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Abstract
For an autonomous vehicle to correctly navigate

the environment, it must have a clear understanding of
the surroundings and participating agents, such as other
vehicles or pedestrians. It also has to be able to identify
its pose and act upon it, if necessary. The main goal
of this work is to implement the navigation segment,
analyze the behavior of an autonomous vehicle when the
cameras are not correctly calibrated and propose an online
auto-calibration method to improve navigation. To do
so, this work researches into state of the art (SOTA)
sensor models, VSLAM algorithms as well as a thorough
analysis on the mounting options of the stereo rig and the
individual consequences of said parameters. To finalize,
a structure from motion (SfM) auto-calibration routine
is tested and the resulting intrinsics are given to the
VSLAM algorithm to perform pose tracking in a real-time
simulation environment.

I. Introduction
Autonomous vehicles are vehicles that are capable

of navigating and operating without human intervention.
These vehicles use a variety of sensors and technologies,
such as cameras, LiDAR, RADAR, and GPS, to perceive
their surroundings and make decisions on how to navigate
it. This technology while still in its early days, has
the potential to revolutionize the way we travel, as it
could significantly reduce the need for human drivers and
potentially make transportation safer, more efficient and
convenient.

To make this ideal into fruition, extensive investment
and work is being conducted by the likes of private oper-
ators such as Waymo or Cruise, and research institutions.

VIENA (Vehículo Inteligente Elétrico de Navegação
Autónoma) is a project from IST university whose goal
is to provide a pedagogical platform for students and
researchers, to perform state-of-the-art research on electric
systems and autonomous vehicles.

A. Related Work
Autonomous agents are considered perceptive, if they

acquire information of the environment through sensors, to
then extract relevant knowledge [24]. Simultaneous Local-
ization and Mapping (SLAM) algorithms are commonly
used to both map the environment and relevant actors

as well as inferring the agent’s pose. These imply vision
systems and other sensors, such as Inertial Measurement
Units (IMU), to accurately model the agent’s surroundings
while maintaining adequate computational cost. Older
trends, such as graph based SLAM [16] have solidified
themselves while new deep learning capabilities based on
Neural Radiance Fields (NeRF) such as iMAP [31] have
increasingly become popular for SLAM tasks, due to their
ability to not need known camera parameters [34].

However traditional visual SLAM (vSLAM) heavily
relies on prior knowledge of camera intrinsics. Camera
calibration leaped forward with planar pattern based
calibration [37], allowing inexpensive cameras to be easily
calibrated given a known object. This method was further
refined by many other researchers, such as [7]. In parallel,
a wave of Bundle Adjustment (BA) based calibration
methods started emerging like [11] and [6], albeit with less
force than pattern based ones due to robustness issues.

Before running these navigation algorithms on the
real vehicle, it is desirable to test them in a safe and
repeatable form [15] such as a simulator. Private operators
usually build their own proprietary simulators or purchase
a license for an established simulator such as CarSim.
Open-source simulators such as LGSVL [27], that fully
renders the environment from scratch or VISTA [2], that
uses frames from RGB camera datasets to model the
other sensors behaviour, have become increasingly popular
in the research community due to their transparency
and modularity. While CarSim has very complex vehicle
dynamics simulation capabilities at the cost of simplistic
sensor and graphical rendering, open-source simulators
such as CARLA [8] typically target reinforcement learning
applications, meaning sensors and image processing capa-
bilities are detailed and accurate, while vehicle dynamics
capabilities are basic.

B. Problem Formulation
The main objective proposed for this thesis is to analyze

the behaviour of an Autonomous Ground Vehicle (AGV)
when the vision system is poorly calibrated and propose
a self-refinement method for the camera parameters that
does not require special markers or surfaces. Pose tracking
is deemed successful when the estimated trajectory of the
vehicle closely resembles the absolute trajectory. However
it is not clear how the miscalibration of specific parameters
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affect pose tracking, specifically with added artifacts such
as heavy rain or poor visibility. Using a state of the art
simulator, we are able to replicate the characteristics of the
stereo system as well as vehicle dynamics, while allowing
for safe and repeatable testing. Another advantage of the
simulator is that it allows for quick modification of the
stereo camera position, without needing to intervene in
the actual car. A structure from motion (SfM) stereo
camera rig auto-calibration method is proposed as well
as techniques and constraints for more accurate camera
intrinsics estimation. This work complements on previous
work in the VIENA project, as it intends to be the
foundation for the navigation and real-time simulation
segments. The following key objectives were tackled in
this work.

1) Provide the VIENA system with an accurate simu-
lation environment

2) Build the foundation of the VIENA navigation
segment with a SLAM algorithm

3) Analyze the SLAM algorithm pose tracking perfor-
mance when the stereo cameras are miscalibrated

4) Devise a method for camera auto-calibration and
integrate into the system

5) Determine the best stereo rig mounting option that
accounts for both tracking and auto-calibration ro-
bustness

II. Background and State of The Art

Advanced Driver Assistance Systems (ADAS) have
seen a increase of applications in the automotive sector, as
it aims to reduce accidents, improve energy efficiency and
comfort for passengers. Virtual testing has also become
an essential part of ADAS pipeline, since it would be
challenging to tackle all the scenarios and environmental
conditions of the real world. ADAS Vehicle tasks can be
grouped into: sense, plan and act. In this chapter state of
the art of sensor models will be covered, which form the
basis of the sense group.

