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Abstract

Due to the increasing demand for Reusable Launch Vehicles (RLVs) to improve the sustainability of

rocket launching, research in vertical landing and recovery of rockets has gained significance in recent

years. Therefore, the objective is to investigate novel algorithms, implemented as a software package, for

the automated design of linear controllers using approaches based on the Youla Parameterization (YP)

and Reinforcement Learning (RL) to tackle the attitude control problem of a landing RLV.

The YP generates the set of all the linear controllers that stabilize a given linear plant by varying a

stable transfer function known as the Youla parameter. We propose the adoption of a novel approach

to adjust the Youla parameter, employing an RL algorithm, known as Episodic REINFORCE, for un-

stable systems. Limited research has been conducted on RL for feedback design in circumstances

where instability can interfere with the learning or the hardware. The commonly used parameterizations

tend to perform poorly in such cases. The combination of RL and YP offers stability, robustness, and

performance advantages. The results obtained in this work demonstrate that the problem is success-

fully addressed, with the algorithm being validated and compared against a state-of-the-art optimization

algorithm. An approach to accelerate the convergence of the learning algorithm was proposed.

The integration of RL with YP provides new possibilities for designing robust and efficient control

systems for RLVs. This work contributes to the advancement of reusable launch technology by providing

an approach to tackle the challenges associated with automatic attitude control.

Keywords

Automatic controller design, Youla-Kucera parameterization, reinforcement learning, REINFORCE, rocket

landing
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Resumo

Devido à crescente procura por Veı́culos de Lançamento Reutilizáveis (RLVs) para reduzir os efeitos

do lançamento de foguetões, a investigação sobre a aterragem e recuperação de foguetões tem ganho

importância nos últimos anos. Portanto, o objetivo deste trabalho é desenvolver um pacote de soft-

ware para o projeto automático de controladores lineares através de uma abordagem baseada na

Parametrização de Youla (YP) e na Aprendizagem por Reforço (RL), de modo a resolver um problema

do controlo de atitude na aterragem de um RLV.

Através desta parametrização é possı́vel obter o conjunto de todos os controladores lineares que

estabilizam uma dada planta linear, ao variar uma função de transferência estável conhecida como

parâmetro de Youla. Propomos uma nova abordagem para ajustar este parâmetro, com um algo-

ritmo de RL, conhecido como Episodic REINFORCE, para sistemas instáveis. A investigação sobre

RL no projeto de sistemas de feedback em circunstâncias em que a instabilidade pode interferir com a

aprendizagem ou o hardware é limitada, e as parametrizações clássicas tendem a ter um desempenho

fraco nestes casos. Por isso, a aprendizagem foi combinada com a YP, que oferece vantagens em

termos de estabilidade, robustez e desempenho. Os resultados obtidos solucionam o problema pro-

posto, validando-o com um algoritmo de otimização do estado da arte. Apresentou-se, também, uma

abordagem para acelerar a convergência do algoritmo.

Este trabalho contribui para o avanço da tecnologia de lançamento reutilizável, visto que a junção

de RL com a YP abre novas possibilidades para o projeto automático de controladores em sistemas

complexos.

Palavras Chave

Projeto automático de controladores, parameterização de Youla-Kucera, aprendizagem por reforço, RE-
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1.1 Motivation and Problem Definition

The design of a controller that complies with prescribed specifications and constraints is a complex task,

even for linear systems. To increase the efficiency of the design process, it is convenient to have an

automatic design tool that allows an efficient exploration of the effects of different specifications, as well

as of the trade-offs between performance and robustness.

This design tool, to be embedded in a software package, must rely on a suitable controller parameter-

ization, that ensures that the search for the optimal controller is made only among stabilizing controllers,

combined with an optimization algorithm that can tackle high-dimension problems with complex objective

functions, possibly non-convex.

The main goal of this work is to develop a software package using MATLAB for the automatic design

of controllers for linear, time-invariant, continuous-time systems, with application in aerospace vehicles’

motion control. The algorithm will be exemplified using an attitude control problem for a space vehicle,

in this case, a vertical landing rocket.

For such a system, the Youla Parameterization (YP) provides a way to parameterize all the controllers

that stabilize it ( [1], [2] ). By varying the Youla parameter Q to optimize the cost functional that defines

the goal, a technique called Q-Design, it is possible to find the controller that can satisfy the problem

restrictions and guarantee stability. The automation of this process will be done with Reinforcement

Learning (RL), with focus on the algorithm Episodic REINFORCE ( [1], [5], [6] ). The use of RL for

feedback design systems when instability can disrupt the learning process is not yet heavily studied since

the most common parameterizations perform poorly in those situations. On the other hand, through the

Q-parameterization, the YP offers a set of robust stabilizing controllers. This approach will provide the

tool used to develop the algorithm to tune controllers, given a linearized model of a rocket landing.

The possibility of extending the YP, present in the control literature, to more complex systems aligned

with the use of RL represents a door to apply learning to real-world problems, such as the vertical landing

of reusable rockets, a case study of importance to the field of Reusable Launch Vehicles (RLVs).

1.2 Scientific Framework and State of the art

The subjects adressed by this work include: automatic controller design and parameterization, optimiza-

tion problems, and RL.

The Youla-Kucera (YK) parameterization is a popular control literature parameterization that had its

origin in the 70s when Youla and others developed an analytical feedback design technique for the

Single-Input Single-Output (SISO) case and the multivariable case (see [7], [8]) in continuous-time and

Kucera added the extension to the discrete-time case [9]. These works proposed the YK parameteriza-

tion, also commonly referred to as YP, capable of providing all linear stabilizing controllers for a given

2



Linear Time-Invariant (LTI) plant in a feedback control loop, based on the transfer function Q (Youla

parameter), that guarantees the stability. This work was of engineering significance and launched an

entirely new area of research, among other areas, in optimal and robust control [10].

Likewise, the dual YK parameterization presents all the linear plants that are stabilized by a given

controller, based on the transfer function S (dual YK parameter). While the Q-parameterization is mostly

used for stable controller reconfiguration, disturbance, and noise rejection control, S-parameterization

works to solve closed-loop identification. These approaches have been studied for decades to achieve

a higher control performance [11].

In Kucera’s simplified version of the YK for teaching [10], it is stated that the time-varying system

case was generalized later on by e.g. [12], infinite dimensional systems by e.g. [13], [14], and a class of

non-linear systems by e.g. [15], [16] and [17].

Furthermore, [17] was the first survey paper that explored both YK and Dual YK parameterization.

This work investigated solutions of Q-parameterization for H∞ and H2 problems with constrained pole

positions and closed-loop identification problems, by reducing them to standard open-loop problems.

Besides, it described early work on YK parameterization for nonlinear systems and disturbance rejection.

In 2020, a group of french researchers collected the advances in YK parameterization [18], clas-

sifying them according to the use of YK parameterization, Dual YK parameterization, or both. This

paper presents the main applications of this tool in various control fields, such as optimal control, robust

control, Q-based controller reconfiguration, noise rejection, and vibration control, S-Based closed-loop

identification, (Q,S)-based adaptive control and fault tolerant control.

The article [19] studies control methodologies for precision positioning systems and presents a tuto-

rial for loop-shaping control, that uses the YK parameterization as a tool for achieving the design goal.

This can be done for flexible servo designs because a precision positioning system is designed to have

an LTI plant and when a SISO plant is controlled by linear controllers, the position servo can be cast as

a loop-shaping problem.

The Q-parameterization provides the set of all stabilizing controllers for a given plant that can be

characterized by knowing a controller stabilizing the given plant [18]. Many important cost functions

are convex in the Q(s) because the closed-loop system is affine in Q(s). Thus, the Youla parameter

has been used as a tool for designing feedback controllers through optimization methods, as seen for

example in [2] and [20].

More specifically, Hespanha [2], in lectures 24 and 25, shows how a given Linear Quadratic Gaus-

sian (LQG)/Linear Quadratic Regulator (LQR) controller can be used to parameterize all feedback con-

trollers capable of stabilizing a given LTI system, to be used as a control design method based on Q

parameterization and numerical optimization. Furthermore, this reference mentions a finite-dimensional

optimization technique known as the Ritz Approximation.
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In [20] is proposed an affine representation of Q(s) and, in chapter 15, the Ritz Approximation is

discussed. Moreover, a tutorial on an approach for designing linear controllers based on numerical

convex optimization is provided in [21].

The methods expressed in this paper can also be used to test the limits of performance of controllers

when there are no non-convex constraints.

RL is the technique used by an agent that must learn behavior through trial-and-error interactions

with a dynamic environment [22]. RL offers a set of methods for learning controllers with many control

applications, especially in robotics e.g. [23], [24].

Another example of a work that mixes classic control and modern RL is [25]. For that sake, this

paper proposes to use RL in the context of model-based control with application in a two-degree-of-

freedom robot manipulator. For the feedback controller to be able to compensate for the uncertainties,

the learning made in the framework of stabilizing controllers uses only little prior model knowledge.

Ronald J. Williams [6] presents a general class of associative RL algorithms, called REINFORCE

algorithms, for connectionist networks containing stochastic units. This paper gives specific examples

of these algorithms and presents how they might be used to help develop similar but potentially more

powerful RL algorithms. Also, in [5], chapter 13.4, it is explained how to obtain the REINFORCE from a

gradient algorithm.

However, the performance of RL in learning controllers is highly dependent on the controller param-

eterization used. A poorly chosen parameterization can result in an unstable controller, a higher cost

function, and weak learning performance.

Over time, the successful cases of learning have focused on learning an open-loop trajectory, since

those trajectories can use stabilizing controllers designed with traditional control techniques, such as

Model Predictive Control (MPC) or LQR. Thus, situations in which the feedback policies have been

learned directly on hardware are less frequent and not used when the instability of the feedback policies

can disrupt the learning. As a consequence of not much work being done on systems where instability

is an issue, even when the policy converges, RL has not been used for high-performance issues near

the margin of stability. This has to do with the fact that most natural parameterizations tend to present a

poor performance in this domain.

Roberts et al., [1] explore four different parameterizations of linear feedback control in the context

of REINFORCE with application in the control of a reaching task with a linearized flexible manipulator,

where closed-loop instability can be an issue. Here, the manipulator is modeled as an open-loop stable

linear system that is underactuated, does not have full-state information, and, with the wrong controller,

can quickly become unstable.

This paper states that the two most natural-seeming parameterizations i.e., state feedback gains with

a fixed observer and a feedback controller transfer function do not guarantee stability, the set of stabiliz-
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ing controllers are non-convex and even a small change in the parameters can worsen performance to

the point of instability. On the other hand, LQR cost matrices with a fixed observer and YP do guarantee

stability.

The two parameterizations offer a different set of advantages: the LQR cost function matrix offer

high-performance and high-bandwidth controllers (when there is no delay), the noise is not excessively

structured and the cost function is similar to the quadratic cost assumed by LQR. On the other hand,

the YP provides a rich set of controllers and presents better performance when the cost function is

non-quadratic and the noise is structured but non-Gaussian. Regarding the experimental results, it was

concluded that the YP provided the best overall performance. It had a quick predictable convergence,

which showed good learning performance and good ultimate controller performance. These results

validate the premise that the representation for Q(s) has a great influence on the performance of the

parameterization and that with the appropriate choice of Q(s) any stabilizing linear controller can be

represented, even the LQR controller.

Despite being popular in the control literature and control theory research, the extension of the YP

to more complex systems is still a new field that offers a large range of opportunities for study, such as:

open-loop unstable plants, multivariable systems (e.g. [8], [20]), rapid switching between controllers (e.g.

[26]), uncertain models (e.g. [27], [20], [28]), nonlinear systems (e.g. [17], [29], [16]), and decentralized

systems (e.g. [30]).

Switching between controllers is a form of improving performance while controlling complex systems,

acting on multiple control objectives, and guaranteeing stability. Moreover, switching between controllers

using YK parameterization presents many advantages [18]. These include allowing stable switching

between open-loop unstable controllers, the fact that switched controllers can be designed and adjusted

separately via techniques like LQR, and guaranteeing closed-loop stability even under arbitrary controller

reconfiguration.

In conclusion, it is possible to affirm that the application to nonlinear and uncertain systems, such

as motion control of aerospace vehicles, is of real-world importance, and applying learning to hardware

could benefit from the flexibility and guaranteed stability of the YP.

Research in vertical landing and recovery of rockets has gained prominence in recent years, with

the increasing need for RLVs to minimize cost, time, and impact associated with rocket launching. The

upswing is related to the successful breakthroughs made by SpaceX and Blue Origin in this field.

In the future, there will be an increasing search for reusable rocket development. Therefore, the

robustness, reliability, and autonomy of entry guidance systems are of great importance. Z. Bonjun et

al. [31] propose a new predictive atmospheric entry guidance algorithm based on dual-channel attitude

control of a low-lift entry vehicle, to achieve an expected landing site before landing with powered de-

scent. The results obtained suggest that the proposed algorithm is very robust, can accurately detect
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aerodynamic acceleration error, and is capable of achieving higher accuracy of predictive guidance.

The fundamental principles of launch vehicle control analysis and design can be found in [32], applied

to ARES-I Crew Launch Vehicle.

Although the synthesis of robust controllers for the ascent phase of a rocket is an already researched

topic, research on the descent phase is still lacking. The progress and challenges in precision rocket

landing on Earth and other planets are addressed, for example, in [33] and [34].

The work of M. Sagliano et al. [35] focuses on feedback control techniques applied to the descent

phase of a reusable rocket, in particular robust control techniques such as the H∞ concept.

A study case of spacecraft landing on asteroids with irregular shapes and low gravity can be found

in [36].

