
Exploring the Limits of Cross-Platform Sparse Tensor Processing

Abstract
Sparse tensors are the natural way to store and represent

multi-dimensional data, but ensuring their efficient processing
is an important open challenge. Some tensor methods, like
Matricised Tensor Times Khatri-Rao Product (MTTKRP) and
Tensor Times Matrix (TTM), pose as major performance
bottlenecks for commonly used algorithms in many research
areas, especially when considering that most real-world data
is highly sparse. State-of-the-art optimisations tend to focus
on single-device vendor-specific implementations, which are
not applicable to modern heterogeneous systems with several
compute devices of different architectures, such as multi-core
CPUs, GPUs and FPGAs. To close this gap, in this work,
novel portable and highly data-parallel software approaches
and specialized FPGA architectures are proposed for the
most prominent sparse tensor methods (TTM and MTTKRP),
which allow for their efficient cross-platform SYCL-based
processing in modern heterogeneous systems at different
granularity levels. We also conduct an in-depth analytical
and experimental characterization of the processing upper-
bounds that these sparse tensor methods can achieve in multi-
core CPU, GPU, heterogeneous and FPGA-based processing
platforms from different vendors, achieving speedups of up
to 6× for TTM and 7× for MTTKRP, when compared to the
state-of-the-art approaches, and with the advantage of not
being device nor vendor specific.

Index Terms—Sparse Tensors, TTM, MTTKRP, SYCL, Hetero-
geneous Systems, Field Programmable Gate Array (FPGA)

1. Introduction
With the exponential increase in data consumption

worldwide, most major research areas are applying complex
algorithms to compute and extract information. A diverse
range of scientific areas such as healthcare [1, 2], machine
learning [3, 4], quantum chemistry [5, 6], social network
analytics [7], deep learning [8, 9] and cybersecurity [10]
show how spread the need is. However, data retrieved from
the real-world is commonly sparse and multi-dimensional,
therefore, attaining its efficient processing is far from a
trivial task [11]. Tensors, which are multi-way arrays,
provide a logical way to represent this multi-dimensional
data. Thus, the increased interest in optimising sparse
tensor computations. For example, modern approaches in
artificial intelligence, and neural networks, in specific the
ones used for deep learning, typically operate on large
multidimensional structures, e.g. images and videos [12]. To
mitigate the high memory and computing demands when
processing a large number of layers and parameters [13],

network [14] is typically applied, which introduces sparsity
in the computations at no significant accuracy loss.

Real-world tensors typically have huge storage require-
ments, with some can take up to petabytes [15]. However,
as aforementioned, they are also highly sparse. The sparsity
of these datasets impacts the performance when processing
them. Retrieving elements displaced throughout the tensor
diminishes possible reuse of the data, increasing the strain
on the memory. To face this challenge, a plethora of sparse
tensor storage formats are proposed, which aim at efficient
processing with reduced memory footprint [16, 17]. Some
of the more common storage formats are the Coordinate
(COO) format as well as the Compressed Sparse Fiber (CSF)
format [18].

Due to the large number of terms, processing, storing,
interpreting, or extracting patterns from a tensor can be
a challenge. Therefore, a common analysis of the tensor
takes the form of decomposing it into interpretable com-
ponents [19]. The two most prominent methods for tensor
decomposition are Tucker Decomposition [20, 21] and
Canonical Polyadic Decomposition (CPD) [11, 22]. The first
method decomposes a tensor into a core tensor and multiple
matrices, which correspond to different core scalings along
each mode. The second expresses a tensor as a sum of rank
one tensors. Both of these algorithms have a tensor method
as their performance bottleneck, for Tucker Decomposition
it is Tensor Times Matrix (TTM) and for CPD it is Matricised
Tensor Times Khatri-Rao Product (MTTKRP).