A. Navigation Sensors
Sensors are a key component of the ADAS pipeline, as

they are responsible for perceiving the environment and
agents. Our research will focus on cameras and inertial
measurement units (IMU).

1) Camera Projection Model: The most common and
simple model is the pin-hole camera [37]
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where fi are the focal lengths for the x-axis and y-axis,
ci the coordinates of the intersection of the sensor plane
with the optical axis, [x y z] is the 3d Cartesian space
in camera coordinate system (since z points forward) and
[u,v] is the camera projection space.

2) Stereo Camera, Depth Camera: Stereo systems are
constituted by two cameras, camera L known as reference
camera and camera R known as target camera. Assuming
a rectified system and equal cameras, vertical coordinates
will be equal across both cameras [10]. Coordinates of
point P in Cartesian system with respect to L and R
camera reference system are described in

Pr = zlq̂l

Pl = zr q̂r
(2)

where q̂r and q̂l represent the normalized image co-
ordinates q̂ =

[
u′ v′ 1

]T (inverse camera intrinsics
matrix multiplied by the respective image coordinate
vector q =

[
u v 1

]T ) The point Pr =
[
xr yr zr

]T
will be represented in reference camera L coordinates via
rigid transformation.

Pr = RPl + t (3)

By combination of 2 and 3 we end up with a system of
equations 4.

zru
′
r − zlr

T
1 q̂l = t1
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′
r − zlr

T
2 q̂l = t2

zr − zlr
T
3 q̂l = t3

(4)

By solving equation system for zl we get the distance
from point P to reference camera L [36].

zl =
t1 − u′rt3

u′rr
T
3 q̂l − rT1 q̂l

(5)

3) Inertial Measurement Unit, IMU: the most com-
mon technology used for semi-conductor accelerometers
is MEMS (Micro Electro Mechanical System).

MEMS accelerometers are comprised of three main
components: anchors, fixed electrode and moving elec-
trode. The anchors restrain the moving electrode from
shifting along an undesired axis. As an acceleration is
applied, the moving electrode shifts opposite to the sum
of forces being applied in that axis. This movement causes
the capacitance between the moving and fixed electrode
to increase or decrease. By measuring the differential
capacitance between the two electrodes the magnitude and
direction of the acceleration can be obtained.

MEMS gyroscope measure angular acceleration by
means of the Coriolis acceleration. As the resonating
mass moves and the body it is attached to rotates,
the mass and frame perceives Coriolis acceleration and
the displacement is perpendicular to the oscillating mass
direction. As the rotation rate increases, the frame is
displaced more, diminishing the distance between the
moving and fixed frame plates. This causes a variation
in capacitance between the two electrodes, where the
magnitude and direction of acceleration can be obtained.
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B. Camera Calibration
Incremental camera calibration is commonly used for

robotics applications due to its widespread availability and
accurate results. A brief explanation on the algorithm’s
key points will be done.

1) Measurement collection: A new measurement batch
is collected Dnew given the motion model h, observation
model g and their subsequent state ξk and measurement
ζk

ξk = h(xk−1 , ϱ ,N (0,Wk)) (6)
ζk = g(xk , lk , ψ ,N (0, Nk)) (7)

where Wk and Nk denote covariances of white Gaussian
noise model N , ϱ is the control input, ψ are the intrinsic
parameters of the camera and lk is the landmark.

2) Optimization: Optimization is computed using the
following expression with Gauss-Newton method with
TQR updates

µ̂ψ,X,L = arg max
ψ,X,L

p(ψ,X,L|Dinfo, Dnew) (8)

where X is the array composed of the actor states up to
timestep K, U is the array measuring control inputs and
L is an array with the landmark positions.

3) Measurement selection (Mutual information):
This is done by quantifying the reduction of uncer-

tainty of ψ given measurements Dnew or in other words,
how much information Dnew conveys to current estimate
ψ|Dinfo, where Dinfo is the array of selected measure-
ments. If new measurements Dnew reduce the uncertainty
above a user-defined threshold λ, they should influence
the estimated camera calibration parameters ψ.

C. Visual SLAM and Structure from Motion
The concept of SLAM (Simultaneous Localization

and Mapping) revolves about the ability of the agent to
estimate the map of the environment it resides, while
at the same time, monitoring its pose. The process of
using vision sensors to perform SLAM is effectively called
VSLAM [32].

Every VSLAM algorithm is composed by 4 blocks:
input search, where sensor measurements are collected
and features are extracted, pose tracking, where current
camera pose is determined, mapping, where landmarks
global pose are stored and loop closing, where drift-free
localization is ensured.