1.3 Objective and Contributions

The objective of this work is to develop a linear controller design algorithm, based on the Youla Param-

eterization and Reinforcement Learning to adjust the Youla parameter Q, to solve an attitude control

problem of a landing RLV. The results will be compared to a state-of-the-art optimization algorithm.

An important contribution of this study is the extension of the approach proposed in [1] to account

for open-loop unstable plants. By combining the learning algorithm Episodic REINFORCE and YP,

this study addresses not only the attitude control of an RLV but also the challenges that more complex

systems pose for reference tracking.

1.4 Organization of the Document

This thesis is organized as follows: Chapter 1 presents the motivation behind the work conducted in this

thesis, as well as the objectives and contributions. Additionally, an overview of previous studies that have

dealt with the subject of this thesis is presented. In Chapter 2 the problem is described and the required

control parameterization, known as the Youla parameterization, is defined. Chapter 3 addresses the

algorithms required for optimization and learning in this work. In Chapter 4 the nonlinear model of a

rocket vertical landing is derived and linearized. The baseline controllers are designed for this model.

Chapter 5 presents the results, implementation details, and discussions of the conducted research.

Chapter 6 conveys the conclusions of the investigation along with suggestions for further research.
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In this chapter, we define the problem investigated in this thesis. For that sake, the parameteriza-

tion that gives all linear stabilizing controllers for a determined LTI system, the YK Parameterization, is

defined both in the transfer function and state-space frameworks. Furthermore, the parameterization

is expanded to include open-loop unstable cases in addition to open-loop stable systems. Finally, an

overview of Q design and numerical optimization of the Youla Parameter Q(s) is presented.

2.1 Problem Definition

Let us define the general idea of the problem. The primary goal of this research is to develop an

algorithm that can automatically design controllers for linear systems, with application in the motion

control of aerospace vehicles. Using the parameterization described in the next section, called YK

parameterization, it is possible to find all the controllers that meet the problem’s constraints and ensure

stability, by varying the Youla Parameter Q(s).

The objective is to find the optimal vector of parameters that defines the controller as a finite dimen-

sion linear combination of basis transfer functions, using an RL algorithm called Episodic REINFORCE,

to be defined in Chapter 3, as an optimization algorithm to adjust the stabilizing controller obtained, to

minimize a defined cost function.

The optimal parameter ϕ of the Youla Parameter Q(s), is in an infinite-dimensional space. Therefore,

it is necessary to approximate it by a search over a finite-dimensional space, as to be detailed in the

sections below. For that purpose, one takes

Q̂(s) =

K∑
i=1

ϕi

(
α

s+ α

)i−1

, ϕ :=


ϕ1

.

.

.
ϕK

 , (2.1)

where α is a fixed positive constant closed-loop pole that is selected a priori.

As previously mentioned, the primary application of the algorithm is to solve an attitude control prob-

lem of a space vehicle. In this case, a vertical landing model derived in the next chapter. The attitude

control cost function

J =

t∑
j=1

(θj − θgoalj)
2, (2.2)

punishes deviation from the goal attitude angle of the vehicle, given that the error is the sum of the

squared difference between the simulation output angle, θ, and the reference angle θgoal.

The design tool embedded in this software package must be able to handle complex systems such

as high-order systems and open-loop unstable plants with non-minimum phase zeros. For that scenario,
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the cost function used can be

J = c2

t∑
j=1

(yj − ymj)
2 + cinv

t∑
j=1

(sign(yj × yref j) < 0), (2.3)

which corresponds to the error is the sum of the squared difference between the response of the con-

trolled system, y, and the response of the ideal transfer function (reference) to the impulse, ym. This

cost function also penalizes the inverse response of the closed-loop to the step impulse, by counting the

negative values returned by the MATLAB function sign. The values c2 and cinv were used to balance the

relative importance of the two terms in the cost.

Next, as to be detailed in Chapter 3, the optimization can be conducted using an RL algorithm or,

for example, a MATLAB unconstrained optimization problem solver such as Fminunc. Finally, it will be

possible to obtain the optimal stabilizing controller for the problem.

2.2 Youla-Kucera Parameterization

This section defines a parameterization that provides all linear stabilizing controllers for a given LTI plant,

the YK parameterization. It is parameterized by a stable transfer function called Youla parameter, Q.

2.2.1 Control System Structure

Theorem 1

For the SISO case consider, in a general form, a linear system described by the continuous transfer

function
B(s)

A(s)
, ∂B < ∂A. (2.4)

Now, let S0(s)
R0(s) be a stabilizing controller, interconnected to the plant as in figure 2.1.

Figure 2.1: Feedback control loop block diagram.

All rational stabilizing controllers can be defined as

S(s)

R(s)
=

S0(s) +Q(s)A(s)

R0(s)−Q(s)B(s)
, (2.5)
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where Q(s) is stable.

Proof

First, we will start by proving that the controller given by (2.5) is stable. Consider that Q(s) is stable and

can be expressed as

Q(s) =
Y (s)

X(s)
, (2.6)

where X(s) and Y (s) are polynomials. The stabilizing controller (2.5) can be rewritten as

S(s)

R(s)
=

S0(s) + Y (s)
X(s)A(s)

R0(s)− Y (s)
X(s)B(s)

=
X(s)S0(s) + Y (s)A(s)

X(s)R0(s)− Y (s)B(s)
. (2.7)

From figure 2.1 it is possible to infer the transfer function from r to y, given by

H(s) =

B(s)
A(s)

S(s)
R(s)

1 + B(s)S(s)
A(s)R(s)

=
B(s)S(s)

A(s)R(s) +B(s)S(s)
. (2.8)

The closed-loop characteristic polynomial is given by

AR+BS = A(XR0 − Y B) +B(XS0 + Y A) = X(AR0 +BS0). (2.9)

Given that Q(s) is stable, X(s) must have all its roots located in the left half of the complex plane

Re(s) < 0. Thus, the closed-loop is stable.

We will now prove that all the stabilizing controllers can be written in the form (2.5), with stable Youla

parameter Q(s).

Let S(s)
R(s) be a stabilizing controller that yields the closed-loop characteristic polynomial

AR+BS = C, (2.10)

with all roots of C(s) located strictly in the left half of the complex plane.

Now, let us show that there is a stable function Q(s), such that this controller can be written in the

form (2.5).

From (2.5) it is possible to infer

S(R0 −QB) = R(S0 +QA) ≡ SR0 −RS0 = Q(AR+BS). (2.11)
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Thus, from (2.10) the Youla Parameter Q(s) can be written as

Q(s) =
S(s)R0(s)−R(s)S0(s)

A(s)R(s) +B(s)S(s)
, (2.12)

which is stable, since C(s) has all its roots located strictly in the left half of the complex plane.

2.2.2 Special Case: Open-loop Stable System

Here, we will go over a special case example of the YK parameterization for a finite-dimensional SISO

stable plant P (s) and feedback controller K(s) that was presented in [1]. In this case, the closed-loop

system from u to y with positive feedback is

H(s) :=
Y (s)

X(s)
=

P (s)

1− P (s)K(s)
. (2.13)

Furthermore, the Youla parameter associated with the controller K(s) is given by

Q(s) :=
K(s)

1−K(s)P (s)
. (2.14)

The controller K(s) can also be written as a function of a plant P (s) and a Youla parameter Q(s):

K(s) =
Q(s)

1 +Q(s)P (s)
. (2.15)

Thus, the closed-loop system can be presented as

H(s) = P (s)[1 +Q(s)P (s)], (2.16)

that is affine in Q(s). It is important to note that the relationship between the parameters of the feedback

controller K(s) and the closed-loop system H(s) is nonlinear.

Moreover, it is clear that for any K(s), the parameter (2.14) exists, and if the plant P (s) is stable, then

H(s) is also stable, if and only if the Youla parameter Q(s) is stable.

Figure 2.2 shows an intuitive approach to YK parameterization. Here, a stable system P (s) with

a possible perturbation ω is connected to a given feedback controller K(s) consisting of a copy of the

system dynamics without the perturbation, and an arbitrary stable system Q(s) intervenes to compute

the difference. It is the combination of P (s) and Q(s), where Q(s) varies over all stable linear systems,

that makes it possible to obtain all stabilizing controllers.

This representation of the YK parameterization presented by Roberts et al. [1] is a particular case

of the one shown in section 2.2.1. It is possible to obtain the controller (2.15) in the form of (2.5), if the

system is open-loop stable.

11



Figure 2.2: Intuitive view of the YK parameterization block diagram for an open-loop stable system from [1].

For that, consider the stabilizing controller S0

R0 to be S0(s) = 0 and R0(s) = A(s), with positive

feedback. Hence, one can infer (2.15) from (2.5) by rearranging the equation

S0(s) +Q(s)A(s)

R0(s) +Q(s)B(s)
=

Q(s)A(s)

A(s) +Q(s)B(s)
=

Q(s)

1 +Q(s)B(s)
A(s)

=
Q(s)

1 +Q(s)P (s)
. (2.17)

In conclusion, every feedback controller K(s) can be represented by Q(s). If and only if Q(s) is

stable and affine, the closed-loop system will also be stable and affine. Moreover, because the closed-

loop system H(s) is affine in Q(s), many cost functions, including LQG, are convex in Q(s).

As a result, we may state that the set of all stable Q(s) is an affine parameterization of all stabilizing

linear controllers for a plant P (s).

2.2.3 Influence of the Youla-Kucera Parameter Q

We will now study the influence of different examples of Youla Parameter transfer functions Q(s) on the

step response. Several representations of stable Q(s) could be considered. For these simulations, it is

of the form

Q(s) =

∏n
i=0 βis

i∏n
i=1(s− αi)

. (2.18)

A stable, second-order plant P (s) with natural frequency ω = 30 rad/s and damping ratio ξ = 0.5 was

considered for the study. The set of parameters Q(s) includes a second order system with two complex

conjugate poles Q1(s), and two different stable transfer functions, Q2(s) and Q3(s), presented below.

Q1(s) =
400

s2 + 4s+ 400
, (2.19)

Q2(s) =
0.7s

(s+ 0.5)(s+ 0.2)
, (2.20)
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Q3(s) =
0.001s

s+ 0.001
. (2.21)

Figure 2.3 illustrates the closed-loop system step responses for the parameters Q(s).

Figure 2.3: Influence of different YK parameters Q(s) on the closed-loop system step response.

The first parameter, Q1(s), has damping ratio ξ = 0.1, which means the step response presents

damped oscillations (decreasing amplitude). The second and third cases both tend to one over time, but

the Youla Parameter Q2(s) leads to higher settling time, and Q3(s) has less overshoot. Note that, poles

located closer to the origin are called dominant poles, which contribute more to the system response.

It is known that the closed-loop system will always be stable if and only if Q(s) is stable. Nevertheless,

it is not possible to guarantee that the controller K(s) itself is stable, as an isolated system.

2.2.4 General Case: Open-loop Unstable System

As previously expressed in equation (2.5) that defines all rational stabilizing controllers, there is an initial

stabilizing controller. This section introduces an LQG as the S0(s)
R0(s) controller. The goal is to achieve a

more robust controller and generalize the parameterization to a wider set of cases, such as open-loop

unstable systems.
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Let us consider the state-space framework. Take a Continuous-time LTI (CLTI) system written as

ẋ = Ax+Bu, y = Cx, x ∈ Rn, u ∈ Rk, y ∈ Rm, (2.22)

in which u represents the control signal and y the measured output.

A LQG/LQR output feedback controller can of the form

ˆ̇x = (A− LC)x̂+Bu+ Ly, u = −Kx̂, (2.23)

where A − LC and A − BK are stability matrices, and x̂ is an estimate of the state x of the process,

based on the past values of the measured output y and control signal u.

Hence, substituting the control law u in the system, it is possible to rewrite the state model for the

controller (2.23) as

ˆ̇x = (A− LC −BK)x̂+ Ly, u = −Kx̂. (2.24)

The separation theorem shows that in a regulator obtained by feeding back the state estimate, the

observer gains and the controller gains can be designed independently of each other [37]. Therefore,

the poles of the overall system are grouped in two sets. The first set depends on the control gain vector

K, assuming that all the components of the state are available. The second set depends on the observer

gain vector L, as if the observer acts on the system without control. The characteristic polynomial of

the full system corresponds to the product of the characteristic polynomials of the matrices A−BK and

A− LC.

The control gain vector K is computed such as to minimize the quadratic cost

J =

∫ ∞

0

(xTQx+Ru2)dt. (2.25)

Then, by solving (2.25) it possible to find the positive definite matrix P that verifies the Algebraic

Riccati Equation (ARE)

ATP + PAT − PBR−1BTP +Q = 0, (2.26)

and the vector of controller gains K is obtained by the equation

K = R−1BP. (2.27)

Consider an infinite horizon. If the pair (A,B) is controllable and (C,A) is observable, a positive

definite solution for the ARE (2.26) exists, is unique, and the close-loop system is asymptotically stable.

Hence, to design the controller (2.24) it is necessary to first assure the pair (A,B) is controllable,
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so the closed-loop eigenvalues of a state feedback controller can be located anywhere in the complex

plane. The pair (A,B) is controllable if the rank of the controllability matrix, given by the number of

linearly independent rows or columns, is equal to the dimension of the state. In a controllable system

there always exists a control input u(t) that transfers any state of the system to any other in a finite time.

Next, it is necessary to study if the state realization is observable by checking if the observability

matrix rank is equal to the state dimension. If so, it is possible to determine the state estimator gains in

order to put eigenvalues of the error dynamics (A − LC) in arbitrary points of the complex plane. Also,

the initial state x(t0) can be estimated based on the knowlegde of the output y(t) for a finite time.