To reach unprecedented performance levels, contempo-
rary computing platforms rely on high level of heterogene-
ity, by combining the devices of different architectures into a
single execution environment. At almost every scale, from
embedded systems up to supercomputing environments,
modern computing platforms embrace multi-core Central
Processing Units (CPUs) and Graphics Processing Units
(GPUs) devices, with an evident rising trend in the use
of specialized architectures deployed in the FPGA fabric
on the road to pursuing energy-efficiency. As such, these
heterogeneous platforms offer a tremendous computing
power to address the challenges of efficient sparse tensor
computing. However, their capabilities for this kind of
processing are yet to be fully exploited.

From the vast amount of available architectures it is
non-trivial to pinpoint the characteristics and capabilities
that best suite the specific needs of sparse tensor computing.
State-of-the-art approaches, such as SPLATT [23] and ParTI
[24], predominately focus on providing single-device vendor-
specific implementations for sparse tensor computing, by de-
veloping complex algorithms and storage formats to fit the
hardware characteristics of the targeted processing device.
However, with the emerging heterogeneous systems, there



is an opportunity to exploit the variety of computational
architectures available. Recent attempts on heterogeneous
processing [25, 26] resort to vendor-specific frameworks,
hence limiting the devices that can be targeted.

A typical burden in employing the devices of different
architectures for efficient cross-device processing revolves
around the platform programability, efficiently exploiting
the capabilities of each device architecture and difficulty
in unifying different device-specific programming models,
frameworks and tools into a single processing environment.
For example, OpenMP and vector intrinsics for the CPU,
CUDA and HIP for the GPU and Verilog, VHDL and Xilinx’s
Vivado HLS for the FPGA. OpenCL is a notable attempt
to tackle the heterogeneous processing, but, even after
more than a decade of developments, its wide adoption is
yet to be evidenced, which is typically restrained by its
low level nature, limited adoption by major vendors and
inability to match the performance of hand-tuned codes
[27]. SYCL, however, is attracting attention precisely for
the simplicity offered when interacting with heterogeneous
systems. Modern systems have access to different kinds
of accelerators, with SYCL offloading computation per-
formed independently of which accelerator is being targeted,
enabling the possibility of utilising a single source code
in order to target multiple accelerators. Such portability
allied with performance on par with the current standards
[28], makes SYCL a potential standard in heterogeneous
computing.

The goal of this work is to explore the processing
upper-bounds for sparse tensor computing on modern CPU,
GPU and FPGA systems. With this aim, we propose a
set of portable, cross-platform and optimised SYCL-based
approaches for the most prominent sparse tensor methods,
i.e., TTM and MTTKRP, which allow for efficient data-
parallel and heterogeneous processing at different levels of
granularity. While these approaches allow to experimentally
uncover the performance limits of sparse tensor processing
for different architectures, performance modelling is also
applied to obtain these limits analytically. The key findings
and contributions of this paper are summarized as follows:

• Novel SYCL-based and optimised TTM and
MTTKRP approaches for programmable architec-
tures, namely CPU and GPU;

• Analytical and experimental methodology for uncov-
ering the limits of sparse tensor processing on CPU
and GPU, based on a set of specifically designed
synthetic sparse tensors;

• SYCL-driven specialized architecture design for
TTM and MTTKRP, deployed in the FPGA fabric;

• The first SYCL heterogeneous (CPU+GPU) frame-
work for sparse tensor computations;

• Extensive experimental campaign on devices from
different vendors showcasing that the proposed
approach outcomes the state-of-the-art solutions
by up to 5× for TTM, and 6× for MTTKRP.