Structure from motion (SfM) is the process of estimating
and reconstructing a 3D structure from 2D images. In
the past decade there have been great improvements to
the performance and accuracy of these reconstruction
algorithms, especially in the incremental SfM and most
recently deep SfM fields [17] [35]. The main advantage
of photogrammetry SfM algorithms is their robustness to
scene conditions and accuracy even while in movement.
These algorithms are designed for accurate environment
reconstructions, which require a large amount of images of
the same scene causing a significant bottleneck in the large
minimization function of the bundle adjustment (BA)
step.

D. State-of-the-Art Simulation Environment
The end goal is to achieve a simulation pipeline that

allows accurate representation of real-world dynamics
and scenarios, fits tightly with the already built MAT-
LAB/SIMULINK system and is transparent, allowing
modifications to the vehicle dynamics or sensor models
to be done if necessary.

CARLA (Car Learning to Act) [8] is an open-source
simulator for testing and validating autonomous vehicles
driving models. The primary focus of this simulator is
to provide a training ground for reinforcement learning
algorithms that tackles urban driving complexities, such
as other vehicles, pedestrians, signals and environment
effects.

a) CARLA camera model: the CARLA simulator
uses the default Unreal Engine implementation, enabling
effects such as bloom, vignette, lens flares, depth of field
and grain jitter.

b) CARLA Depth camera model: it uses the default
RGB camera model and codifies distance using the 3 color
channels (from least to more significant bytes, R-G-B) to
each pixel to the camera. The final result is an idealized
ray-casted depth map, to which distortion effect can be
added.

c) CARLA IMU model: gives orientation, angular
velocity and linear acceleration of the actor. It has support
for adding Gaussian noise for the accelerometer and
gyroscope independently. This is commonly known as the
simple IMU sensor model [5] and given by equations 9 and
10 for the gyroscope and accelerometer errors respectively.

δw = Bg +Agw + ϵ (9)
where Bg is the vector comprised of the bias terms

along the 3 axis, w is the vector with the angular velocity
terms, ϵ is the Gaussian noise vector and Ag is the matrix
comprised of the gyroscope scale factor errors Sgi and
the gyroscope misalignment errors Mgi. Since there is
no mention or possibility to modify the terms of the Ag
matrix in the default gyroscope model in CARLA, A will
be the identity matrix I.

δf = Ba +Aaf + ϵ+Daf
2 (10)

Similarly with the gyroscope error model, Ba is the
accelerometer bias vector, Aa is the matrix with the scale
factor errors Sai and misalignment errors Mai of the
accelerometer. The f vector represents the accelerometer
specific force and the Da matrix is the quadratic term
acceleration error.

The CARLA simulator was ultimately chosen for its
good flexibility, free access and tight ROS integration,
which will be important for the communication with the
VIENA Controller and Vehicle Model (built in MAT-
LAB/SIMULINK).

III. Navigation System Testbed
For an agent to be autonomous and capable of

navigating, it must first comprehend its own state as well
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Fig. 1: Complete system architecture

as the state of other agents or objects in the environment.
The navigation segment is commonly divided into two
main sub-segments: perception and planning stages.

This work will focus on the perception stage, where
the sensors and algorithms for the agent to understand
its state and surroundings are held. Planning, as defined
by Paden [23], is composed by 4 sequential layer: route
planning, where a sequence of waypoints are extrapolated
from road network data, the behavioral layer, where the
type of motion is specified based on other perceived
agents/objects, motion planning, where a reference path
is created and the local feedback control where given
the estimate of the vehicle state, steering and throttle
commands are applied.

A. VIENA System Overview
A brief introduction into the components of the

Veículo Inteligente Eletrico de Navegação Autonoma
(VIENA) system will be done as well as explaining where
this work contributes to the project.

1) Setup: project VIENA is based on a converted 1998
Fiat Seicento Elettra. The navigation segment will collect
information from the environment through the ZED 2i
Stereo Camera and be operated by a NVIDIA Jetson
Xavier NX system on module (SOM). The ZED 2i camera
uses the stereo working principle (no illuminator) with an
AI model to do the matching and infer depth.

2) System Model: The complete VIENA model archi-
tecture is presented in Figure 1 and it expands on [25],
with the CARLA Simulator, COLMAP, ORB-SLAM3 and
SCT blocks, highlighted in red.

The CARLA Simulator is an Unreal Engine based
graphical platform for autonomous vehicle reinforcement
learning methodologies. It holds the Dynamic vehicle
model whose parameters were filled with the real VIENA
car parameters so that it matches as close as possible.

The SCT stands for Slow Corner Trigger and gets the
input of IMU data and stereo images. When the vehicle
turns enough and the velocity is sufficiently small, the
stereo frames get sent to the COLMAP block.

Taking the camera intrinsics from the ORB-SLAM3
definition file, COLMAP will refine the camera param-
eters and return those to the ORB-SLAM3 algorithm, so
that the resulting pose estimation and mapping is more
accurate. Note that this will only be done offline, as the
implementation of ORB-SLAM3 does not allow for the
dynamic modification of the camera intrinsics, since these
are tied to the initialization of the SLAM problem.