The matrix QLQ determines the weights of the states, and the matrix R defines the weights of the

control input in the cost function, so that the control system performs as desired. The influence of the

weight matrices QLQ and R, can be understood as

1. A large R means that the system is being stabilized with less weighted energy, i.e. “expensive

control strategy”, by forcing a higher penalization of the control signal. Also, the response to

changes in the output will be slower/more cautious.

2. A large QLQ means that one is trying to stabilize the system with fewer changes in states. There-

fore, by forcing the noise to be small, the response will be faster to changes.

A Kalman filter can be used to determine the observer gain vector L so that the estimating error

converges to zero. From this point forward, the estimate will provide the feedback, rather than the state,

which is now considered to be unavailable for the measure.

Adjusting the parameters QLQ and R does not eliminate the steady-state error. For that purpose,

one can include the integral effect. As shown in figure 2.4, the integral of the tracking error was added

by forcing an integrator in series with the process.

Figure 2.4: Stabilizing LQG Controller S0

R0 with Integral Effect.

The initial stabilizing controller S0(s)
R0(s) is then represented as an LQG controller using an equivalent

transfer function. The controller connected to the YK parameterization is then calculated by inserting the

result into (2.5). The controller will then be able to handle complex cases such as unstable plants with

non-minimum phase roots.
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2.2.5 State-Space Approach: Q-Augmented LQG/LQR Controller

The next step is to deduce a state-space approach on the parameterization of all feedback controllers

capable of stabilizing an LTI system, with a given LQG/LQR controller, as proven by Hespanha [2].

Suppose that instead of the classic LQG/LQR output feedback controller demonstrated in (2.23), the

controller is now of the form

˙̂x = (A− LC)x̂+Bu+ Ly, u = −kx̂+ v, (2.28)

in which v ∈ Rk is the output of an asymptotically stable system driven by the output estimation error

(2.29)

ỹ := y − Cx̂ ∈ Rm. (2.29)

The Q system is of the form

ẋQ = AQxQ +BQỹ, v = CQxQ +DQỹ, ỹ ∈ Rn, v ∈ Rk, (2.30)

with AQ as a stability matrix.

From (2.28) it is possible to infer the negative-feedback control architecture as

˙̂x = (A− LC −BK)x̂+ Ly +Bv, u = −Kx̂+ v, ỹ = −Cx̂+ y. (2.31)

The controller is known as the Q-augmented LQG/LQR controller. If the transfer function is equal to

zero, it is possible to recover the original LQG/LQR controller.

The state-space realization of the Q-augmented LQG/LQR controller can be defined from (2.29), and

(2.30)-(2.31) as

[
˙̂x

ẋQ

]
=

[
A− LC −BK −BDQC BCQ

−BQC AQ

] [
x̂
xQ

]
+

[
L+BDQ

BQ

]
y,

u =
[
−K −DQC CQ

] [ x̂
xQ

]
+DQy.

(2.32)

As illustrated in figure 2.5, the Q-augmented LQG/LQR controller can include a vector ω(t) of ex-

ogenous inputs, composed by a reference signal r(t), a measurement noise n(t), and a disturbance

signal d(t). This controller also has a vector z(t) of controlled outputs that contain the process output,

the tracking error, and the control input.

Mind that the Q-augmented controller produces the same asymptotic closed-loop behavior as the

original controller without a reference signal, measurement noise, or disturbances, even though different
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transients and closed-loop transfer functions may result from the process.

Figure 2.5: Q-augmented LQG/LQR controller [2].

We will now prove that the controller defined by (2.30)-(2.31) stabilizes the original CLTI.

The state estimation error (e := x − x̂), without noise and disturbance, converges to zero for any

input u. Analysing the architecture of the system interconnection between the process CLTI and (2.31)

in figure 2.5 and given that the output estimation error (2.29) can be rewritten as ỹ := C(x − x̂), it is

possible to infer that ỹ converges to zero.

If the input ỹ to (2.30) converges to zero, the output v converges to zero. Thus, the controller (2.30)-

(2.31) makes the closed-loop system asymptotically stable for every stability matrix AQ, since all signals

converge to zero.

Now we will analyse the properties of the closed-loop transfer functions that result from the Q-

augmented controller illustrated in figure 2.5.

The state-space closed-loop dynamics are of the form

˙̄x = Āx̄+ B̄

[
ω
v

]
,

[
z
ỹ

]
= C̄x̄+ D̄

[
ω
v

]
, (2.33)

ẋQ = AQxQ +BQỹ, v = CQxQ +DQỹ, (2.34)

with the states x of the process and x̂ of the state estimated, assembled in a single column vector x̄.

Consider a transfer function of (2.33) as an LTI system with input vector
[
ω′ v′

]′ and output vector[
z′ ỹ′

]′ written as

[
ẑ
ŷ

]
=

[
P̂zω(s) P̂zv(s)

P̂ỹω(s) 0

] [
ω̂
v̂

]
,

[
P̂zω(s) P̂zv(s)

P̂ỹω(s) 0

]
:= C̄(sI − Ā)−1B̄ + D̄, (2.35)

in which ẑ, ŷ, ω̂ and v̂ are the Laplace transforms of z, ỹ, ω, and v. All the transfer matrices represented

by P̂zω(s), P̂zv(s) and P̂ỹω(s) have Bounded Input, Bounded Output (BIBO), so are said to be BIBO
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stable. Note that the transfer function from ω to z is the same as the one obtained with the original

LQG/LQR controller. Moreover, the bottom right corner transfer matrix of (2.35) represents the transfer

matrix from v to ỹ, previously proven to be zero.

The closed-loop transfer function matrix from any exogenous input signal to a given controlled output,

Ĥ(s), can be expressed as

Ĥ(s) = Ĥ0(s) + L̂(s)Q̂(s)R̂(s). (2.36)

Here, Q̂(s) := CQ(sI − AQ)
−1 + DQ is the transfer function of (2.30) and is BIBO stable, as well

as the transfer matrices Ĥ0(s), L̂(s), R̂(s). It is clear that different inputs will lead to different transfer

matrices Ĥ0(s), L̂(s), R̂(s), but will still be affine in Q̂(s).

Finally, there are matrices AQ, BQ, CQ and DQ, with a stability matrix AQ, for every controller transfer

function Ĉ(s) that asymptotically stabilizes (CLTI), and the controller (2.30)-(2.31) is a realization of Ĉ(s),

as stated in [2].

From these properties, it is valid to state that one can obtain every controller that stabilizes an LTI

process and every stable closed-loop transfer function matrix with a Q-augmented controller of any given

classic LQG/LQR controller, keeping Q̂(s) in the range of all BIBO stable transfer matrices.

In conclusion, one can obtain a parameterization of all stabilizing controllers for the process defined

in (2.22) provided by the controller (2.30)-(2.31), as well as the closed-loop transfer function matrix Ĥ(s)

that provides the parameterization of all stable closed-loop transfer matrices for the CLTI system.

2.3 Q Design

This section describes a control design method based on the Q parameterization and numerical opti-

mization of parameter Q, as shown in [2].

2.3.1 Control Objectives

The goal of Q design is to enhance the performance of a controller unable to fulfill all the required

specifications by augmenting it, Q-augmented LQG/LQR controller (2.32).

As described in section 2.2.5, the Q-augmented controller is based on the original LQG/LQR con-

troller architecture with the control structure illustrated in figure 2.5. The search for the most appropriate

Q parameter can be done through methods of numerical optimization.

The control objectives are met through closed-loop specifications that make the designed control

system achieve the desirable performance. Note that Q design cannot directly handle gain/phase mar-

gins and open-loop gain specifications. A stable prefilter could be applied to the reference r on the
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tracking error

eT := r − y, (2.37)

where y is the measured output.

We will now go through some classical closed-loop control specifications for the time domain, and

the input and the outputs, before discussing Q design. For that, it is useful to rewrite the vectors ω and

z, previously defined in section 2.2.5, as

ω :=

rd
n

 , z :=

ye
u

 .

The time domain specifications influence the response of the closed-loop system to a given ex-

ogenous input. One should consider multiple specifications that refer to different inputs and controlled

outputs. However, the set of time domain specifications generally include:

1. Norm bounds.

There are typically considered four different known bounds for a given constant value c > 0. The

L1 norm bound ∫ ∞

0

∥z̄(t)∥ dt ≤ c, (2.38)

the L2 norm bound ∫ ∞

0

∥z̄(t)∥2 dt ≤ c, (2.39)

and the L∞ norm bound

∥z̄(t)∥ ≤ c ,∀t ≥ 0, (2.40)

where the vector z̄(t) may contain one or more entries of vector z(t) of controlled outputs, for a

given test input w(t), t > 0.

2. Interval bounds.

These specifications are used to impose conditions such as undershoot, overshoot and settling

times for a step response, when the test input is selected to be a unit step. The interval bounds

guarantee that for a given exogenous input signal w(t), the correspondent i-th entry to the con-

trolled output zi(t), satisfies the condition

sm(t) ≤ zi(t) ≤ sM (t), ∀t ≥ 0, (2.41)

in which sm(t) and sM (t) correspond to chosen time functions. This condition can be used to

assure the control signal does not overpass the safe ranges for a given exogenous input, w(t).
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As for the input-output specifications, they refer to the goal properties of different closed-loop transfer

functions between different entries of ω and z. These specifications classically include:

1. Frequency domain.

Consider a transfer function that maps a vector ω, with one or more entries of ω, to a vector z, with

one or more entries of z, satisfying

∥Ĥ(jω)∥ ≤ ℓ(ω), ∀ω ∈ [ωm, ωM ]. (2.42)

For example, when ωm = 0, ωm = ∞ and ℓ(w) = γ, ∀w ≥ 0 it is possible to guarantee, that for

every ω(t) with t ≥ 0,

(∫ ∞

0

∥z(t)∥2 dt
)1/2

≤ γ

(∫ ∞

0

∥ω(t)∥2 dt
)1/2

,

when other entries of vector ω are zero and the closed-loop has zero initial conditions, as shown

in [2].Thus, the H − infinity norm, or Root Mean Square (RMS) gain, from input ω̄ to output z̄ of

the system is smaller than γ.

2. Impulse response.

Consider an impulse response h(t) from a vector ω to a vector z. For a given constant ρ, this

impulse response should comply to the inequality

∫ ∞

0

∥h(t)∥ dt ≤ ρ.

For every ω(t), t ≥ 0, and when all other entries of ω are zero and the closed-loop has zero initial

conditions, the specification above guarantees the following

|z(t)| ≤ ρ sup
τ≥0
∥ω(τ)∥ , ∀t ≥ 0.

Having said this, it is possible to affirm that the closed-loop system has L1 norm, or peak gain,

from ω smaller than ρ.

In addition, it is important to note that exist numerous control specifications that can be applied to

the Q design method. More control specifications examples can be found in e.g. Chapter 3 of [20].
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2.3.2 Feasibility Problem

By definition, a feasibility problem is a problem in which the goal is to determine if a given set of con-

straints is feasible, that is, they can be satisfied by some controller. A feasibility problem for Q design is

formulated as

find Q̂(s) BIBO stable
such that Ĥ0(s) + L̂(s)Q̂(s)R̂(s) satisfies D1,D2, ...,Dk,

(2.43)

where Ĥ0(s), L̂(s), and R̂(s) are the transfer matrices that define the closed-loop transfer function ex-

pressed in (2.36). As stated in [2], the Q Design method is about finding a Q system that is capable of

meeting all the specifications defined in the feasibility problem (2.43) and then use this system to de-

fine the Q-augmented LQG/LQR controller, given a family D1,D2, ...,Dk of time domain and input-output

closed-loop specifications. To solve (2.43) it is useful that all specifications are convex.

2.3.3 Finite Dimension Approximation

One of the biggest obstacles in Q Design is that it is necessary to search over an infinite-dimensional

set of all stable transfer functions Q. However, as proven in [20], the Ritz approximation can be used to

solve infinite-dimensional optimization problems by converting them into finite-dimensional subsets.

The steps to achieve the Ritz approximation are:

1. Select a sequence of k ×m BIBO stable transfer functions that is complete such as

Q̂1(s), Q̂2(s), ..., Q̂i(s), ...,

A complete Q sequence [2] is a set of all BIBO stable transfer functions Q̂(s), for that there is a

finite linear combination of Q̂i(s) that is arbitrarily close to the original Q̂(s). In the case of the

Multiple-Input Single-Output (MISO) system, such linear combination is obtained by selecting all

entries of each Q̂i(s) to be equal to zero but one, defined as

(
α

s+ α

)ℓ

, αi ∈ R, (2.44)

for ℓ ≥ 0 and a chosen fixed constant α > 0. In the SISO case, instead of a set of matrices there

is only a transfer function of the form (2.44) for each entry of Q̂i(s).

2. Restrict Q̂(s) to be

Q̂(s) :=

K∑
i=1

αiQ̂i(s), αi ∈ R, (2.45)
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so that the search is limited to linear combinations of the first K matrices in the sequence.

3. Write the general closed-loop transfer function (2.36) as

Ĥ(s) = Ĥ0(s) +

K∑
i=1

αiĤi(s), Ĥi(s) := L̂(s)Q̂i(s)R̂(s). (2.46)

4. Define the feasibility problem as

find α1, α2, ..., αN ∈ R

such that Ĥ0(s) +

K∑
i=1

αiĤi(s) satisfies D1,D2, ...,Dk

(2.47)

5. Use the obtained Q system from the feasible problem (2.47) to compute the Q-augmented LQG/LQR

controller (2.30)-(2.31). However, if the problem is not feasible one can try to make it feasible by

increasing the number of iterations N until it becomes inadmissible to compute the numerical op-

timization or the order of the Q-augmented controller becomes unreasonable. In that case, the

problem might not have a viable solution for the determined specifications.