TABLE 1: Notation used throughout the study

SlcCnt total number of slices in the tensor
FbrCnt total number of fibers in the tensor
NnzCnt total number of non-zero elements in the tensor
ColCnt total number of columns in the matrices
FbrPSlc number of fibers in a slice
NnzPSlc number of non-zero elements in a slice
NnzPFbr number of non-zero elements in a fiber

2. Background and Related Work
Tensors are multidimensional arrays which represent

high dimensional data. A tensor’s order is the dimensional-
ity of the array, e.g. a first-order tensor is a vector while a
second-order tensor is a matrix. Tensors of order greater
or equal than three are typically referred to as high-order
tensors. For simplicity, it is common to apply the term tensor
only to high-order tensors, while matrices and vectors
are referred to as low-order tensors [29]. Dimensions are
typically referred to as modes, so a tensor has as many
modes as its order, e.g. a third-order tensor has mode-zero,
mode-one and mode-two. A fiber is a vector formed by
fixing all modes of the tensor but one. As an example,
the fibers of a matrix are either its rows or its columns
depending on the mode fixed. Similarly, a slice is a matrix
formed by fixing all modes of the tensor but two.

High-order tensors have huge storage requirements
since they tend to have several millions of elements. In
sparse tensors, this issue becomes even more prevalent,
since zeros need not to be stored nor computed upon.
Therefore, state-of-the-art storage formats for sparse tensors
are optimised to minimise these requirements by, amongst
other techniques, not storing the zeros, hence also reducing
the number of memory accesses during computation. One
of the most widely used formats, and the one used for the
development of our implementations, is the CSF format [18].
This format is based on the idea of a tree like structure,
where each mode is a level and paths from root to leaf
encode a nonzero coordinate.

Furthermore, let us establish Table 1 as the notation for
the remainder of this study.

2.1. Tensor Methods
Two of the most prominent tensor methods/operations

are TTM and MTTKRP. The first belongs to the category
of Tensor Contractions (TCs), which are a generalisation
of General Matrix Multiplication (GEMM), while the latter
belongs to the category of Sequence Operations. The reason
for the relevance of these algorithms is their use as key part
in Tensor Decomposition, whose purpose is to approximate
a high-order tensor with lower-order tensors.

TTM is the analogue to GEMM, but with a K-th order
tensor instead of a second order one. Like in GEMM, all
fibers are multiplied against the matrix, hence consisting
of several vector-matrix dot products. Let us denote tensor
T ∈ RI×J×K and matrix M ∈ RK×F as input, with the
output being tensor O ∈ RI×J×F , then the TTM between
them can be expressed as follows:



Oijf =
∑

k

(
Tijk × Mkf

)
(1)

MTTKRP uses, as inputs, a K-th order tensor and K-1
matrices, and outputs a matrix. The tensor is matricised and
the matrices are used to compute a Khatri-Rao product. The
Khatri-Rao product is a column-wise Kronecker product.
The Kronecker product is a generalization of a matrix outer-
product. Given two matrices A ∈ RI×J and B ∈ RK×R their
Kronecker product is denoted by matrix C ∈ RIK×JR,

C = A ⊗ B =

a00B . . . a0JB
...

...
aI0B . . . aIJB

 (2)

Given two matrices A ∈ RI×R and B ∈ RJ×R their
Khatri-Rao product is denoted by matrix C ∈ RIJ×R,

C = A ⊙ B =
[
a:0 ⊗ b:0 . . . a:R ⊗ b:R

]
(3)

Matricisation is a kind of reshaping that flattens all
tensor’s modes but one, hence changing the tensor to
a second-order one, in other words, a matrix. MTTKRP
consists of a GEMM between the matricised tensor and the
Khatri-Rao product of K – 1 matrices with same number
of columns, where K is the order of the tensor before
matricising. Given K–1 matrices with R columns the Khatri-
Rao product of these is a matrix U ∈ RM0...MK–2×R and
the output of the MTTKRP is a matrix V ∈ RMK–1×R.

For sparse MTTKRP, from the mode indexes of each
nonzero element it is possible to extract the row of the
output the element contributes to and the rows of the
matrices that the element multiplies with. Since it is
possible to compute each element’s individual contribution
to the output without having to compute neither the
matricised tensor nor the Khatri-Rao products, in order
to avoid redundant computation and extra storage, these
formulations tend to not be implemented directly but rather
integrated into tensor operations.

