
Algorithm, Differential Evolution Approach, and 
fuzzy logic.  

4. Methodology   

4.1. Model characterization  

The problem at hand can be modeled as 
HFVRPMT, involving optimizing routes for a FF of 
vehicles with diverse characteristics (both EVs 
and ICVs). While previous research on integrating 
EVs into route planning has focused on charging 
constraints, this study's primary focus is the limited 
payload and volume capacity of this vehicles. In 
the formulation vehicles begin each trip with fully 
charged batteries or full tanks, rejecting in-route 
recharging and considering that every time the 
depot is visited the vehicles are able to perform 
trips up to its maximum range. The problem 
involves vehicles starting at a single depot 
location, loading products, delivering them to 
customers, and returning to the depot. Vehicles 
can undertake more than one trip during the 
planning period, but the number of trips is limited 
to a maximum. The transported items also vary in 
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weight and volume. It is not mandatory for all 
vehicles to undertake trips, and the number of trips 
for each vehicle may be unbalanced. Time 
features are also included such as the time for 
unloading at customer locations, warehouse 
loading and a time maximum time to perform the 
deliveries. The mathematical formulation is based 
on the model proposed by Zhou et al. (2021). 

Sets and indexes 
𝑁 Set of customers  (𝑖, 𝑗, 𝑙	 ∈ 𝑁) 
𝐾 Set of vehicles (𝑘 ∈ 𝐾) 
𝑊 Set of trips (𝑤	 ∈ 𝑊) 

Parameters 
𝐷𝑉! The demand of customer 𝑖 in volume 
𝐷𝑃! The demand of customer 𝑖 in weight 
𝑇𝑇!" Travel time between customers 𝑖 and 𝑗 
𝐷!" Distance between customers 𝑖 and 𝑗 
𝑇𝑂! Travel time between customer 𝑖 and the 

depot 
𝑂𝑇! Travel time between the depot and 

customer 𝑖 
𝐷𝑂! Distance between customer 𝑖 and the 

depot 
𝑂𝐷! Distance between the depot and 

customer 𝑖 
𝑇𝑆! Service time at customer 𝑖 
𝑇𝐶# Service timeof vehicle k at depot  
𝑄𝑉# Volume capacity of vehicle 𝑘 
𝑄𝑃# Payload capacity of vehicle 𝑘 
𝑅# Maximum range of vehicle 𝑘 
𝐻 Time horizon 
𝑀 Large number  

Variables 
𝑆𝑇#,% Start time of trip 𝑤 of vehicle 𝑘 
𝑅𝑇#,% Return time of trip 𝑤 of vehicle 𝑘 
𝐴𝑎𝑐#,!,% Arrival time at customer 𝑖 location 

with vehicle 𝑘 on trip 𝑤 
𝐿𝑎𝑑#,% Load carried by vehicle 𝑘 on trip 𝑤 
𝑉𝑎𝑑#,% Volume carried by vehicle 𝑘 on trip 𝑤 
𝑦#,% Binary equals one if vehicle 𝑘 

performs trip 𝑤; otherwise, equals 
zero 

𝑥!",#,% Binary equals one if vehicle 𝑘 visits 
customer 𝑗 immediately after visiting 
customer 𝑖 on trip 𝑤; otherwise, 
equals zero 

𝑧#,!,% Binary equals one if vehicle 𝑘 visits 
customer 𝑖 on trip 𝑤; otherwise, 
equals zero 

𝑓#,!,% Binary equals one if customer 𝑖 is the 
first to be visited by vehicle 𝑘 on trip 
𝑤 

𝑙#,!,% Binary equals one if customer 𝑖 is the 
last to be visited by vehicle 𝑘 on trip 
𝑤 

Mathematical model 

𝑀𝑖𝑛	 D D D D 𝑇𝑇!,"𝑥!,",#,%
"	∈	(!	∈(%	∈)#	∈	*

+	D D D𝑇𝑂!𝑙#,!,%
!	∈	(%	∈)#	∈*

+	D D D𝑂𝑇!𝑓#,!,%	
!	∈	(%	∈)#	∈*

	 