B. Communication Architecture
The main objective in the design of the commu-

nication architecture is to ensure modularity and easy
transition between simulated data and real-world data.
There are three main components in the architecture:
Matlab, Robot Operating System (ROS) and CARLA.
The main components are connected through two wrap-
pers, MATLAB-ROS and CARLA ROS-bridge. Wrappers
translate data, internal functions and commands into a
ROS architecture.

Communication is handled through ROS [26], due to
its open-source nature, allowing third party integration
possible and widespread usage in the robotics research
community.

The CARLA ROS-bridge is a wrapper that is provided
by the CARLA Simulator. This could be anything from
requesting the map waypoints that form the possible
trajectories to inputting throttle and steering commands.

The MATLAB-ROS is a wrapper that was created for
this work. The intent is the same as the CARLA ROS-
bridge, but for connecting the MATLAB based VIENA
control system implementation to the ROS network
through the ”matlab” node.

With this integration, if for example we wished to
use the real sensors and actuators, we would only need
to create a new ROS node capable of commanding the
sensors. For the perception system this is already done
since ZED provides ROS implementation for the ZED 2i
camera.

C. Simulation Environment
The main advantage of using a simulated/virtual

setup is that testing can be done throughout different
sensor mountings without needing to integrate into the
package, while also enabling easier behaviour evaluation of
scenarios that could compromise the system and endanger
the environment, such as mounting or calibration errors
and adverse weather conditions.

IV. Navigation Setting-up and Running
In this chapter, the technical details of the aforemen-

tioned setup are explained, as well as the required steps to
run the proposed testbed. As seen in Figure 2, we will first
focus on the ”traditional” stereo rig camera calibration
(Kalibr), explain the functioning of Structure from Motion
(SfM) based camera calibration (COLMAP), then describe
the components of the implemented VSLAM algorithm
(ORB-SLAM3) and to finalize, our method to extract
stereo frames fulfilling certain criteria that yield a more
successful self-calibration (SCT).

A. Camera Calibration
The typical offline incremental camera calibration

approach is described as in section II-B. Kalibr’s stereo
camera [19] calibration necessary inputs and generated
outputs are detailed in the following paragraphs.
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Fig. 2: Navigation components

ι1, ι2 are the observations (images) from camera 1 and 2,
which are extracted from the rosbag by specifying the pub-
lishing topics. Kalibr is a multi-camera calibration system,
meaning we could calibrate N cameras simultaneously, by
inputting N image topics. Tg is the side length of an April
tag that is provided by Kalibr. Since the size of the tags
depends on the scale the target is printed on, the user must
correctly measure these. Mt1,Mt2 specifies the type of
camera model (pin-hole, omnidirectional, double sphere or
extended unified), Dt1, Dt2 specifies the type of distortion
model (radial-tangential, equidistant, fov or none) and f
is the observation frequency. The resulting outputs are
the camera intrinsics ψ1, ψ2 ∈ R3×3, the distortion values
D1, D2 ∈ R1×4 and the relative pose between camera 1
and camera 2,

[
R, t

]
∈ R3×4.

This method will serve as a baseline for the camera
calibration experiments and comparisons that will be done
in section V. However, for our use case, we desire a
calibration method that can be done online and does not
require special surfaces or targets. The next section will
explain the building blocks of our auto-calibration routine.

B. Calibration based on Structure from Motion
There are two main stages in the incremental SfM

pipeline, search and reconstruction [30].
1) Search: The search stage goal is to find feature pairs

between input images I, so that an overlap geometry can
be found.

a) Feature Extraction and Matching: In this sub
stage, identifiable points of interest are extracted from
the frames and then matched. Common feature extractors
used are SIFT [18], ORB [28] and SURF [3]. Due to
the fragility of the initialization sub stage, robustness
is preferred over performance [14]. There are several
matching methods that are significant improvements over
the basic strategy of exhaustive matching (where every
feature of frame 1 N1 is compared against every feature
of frame 2 N2), such as the Bounded Alignment and the
Branch-and-Bound algorithm[20].

b) Geometric verification: A transformation between
frame 1 and 2 is said to be geometrically verified, if
there are sufficient matches that share the same projection
transformation. Mismatches are prevalent, so common
robust outlier removal techniques such as RANSAC [9]
are needed.

2) Reconstruction:
a) Initialization: Initialization is a critical step, as

algorithm might not converge if given a bad image pair
[29]. In photogrammetry robustness is often preferred over
performance, so denser parts of the scene graph are chosen
for the initial image pair. This results in a more expensive
bundle adjustment operation.

b) Global refinement: Also known as Bundle Adjust-
ment [33], consists in the minimization of the total geomet-
ric error by refining point parameters {Pj ∈ R3}, camera
parameters {ψi} and image poses {(Ri, ti) ∈ SE(3)} in
rotation matrix form [17].