State-of-the-art implementations tend to focus on one of
two different approaches. ParTI [24] distributes the non-zero
elements across the threads for processing, thus ensuring
load-balance. However, this approach then requires syn-
chronisation to reduce each thread’s contribution. SPLATT
[23], on the other hand, does the workload distribution,
for MTTKRP, slice-wise, hence avoiding atomics and locks.
We follow a similar strategy to the one used by SPLATT,
however we expand our approach to work on more devices
from multiple vendors.

2.2. Heterogeneous Programming Model
For this study, we target three different architectures:

CPU, GPU and FPGA. The first, being designed to increase
Instruction-Level Parallelism (ILP), is better suited for
coarse-grained parallelism, which also makes better use
of the cache hierarchy present in the architecture [30].

The GPU, with its massively parallel architecture, is in-
stead better suited for fine-grained parallelism through
multi-threaded execution [31]. Lastly, the FPGA, being
a re-configurable device [32], exploits spatial parallelism,
reducing the control overhead an improving the efficiently
usage of the hardware resources.

To exploit the full capabilities of these architectures,
commonly available in modern heterogeneous systems, a
developer is forced to be familiar with a wide spectrum
of APIs, frameworks and languages. For example, OpenMP
[33] and vector intrinsics for the CPU, CUDA and HIP for
the GPU or Verilog, VHDL and Xillinx’s Vivado HLS for
the FPGA. To avoid this burden, a unifying programming
model that allows the development of cross-platform code
is required. Khronos SYCL provides the desired model,
ensuring both portability and comparable performance to
other solutions [28, 34], so much that it can be considered
a future standard for heterogeneous computing.

SYCL defines an abstract Single Program Multiple Data
(SPMD) programming model where developers program
at a higher level than the native acceleration Application
Programming Interface (API), but always have access to
lower-level code that enables having a single-source code
targeting any accelerator. However, in order for a developer
to take the most performance out of an accelerator, the code
must be adapted to the susceptibilities of that accelerator’s
architecture. There are many SYCL implementations, with
Intel’s OneAPI DPC++ being one of the most actively
developed open-source implementations.

2.3. Performance Modelling with CARM
Cache Aware Roofline Model (CARM) is an insightful

architecture performance model, which provides an intuitive
way of visually representing the limits of the performance
of the architecture, considering the computational cores and
the memory system [35]. From an architecture perspective,
the overall execution of a program can be mainly limited
either by the processor computation capabilities or by
the capabilities of the memory subsystem. By relying on
this observation, CARM models the performance upper-
bounds for a given architecture in respect to the amount
of performed computations over the amount of requested
data (bytes), i.e., Arithmetic Intensity (AI). CARM explicitly
considers all levels of memory hierarchy by observing the
complete amount of requested data. The AI and performance
can be differently expressed depending on the number
of operations performed (Nops) and the number of bytes
accessed in the memory. Since all data types used in this
work are 4-byte wide, the AI can be expressed by (4).

AI =
1
4
×

Nops

Nloads + Nstores
(4)

3. Exploring Sparse Tensor Processing on
General-Purpose Architectures

We propose herein a SYCL-based approach for sparse
tensor TTM and MTTKRP processing based on the CSF



TABLE 2: Arithmetic Intensity (AI) on Programmable Architectures

Element-Centric TTM Fiber-Centric TTM Element-Centric MTTKRP Row-Centric MTTKRP
Nops 2 × NnzPFbr 2 × ColCnt × NnzPFbr 2 × (FbrPSlc + NnzPSlc) 2 × ColCnt × (FbrPSlc + NnzPSlc)

Nloads 2 + 3 × NnzPFbr 2 + NnzPFbr × (ColCnt + 2) 3 × (1 + NnzPSlc + FbrPSlc) (ColCnt + 2) × (FbrPSlc + NnzPSlc) + 3
Nstores 1 ColCnt 1 ColCnt
AImin 1/12 1/12 1/10 1/10
AImax 1/6 1/2 1/6 1/2

storage format. This format, when compared to COO, tends
to require less memory accesses by condensing shared
indexes, hence delivering more performance for methods
that are typically memory bound. To allow for an in-depth
assessment of the performance upper-bounds for parallel
sparse tensor computing on CPU and GPU architectures,
we tackle two different levels of processing granularity, i.e.,
element-centric and fiber-centric sparse tensor execution.