(1) 

D D 𝑧!,#,% = 1
%	∈)#	∈*

										∀	𝑖 ∈ 𝑁 (2) 

𝑓#,!,% +	D 𝑥!,+,#,%
!	∈	(

=	 𝑙#,!,% +	D 𝑥+,",#,%
"	∈	(

=	𝑧#,!,%										∀	𝑙
∈ 𝑁, ∀	𝑘 ∈ 𝐾, ∀	𝑤 ∈ 𝑊 

(3) 

D𝑓#,!,%
!	∈(

=	D 𝑙#,!,%
!	∈(

=	𝑦#,%									∀	𝑘

∈ 𝐾, ∀	𝑤 ∈ 𝑊 

(4) 

𝑦#,%,- ≤	𝑦#,% 									∀	𝑘 ∈ 𝐾, ∀	𝑤 ∈ 𝑊 (5) 

D𝑧#,!,%
!	∈	(

	≤ 	𝑦#,%𝑁											∀	𝑘 ∈ 𝐾, ∀	𝑤

∈ 𝑊 

(6) 

𝐿𝑎𝑑#,% =	D 𝑧#,!,%
!	∈	(

𝐷𝑃! 											∀	𝑘

∈ 𝐾, ∀	𝑤 ∈ 𝑊 

(7) 

𝑉𝑎𝑑#,% =	D 𝑧#,!,%
!	∈	(

𝐷𝑉! 											∀	𝑘

∈ 𝐾, ∀	𝑤 ∈ 𝑊 

(8) 

𝐿𝑎𝑑#,% ≤	𝑦#,%𝑄𝑃#											∀	𝑘 ∈ 𝐾, ∀	𝑤
∈ 𝑊 

(9) 

𝑉𝑎𝑑#,% ≤	𝑦#,%𝑄𝑉#											∀	𝑘 ∈ 𝐾, ∀	𝑤
∈ 𝑊 

(10) 

𝐴𝑎𝑐#,!,% 	≤ 	 𝑧#,!,%𝐻										∀	𝑖 ∈ 𝑁, ∀	𝑘
∈ 𝐾, ∀	𝑤 ∈ 𝑊 

(11) 

𝑆𝑇#,% ≥	𝑧#,!,%𝑇𝐶# − 	𝑀(1
−	𝑦#,%)									∀	𝑖
∈ 𝑁, ∀	𝑘 ∈ 𝐾, ∀	𝑤 ∈ 𝑊 

(12) 

𝑆𝑇#,%,- ≥	𝑅𝑇#,% +	𝑇𝐶# 	− 	𝑀(1 −
	𝑦#,%)									∀	𝑖 ∈ 𝑁, ∀	𝑘 ∈ 𝐾, ∀	𝑤 ∈ 𝑊  

(13) 

𝐴𝑎𝑐#,!,% ≥	𝑆𝑇#,% +	𝑂𝑇! − 	𝑀(1 −
	𝑓#,%)									∀	𝑖 ∈ 𝑁, ∀	𝑘 ∈ 𝐾, ∀	𝑤 ∈ 𝑊  

(14) 

𝑅𝑇#,% ≥	𝐴𝑎𝑐#,!,% +	𝑇𝑆! +	𝑇𝑂! − 	𝑀(1
−	𝑙#,%)									∀	𝑖 ∈ 𝑁, ∀	𝑘
∈ 𝐾, ∀	𝑤 ∈ 𝑊 

(115) 
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𝐴𝑎𝑐#,",% ≥	𝐴𝑎𝑐#,!,% +	𝑇𝑆! +	𝑇𝑇!"
− 	𝑀L1
−	𝑥!",#,%M								∀	𝑖
∈ 𝑁, ∀	𝑗 ∈ 𝑁, ∀	𝑘
∈ 𝐾, ∀	𝑤 ∈ 𝑊 

(16) 

𝑅𝑇#,% 	≤ 	𝑦#,%𝐻											∀	𝑘 ∈ 𝐾, ∀	𝑤 ∈ 𝑊 (17) 

D D 𝑥!",#,%𝐷!"
"	∈	(

+
!	∈	(

D𝑓#,!,%
!	∈	(

𝑂𝐷!