EBA =
∑
j

∑
(i,u)

||Π(RiPj + ti, ψi)− pu||2 (11)

C. Visual SLAM
ORB-SLAM3 [4] builds upon the existing strong

foundation of ORB-SLAM-VI [21] and ORB-SLAM2 [22]
with two main contributions: an improved visual-inertial
system based on maximum a posteriori (MAP) estimation
and a multi-map system capable of recalling if tracking
is lost. A brief introduction into the ORB-SLAM3 stereo
SLAM will be done.

1) Feature extracting, stereo keypoints and camera pose
optimization: Stereo SLAM starts with the extraction
of ORB features in both left and right frames assuming
we are working with a rectified stereo pair and epipolar
geometry. Camera pose gets optimized using a bundle
adjustment method that minimizes the reprojection error
as seen below.

{R, t} = argmin
R,t

∑
i∈X

p||Πs(RXi + t)− xis||2Σ (12)

where R is the camera rotation, t is the camera position,
Xi are the keypoints position, Σ is the scale covariance of
the keypoint, p is the Huber loss function [13] and Πs is
the rectified stereo projection.

2) Map recalling system: Two main improvements are
done in the form of the map recalling system over
ORBSLAM2: a new place recognition algorithm running
the same DBoW2 database [12] now with geometric
verification for better precision and the definition of a
local window in the covisibility graph for further relative
pose refinement.

D. Conditions-Based Self-Calibration, Slow Corner Trig-
ger

Agapito’s work [1] demonstrated that camera intrinsic
parameters can be obtained from pure rotations. This
indicates that auto-calibration of cameras on cars benefit
in case of significant rotations. On an opposite way,
excessive rotational speed usually implies motion blur,
therefore lesser quality imaging for calibration cases.

In this section we propose a detector of non-zero
rotation, taken at slow speeds. The Slow Corner Trigger
(SCT) takes the IMU data from the vehicle, measuring
linear velocity and lateral velocity.
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The SCT involves the next steps:
• Linear velocity is compared with threshold γ and

is used to determine if the vehicle is moving slow
enough. Negative velocities are not considered for
these experiments.

• Angular velocity is compared with threshold α and
is used to determine if the vehicle is turning hard
enough.

• If both conditions are fulfilled, then the SCT saves
the respective frames into a new image folder, whose
directory will then be fed into the auto-calibration
method.

V. Experiments and Results
In this chapter several experiments will be conducted.

The first goal is understanding the physical stereo rig setup
and achieving with the extracted information, an accurate
virtual camera model that can be used the simulation
environment.

The simulation environment also provides another key
advantage, being able to quickly iterate through different
rig mounting positions without complicated implementa-
tion in the real car and comprehend how they would affect
our camera parameter refinement method. An exhaustive
analysis will be done as well as adding noise at a later
stage, to ensure robustness. To finalize, our camera pa-
rameter refinement method will be engaged while tracking
with calibration errors parameters.

A. Default Setup, Stereo-Camera Parameters
The main goal for this experiment is to extract the

characteristics of the real cameras and use those to model
the virtual cameras. In case of the VIENA project, the
ZED 2i camera provides factory calibrated settings and
we will use these as ground truth. Despite having factory
calibrated settings we have decided to make our own
assessments, since the majority of consumer grade cameras
do not have this feature. For these scenarios we have tested
2 techinques: Kalibr and COLMAP to extract the camera
intrinsics.

1) Real camera settings: To extract the characteristics
of the ZED 2i camera, Fig. 3, the April tags were attached
to a wall with good lighting conditions. A rosbag was then
recorded while exciting the IMU along its individual axis
and targeting the April tags throughout the camera’s field
of view. There is a noticeable magnitude difference in
the RMSE between the left and right camera intrinsics,
however the result from both methods are consistent.
There are a couple of theories on what might have caused
this disparity. The first would be improper lighting or
feature disadvantage between cameras. These options were
ruled out since the left camera receives better lighting
than the right camera and the rig is always pointing to
the target. Rerunning the calibration on another dataset
yielded similar results. The two prevailing theories are that
either our physical calibration setup is not good enough
or ZED does not individually calibrate the cameras.

ZED 2i camera 1 intrinsics
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Fig. 3: RMSE error between factory and calibration
obtained ZED 2i camera parameters

As seen in from the results in TABLE I, there is a stark
difference in requiered computational time between the
Kalibr and the COLMAP calibration. Kalibr is at a clear
advantage since it is able to infer the absolute orientation
of the April tags. On the other hand, COLMAP sees the
April tags as generic features, from which to match and
generate map points.

TABLE I: Time to estimate ZED camera intrinsics
Kalibr COLMAP

Time to complete (min) 13.21 773.45

2) Virtual stereo-camera calibration: While the goal
is to simulate the real camera in a virtual environment, the
CARLA simulator has some limitations. For example, you
cannot independently specify horizontal and vertical field
of view, hence the difference in values between. Similarly to
the previous experiment, a rosbag was collected to perform
calibration.