3.1. Tensor Times Matrix
The proposed Element-Centric TTM processing assigns

each thread to compute one element of the output. There-
fore, each thread requires access to one fiber and to one
column of the matrix. This approach attempts to maximise
parallelism through a 2D kernel that generates one thread
for each independent task, thus avoiding synchronisation
between threads.

1 range <2> globalSize(fbrCnt , colCnt);
2 range <2> localSize(1, colCnt);
3 nd_range <2> numItems(globalSize , localSize);
4

5 event e { q.submit ([&]( handler &h) {
6 h.parallel_for(numItems ,
7 [=]( nd_item <2> item) {
8 const auto fbr { item.get_global_id (0) };
9 const auto col { item.get_local_id (1) };
10 auto tmp { 0.0f };
11

12 for (auto ele { accFbrPtr[fbr] };
13 ele < accFbrPtr[fbr +1]; ++ele) {
14 const auto k {
15 (accKIdx[ele]-1)*colCnt };
16 const auto val { accValues[ele] };
17 tmp += val * accMatrix[k+col];
18 }
19

20 accOutput[fbr*colCnt+col] = tmp;
21 });
22 }) };

Listing 1: Element-Centric TTM

Listing 1 presents the SYCL kernel of the proposed
approach. Every thread starts by loading the boundaries
of its assigned fiber (lines 12-13). Then for each non-zero
element in that fiber, the threads loads its index and value
(lines 14-16). The index specifies which element of the
assigned column is to be loaded, while the value is computed
against that same element (line 17). When all elements in
the fiber have been computed, the accumulated result is
stored to global memory (line 20).

The AI of each thread, depicted on Table 2, may differ
depending on NnzPFbr. However, it will always range

between a minimum and a maximum value, which can
be calculated. The minimum can be achieved when the
fiber has the least possible number of non-zero elements,
which is one. Inversely, the maximum can be achieved when
NnzPFbr is at its highest.

Another approach to efficiently extract data-parallelism
in TTM processing is to assign each thread to compute an
entire fiber of the output (instead of a single element). In this
approach, each thread still requires access to one fiber, but
now it also requires access to the whole matrix instead of
just a column (as previously elaborated in Element-Centric
TTM). We refer to this approach as Fiber-Centric TTM.

1 range <1> globalSize(fbrCnt);
2 range <1> localSize(wgSize);
3 nd_range <1> numItems(globalSize , localSize);
4

5 event e { q.submit ([&]( handler &h) {
6 h.parallel_for(numItems ,
7 [=]( nd_item <1> item) {
8 const auto fbr { item.get_global_id (0) };
9 float tmp[colCnt ];
10

11 for (auto col { 0 }; col < colCnt; ++col){
12 tmp[col] = 0.0f;
13 }
14

15 for (auto ele { accFbrPtr[fbr] };
16 ele < accFbrPtr[fbr +1]; ++ele) {
17 const auto k {
18 (accKIdx[ele]-1)*colCnt };
19 const auto val { accValues[ele] };
20

21 for (auto col { 0 }; col < colCnt;
22 ++col) {
23 tmp[col] += val*accMatrix[k+col];
24 }
25 }
26

27 for (auto col { 0 }; col < colCnt; ++col){
28 accOutput[fbr*colCnt+col] = tmp[col];
29 }
30 });
31 }) };

Listing 2: Fiber-Centric TTM

The SYCL kernel presented in Listing 2 is based on
a 1D kernel. This approach enforces consecutive accesses
to the matrix’s row at the expense of granularity. Every
thread also starts by loading its fiber boundaries (lines 15-
16) as well as the index and value for each of the non-zero
elements within those boundaries (lines 17-19). Then, each
of the indexes specifies one of the matrix’s rows. That row
is loaded and computed against the value of that same
non-zero element (lines 21-24). When all elements in the



fiber have been computed, the accumulated results for all
columns are stored to global memory (lines 27-29).