+	D 𝑙#,!,%
!	∈	(

𝐷𝑂!

≤ 𝑅#										∀	𝑘 ∈ 𝐾, ∀	𝑤
∈ 𝑊	 

(18) 

𝑦#,% ∈ 	 {0,1}										∀	𝑘 ∈ 𝐾, ∀	𝑤 ∈ 𝑊	 (19) 

𝑥!",#,% ∈ 	 {0,1}								∀	𝑖 ∈ 𝑁, ∀	𝑗 ∈ 𝑁, ∀	𝑘
∈ 𝐾, ∀	𝑤 ∈ 𝑊 

(20) 

𝑧#,!,%	, 𝑓#,!,%	, 𝑙#,!,% 	 ∈ 	 {0,1}									∀	𝑖
∈ 𝑁, ∀	𝑘 ∈ 𝐾, ∀	𝑤 ∈ 𝑊 

(21) 

The problem is formulated as a minimization 
problem. Objective function (1) minimizes the total 
travel time, including customer visits, outbound 
and return depot trips. Equation (2) mandates 
each customer being visited exactly once. 
Constraint (3) states a customer is either visited 
first on a trip or follows another customer. 
Similarly, the last customer is either visited last or 
immediately followed by another. (4) controls the 
number of customers as first and last on a 
vehicle's route. Each vehicle and route have 
exactly one first and last customer, and none for 
unperformed trips. (5) allows trip w+1 if trip w is 
done on the same vehicle. (6) permits serving a 
customer only if included in that trip. (7) and (8) 
are demand constraints, ensuring loaded weights 
and volumes match customer orders on the route. 
(9) and (10) prevent exceeding vehicle capacity. 
(11) links a customer's arrival time to a vehicle's 
trip. (12) and (13) relate to depot loading times. 
Equations (14), (15), and (16) address customer 
time for first, last, or intermediate customers. (17) 
ensures vehicles return to the depot within the 
time limit. (18) limits vehicle use to their maximum 
driving range on each trip. (19) to (22) establish 
the decision variables' domain. 

Another objective function (22) was also adopted, 
which aims to minimize the total emissions 
produced and thereby give greater prominence to 
less polluting vehicles. 

𝑀𝑖𝑛	 D D D D 𝐷!,"𝑥!,",#,%𝑒#
"	∈	(!	∈(%	∈)#	∈	*

+	D D D𝐷𝑂!𝑙#,!,%𝑒#
!	∈	(%	∈)#	∈*

+	D D D𝑂𝐷!𝑓#,!,%𝑒#	
!	∈	(%	∈)#	∈*

	 

(22) 

4.2. Solution approach   

The model has been tested, and as expected, it is 
only sufficient for solving small instances in 
reasonable time frames. Therefore, a heuristic 
method was developed to break down the problem 
and allow results to be obtained for medium and 
large-scale instances. The data is prepared and 
fed to the model as a first attempt to solve the 
instance. If results are found and the optimality 
gap after 1 hour of simulation is lower than 5%, 
these are saved, and the process is finished. If no 
results are found, the data of the instance has to 
be divided into several instances, using a 
clustering method to find groups of geographically 
close points. The vehicles are then assigned to the 
clusters and the model run for each of the clusters 
separately. If acceptable results are not obtained 
for all the clusters formed, the number of clusters 
is increased by 1 and the process is repeated.  