For an example of the application of the Ritz Approximation in Q design with MATLAB and numerical

optimization using the CVX toolbox [38], one can consult Lecture 25 of [2].
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This section defines the two main algorithms for this work. The objective is to obtain the optimal

parameter ϕ to compute the YK transfer function Q, using a general class of associative RL algorithms

containing stochastic units called Episodic REINFORCE. Nonetheless, in order to compare and validate

the results achieved through Episodic REINFORCE, an unconstrained optimization problem function,

Fminunc, is used.

3.1 Unconstrained Optimization Problem

The optimal solution for a problem can be achieved through a variety of optimization algorithms and

solvers. In most cases, these solvers use one or more of these optimization techniques to discover the

ideal solution to an optimization problem.

Fminunc is a MATLAB function from the Optimization toolbox that uses a quasi-Newton method

to solve an unconstrained optimization problem. This solver finds the minimum of an unconstrained

multivariable function specified by

min
x

f(x) , (3.1)

where x is a vector or a matrix and the objective function of the problem f(x) returns a scalar. The

solution is found by iteratively approximating the objective function’s Hessian matrix of second derivatives

using gradient information. Since the quasi-Newton method does not need to calculate and invert the

Hessian at each iteration, it is substantially less computationally expensive than the Newton method.

The solver starts at the point x0 and tries to find a local minimum x of the function fun. This function

is minimized with a set of optimization options shown in [39]. Fminunc returns the value of the objective

function fval at the solution, the exitflag that describes the exit condition of the solver, and a structure

output that contains information about the optimization process. There are six different exit conditions

mentioned in [40]. Moreover, can return the gradient of the function at the point x with grad, as well as

the estimated hessian with hessian.

3.2 Episodic REINFORCE

The form of REINFORCE algorithms can be described by its name since it is an acronym for “REward

Increment = Nonnegative Factor x Offset Reinforcement x Characteristic Eligibility”. Thus, any algorithm

that is of that form is a REINFORCE algorithm. This class of learning algorithms are defined in detail

in [6]. The algorithm used for learning in this work is an extension of the class of REINFORCE algorithms

called Episodic REINFORCE, mainly used for learning tasks that have a temporal credit-assignment

component, known as a (Temporal) Credit Assignment Problem (CAP). Theorems on REINFORCE and

Episodic REINFORCE are also proven in [6].
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In Episodic REINFORCE the learning is performed episode-by-episode i.e. the system states are

reset at the end of each policy evaluation and the stochasticity of the policy π(y,ϕ) is on the parameters

ϕ, not the outputs of the system y. For this work, it is used a specific update derived in [1] - from

the update that appears in [6] for learning the mean of a Gaussian element - that learns a vector of

parameters with identical noise and learning rate.

From this point on, the notation is as follows: ϕi′ are the actual parameters used on trial i, b is a cost

baseline, J(ϕi′ ) is the cost associated with the policy parameters ϕi′ , and g(ϕi′ ) is the probability of using

parameters ϕi′ in trial i. The REINFORCE update

ϕi+1 = ϕi − η(J(ϕi′)− b))
∂

∂ϕi′
ln(g(ϕi′)), (3.2)

is formulated for cost instead of reward and the learning rate η is the same for the vector of parameters

ϕ. In this case, the eligibility ∂
∂ϕi′ ln(g(ϕ

i′)) can be defined as

∂

∂ϕi′
ln(g(ϕi′)) ∝ (ϕi′ − ϕi), (3.3)

in which ϕi′ = ϕi + ϕpi , and considering that g(ϕi′ ) is a multivariate Gaussian distribution with mean ϕi,

that has independent noise on each element with covariance σ2.

Thus, it is possible to formulate the update

ϕi+1 = ϕi − η(J(ϕi + ϕpi)− J(ϕi))ϕpi . (3.4)

While in literature it is common to use an average baseline [1], we employed a second policy evalua-

tion in order to learn in fewer iterations at the expense of having to carry out two evaluations per update.

First, the policy given by ϕi is executed, in iteration i, to obtain the baseline

b = J(Q̂(ϕ0)).

Then, the policy is perturbed by a small value ϕpi , and that perturbed policy is executed. The gener-

ated white noise follows the standard normal distribution, with Probability Density Function (PDF) of the

form
1√
2π

e
−x2

2 , (3.5)

in which x is a generated random real variable, with mean µ = 0 and constant variance σ = 1.

The introduction of small white noise in the algorithm adds variability and randomness. This can pre-

vent the agent from prematurely converging to local minima. In addition, stochastic strategies encourage

exploration of different courses of action and possibly find better strategies than a deterministic strategy.
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Finally, the difference in performance is calculated, and the policy update (3.4) is computed. The

system is run for N iterations until it converges to an optimal value and the cost function is minimized.

3.2.1 Algorithm Convergence

Even when REINFORCE is successful, the convergence to a local minimum is very slow. It has been

discovered that the main algorithm in this study, Episodic REINFORCE, is particularly slow, but this is

also not unexpected given that it carries out temporal credit-assignment by effectively dispersing credit

or punishment over all previous times [6].

Analytical calculation of the convergence rate of stochastic algorithms such as the Episodic REIN-

FORCE can be difficult, since it relies on a series of random factors, and the probability that the algorithm

converges to a local maxima or minima depends on the decision made for the reinforcement baseline.

The use of a variation of the conjugate gradient method was one of the possible solutions imple-

mented to make the convergence faster. The gradient conjugate method is used for solving linear sys-

tems and function optimization, i.e. finding the minimum of a quadratic function. The literature proposes

several definitions of the conjugate gradient method for minimizing quadratic functions, e.g. [41].

The method consists of a sequence of conjugate directions that are designed to search the solution

space more efficiently. Here, we perform the Episodic REINFORCE update (3.4) every two iterations,

and at the third, we use the conjugate gradient method to compute the next search direction using the

linear combination of the previous search direction, as illustrated in figure 3.1. This helps minimize

oscillations and speeds convergence by ensuring the new search direction is conjugate with the prior

direction. Up until the defined stopping criterion is met, this process is repeated iteratively.

Figure 3.1: Diagram of a variation of the conjugate gradient method implemented for convergence of the RL algo-
rithm.
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In figure 3.2 is depicted the convergence comparison between the algorithm with the conjugate

gradient technique variation, and the vanilla method. The initial conditions of the optimization problem

are the same in this example; the only distinction is in the convergence approaches. Using the regular

Episodic REINFORCE update, it can be deduced that the highest cost decrease occurs 200 iterations

later. Although both algorithms converge to the same value, the minimum cost is found at iteration 907

using the conjugate gradient technique, but only at iteration 1418 when utilizing the regular update. As

a result, it has been proven to boost speed by approximately 64%.
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Figure 3.2: Comparison of the convergence of the algorithm with and without the conjugate gradient method modi-
fication.

The step size is also an important factor to be considered for convergence speed. The learning rate

is the hyperparameter that controls the size of the update on each iteration of the algorithm.

Finding the proper step size for a given optimization problem is crucial for ensuring convergence of

the algorithm, given that if the step size is too large, the process is faster but the algorithm may pass

the minimum of the loss function and fail to converge. Instead, if the step size is too small, the algorithm

might take a long time to converge or get stuck in a local minimum. This process can be done through

trial and error or with known techniques such as adaptive learning rate methods. A variety of step size

adaptation methods for stochastic learning have been presented in the literature (see [42], [43]). In this

work we concentrate on adapting the learning rate η based on percentual variation of cost

∆J(%) =
J(i)− J(i− 1)

J(i− 1)
× 100, (3.6)

starting from an arbitrarily large value of step size and adapting it based on optimization performance.

For that, when the cost increases a defined percentual value instead of decreasing, the learning rate
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is altered and the algorithm returns to the previous value of the optimization parameter and cost.

In the last iterations, usually the final 5%, it is important to reduce the learning rate significantly to

avoid surpassing the minimum value. Thus, during these last iterations, the learning rate progressively

decreases proportionally to the number of iterations left.

The step gain is also normalized based on the value of cost before it is multiplied by the search direc-

tion, i.e. the learning rate in the Episodic REINFORCE policy update (3.4) is divided by that iteration’s

cost J(ϕi), making the step gain η/J(ϕi). Hence, in an ideal example, if the random noise constant ϕpi in

that iteration makes the perturbed policy zero, the search direction is J(ϕi)ϕpi. In these circumstances,

the next iteration’s value of ϕ will represent cost zero as J(ϕi + ϕpi).
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In this chapter, the nonlinear model of a rocket is derived, linearized, and validated through simula-

tions. The goal is to successfully land the rocket. The attitude and altitude state-space control systems

are identified using the rocket model. Furthermore, we design the baseline attitude and altitude LQG

controllers and run closed-loop simulations.

4.1 Thrust Vector Control

Let us clarify the concept of Thrust Vector Control (TVC). The thrust’s direction changes in relation to the

rocket’s center of gravity when the nozzle is moved as depicted in figure 4.1 [3], known as the “normal”

flight configuration. The thrust line is angled toward the rocket center line in the left and right illustrations

at a position known as the gimbal angle. When the rocket’s nozzle moves, the thrust’s direction changes

in relation to its center of gravity, changing the gimbal angle from zero. If the rocket is gimbaled back

along the center line or deviated to the right, as opposed to the center picture, where the thrust goes

through the center of gravity, a torque is generated about the center of gravity, which causes the rocket’s

nose to turn left or right.

To maintain a “normal” flight configuration and follow the reference trajectory, TVC will be used to

control the rocket’s attitude and keep the gimbal angle as close to zero as possible.

In a real-world system, the nozzle moves along three dimensions. However, the simulations in this

thesis were conducted in two dimensions. The gimbal can be represented by a rotating ball joint at the

rocket’s lower end since the flow of the thrust is assumed to act along a single directional vector.

Figure 4.1: Gimbaled Thrust diagram [3].
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4.2 Nonlinear Model

The mathematical derivation of the rocket will be based on Newton’s 3rd law of motion.

Figure 4.2(a) illustrates a simplified representation of a rocket landing and 4.2(b) depicts all the

considered forces.

(a) Diagram of a rocket landing in a barge.

(b) Diagram of a rocket with all forces represented.

Figure 4.2: Rocket simplified 2D representation [4].
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The notation [4] used moving forward is

• FE : main thruster force;

• FR: right thruster force;

• FL: left thruster force;

• FS = FL - FR : right and left thruster forces as a single input;

• θ: angle between the z axis of the plan and the longitudinal axis of the rocket;

• φ: angle between the x axis of the plan and the longitudinal axis of the rocket;

• l1: longitudinal length between the Center of Gravity (COG) of the rocket and FE ;

• l2: longitudinal length between the COG of the rocket and FR, FL;

• ln: length of the nozzle;

• m: sum of the rocket’s dry mass and fuel mass;

• x: horizontal position of the rocket;

• z: vertical position of the rocket;

• α, β: real constants.

The state of the rocket dynamics depends on the horizontal and vertical positions of the rocket (x, z)

and its velocity (ẋ, ż), as well as the angle between the z axis and the longitudinal axis of the rocket (θ)

and the angular velocity θ̇. This can be defined by the vector of states

X =
[
x ẋ z ż θ θ̇

]′
. (4.1)

The inputs, or main control variables of the rocket, are the main engine thrust FE , the right and left

side Nitrogen gas thrusters, that can be simplified into one input FS = FR − FL, and the thrust angle φ.

Nitrogen gas thrusters can be set to zero for simplicity even though they provide a more stable control.

The control outputs are x, z and θ.

We simplify the next equations for small angles, in which cos(θ) = cos(φ) ≈ 1, sen(θ) ≈ θ, and

sen(φ) ≈ φ. Now, it is possible to infer the expressions of the translational forces with respect to the

COG:

ẍ =
FE · sen(θ + φ) + FS · cos(θ)

m

⇔ ẍ =
FE · cos(φ) · sen(θ) + FE · cos(θ) · sen(φ) + FS · cos(θ)

m

≈ FE · θ + FE · φ+ FS

m
,

(4.2)
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z̈ =
FE · cos(θ + φ)− FS · sen(θ)−mg

m

⇔ z̈ =
FE · cos(φ) · cos(θ)− FE · sen(φ) · sen(θ)− FS · sen(θ)−mg

m

≈ FE − FE · φ · θ − FS · θ −mg

m
.

(4.3)

Since the shape of the rocket does not change, the moment of inertia equation can be described by

JT · φ̈ = τ, (4.4)

in which τ represents an applied torque on a rocket to the angular acceleration, φ̈.

When the nozzle angle, φ, which typically moves in three dimensions, is different from zero, a torque

is generated. However, in this work, the problem will be reduced to a two-dimensional system, which

results in a unidimensional rotation. The rotation torque with respect to the COG can be computed by

θ̈ =
−FE · sen(φ)(l1 + ln · cos(φ)) + FS · l2

JT

≈ −FE · φ(l1 + ln) + FS · l2
JT

,

(4.5)

where JT is the moment of inertia, and θ̈ is the angular acceleration.

The fuel burn of the rocket is modeled by

ṁ = −α(β · FE − FS), (4.6)

which is directly proportional to the thrust.

4.3 Analytical Linearization

From the nonlinear rocket model, we now deduce its analytical linearization.

If the problem is LTI, it can be written in the state-space form shown in (4.7), as previously stated,

where A is the system matrix, B and C are the input and output matrices, and D is the feed-forward

matrix.