Each thread’s AI, Table 2, is now not only dependent
on NnzPFbr but also on ColCnt. Therefore, the minimum
AI can be achieved when NnzPFbr and ColCnt are both,
simultaneously, at their lowest. While the maximum can
be achieved when they are both at their highest.

3.2. Matricised Tensor Times Khatri-Rao Product
For the proposed Element-Centric MTTKRP, the ap-

proach is analogue to the one presented for Element-Centric
TTM processing. Each thread computes one element of the
output, therefore each thread is assigned with one slice
of the tensor, one column of matrix1 and one column of
matrix2. Note that these columns must match, e.g. a thread
gets column zero on both matrices. We call this approach
Element-Centric MTTKRP.

1 range <2> globalSize(slcCnt , colCnt);
2 range <2> localSize(1, colCnt);
3 nd_range <2> num_items(globalSize , localSize);
4

5 event e { q.submit ([&]( handler &h) {
6 h.parallel_for(num_items ,
7 [=]( nd_item <2> item) {
8 const auto slc { item.get_global_id (0) };
9 const auto col { item.get_local_id (1) };
10 auto inB { 0.0f }, inC { 0.0f };
11

12 for (auto fbr { accSlcPtr[slc] };
13 fbr < accSlcPtr[slc +1]; ++fbr) {
14 const auto j {
15 (accFbrIdx[fbr]-1)*colCnt };
16

17 for (auto ele { accFbrPtr[fbr] };
18 ele < accFbrPtr[fbr +1]; ++ele){
19 const auto k {
20 (accKIdx[ele]-1)*colCnt };
21 const auto val { accValues[ele] };
22 inC += val*accMatrix2[k+col];
23 }
24

25 inB += inC*accMatrix1[j+col];
26 inC = 0.0f;
27 }
28

29 accOutput[slc*colCnt+col] = inB;
30 });
31 }) };

Listing 3: Element-Centric MTTKRP

In Listing 3, we present a 2D Kernel that aims at
exploiting parallelism by assigning each thread one indepen-
dent computation. Each thread starts by loading the slice
boundaries (lines 12-13) followed by the fiber’s boundaries
and index for each fiber within the assigned slice (lines
14-18). For each non-zero element on the current fiber,
both the element’s index and value are loaded (lines 19-21).
This is repeated for every fiber in the slice, hence being
done for every single non-zero element in the slice. From
the assigned column in the matrices, the fiber and element
indexes specify, respectively, the elements to be loaded from
matrix1 and matrix2. Each non-zero element is computed
against the corresponding element of matrix2’s column

(line 22). The accumulated result of the non-zero elements
in a fiber are computed against that fiber’s corresponding
element of matrix1’s column (line 25). After all fibers in
the slice have been computed, their accumulated result is
stored to global memory (line 29).

From Table 2, it is possible to observe that a thread’s
AI is dependent on FbrPSlc and NnzPSlc. The minimum
AI attainable by a thread happens when NnzPSlc is the
smallest it can be, meaning one. This forces FbrPSlc to also
be one as the only fibers with at least one non-zero element
are stored. On the other hand, the maximum achievable AI
is attained when (FbrPSlc + NnzPSlc) is large enough to
mitigate the number of loads and stores.