Clustering 
Clustering was done using the machine learning 
method K-means used for grouping related 
objects into clusters. It's commonly applied in 
unsupervised problems where historical data is 
not considered. In K-means, each observation is 
assigned to one of the k clusters created from n 
observations based on the closest centroid. The 
goal is to minimize the squared Euclidean 
distance between each observation and the 
cluster's centroid, thereby grouping data points 
into clusters where they are more similar to others 
in the same group and dissimilar to those in 
different groups. In this case, the clustering is 
performed based solely on the longitude and 
latitude coordinates of the customer locations 
based on the framework proposed by (Xue, 2023). 
However, it requires specifying the k value in 
advance for which the elbow curve method is 
applied to find an optimal balance between the 
number of clusters and the quality of grouping. 
Clusters with fewer than 5 items or a total orders 
weight lower than the smallest vehicle's capacity 
were integrated into the next cluster with the 
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lowest total weight of orders to be distributed. This 
prevented assigning overly underutilized vehicles 
for such deliveries. 

Assign vehicles to clusters 
First, assign the highest-capacity vehicles to 
clusters with the heaviest orders to reduce the 
probability of reaching infeasibility due to lack of 
time to perform the deliveries. If a vehicle cannot 
handle the orders in its cluster, it is swapped with 
one of the already assigned, starting with the last 
assigned vehicle, to ensure capacity limits are 
met. If infeasibility persists, the results are not 
extracted. After initial allocation, the workload is 
balanced by assigning vehicles to clusters based 
on weight-to-capacity ratio, ensuring even 
distribution of work (Figure 1). 

 
Figure 1 - Process to assign vehicles to clusters 

5. Results 

5.1. Baseline and data    

The simulation was conducted over a 2-week 
period, during which 716 orders were delivered. 
Following the methodology proposed by Al-dal’ain 
et al. (2021), various scenarios were created, 
involving the replacement of ICVs from the current 
fleet with EVs. In Scenario 1 (baseline), as the 
vehicles are heterogeneous, a replacement order 
was determined according to the carrier's plans. 
Each subsequent scenario involves the 
introduction of one EV (Table 1). The EV was 
selected by the company and is not a variable in 
this study. The main differences compared to ICVs 
(Table 2) in the fleet include a nearly halved 
payload capacity, some reduction in volume, and 
zero emissions for EVs.  

Table 1 - EVs properties 

Identi-
fication Price 

Pay-
load 
(Kg) 

Volum
e (m3) 

Consum-
ption 

(KWh/100K
m) 

Range 
(Km) 

Maxus 
eDeliver 

9  

84.00
0 860 11 31,03 296 

Table 2 - Current fleet properties 

Id 
Fuel 

consumption 
(L/100km) 

Maximum 
volume 
(m3) 

Emissions 
(gCO2/Km) 

Maximum 
payload 
(Kg) 

0 13,5 15 186 1443 

1 12,5 12 186 1443 

2 13,1 12 186 1443 

3 11,4 12 186 1443 

4 9,9 12 186 1443 

5 12,9 15 191 1521 

6 12,9 12 191 1521 

A total of 63 clusters were generated, but 10 of 
them did not meet the weight or order quantity 
criteria, so they were merged with other clusters. 
The results for the baseline scenario are displayed 
in Table 3. 

Table 3 - Simulation results for the baseline scenario 

Day 
Clusters 
(actual/ 
invalid) 

Objective 
Function 

(min) 

Max 
Gap 
(%) 

Computation 
Time (s) 

1 3 (1) 494,94 0,00 2638 

3 7 (2) 865,27 0,00 3294 

4 4 599,97 0,00 20 

5 4 (1) 552,57 0,00 324 

6 4 (1) 595,13 0,00 3528 

7 4 (1) 720,00 0,00 1626 

8 4 372,49 0,00 13 

10 4 (1) 626,51 4,01 3915 

11 4 (1) 591,33 0,77 3656 

12 3 421,43 0,00 34 

13 5 626,72 0,00 4627 

14 7 (2) 699,80 0,00 16 

5.2. Scenario analysis  

Figure 2 illustrates the variations in the objective 
function for the remaining scenarios. It has been 
deduced that, at most, to ensure the satisfaction 
of all customers, up to 3 EVs can be introduced. 
Scenario 5 would be optimistic, as it is only 
achievable on 8 of the days. Infeasibility occurs 
when the vehicles assigned to the clusters lack the 
required capacity to transport certain orders within 
a cluster, either due to their limited load or volume. 
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Figure 2 - Simulation results for the baseline scenario 