ẋ = Ax+Bu,

y = Cx+Du.
(4.7)

However, the aforementioned model is not linear. Therefore, it must be linearized around an equilib-

rium point in order to design a controller.
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Consider the general nonlinear differential equation written as

ẋ(t) = f(x(t), u(t)), (4.8)

and take the function f , that maps Rn ×Rm → Rn, an equilibrium point x ∈ Rn and an equilibrium input

u ∈ Rm, so that

f(x, u) = 0. (4.9)

A point is considered to be in equilibrium if, given a certain equilibrium input, all changing states go

to zero. We set ẍ, z̈, and θ̈ to zero. Hence, by solving equations (4.2)-(4.5) it is possible to obtain the

equilibrium input given by

u = [mg, 0, 0]. (4.10)

Now, it is possible to perform the Jacobian linearization [44] on a nonlinear differential equation about

the point (x, u).

The theory states that if one starts the simulation in the equilibrium point, x(t0) = x, and applies the

equilibrium input u(t) = u, the system will remain in equilibrium for all t. Nevertheless, if one starts near

x, there will be deviations associated, such as ∆x(t) and ∆u(t). Given that, it is possible to rewrite (4.8)

as

∆̇(t) = f(x+∆x(t), u+∆u(t)). (4.11)

After applying the Taylor Expansion to (4.11), ignoring the high-order terms, and considering (4.9),

one obtains

∆̇x(t) ≈
∂f

∂x

∣∣∣∣
x=x,u=u

∆x(t) +
∂f

∂u

∣∣∣∣
x=x,u=u

∆u(t), (4.12)

that can be of the form

∆̇x(t) ≈ A∆x(t) +B∆u(t), (4.13)

with A and B being the (4.7) system matrices.

To obtain the matrices A and B analytically, the problem (4.13) is equivalent to the computation of the

partial differentiation on the state equations (4.1) and the inputs, such as

A = ∇xf =


∂f1
∂x1

. . .
∂f1
∂xn

...
. . .

...
∂fn
∂x1

. . .
∂fn
∂xn

 , B = ∇uf =


∂f1
∂u1

. . .
∂f1
∂un

...
. . .

...
∂fn
∂u1

. . .
∂fn
∂un

 . (4.14)
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Given (4.14), the resulting matrices are

A =



0 1 0 0 0 0

0 0 0 0 FE

m 0
0 0 0 1 0 0

0 0 0 0 (−FE ·φ−FS)
m 0

0 0 0 0 0 1
0 0 0 0 0 0


, B =



0 0 0
(θ+φ)

m
1
m

FE

m
0 0 0

(1−θ·φ)
m − θ

m
(−FE ·θ)

m
0 0 0

(−φ(l1+ln))
JT

l2
JT

(−FE(l1+ln))
JT


. (4.15)

4.4 Model Validation: Open-loop Simulations

In this section, we perform open-loop simulations to validate the rocket’s nonlinear model derived in

section 4.2. For the simulations, the mass of the rocket was assumed to be constant and the Nitrogen

gas thrusters FS were set to zero for simplification.

The constant values considered for the simulations are presented in Table 4.1. The dimensions of

the rocket were chosen accordingly to the first-stage rocket data of Falcon 9 [45], [46].

Table 4.1: Simulation constants.

m [Kg] g [m/s2] l1 [m] l2 [m] ln [m] JT [Kg m2]
549054 9.8 60 10 1 40267

Figure 4.3 depicts the MATLAB Simulink diagram used, where the inputs for the function blocks “ddx”

(4.2), “ddz” (4.3), and “ddtheta” (4.5) are FE , FS , and φ with FS set to zero. The outputs are the states

X represented in (4.1).

Figure 4.3: MATLAB Simulink model of the nonlinear rocket model.

The block “Integrator 3” in figure 4.3 also lower bounds the output of variable z to zero. The simulation

automatically stops when the altitude of the rocket is smaller or equal to zero meters, indicating it reached
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ground level. Also, the Integrator blocks 1 and 3 accept an external initial condition x0 and z0, for the

states x and z of vector (4.1).

In order to validate the outputted data from the simulations it is possible to compute the equations of

motion. For the altitude

z = z0 + v0t+
1

2
at2, (4.16)

where the variable “a” is the acceleration and v0 is the initial velocity. The attitude angle θ is obtained by

θ = θ0 + w0t+
αt2

2
, (4.17)

in which α is the angular acceleration and w0 corresponds to the initial angular velocity.

Several simulations were run. Here, we will discuss three distinct scenarios where the main thrust

force varies with respect to the equilibrium value.
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0 10 20 30 40 50 60

t[s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
 [

m
]

Horizontal Position of the Rocket

(a) Horizontal position of the rocket x.
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Figure 4.4: Position and velocity of the rocket over time for test 1.

For the first test, the main thrust force is an arbitrary value larger than the value of the mass times the

gravity (FE > m · g). Therefore, the rocket should go straight up in altitude. Also, the horizontal position

remains zero, as seen in figure 4.4(a), and since the gimbal angle is zero, there is no torque and θ is

zero radians. Figure 4.5 illustrates the trajectory in 3-Dimensions.

When substituting the final values in (4.16) one can conclude that after t = 60s with acceleration

a = −g + FE

m and force FE = 7.6 × 106N the rocket would achieve an altitude z of, approximately,

7.276× 103m, which is proven in figure 4.4(b).
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3D trajectory
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Figure 4.5: 3-Dimension trajectory for test 1, with horizontal position in the x axis, vertical position in z axis, and y
set to zero.

Test 2

For this test, the main thrust force is smaller than the equilibrium value (FE < m · g). Thus, the rocket

should not be able to go up in altitude as depicted in figure 4.6(a). The vertical velocity ż should be

negative as shown in figure 4.6(b). The horizontal position remains at zero, as seen in “Test 1” and

figure 4.4(a). Since the gimbal angle is zero radians, there is no torque and θ will also remain zero.

To verify the outputted data, one can compute the expected time that the rocket would hit the ground,

i.e. z = 0m, using equation (4.16). It is possible to infer that when free falling with an initial velocity

equal to zero from 4km, the rocket would take, approximately, t = 36.05 seconds to be at z = 0m with

acceleration a = −g + FE

m and force FE = 2 × 106N, which can be confirmed in figure 4.6(a). The

trajectory of the rocket is fully vertical, as shown in figure 4.7.
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Figure 4.6: Position and velocity of the rocket over time for test 2.
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3D trajectory
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Figure 4.7: 3-Dimension trajectory for test 2, with horizontal position in the x axis, vertical position in z axis, and y
set to zero.

Test 3

This test works as a “sanity check”, since the main thrust force is equal to the mass times the gravity

(FE = m · g). Thus, the rocket should not move as proven in figure 4.8. Here, the horizontal position and

θ also remain zero. The horizontal and vertical velocities remain zero over time, proving that the rocket

is not moving.
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Figure 4.8: Vertical velocity of the rocket over time ż for test 3.

Test 4

Lastly, the scenario in which the gimbal angle has a positive value of φ = 1.7◦ and the main thrust force

is constant and smaller than the value of the mass times the gravity FE < m · g. The gimbal angle φ

is positive, so the rocket should go further to the right side of the x axis and start falling from the initial
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3D trajectory
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Figure 4.9: 3-Dimension trajectory and output angle of the rocket over time for test 4.

altitude of 4000 meters. The 3-Dimensional trajectory of the rocket is depicted in figure 4.9(a).

The gimbal angle is φ ̸= 0, therefore a negative torque is generated. The output θ obtained is

shown in figure 4.9(b). To verify the attitude of the rocket, one can compute the expected angle θ at a

certain time, using equation (4.17). From there, it is possible to infer that when falling from 4km, with

an initial angular velocity equal to zero, the rocket would have a θ angle of, approximately, 1.052× 106◦,

at t = 20.1s, which can be confirmed in figure 4.9(b). Here, the angular acceleration α is in (4.5), for

FS = 0.

4.5 Nominal Trajectory

Next, we will define the rocket’s nominal trajectory, which will serve as a reference throughout this work.

Nominal, in the context of the trajectory of a launch vehicle, is a flight in which all the vehicle aero-

dynamic parameters are as expected and all vehicle internal and external systems perform exactly as

planned, and there are no extraneous perturbing factors, except atmospheric drag and gravity [47].

The goal is to find a nominal trajectory for the rocket, in order to reach the ground with a final velocity

equal to zero.

For that, we consider a bang-bang control trajectory, or “on-off”, where the main thrust force signal

switches abruptly between two states i.e. completely OFF (FE ≈ 0N) and fully ON (FE = FE(max)
=

7 × 106N). Here, the thrust force will have a minimum value of 5% of the maximum force value and,

therefore, will not be completely OFF so it is still possible to control the gimbal angle, φ. As illustrated in

figure 4.10, the moment of the switch is represented as tON . Since the desired trajectory is vertical, the
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Figure 4.10: Bang-Bang profile.

gimbal angle is assumed to be zero.

The resulting vertical position, z, of the rocket when the thrust force depicted in figure 4.10 is applied,

can be computed analytically using the equation of motion in (4.16). For the first [0, tON ] seconds, the

acceleration that acts on the body is the sum of the gravity with the quotient of the minimum thrust force

applied and the mass. Therefore, considering the initial velocity to be zero, the position zON is of the

form

zON = z0 +
1

2
(−g + FE

m
)(tON )2. (4.18)

The trajectory is influenced by different “switch” time instants, tON , in which the state changes from

zero to the maximum force value. Figure 4.11 shows the open-loop simulation for different arbitrary

values of tON . For a chosen time instant of tON = 14.6, which results in figure 4.12(a), the vertical
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Figure 4.11: Vertical Position z of the rocket over time for different values of tON .

position zON on time instant tON is, approximately, 3023m. When analyzing the simulation results, it is
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proven that the rocket is descending fast for the first t0N seconds until the thrust value switches and the

trajectory changes, slowly reaching zero. In figure 4.12(b) it is possible to verify that the rocket reaches

the ground with a velocity of approximately zero.

0 10 20 30 40 50 60

t [s]

0

500

1000

1500

2000

2500

3000

3500

4000

z
 [

m
]

Vertical Position of the Rocket
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Figure 4.12: Verification of the vertical position z and velocity ż of the rocket over time, for tON = 14.6 seconds.

4.6 System Identification

The FL and FR forces were adjusted to zero, and the 6th-order multivariate system was reduced to

a direct input-output relationship to make the identification process simpler. Therefore, two different

identification processes must be carried out to build the model. The double integral effect must be

eliminated before applying the identification methods to get appropriate identification results.

Using data from the open-loop simulation, the MATLAB function ssest is used to estimate a continuous-

time state-space model of a specific order. In order to build the attitude and altitude models, one should:

1. Remove the double integral effect of θ̈ and z̈, deriving it twice. 2. Identify the model that relates: the

input gimbal angle φ with the angle θ, and the input thrust force FE with the vertical position of the rocket

z; 3. Add a double integrator to the model;

4.6.1 Attitude System

The input u of the attitude model can be determined by

∆φ = φ− φ, (4.19)
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in which the gimbal angle φ is an input of the system, and the equilibrium value φ is zero radians as is

illustrated in figure 4.13.
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Figure 4.13: Square wave with 25% duty cycle, representing the input gimbal angle oscillating around the equilib-
rium value.

The output y is the second derivative of the angle θ, from the Simulink simulation. The rocket is

“hovering” since only the gimbal angle oscillates. The thrust force input is considered constant, equal to

the mass times gravity of the system.

It is possible to relate the output (θ̈) and the input (gimbal angle φ) by a gain α = −8146, with the

MATLAB function ssest.

Analytically, equation (4.5) can be used to compute the gain as

−FE ∗ (l1 + ln)

JT
≈ −8151. (4.20)

The ratio between the amplitude of the signals depicted in figures 4.13 and 4.14 is

−8.151× 10−3
1× 10−6

= −8151, (4.21)

which is in accordance with the analytical gain obtained from equation (4.20).

Therefore, the fit to estimation data, of the form 100(1-Normalized Root Mean Squared Error (NRMSE)),

is 96.51% and has a Mean Squared Error (MSE) of 6.44×10−08. The comparison between the response

of the estimated system and the measured output is illustrated in figure 4.14. As shown in the simplified

block diagram of figure 4.15, the double integrator needs to be added to design the linear controller.

From that, the double integrator matrices of the attitude system are of the form

A =

[
0 0
1 0

]
, B =

[
1
0

]
, C =

[
0 −8.146× 103

]
, D =

[
0
]
. (4.22)
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Figure 4.14: Comparison of the response of the system and the measured data.

Figure 4.15: Relation between the system and the attitude controller.

The LTI problem with

x =
[
θ̇ θ

]′
, (4.23)

can now be written in the classic state-space form defined in (4.7) as

{ ẋ =

[
0 0
1 0

] [
θ̇
θ

]
+

[
1
0

]
θ̈,

y =
[
0 −8.146× 103

] [θ̇
θ

]
.

(4.24)

4.6.2 Altitude System

For the altitude system identification, the input u is given by

∆FE = FE − FE , (4.25)

where FE is the thrust force illustrated in figure 4.16 and the equilibrium value is FE = mg N.

In this case, the output y is the second derivative of the position z from the Simulink simulation. The

gimbal angle is forced to zero radians, so that the trajectory remains vertical.

As previously explained, given the input signal, it is possible to relate the output z̈ and the thrust force
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Figure 4.16: Square wave with 25% duty cycle, amplitude 2 × 106N and an offset of FE , representing the input
thrust force oscillating around the equilibrium value.

FE by a gain β = 1.820× 10−6 obtained using the MATLAB function ssest.

The gain β can be computed analytically using the previously derived equation (4.3) from the nonlin-

ear model as
1− φ

m
= 1.821× 10−6. (4.26)

The relation between the amplitude of both the amplitude of the force signal and the input signal in

figure 4.16 is of the form
3.642

2× 106
= 1.821× 10−6, (4.27)

that complies with the analytical output.