As seen from Fig. 4 a) and c), both Kalibr and
COLMAP calibration methods can accurately extract the
intrinsics of camera 1. Both methods suffer from the lack
of camera amplitude in the yaw axis due to the camera
being mounted to a terrestrial vehicle.

The analysis of the second camera is analogous to the
first camera, as seen in Fig. 4 b) and d), with small
differences in magnitude but maintaining consistency
across results.

As seen in TABLE II, there is also a significant difference
between the computing time of Kalibr and COLMAP. As
explained before Kalibr leverages the April tags to infer
relative orientation while COLMAP uses them as generic
features from which to perform the bundle adjustment.
This results in a more complicated bundle adjustment
problem, which greatly impacts computing time.
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Virtual camera 1 intrinsics
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Fig. 4: RMSE error between ideal and calibration obtained
virtual camera parameters

TABLE II: Time to estimate virtual camera intrinsics
Kalibr COLMAP

Time to complete (min) 9.34 468.72

Conclusions on experiment: The previous experiments
show that it is generally preferred to use a traditional
calibration method such as Kalibr over a SfM calibration
method such as COLMAP, due to its robustness, better
distortion results and computing time. It is also shown
that having the data collection done while exciting all of
the axis (as done for the real camera) equally distributes
the errors over the x and y camera components.

B. Stereo Rig Positioning

The goal when positioning the stereo cameras, was
to provide representative views of a real system while
matching some characteristics that could cause problems.

Through experimentation it was found the COLMAP’s
stereo and mono bundle adjustment did not converge when
the vehicle was moving primarily along the z-axis (forward
and backwards).

Camera self-calibration is able to be completed with
pure rotation along the yaw axis [1], but due to the
vehicle movement model this is not geometrically possible.
However, next experiments show that targeting low speed
corners for frame collection have satisfactory results in
both computing performance and calibration accuracy.

1) Performance: performance conclusions are able to be
inferred from the results of TABLE III. The first is that as
expected, with a larger amount of frames the processing
time is higher.

TABLE III: COLMAP camera parameters estimation time
(in minutes)

Radiator
Mounting

Windshield
Mounting

Roof
Mounting

1 corner, 90 frames 17.54 18.42 20.93
1 corner, 182 frames 45.87 52.48 56.32
2 corners, 182 frames 50.23 58.85 67.34

The different mounting options also have different
performance values. Processing time is directly correlated
with the number of matches found in a frame set, meaning
mounting options that benefit from added vertical per-
spective, such as the roof view, will have a higher number
of matches and by proxy, higher computational effort.

2) Conclusions on experiments: While the experiments
present a one-shot approach (going from initial estimate
to a final estimate), the parallel thread where COLMAP
is ran should be thought off as an incremental method.
As seen from some of the views with 5% and 10% errors,
182 frames is sometimes not enough for the method to
fully converge. Effectively if the first iteration of COLMAP
allows the camera to increase accuracy from 10% to 5%
error, a second iteration with the initial estimate as the 5%
error inferred parameters can be ran, further improving
the result. Conclusions can be had on the auto-calibration
performance of each individual mounting option and what
might be causing some of the views to fail.

a) Radiator mounting analysis: independent of se-
quential and exhaustive matching, results are mediocre.
While the focal length fx is able to converge, fy can
quickly diverge. The vehicle when turning, makes the
camera move along the x-axis, however the y-axis is
only excited when heavy breaking/acceleration occurs,
which causes the camera to only slightly move due to
the suspension setup. Effectively the camera amplitude
is not enough for a correct bundle adjustment problem
to be optimized properly. An additional factor is that a
large portion of the lower half captured frame is filled up
by the uniform grey color of the asphalt, which difficults
the SIFT feature extraction process. This issue is causing
cx to sometimes diverge, as it effectively lacks sufficient
information from the lower half of the frame.

b) Windshield mounting analysis: components fy
and cx might struggle to converge as rapidly as wanted,
but they do not seem to diverge. A disadvantage from this
view is that there is a significant blind spot in front of
the radiator. Depending on the needs, this issue alone can
invalidate the view as a potential mounting option.

c) Roof mounting analysis: most often than not,
auto-calibration does not converge, sometimes diverging.
The assumption is that throughout the corners, the frame
has a large portion of the lower half with points that are
difficult to differentiate from each other, since they are
mostly found in the asphalt cracks. Since the roof view
has the best vertical visibility, these points will not get
identified as outliers, which would justify the poor bundle
adjustment.
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C. Calibration-Error Effect on Navigation
An underlying theory is that for terrestrial vehicles

the calibration components in the horizontal axis (fx, cx)
will have a greater impact on tracking than the vertical
calibration parameters (fy, cy), since there is limited
movement in the y axis.