Table 4 provides data on fuel consumption for 
deliveries, considering individual vehicle 
distances performed. Scenario 4 achieves a 21% 
reduction in fuel consumption and emissions.  
While scenarios 5 and 6 may not be practical, they 
show the potential substantial reductions in 
emissions and diesel consumption per customer, 
with scenario 5 achieving a 42% reduction in 
situations where EVs perform a greater part of the 
deliveries. 

Table 4 - Fuel consumption and emissions in each scenario 

Scenario 
Fuel 

Consumption (L/ 
customer) 

Emissions (gCO2)/ 
customer) 

1 0,904 0% 1359,317 0% 

2 0,842 -7% 1284,888 -5% 

3 0,781 -14% 1213,679 -11% 

4 0,716 -21% 1078,504 -21% 

5 0,520 -42% 779,229 -43% 

6 0,414 -54% 615,815 -55% 

Figure 3 shows customer-specific feeding 
expenses in various scenarios. EV charging costs 
rise less than fuel costs drop, resulting in overall 
savings. In scenario 4, fuel costs per customer 
reduce by 0,29€, with an additional 0,11€ spent on 
electricity, leading to a 0,18€ decrease per order 
(13%). Scenarios 5 and 6 promise even greater 
savings, at 24% and 27% reduction compared to 
the baseline.  

The vehicle fleet usage is skewed towards ICVs 
due to the objective of minimizing travel time and 
maximizing load capacity. Figure 4 highlights this 
imbalance. Furthermore 28% of the available EVs 
were not utilized, compared to only 2% of ICVs. 
The daily distance performed by EVs remain 
within their range, suggesting that the company 
can rely on overnight slow charging without 
significant infrastructure investments. 

 
Figure 3 – Fuel and electricity and total costs in each scenario 

 
Figure 4 – Box plot distances covered per day 

Since EVs are not used to the same extent as 
ICVs, it made sense to see the impact of the 
objective function focused on minimizing 
emissions. The emissions factor 𝑒# for EVs was 
set at 0,1 to ensure route optimization while 
minimizing emissions. This factor, though not 
zero, is effective in minimizing emissions since it's 
far lower than the emissions of the most efficient 
ICVs. Utilizing 3 EVs and 4 ICVs in the new 
formulation for emissions and cost optimization, a 
40% reduction in emissions and a 12% reduction 
in feeding costs per customer were achieved, with 
electricity costs comprising 32% of the total 
expenses. Even though the emission factor for 
EVs was not considered 0 to solve the model, the 
results presented assume 0 emissions from EVs. 

5.3. Methodology analysis 

The clustering method employed in this study, was 
identified as the primary source of uncertainty. To 
evaluate the choice of the number of clusters 
using the elbow curve method, the results of the 
baseline scenario were compared with the results 
obtained by varying k by one unit. It was 
concluded that when reducing the number of 
formed clusters, it is rare to obtain results, but 
when possible, they tend to be better (lower 
objective function value). On the other hand, when 
increasing k, results are generally worse, leading 
to the conclusion that the method used provides a 
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good guideline for determining the appropriate 
value of k, consistently suggesting reasonable 
cluster numbers. 

The readjustment of clusters considered invalid 
due to low weight or order numbers by assemble 
them to the clusters with the lowest weight to 
transport was also assessed. Merging these 
clusters with the geographically closest ones did 
not yield significant changes in the results, making 
it challenging to determine which method performs 
better over extended periods. These results were 
further compared to a scenario where vehicles 
were exclusively assigned to these clusters, and it 
was confidently concluded that the outcomes in 
that case would be considerably worse. 