Here, the fit to estimation data is of 96.52% and the MSE is 0.128. The comparison between the

estimated system and the measured output data is illustrated in figure 4.17.
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Figure 4.17: Comparison of the response of the system and the measured data.
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As stated for the attitude system, it is necessary to add the double integrator in order to design the

linear controller, as represented in figure 4.18.

Figure 4.18: Relation between the system and the altitude controller.

From that, it is possible to infer the system

A2 =

[
0 0
1 0

]
, B2 =

[
1
0

]
, C2 =

[
0 0.1820× 10−5

]
, D2 =

[
0
]
, (4.28)

and write the LTI problem in the classic state-form (4.7) as

{ [
z̈
ż

]
=

[
0 0
1 0

] [
ż
z

]
+

[
1
0

]
z̈,

y =
[
0 0.1820× 10−5

] [ż
z

]
.

(4.29)

4.7 Baseline Controller Design

Figure 4.19: Orientation of the rocket.

It is necessary to design a baseline state feedback LQG, to control the attitude and altitude of the

rocket. We will use it as an initial stabilizing controller in the YK parameterization.

As one might infer from the diagram shown in figure 4.19, if the input gimbal angle φ is positive, a
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negative torque will be generated. In order to balance the angle of the rocket, the controlled angle θ

must be negative.

The closed-loop Simulink diagram of the LQR controllers with access to all the components of the

states of the state-space systems for the attitude (4.24) and altitude (4.29) of the rocket is shown in

figure 4.20. To design the attitude LQR controller for the angle between the z axis of the plan and the

Figure 4.20: Simulink diagram for the LQR controllers of rocket model.

longitudinal axis of the rocket, θ, the matrix B identified for the LTI system in (4.22) must be multiplied

by the output matrix C, to obtain a negative controller gain. Hence, after properly adjusting the weight

matrices R and QLQ, the controller gain vector K, obtained with MATLAB function lqr, is

Kθ =
[
−0.496, −1000

]
. (4.30)

The eigenvalues determine the evolution of the system, by analyzing whether a fixed point is stable

or unstable. A fixed point, or equilibrium point, is stable if when disturbed returns to its initial value

or remains in the same location. The poles of the closed-loop system A − BK can be obtained by

computing the eigenvalues of that system. It is known that A − BK is a stability matrix if all the poles

have a negative real part. The time measure is in seconds and the closed-loop poles of the system are

[
−2.0307 + 2.0307i
−2.0307− 2.0307i

]
× 103, (4.31)

which proves the system is stable.

As detailed in section 2.2.4, the separation theorem allows the regulator and estimator gains of the
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LQG controller to be designed independently from each other and guarantees that the controller makes

the closed-loop system asymptotically stable, given that both A−BK and A−LC are stability matrices.

Now, we adjust the weight matrices QE and RE and obtain the optimal LQG estimator gain L using the

MATLAB function lqe,

Lθ =
[
316.228, 25.169

]
. (4.32)

It is now possible to compute the state-space model for a negative output feedback LQG controller

for the process system with regulator gain Kθ and estimator gain Lθ. The attitude baseline controller is

used as an initial stabilizing LQG controller, S0(s)
R0(s) , detailed in section 2.2.4.

Similarly, it is necessary to design the LQR controller for the vertical position of the rocket, z. The

goal is to follow the nominal trajectory detailed in section 4.5. For that, the gain matrix obtained was

Kz =
[
0.79527, 5.7556e− 07

]
. (4.33)

Here, the equilibrium point for the altitude controller is different than zero. Hence, it is necessary to

subtract the zON position obtained for the nominal trajectory from the input altitude.

The time is measured in seconds, and the eigenvalues of the closed-loop system (A2 −B2Kz) are

[
−0.6918 + 0.4781i
−0.6918− 0.4781i

]
, (4.34)

which means the system is stable.

The optimal LQG estimator gain L obtained is

Lz =
[
0.70711, 1.3836

]
. (4.35)

Lastly, a negative output feedback LQG controller for the process system with regulator gain Kz and

estimator gain Lz is computed.

4.7.1 Symmetric Root Locus

Control systems utilize the Symmetric Root Locus (SRL) as a graphical tool to examine how a closed-

loop system responds to changes in the gain or other feedback controller parameters. The symmetric

root locus is primarily used to provide insight into the stability and performance characteristics of the

closed-loop system while designing a controller.

Therefore, this technique is applied to determine the controller gain range that results in a stable

closed-loop behavior and to select among the trade-offs between performance indicators.
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The SRL gives, for different values of ρ, the poles (natural frequencies) of a controlled system with

optimal control. The poles of a closed-loop system with infinite horizon Linear Quadratic (LQ) control

are
1

ρ

b(s)b(−s)
a(s)a(−s)

= −1. (4.36)

In this case, ρ is the LQR weight matrix R, that influences the regulator controller gains K. When R

varies, the roots change. As briefly mentioned in section 2.2.4, if R is large, i.e. the control is expensive,

the controlled system is slower and the close-loop poles are either the open-loop poles for a stable

system or their symmetric. If the control is too expensive, it is better to leave the poles as they initially are.

When a close-loop pole is more to the left of the axis, the control energy required is higher, but the energy

dissipated by the state is lower. Thus, the positioning of the pole must be a trade-off between these

factors. Alternatively, if R is small, the poles are located further from the origin. Therefore, the controlled

system is faster and the bandwidth increases, which can make the closed-loop system unstable.

Here, the Plant P (s) of the attitude system defined in section 4.6.1 is a double integrator. It is

necessary to obtain the SRL of

P (s)P (−s) = −8146
s2

−8146
(−s)2

=
6.636× 107

s4
. (4.37)

From here, as there are no zeros and four poles, the root locus will have four branches that begin at

the poles at the origin and tend to infinity along the asymptotes with an angle of 45◦. Now, to compute the

four fourth squares of − 1
ρ as expressed in (4.36), it is necessary to represent them in polar coordinates

of the form

rejθ,

where r represents the absolute value of the root and θ is the phase. From that,

r4ej5θ =
1

ρ
ejπ.

From absolute value equality and congruency of phases proven in [37], it is possible to compute the

four roots as

r1 =
1
4
√
ρ
ej

π
4 , r2 =

1
4
√
ρ
ej

3π
4 , r3 =

1
4
√
ρ
ej

5π
4 , r4 =

1
4
√
ρ
ej

7π
4 ,

in which r2 and r3 are the optimal poles located in the Left Half of s-Plane (LHP). Figure 4.21 illustrates

the four roots of the SRL computed for the value of the regulator weight R = 1 × 10−6 chosen for the

baseline attitude controller designed in section 4.7, intersecting the SRL branches, and a circle with
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radius 1/ 4
√
ρ.

Figure 4.21: SRL of the Plant P (s) with the fourth roots of −1/ρ and a circle with a radius of 1/ 4
√
ρ.

4.7.2 Identification Validation
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Figure 4.22: Identification systems validation simulations results.

The response of the linear and nonlinear systems will now be compared to demonstrate that the

system was correctly identified and, consequently, linearized. First, to validate the altitude linear system

one must compare the responses of the nonlinear system and the identified Plant to the same step

impulse, controlled by the same altitude controller designed in section 4.7. The results are shown in
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figure 4.22(b).

Similarly, the process of validating the attitude linear system consists of comparing the output angle

θ from both the nonlinear system and the Plant, in close-loop with the attitude baseline controller. Figure

4.22(a) expresses this simulation results.

4.8 Closed-loop Simulations

In this section, we perform several closed-loop simulations using the LQG controllers designed in section

4.6.2 for the rocket model.

The main goal of the attitude controller is to ensure that by changing the input angle φ, the trajectory

remains vertical, keeping the angle θ as close to zero as feasible.

The gimbal angle limit of oscillation should remain between

−15◦ < φ < 15◦,

equivalent to, approximately, 0.26 radians.

The goal of the altitude controller is to assure that the rocket follows the defined nominal trajectory.

For that, the thrust force applied in all simulations is a bang-bang profile force, illustrated in figure 4.23.
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Figure 4.23: Main thrust force FE using a Bang-Bang control profile.

Test 5

The first simulation has a square wave input corresponding to the gimbal angle φ, shown in figure 4.13,

to disturb the rocket on its descent trajectory.
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The gimbal angle stabilizes around the approximate value of zero. The gimbal angle φ is the differ-

ence between the sum of the disturbance signal with the control signal, as shown in 4.24.
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(a) Controlled gimbal angle input φ over time.
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Figure 4.24: Gimbal angle φ for test 5.
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Figure 4.25: Comparison of angle θ for the open-loop and closed-loop simulation of test 5.

The more pronounced oscillations for the first 14.6 seconds in figures 4.24 align with the bang-bang

control trajectory “switch” time instance tON , in which the thrust is considered OFF. Therefore, since

the force is not zero it is still possible to control the gimbal angle, but not as well as after tONs. The

controlled angle θ exhibits an identical effect during the same time period.

The peaks observed in the controlled gimbal angle for each square in the square wave input do not

represent overshoot, but rather the fact that the signal experiences a slight delay in its response to a

quick change in the input signal.

The resulting controlled angle θ is illustrated in figure 4.26, showing that the angle oscillates near
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zero, with a peak maximum value approximately around θ = 5 × 10−5 rad, and the angular velocity θ̇

value stabilizes around zero. The resulting trajectory in figure 4.27(a) is the nominal trajectory with a
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Figure 4.26: Controlled angle between the z axis of the plan and the longitudinal axis of the rocket, θ, over time for
test 5.

horizontal deviation of x = 3 × 10−4m. The vertical position of the rocket over time is in figure 4.27(b).

In figure 4.25 is shown the comparison between the open-loop and closed-loop simulation for the same
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(a) 2-Dimensional trajectory, with horizontal position
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Figure 4.27: Representation of the rocket’s trajectory for test 5.

conditions. It is proven that the angle θ now remains close to zero over time, even when the gimbal angle

is disturbed.
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Test 6

Now, we input a random band-limited white noise disturbance for the gimbal angle φ, with power 1×10−10

and time sample of 1s with seed [23341], as illustrated in figure 4.28. The thrust force applied is a bang-

bang profile force, illustrated in figure 4.23.
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Figure 4.28: Gimbal angle φ band-limited white noise disturbance input for test 6.

When controlled, the gimbal angle input stabilizes around the approximate value of zero as seen

in figure 4.29(a). The vertical scale of figure 4.29(a) was altered to a gimbal angle interval of, ap-

proximately, −0.26 < φ < 0.26 radians. The gimbal angle φ is the difference between the sum of the

disturbance signal with the control signal, as shown in figure 4.29(b). This result proves the controller is

compensating the disturbance.
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6.
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Figure 4.29: Gimbal angle φ for test 6.
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The resulting controlled angle θ is illustrated in figure 4.30, showing that the angle oscillates near

zero and the angular velocity θ̇ value stabilizes around zero. The vertical position of the rocket over time

is represented in figure 4.31(b), which approximates the nominal trajectory. The resulting 2-dimensional

trajectory in figure 4.31(a) has a horizontal deviation of x = 0.61 meters from the vertical trajectory.
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Figure 4.30: Controlled angle between the z axis of the plan and the longitudinal axis of the rocket, θ, over time, for
test 6.
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Figure 4.31: Representation of the rocket’s trajectory for test 6.

Test 7

For this test, band-limited white noise was added to the horizontal acceleration of the rocket in the

nonlinear model using the Simulink block that introduces white noise into the continuous system. The
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horizontal “wind”/ noise, is a random band-limited white noise with power 1× 10−4, sample time (corre-

lation time of noise) of 1, and starting seed [23341].

Similarly to the simulation performed on “Test 5”, the closed-loop simulation on “Test 7” inputs a

square wave input gimbal angle seen in figure 4.13, as a disturbance. The thrust force applied is a

bang-bang profile force, previously seen in figure 4.23.

For these conditions, it is expected that the trajectory will have more horizontal deviation, because

of the added “horizontal wind” acting on the rocket, but it will still be possible to control the nominal

position of the rocket and attitude. The attitude control results remain unaltered from “Test 5”, since the

white noise added only affects the horizontal acceleration equation. Figures 4.32(a) and 4.32(b) are the

resulting controlled gimbal angle φ and the data overlap of the disturbance and control signal.
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Figure 4.32: Controlled φ angle input for test 7.
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Figure 4.33: Controlled angle, θ, over time, for test 7.
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The output variable of the angle θ and angular velocity θ̇ remain close to zero radians over time,

proven in figure 4.33.

The vertical position of the rocket remains the nominal trajectory. Although, the trajectory is now

more horizontally disturbed in comparison with “Test 5” with a deviation of x = 0.69m, as proven in figure

4.34(a) that shows the 2-dimensional trajectory of the rocket, and in figure 4.34(b) that illustrates the

3-dimensional space.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x [m]

0

500

1000

1500

2000

2500

3000

3500

4000

z
 [

m
]

Controlled 2D trajectory

(a) 2-Dimension trajectory, with horizontal position
in the x axis, vertical position in z axis.

3D trajectory

-1

-0.5

0

0.5

1

x [m]-1

-0.5

0

0.5

1

0

500

1000

1500

2000

2500

3000

3500

4000

z
 [

m
]

(b) 3-Dimension trajectory with horizontal position
in the x axis, vertical position in z axis, and y
set to zero.

Figure 4.34: Representation of the rocket’s trajectory with addiction of horizontal noise.
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In this section we present the most relevant results and discussions from this study. The implementa-

tion details are also shown. First, under different initial conditions, we solve the attitude control problem

using both the MATLAB solver Fminunc described in section 3, and the learning algorithm Episodic

REINFORCE, applying the YK parameterization to the rocket model. Then, we test the solver Fmin-

unc in optimization problems of varying complexity in order to get baseline values for validation of the

optimization process.