1) Calibration Error on One Camera: The goal of this
experiment is to analyze the effect that the calibration
error of each parameter can have in tracking performance.
Specifically when there are discrepancies between the
parameters of both cameras. This can happen when one
of the cameras in the stereo rig converges faster or slower
than the other, creating these discrepancies.

a) Calibration Error on the Focal Length: The sys-
tem loses scale and there is a striking difference between
the minus and plus components of the error. This happens
because at the start of the trajectory, the left side has
fewer distinguishable objects from which to track from
(sky-box and lack of buildings) and increasing focal length
essentially ”flattens” the image, causing the tracking errors
seen. On the other hand, errors in fy have little effect on
the robustness of the system. The logical reasoning is that
flattening the image in the y component is fairly irrelevant
since the points extracted suffer small translations in
subsequent frames as the camera does not move or rotate
from the vehicle’s movement.

b) Calibration Error on the Center Point: Adding
error to the horizontal center point cx causes a drastic
reduction in the number of point matches, since the left
camera is calibrated and the high translation in the x axis
causes most points to not match and some false positives.
Most attempts at running the experiments fail and the
results are not satisfactory. Regarding the vertical center
point cy, it was surprising to see that even a small error
in cy can cause such a significant effect on the vehicle
tracking pose. The reasoning is that while the matched
points do not translate large amounts in the y axis,
which explains why feature matching is acceptable, a small
position variation has large consequences on the camera’s
perceived distance.

2) Calibration Error on Both Cameras: The scenario to
characterize is when the calibration procedure fails to fully
converge due to lack of calibration images. The result is
that both cameras are similarly miscalibrated from their
ideal parameters. The procedure is that the intrinsics of
both the left and right camera get added the same error,
to be then analyzed component by component.

a) Calibration Error on the Focal Length: Results
are satisfactory despite being on the x axis. As cameras
are miscalibrated by the same amount, most of the
reprojection points match, causing correct tracking but
with wrong scaling. Regarding fy, the results are great,
even with 20% error it has small to no effect on ORB-
SLAM3’s ability to track vehicle pose correctly.

b) Calibration Error on the Center Point: Results are
satisfactory for cx , since having calibration errors on both
cameras still allows for feature matching between stereo
pairs to be effective, causing issues in scale due to the

flattening/unflattening of the points causing perspective
distance errors.

3) Conclusions on experiments: As seen by the previous
experiments, camera pair parameter mismatches for an au-
tonomous car, can have severe implications in the tracking
pose especially on the horizontal components fx and cx.
Even small errors can cause the points reprojections to fail,
greatly diminishing matches and by extent compromising
the algorithms ability to understand its surroundings.
Having both cameras with similar calibration errors allows
the algorithm to retain its robustness, but has accuracy
issues with large values. However, the scale problems only
happen with errors to the horizontal parameters fx and
cx, as errors in vertical parameters fy and cy only partially
affect the tracking performance compared to the ideal
camera parameter tracking.

D. Effect of Visual Artifacts on Navigation
Leveraging the CARLA simulator capabilities a scenario

of heavy rain and no fog was played out. Note that
the CARLA simulator is not able to simulate water
droplets on lenses or car surfaces (like the windshield).
While difficult to see, Fig. 5 d) presents a scenario where
there are worse lighting conditions (which affects feature
extraction), heavy rain (which affects feature matching)
and puddles (which affects outlier removal due to matches
from the reflections).

1) Radiator mounting: there is a 46.15% drop in map
points (MPs) between the good and bad weather scenarios.
Most of the points that were no longer detected, were
either located on the road and got obscured by the puddles
or were points found in the buildings but lacked differen-
tiability and contrast when illumination got worse. The
ideal camera parameters meant that there was a successful
reprojection when distinguishable points were matched,
which explains the good tracking result. Comparing with
the remaining views, the radiator mounting lacks vertical
perspective, which accounts for the lowest amount of MPs.

2) Windshield mounting: there is a 33.85% drop in map
points (MPs) between the good and bad weather scenarios.
Windshield view benefits from the added vertical position,
allowing for more building features to be extracted,
justifying the larger amount of MPs. While having better
vertical perspective than the radiator view, it remains
worse than the roof view, with the added artifact of the
car’s hood covering part of the road from which features
could have been extracted.

3) Roof mounting: there is a 31.06% drop in map
points (MPs) between the good and bad weather scenarios.
Comparing with the previous views, roof mounting is the
most robust and the one that achieves the largest number
of map points. This occurs due to it having the largest
vertical perspective, allowing far away features on the
ground to be extracted accurately while also being more
robust to the environmental effects in this scenario. The
added vertical perspective also helps with outlier removal
since point reprojection is more accurate.