5.4. Total Cost of Ownership 

The TCO analysis was performed to evaluate the 
economic viability of the EVs. The methodology 
used by Siragusa et al. (2022) was followed. The 
analysis considers factors like purchasing prices, 
depreciation rates, insurance costs, maintenance 
costs, registration fees, state subsidies, and 
ownership costs. The annual distances traveled 
by the vehicles in each scenario are based on the 
previous model’s results. To make the comparison 
fair, it is assumed that the company is a scenario 
where it will have to replace 3 of its current 
vehicles with: A (3 ICVs), B (2 ICVs and 1 EV), C 
(2 EVs and 1 ICV), D (3 EVs), and E (3 EVs with 
emissions minimized). The ICV used for 
comparison is similar to the largest vehicle used in 
the current fleet and has an initial purchase price 
of 54.000€.   

 
Figure 5 – TCO per year on the different scenarios  

Results (figure 5) show that scenarios B, C, and E 
lead to higher TCO compared to scenario A 
throughout the period. Scenario D is the only one 
where a lower TCO can be achieved compared to 
scenario A, if the vehicles are kept for at least 8 

years.  Scenario E, despite higher TCO (11% 
more), enables significant emissions reduction. 
These findings provide valuable insights for the 
company to balance emission reductions and the 
cost associated with the transition to EVs. 

6. Conclusions and Future Work 

The rising demand for home deliveries due to 
technology, environmental concerns, and the e-
commerce boom are a major challenge for 
companies aiming to cut supply chain emissions 
and control costs. This dissertation details a real 
case study in collaboration with LM Portugal, a 
major player in the do-it-yourself market which set 
the goal of reducing the emissions from its home 
deliveries by 50% until 2025 compared to the 
levels of 2022. The strategy includes replacing 
traditional ICVs with EVs. For this transition to an 
environmentally friendly fleet, the limited range, 
the potential need for recharging during routes the 
high acquisition costs are traditional concerns. 
However, when dealing with bulky and heavy 
bulky items payload capacity, the loss on payload 
capacity becomes a critical factor. To evaluate this 
transition, a mathematical model was developed, 
named the Heterogeneous Fleet Vehicle Routing 
Problem with Multi Trips, which contemplates 
vehicle differences and the possibility of multiple 
routes carried out by the same vehicle, limited to 
a maximum distance per time period. However, as 
the model is unable to solve medium or large-
scale instances, the K-means clustering based on 
the geographical coordinates was performed 
followed by an assignment procedure of the 
vehicles to clusters which are then solved 
separately.  

Results from the scenarios formulated indicate 
that on the fleet under consideration, which 
operates in the area of the country with the highest 
density of orders, at most, 3 out of the 7 ICVs of 
the current fleet could be replaced by EVs without 
jeopardizing service levels. Emissions would be 
reduced by 21% and feeding costs by 13%.  
However, as the objective function was minimizing 
the travel times the potential of EVs was not fully 
exploited. A scenario aimed at reducing 
emissions, using the same number of EVs, 
achieves a remarkable 40% emissions reduction 
while maintaining the 13% reduction in feeding 
costs. Furthermore, a TCO analysis reveals that 
the total costs of 3 EVs can outperform those of 3 
ICVs after at least 8 years of operation. This is 
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because the initial costs are higher but are offset 
by reduced fuel and maintenance expenses over 
time. 

Future research could enhance the developed 
model by considering real-world factors, such as 
operators' lunch breaks or the need for route 
replanning to integrate non-available customers at 
the scheduled time of the deliveries. The model 
might benefit from more realistic energy 
consumption profiles specially in hilly urban 
environments like Lisbon and assessing long-term 
battery degradation effects is also valuable. 
Exploring new assigning methodologies could 
also be explored (e.g., few ICVs performing the 
deliveries of the heavier orders and EVs 
performing the remaining). Furthermore, 
examining the feasibility of other EV models, 
including those with smaller batteries but higher 
load capacity, could be explored. Expanding the 
study to lower-density areas is essential for a 
comprehensive understanding of EV integration in 
various fleet contexts. 
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