5.1 Implementation Details

This section presents details of the algorithm implementation and initialization for the experiments.

The choice of the initial parameters ϕ0, α, and η is important since it influences the evolution of

the system. The definition of the appropriate base function that computes the parameter Q(s) and

represents the stabilizing controllers, shown in (2.1), as well as the type of input signal to which the

system will respond, affect the optimization process and the speed of convergence to a minimum.

The learning rate must be dynamic. The technique used, as expressed in section 3.2.1, consisted of

making the parameter an arbitrarily large number and adapting it by considering the optimization status,

making sure the value was small when closer to the minimum cost, so it would not get lost.

It has been found that the search for the minimal cost function becomes more challenging and may

result in high-order controllers as the order of the vector of parameters ϕ increases. Moreover, the choice

of the initial vector ϕ0 can determine whether the algorithm becomes “stuck” in local minima. Also, it is

known that the chosen constant closed-loop pole α is faster if it is further away from the imaginary axis.

The pole α should be chosen within the range of frequencies for which the closed-loop response is

expected to behave interestingly [2].

The number of iterations N is important because increasing the number of iterations until the com-

putation is no longer feasible or the controller order is too high is one of the only methods to ensure that

a solution that minimizes the cost can be found.

In stochastic algorithms such as Episodic REINFORCE, the seed is important since it initializes the

random number generator, ensuring the reproducibility of results. Therefore, by altering the seed value, it

is possible to provide information about the algorithm’s sensitivity to the chosen initial conditions and help

in the identification of robust approaches that function well under different randomization circumstances.

Algorithm 5.1 shows the approach used for Q design using RL, for solving the attitude control problem

of the rocket model plant P (s) identified in Chapter 4.
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5.1.1 Controller Order Reduction

High-order controllers can be generated when the optimization problem is addressed to a vector of

parameters ϕ with large dimensions, as a consequence of the Ritz Approximation exponential in (2.1),

which can lead to stability issues and other difficulties. For that, one can use the MATLAB function

reduce to decrease the controller order maintaining similar steady-state error performance, and closed-

loop characteristics. The reduce function allows to specify several options, such as choosing through

the model reduction algorithms (e.g. “ncf” meaning Normalized Coprime Factorization (NCFMR)), error

types (e.g. “ncf” referring to the normalized unstable gain and phase “nugap” error), and the specific

order of the desired reduced controller.

Although it can make the process simpler to implement, and easier to understand, reducing the

order of the controller using this function, is not always accurate, which can result in performance loss.

Hence, before applying it in a real-world system, it is crucial to thoroughly assess the reduced controller’s

performance, for instance by comparing the Bode diagrams of both controllers.

5.2 Youla-Kucera Parameterization Applied to the Rocket Model

This section presents the experimental results of the attitude control problem of the rocket model derived

in Chapter 4, using the Episodic REINFORCE algorithm. The problem is formulated in section 2.1, to

find the optimal Youla parameter that provides all the stabilizing controllers for the linear plant P (s).

The objective of the attitude controller, such as the closed-loop simulations using the LQG baseline

controllers carried out in section 4.8, is to guarantee that by changing the input gimbal angle φ, the tra-

jectory remains vertical, which entails maintaining the angle θ close to zero regardless of the disturbance

applied. The gimbal angle limit of oscillation should continue to range between [−15,+15]◦.

The altitude controller is the LQG baseline controller designed in section 4.7, which assures that

the rocket follows the defined nominal trajectory in section 4.5. For that, the thrust force applied in all

simulations is a bang-bang profile force, illustrated in figure 4.23.

The metric used to evaluate the deviation of the controlled systems from the goal angle θ and the

nominal trajectory is the Sum of Squares Error (SSE). The cost function used is expressed in (2.2),

and all results will be compared to the ones obtained using the baseline controllers to validate the

optimization.

5.2.1 Results and Discussion

The constant values considered for the simulations are presented in Table 4.1. The dimensions of the

rocket were chosen accordingly to the first-stage rocket data of Falcon 9 [45], [46].
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Test 8

The first test has a square wave input corresponding to the gimbal angle φ, shown in figure 4.13, to

disturb the rocket on its descent trajectory. The parameter ϕ0 is set to zero, to ensure the initial condition

of the parameter is equal to the baseline LQG attitude controller, since that if the Youla parameter Q(s)

is zero the controller is the initial stabilizing controller S0/R0 as proven in (2.5).

Initially, a test of the parameter ϕ was done, in which the cost was manually calculated for a range of

values of this parameter to speculate the one that would give the minimum cost. The relation between

the cost function value and ϕ is in figure 5.1(a), in which is possible to conclude that the goal final value

of ϕ is around −1012.5.
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Figure 5.1: Influence of the parameter ϕ on the minimization of the cost and pole-zero distribution.

Figure 5.1(b) depicts the pole-zero map of the Youla Controller (2.5), from which one concludes that

ϕ = −1012.5 puts, simultaneously, the farthest and the closest pole to the origin before it gets unstable.

It is known that for the system to be able to reject input disturbances the controller has to have a pole at

the origin. The cost function used in this work is “blind” to elements such as the effect of fuel burn on the

rocket’s mass and other factors that influence performance. Thus, the controller prioritizes speed over

robustness. Also, it is possible to see in figure 5.1(b) that when ϕ is positive, the poles are no longer

purely real negative, but complex conjugate poles.

The location of the poles of the controller has a great impact on the system’s closed-loop behavior.

Poles closer to the imaginary axis lead to a slower response, since they have slowly decaying compo-

nents, but can result in potential oscillations or instability, especially on marginally stable systems. Poles

located farther from the imaginary axis provide a faster response because they decay rapidly, and have

a larger magnitude which leads to a greater margin of stability.

60



0 500 1000 1500 2000 2500 3000

Iterations

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

C
o

s
t

Learning Curve

YK Controller

LQG Controller

Figure 5.2: Learning curve of the Episodic REINFORCE algorithm compared to the cost of the attitude LQG con-
troller for test 8.

The comparison between the learning curve of the Episodic REINFORCE and the constant cost

of the LQG controller is found in figure 5.2. The optimization started with a learning parameter of

η = 100 and started gradually adapting it after, approximately, 1800 iterations where the cost significantly

decreases. After that, the parameter that gives the minimum cost was found at ϕ2732 = −1012.5, which

is consistent with the test results from figure 5.1, and similar to the solver Fminunc that achieved a final

value of, approximately, ϕ = −1012.
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Figure 5.3: Input noise and gimbal angle φ using the YK controller compared to the LQG controller for test 8.

The gimbal angle stabilizes around the approximate value of zero. The gimbal angle φ is the dif-

ference between the sum of the disturbance signal with the control signal shown in 5.3. As previously

explained in section 4.8, the heavy oscillations for the first 14.6s present in figure 5.3(a) correspond to

the bang-bang control trajectory “switch” time instance tON , in which the thrust is considered OFF. The
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peaks, seen in detail in figure 5.3(b), are not overshoot but a consequence of the signal’s abrupt changes

and are less pronounced with the Youla controller.
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Figure 5.4: Comparison of the controlled angle between the z axis of the plan and the longitudinal axis of the rocket,
θ, using the YK or the LQG controller for test 8.

In figure 5.4 are depicted the two output angles from the two different controllers. As shown, the

Youla controller lead to an attitude angle much closer to zero, which results in a more vertical trajectory,

that is, with less horizontal deviation as seen in figure 5.5.
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(b) 2-Dimensional trajectory of the rocket.

Figure 5.5: Comparison between the controlled trajectories using the YK or the LQG controller for test 8.

The step responses of the initial, baseline, and Youla controllers are in figure 5.6, where it is proven

that the overshoot is less prominent with the YK controller. The YK controller obtained was

K(s) =
−1013s2 − 2.533e04s− 3.162e05

s2 + 4061s− 2150
. (5.1)
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Figure 5.6: Representation of the step responses of the closed-loop systems for test 8.

The SSE obtained with the YK controller is SSEyp = 8.41× 10−11, when with the baseline controller

is SSELQG = 4.25× 10−5, which corresponds to an, approximately, 99% optimization.

Initial results were obtained with a starting seed value of 100 to ensure reproducibility of results.

However, subsequent experiments with different randomly selected seed values yielded similar results.

Regardless of the seed value used, the algorithm converged to the same minimum cost value. This

indicates that the performance and convergence behavior of the algorithm is robust and stable, showing

some degree of independence from the initial seed value. These results confirm the reliability and

consistent performance of the algorithm, even with random variations in the seed.

Test 9
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Figure 5.7: Gimbal angle φ band-limited white noise disturbance input for test 9.

This test is a parallel of “test 6” conducted in section 4.8 with a Youla controller instead of an LQG

63



controller, in which we input a random band-limited white noise disturbance for the gimbal angle φ, with

power 1 × 10−10 and time sample of 1s with seed [23341], as illustrated in figure 5.7. The thrust force

applied is a bang-bang profile force, illustrated in figure 4.23.

Figure 5.8 shows the comparison between the learning curve of the Episodic REINFORCE and the

constant cost of the baseline controller. The optimization started with a learning rate of η = 100 and

it was gradually adapted using the techniques detailed in section 3.2.1. After that, the parameter that

gives the minimum cost was found at ϕ2990 = −1012.5, which is consistent with the results obtained by

the solver Fminunc, that achieved a final value of, approximately, ϕ = −1012.
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Figure 5.8: Learning curve of the Episodic REINFORCE algorithm compared to the cost of the attitude LQG con-
troller for test 9.

As expected, when controlled, the gimbal angle input is around zero. The gimbal angle φ is the

difference between the sum of the disturbance signal with the control signal, as shown in figure 5.9(a),

and its derivative does not oscillate past the authorized range values.

The output angle θ for both controllers is depicted in figure 5.9(b), in which the Youla controller

provides an output angle that is less oscillatory and closer to the reference value. This result proves the

controller is compensating the random noise disturbance. The resulting 2-dimensional trajectory shown

in figure 5.10(b) controlled by the Youla controller has a significantly smaller horizontal deviation from

the vertical trajectory, than the one with the baseline controller, as proven in figure 5.10(a).

When compared with the baseline controller, the YK controller provides an SSE of around 1.0548 ×

10−8, which is an improvement of more than 99% from SSELQG = 4.32× 10−3.

Test 10

An extra test was carried out in light of the importance of wind in controlling the attitude of a rocket.

Using a Simulink block created to include white noise into the continuous system, band-limited white
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(a) Input noise and gimbal angle φ using the YK
controller compared to the LQG controller.
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Figure 5.9: Comparison of the controlled angles for test 9.
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x [m]

0

500

1000

1500

2000

2500

3000

3500

4000

z
 [

m
]

2D trajectory

LQG Controller

YK Controller

(b) 2-Dimensional trajectory of the rocket.

Figure 5.10: Comparison between the controlled trajectories using the YK or the LQG controller for test 9.

noise was added to the horizontal acceleration of the rocket within the nonlinear model to imitate real-

world circumstances. It had a seed value of [23341], a sample time (correlation time of noise) of 1, and

a power setting of 1× 10−4, for concordance with the closed-loop simulations carried out in section 4.8.

This wind factor was used in the study to take external factors’ effects on rocket attitude control into

consideration.

Figure 5.11 shows a comparison between the LQG controller’s constant cost and the learning curve

of the Episodic REINFORCE algorithm. The optimization began with a learning rate of 100 and grad-

ually adjusted, similarly to the previous experiments. The minimum was found at ϕ2733 = −1012.5,

corresponding to an SSE of 8.16 × 10−11. The solver Fminunc stopped at the parameter ϕ = −1011.99
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Figure 5.11: Learning curve of the Episodic REINFORCE algorithm compared to the cost of the attitude LQG
controller for test 10.

corresponding to an SSE of 9.57× 10−11. The baseline controller error is SSELQG = 4.26× 10−5, which

represents an, approximately, 99% optimization.

The gimbal angle input oscillates around zero as seen in figure 5.12, and its derivative does not

oscillate past the authorized range values of [−15,+15]◦. The controlled angle θ is closer to the reference

value using the Youla parameter than the baseline controller as proven in figure 5.13(a).

0 10 20 30 40 50 60

t[s]

-4

-2

0

2

4

6

8

10

A
n

g
le

 [
ra

d
]

10
-6 Input Gimbal Angle

Gimbal Angle Disturbance

LQG Controlled Gimbal

YK Controlled Gimbal

(a) Sum of input signals and controlled gimbal angle
φ.

26.5 27 27.5 28 28.5 29 29.5 30

t[s]

-1

-0.5

0

0.5

1

1.5

2

A
n

g
le

 [
ra

d
]

10
-6 Input Gimbal Angle

Gimbal Angle Disturbance

LQG Controlled Gimbal

YK Controlled Gimbal

(b) Close up of the input signals.

Figure 5.12: Input noise and gimbal angle φ using the YK controller compared to the LQG controller for test 10.

With the addition of horizontal wind on the second derivative of the position x on the Simulink in

figure 4.3 of the nonlinear model of the rocket, it is expected to have some horizontal deviation, even

with an optimized controller for the attitude angle, as one can see in figure 5.13(b). It is possible that the

cost function (2.2) mainly highlights the error between the reference and output attitude angle without
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Figure 5.13: Comparison between the attitude angle output for the YK and LQG controller, and representation of
the trajectory of the rocket for test 10.

explicitly considering other trajectory-related elements. Hence, the cost is optimized but the trajectory is

still deviated.