9

-10 0 10 20 30 40 50 60 70 80

x coordinates (meters)

-10

0

10

20

30

40

50

y
 c

o
o
rd

in
a
te

s
(m

e
te

rs
) Trajectory

Slow corner, 91 frames

Slow corner, 182 frames

Separated slow corners, 182 frames

(a) Satellite view (b) Corners in V-B

(c) Good weather (d) Bad weather

-10 0 10 20 30 40 50 60 70 80

x coordinates (meters)

-20

-10

0

10

20

30

40

50

y
 c

o
o
rd

in
a
te

s
 (

m
e
te

rs
)

Radiator view ORB-SLAM3 with heavy rain

Absolute position

Ideal position

Kalibr estimation

5% error

5% error with dist

-10 0 10 20 30 40 50 60 70 80

x coordinates (meters)

-20

-10

0

10

20

30

40

50

y
 c

o
o
rd

in
a
te

s
 (

m
e
te

rs
)

Windshield view ORB-SLAM3 with heavy rain

Absolute position

Ideal position

Kalibr estimation

5% error

5% error with dist

(e) Rain Radiator 5% (f) Rain Windshield 5%

-10 0 10 20 30 40 50 60 70 80

x coordinates (meters)

-20

-10

0

10

20

30

40

50

y
 c

o
o
rd

in
a
te

s
 (

m
e
te

rs
)

Roof view ORB-SLAM3 with heavy rain

Absolute position

Ideal position

Kalibr estimation

5% error

5% error with dist

-20 -10 0 10 20 30 40 50 60

x coordinates (meters)

50

60

70

80

90

100

110

y
 c

o
o
rd

in
a
te

s
 (

m
e
te

rs
)

SCT detection

Absolute position

Detected as corners

(g) Rain Roof 5% (h) SCT detection

0 10 20 30 40 50 60 70 80

x coordinates (meters)

-20

-10

0

10

20

30

40

50

y
 c

o
o
rd

in
a
te

s
 (

m
e
te

rs
)

5% error dynamic refinement of intrinsics (Radiator mount)

Absolute position

Ideal position

5% error

COLMAP corrected

0 10 20 30 40 50 60 70 80 90

x coordinates (meters)

-20

-10

0

10

20

30

40

50

y
 c

o
o
rd

in
a
te

s
 (

m
e
te

rs
)

5% error dynamic refinement of intrinsics (Windshield mount)

Absolute position

Ideal position

5% error

Corrected

Corrected shared

Corrected shared no dist

(i) Radiator 5% (j) Windshield 5%

Fig. 5: Sample of experiments conducted

E. Calibration Auto-tuning
The goal of this experiment is to simulate the scenario

where ORB-SLAM3 is ran for two of the views (radiator
and windshield) since the roof mounting does not con-
verge. Initially these views are miscalibrated by 1%, 5%
and 10% and a full lap is completed. Then for the next
lap, the camera parameters resulting from the COLMAP
auto-calibration are inserted into ORB-SLAM3. This ex-
periment will be done offline, since the SLAM problem
needs to be reinitialized to allow the change of camera
parameters. Throughout the next Figures, there will be
two common plots: the absolute position and the ideal
position. The absolute position is taken from the odometry
ROS topic of the vehicle and as the name entails, it

represents the absolute position of the vehicle in the
CARLA simulator global coordinate system. The ideal
position is the ORB-SLAM3 pose estimate with the ideal
intrinsics of the virtual camera.

1) Slow Corner Trigger: Despite some outliers on the
corners, the SCT is able to accurately detect the corners of
interest only from IMU data. A threshold of ±0.25rad/s
was set to detect when the actor is cornering and a streak
counter was implemented, to account for when the car is
cornering but the angular velocity does not surpass the
threshold. The streak counter is incremented when the
actor is outside the threshold at that time instant. When
the actor is inside the threshold, meaning theoretically
it is not cornering, the streak counter is decremented. If
it reaches 0, then the vehicle is not cornering. A cap of
10 was set to the streak counter, to prevent long corners
from incrementing the counter too much and identifying
the straights as corners.

2) Conclusion on experiments: While the roof view
would be superior for SLAM due to it’s higher visibility,
if auto-calibration is desired, the remaining option is the
radiator view. The windshield view must be discarded
due to the glass windshield acting as a lens, making it
unreliable when small distortion values and discrepancies
between the left and right camera intrinsics are had.

VI. Conclusion and Future Work

The work described in this thesis provides the foun-
dation for the localization and mapping segment of the
VIENA project. It is intended at a future date, to use the
VIENA-ROS wrapper that was created for the purposes
of this work, to connect the controller and vehicle model
with ORB-SLAM3 in the real vehicle and achieve a fully
functioning navigation segment. In the meantime, multiple
simulator options were researched, ending with the full
integration of the CARLA simulator into the pipeline with
the creation of the VIENA-CARLA wrapper, allowing the
controller to issue throttle and steering commands to the
virtual vehicle.

It was also proposed to analyze the effect of a poorly
calibrated stereo rig on the VSLAM pose estimate tracking
performance. Cameras can be poorly calibrated due to
an incomplete calibration process or from environmental
effects such as heat lightly warping the lenses. In this
work it was shown that some parameters have more influ-
ence on accurate tracking than others and that reducing
discrepancies between cameras is critical for maintaining
robustness.

An auto-calibration procedure was suggested and tested
for each of the mounting options, giving a potential
option to circumvent a poorly calibrated stereo rig without
needing special targets. Suggestions to achieve a more
robust auto-calibration from motion were given, such as
using images from slow corners to approximate the pure
rotation scenario.
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