5.3 Reference Following Tests

This section presents the results of systems of different orders response to input signals such as a sum

of square waves of different frequencies that work as a reference. However, for the sake of brevity and

to provide a comprehensive analysis, one example of an unstable open-loop system with non-minimum

phase roots is shown here, while other case study is presented in Appendix A. The selected example

presented here serves as a representative case and provides valuable insight into reference tracking

and controller order reduction, for a more complex system.

The goal is to find the optimal transfer function that makes the Plant P (s) track the reference T (s).

The algorithm is equivalent to 5.1, but instead of a Simulink simulation of the rocket model, it is a

simulated time response of a dynamic system, with the MATLAB function lsim, of both the goal transfer

function T (s) and the closed-loop system. The cost function used is expressed in (2.3).

5.3.1 Results and Discussion

The input consisted of a sum of two square wave signals with different frequencies and amplitudes, to

provide a signal that has more information. For that, two square wave signals were generated. The first

square wave u0 has a period of τ0 = 15s, and a duration of 60s, in minimum increments of τ/64, but with

a chosen sampling time of 0.01s. The second wave u1 has the same settings but a period of τ1 = 40s.
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The final square wave signal is of the form

u(t) = (2u0 + u1)× (1× 10−3). (5.2)

Test 11

Consider the transfer function of the second order closed-loop control system T (s) and Plant P (s)

T (s) =
ω2

s2 + 2ξωs+ ω2
=

502

s2 + 2 · 0.7 · 50s+ 502
, P (s) =

s− 2

s(s+ 1)(s+ 3)
, (5.3)

that is an open-loop unstable system with a non-minimum phase root.

Now, we will perform the optimization of a baseline LQG controller that stabilizes the system using

the MATLAB solver Fminunc. Figure 5.14(a) shows the response of the controlled system to the impulse

compared to the reference response for α = 10, and the initial vector of parameters ϕ0 with a dimension

equal to 3. This shows that the controller stabilizes the system and follows the reference, with a steady-

state error equal to 1, as proven in figure 5.14(b).
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Figure 5.14: Optimization results obtained with Fminunc for test 11.

The same circumstances using the learning algorithm Episodic REINFORCE lead to similar results,

but very slowly. The response of the learning controller to the input signal is in figure 5.15(a), and

the learning curve is illustrated in figure 5.15(b), which shows the cost function is decreasing with the

iterations. Given the stochastic nature of the Episodic REINFORCE method, it is natural that a larger

vector of parameters ϕ that minimize the cost is more difficult and more time expensive to optimize. Also,

it is very unlikely to find the same final vector of ϕ as Fminunc, even initializing the random factors with

the same seed.
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Figure 5.15: Episodic REINFORCE algorithm results for test 11.

The step response of both closed-loop systems and the reference transfer function is depicted in

figure 5.16, where is possible to conclude that the inverted response of the closed-loop system obtained

by the Youla controller, despite the cost, is not as accentuated. The steady-state error is 1. The initial
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Figure 5.16: Step responses of the closed-loop systems compared to the step response of the reference system.

SSE of the baseline LQG controller is 0.035. The cost obtained using the solver Fminunc is 0.030 and

using Episodic REINFORCE is 0.032, which corresponds to a 13.15%, and 6.97% optimization ratios,

respectively.

The fact that the parameter ϕ is 3-dimensional will influence the number of base functions in the

Youla parameter Q(s) in (2.1). Hence, the output controller will be of order 6, which means we can try

to reduce its order using the technique in section 5.1.1. We will use this function to reduce the order of

both controllers to 2. Figure 5.17 shows the Bode diagrams of both reduced controllers, which proves
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that the frequency response is equivalent with 6 states removed.
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Figure 5.17: Bode diagrams of the reduced order controllers.

The new controllers obtained from Fminunc and the learning algorithm are

K(s) =
−951.9s2 − 4075s− 3353

s2 + 46.52s+ 2020
, Klearning(s) =

−221.4s2 − 1046s− 849.8

s2 + 39.89s+ 612
. (5.4)

The step responses of the reduced order closed-systems compared to the reference are illustrated

in figure 5.18(a).
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Figure 5.18: Results using the reduced controllers.
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Algorithm 5.1: Episodic REINFORCE Optimization Algorithm for the Rocket Model
P ←− rocket system()
s0

r0 ←− controller design(P )

Inputs: Maximum number of iterations (N ), initial vector of parameters ϕ (ϕ0), goal value of cost,
time vector, input signal, angle reference (θgoal), α, learning parameter (η)

Outputs: Final vector of parameters ϕ (vϕ), response of the controlled system (yf ), cost function
(J), the minimum cost (Jmin), minimum cost iteration (kmin), minimum value of optimization
parameter (ϕmin), the Youla parameter (Q), the YK controller (K), vector of learning rates (vη)

Define: vector of ϕ (vϕ), vector of learning rates (vη), adjustable parameters for adaptive η

for k = 1 to N do
for i = 1 to length(vϕ(k, :)) do

Compute equation (2.1) to obtain matrix Q(s):

Q(s)←− Q(s) + vϕ(k, i) ∗
(

α
s+α

)(i−1)

Compute controller in (2.5) using Q(s)

Run: Simulink of the rocket model

Output: Attitude angle θ

Compute closed-loop transfer function in (2.8) using Q(s)

Compute cost function as shown in (2.2):
J(k)←− sum((θgoal − θ).2)

if J < goal value of cost then
// Optimization completed

break

Perturb the parameter ϕ
ϕp ←− randn(1, length(vϕ(1, :)))

for i = 1 to length(vϕ(k, :)) do
Compute equation (2.1) to obtain the perturbed matrix Qp(s):

Qp(s)←− Qp(s) + (vϕ(k, i) + ϕpi) ∗
(

α
s+α

)(i−1)

Compute controller in (2.5) using Qp(s)

Run: Simulink of the rocket model

Output: Attitude angle θp

Compute closed-loop transfer function in (2.8) using Qp(s)

Compute cost function of the perturbed response as shown in (2.2):
Jp(k)←− sum((θgoal − θp).

2)

Adjust the learning parameter η with respect to the cost:

Compute percentage increase:
cost var ←− J(k)−J(k−1)

J(k−1) ∗ 100
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Algorithm 5.1: Episodic REINFORCE Optimization Algorithm for the Rocket Model (continued)
for k = 1 to N do

if cost var >= 100 then
// cost increased by an order of magnitude

Decrease the learning parameter η
flag ←− 1
rand factor ←− rand()

if rand factor >= 0.99 and flag = 1 then
flag ←− 0
// 1% of the times the algorithm is "blind" to cost increase

if k > (N −N ∗ 0.05) then
// The learning parameter reduces with the step when there are 5%

iterations left

vη(k)←− vη(k)/(N − (N − (N ∗ 0.05))

if η < minimum value of η then
η ←− minimum value of η

Detect the maximum and minimum values of cost (J) and save the correspondent value of
parameter (ϕ)

Normalize the step gain:
eta norm←− vη(k)/J(k)

if flag = 0 then
Update the parameter as in (3.4):
vϕ(k + 1, :)←− vϕ(k, :)− (eta norm) ∗ (Jp − J(k)) ∗ ϕp;

if flag = 1 then
// Next ϕ and current J go back to the previous value

vϕ(k + 1, :)←− vϕ(k − 1, :)
J(k)←− J(k − 1)

Run: Conjugate Gradient Method every 3 iterations
grad counter ←− grad counter + 1
if grad counter = 3 then

Update the parameter:
vϕ(k + 1, :)←− vϕ(k, :) + (vϕ(k, :)− vϕ(k − 2, :))
grad counter ←− 0

Save: file containing the learning data
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6.1 Conclusions

This thesis extends the results in [1] by applying the YP to more complex and unstable systems, and

using RL for feedback design systems when instability can disrupt the learning process, such as in real-

world systems. The YP guaranteed the stability and convexity needed to apply learning to the unstable

rocket model.

The decision to add an initial stabilizing LQG controller to the Youla controller (2.5) was of utmost

significance for complex systems. The LQG ensures stability and robustness during the initial stages of

control before the Youla controller, and both of these elements combined increase the total reliability of

the control system.

The YP can lead to additional complexity and increase the order of the control problem, and RL algo-

rithms typically struggle with high-dimensional action spaces. Since the number of possible actions in-

creases exponentially with dimensionality, RL algorithms, especially stochastic optimization algorithms,

often struggle to find an optimal policy in high-dimensional action spaces, which results in increased

convergence time.

The RL algorithm used represents a general class of stochastic algorithms called Episodic REIN-

FORCE. The lack of a general theory of convergence that applies to this class of algorithms, as well as

their apparent propensity for convergence to local minima, are the main disadvantages of REINFORCE

algorithms.

The MATLAB unconstrained optimization problem solver Fminunc was used to validate the results

obtained with the learning algorithm, since when both techniques can find the same solution it confirms

the reliability and validity of the reinforcement learning algorithm in solving the optimization problem.

When the REINFORCE algorithm does not converge to the same global minimum as the solver Fminunc

it is important to choose a better random initialization of the parameters ϕ or, in some cases, use a richer

input signal that provides both systems with more data for the optimization. In some circumstances,

increasing the number of REINFORCE algorithm iterations or the complexity of the Youla parameter Q

by increasing the parameter’s ϕ dimensionality until the order of the controller becomes unreasonable

may be able to make the optimization problem feasible.

Applying episodic REINFORCE to reinforcement learning tasks requires a thorough understanding

of the distinction between straightforward optimization problems, for which the algorithm can quickly

find efficient policies, and difficult optimization problems, which are challenging and call for advanced

techniques.

It was found that when the relationship between different policies and their cost function value is

smooth, i.e. does not present significant irregularities or local minima, it is easier for the REINFORCE

algorithm to converge to the global minimum. Furthermore, when the dimension of the optimization

problem is smaller the action space is also smaller, allowing for a more efficient search for the desired
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optima.

The rewards obtained from the environment may have high variance or contain significant amounts

of noise, which makes it harder for this class of REINFORCE algorithms to estimate the quality of the

actions and obtain stable, reliable updates, making the convergence slower.

Stochastic algorithms, such as Episodic REINFORCE, are sensitive to the initialization and random

noise factors during the optimization. Hence, it was found that testing different random initializations

with the Fminunc function prior to the REINFORCE optimization helped speed the process of finding a

suitable initialization.

A method discovered through research to speed the convergence and avoid getting stuck in local

minima consisted of finding a suitable learning rate and alternating between the REINFORCE update

and a traditional approach, such as the conjugate gradient method update. The use of a variation of

the conjugate gradient method, which is used to find the minimum of quadratic functions, resulted in

an 80% reduction of the convergence time in certain cases, since it helped the REINFORCE algorithm,

which relies on the randomness of each episode, to have a more efficient search within the optimization

environment.

Overall, the results of combining the YK parameterization with a learning algorithm were successful

to solve the proposed attitude control problem of landing an RLV, using a well-defined model and cost

function, as well as adding an initial stabilizing controller for robustness. It is encouraging to apply the

research of the YK parameterization presented in the literature to real-world circumstances because of

its reliability. However, the REINFORCE algorithm has to be strengthened to allow for confident learning

applications to hardware.

6.2 Future Work

Although some encouraging results have been found, there is still area for improvement and plenty of

potential for further, in-depth investigation. Some suggestions for future research are:

• Accounting for the fuel burn, derived in equation (4.6), that causes mass variation in the rocket

model control system, is essential for enhancing performance and stability. This also makes the

model more applicable to real-world situations, and safe.

• Some aerodynamic forces such as drag, i.e. the resistance encountered by the rocket as it moves

through the atmosphere, were ignored. Hence, future research would include a more complex

mathematical model for rocket landing.

• Currently, the rocket has an attitude controller and an altitude controller to ensure maintenance of

the nominal trajectory and a vertical landing. However, future developments may include the simul-
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taneous implementation of multiple controllers to improve the performance of the rocket. Specifi-

cally, additional attitude controls may be used to meet the specific requirements before and after

the “switch” time tON on the bang-bang thrust profile, when the rocket’s thrust is activated. This ap-

proach would provide more precise and efficient control over the attitude of the rocket throughout

its flight profile, and prevent heavy oscillations on the gimbal angle φ, for the first seconds.

• Expanding the research focus from SISO control systems to MISO control systems. By considering

multiple input variables and their effects on the system output, this extension allows for a more

comprehensive analysis of complex control systems, leading to more robustness, and improved

adaptation to real-world scenarios.

• The learning process requires a cost function that is more clearly defined, with specific penalties

and rewards for conditions that are significant to the optimization issue. Appropriate weights must

also be chosen to appropriately balance the respective importance of these costs.

• Further investigate the learning algorithm Episodic REINFORCE to make it more reliable for more

complex, high-order systems, less dependent on initial conditions, and test different techniques to

improve convergence.
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A
Extra Example

Consider the transfer function of the fourth-order closed-loop control system T (s) and third-order Plant

P (s)

T (s) =
8

s4 + 16s3 + 70s2 + 108s+ 80
, P (s) =

3s+ 6

s3 + 3s2 + 7s+ 5
. (A.1)

This example serves to demonstrate that it is possible to find all the stabilizing controllers that opti-

mize a high-order Plant P (s) to track a high-order reference T (s) as well, using the optimization algorithm

detailed in section 3.1 Fminunc.

Figure A.1(a) illustrates the controlled system’s response to the impulse in comparison to the refer-

ence response when α = 1, and the starting vector of parameters ϕ0 has dimension 4. This demon-

strates that the controller stabilizes the system and follows the reference, as seen in figure A.1(b), with

a steady-state error of 1.

The initial SSE of the baseline LQG controller is, approximately, 0.0016. The cost obtained using the

solver Fminunc is 1.93× 10−6, which represents a 99.87% cost optimization.
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Figure A.1: Optimization results obtained with Fminunc for a high-order system.
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