1 range <1> globalSize(slcCnt);
2 range <1> localSize(wgSize);
3 nd_range <1> num_items(globalSize , localSize);
4

5 event e { q.submit ([&]( handler &h) {
6 h.parallel_for(num_items ,
7 [=]( nd_item <1> item) {
8 const auto slc { item.get_global_id (0) };
9 float inB[colCnt], inC[colCnt ];
10

11 for (auto col { 0 }; col < colCnt; ++col){
12 inB[col] = inC[col] = 0.0f;
13 }
14

15 for (auto fbr { accSlcPtr[slc] };
16 fbr < accSlcPtr[slc +1]; ++fbr) {
17 const auto j {
18 (accFbrIdx[fbr]-1)*colCnt };
19

20 for (auto ele { accFbrPtr[fbr] };
21 ele < accFbrPtr[fbr +1]; ++ele){
22 const auto k {
23 (accKIdx[ele]-1)*colCnt };
24 const auto val { accValues[ele] };
25

26 for (auto col { 0 }; col < colCnt;
27 ++col) {
28 inC[col] += (
29 val*accMatrix2[k+col] );
30 }
31 }
32

33 for (auto col { 0 }; col < colCnt;
34 ++col) {
35 inB[col] += (
36 inC[col]* accMatrix1[j+col] );
37 inC[col] = 0.0f;
38 }
39 }
40

41 for (auto col { 0 }; col < colCnt; ++col){
42 accOutput[slc*colCnt+col] = inB[col];
43 }
44 });
45 }) };

Listing 4: Row-Centric MTTKRP

Data-parallelism can also be efficiently extracted in
MTTKRP processing by assigning to each thread the en-
tirety of both matrices. This makes each thread responsible
for the computation of a whole output row, instead of a
single element as happened in Element-Centric MTTKRP.
We call this approach Row-Centric MTTKRP.



The differences between the approach in Listing 4 and
the Element-Centric one lie in the loads from the matrices,
the stores and the number of operations. Our Row-Centric
approach creates a 1D Kernel with as many threads as there
are slices in the tensor. For each fiber in the assigned slice,
one row of matrix1 is loaded (lines 33-38), which leads to
ColCnt Multiply-Accumulates (MACs) per fiber. Similarly,
for each non-zero element, one row of matrix2 is loaded
(lines 26-30), which leads to ColCnt MACs per element.
Finally, each thread computes one row of the output (lines
41-43), therefore the number of stores is ColCnt.

As presented in Table 2, the AI now also depends on
ColCnt. To minimise the AI, ColCnt and (FbrPSlc+NnzPSlc)
must be at their minimum. The minimum ColCnt is one
and reflects the scenario where the matrices are actually
vectors. For NnzPSlc, it is also one and enforces FbrPSlc=1,
since only fibers with at least one non-zero element are
stored. Inversely, maximising the AI requires ColCnt and
(FbrPSlc + NnzPSlc) to be as large as possible.

3.3. Heterogenous Approach
To develop an heterogeneous implementation for TTM

and MTTKRP, since we already have two kernels for each
method, the greatest challenge is to decide on how to split
the workload across the targeted architectures. The first
step is the creation of multiple SYCL queues, one for each
device, as can be observed in Listing 5. Then to decide on
the strategy for the workload distribution. We developed
two different strategies: one is a pure static distribution,
the other is what we call an adaptive static distribution.

1 std::vector <device > D{ device(cpu_selector_v),
2 device(gpu_selector_v) };
3

4 std::vector <queue > Q;
5 for (auto d : D) Q.push_back(queue(d));

Listing 5: Queue creation for Heterogeneous Approach

For the purely static approach, we submit the corre-
sponding workload to each one of the queues, with the
workload being the the fibers to process for TTM or the
slices for MTTKRP. This approach may lack load balance,
if the number of non-zero elements in the fibers or the
number of fibers in the slices differ. Also, without prior
knowledge over the architectures present in the system,
the proportion in which the workload is distributed may
be inadequate for the devices’ computational capabilities.

The second starts by splitting the workload in two
portions, with the workload, once again, being either the
fibers or the slices depending on the method. One portion
consists of 10% of the data. This smaller portion is divided
in equal parts and processed by the devices. When all
devices are done, the execution time of each is measured
and used to define the adequate proportion the distributing
the remaining workload. The other portion, consisting of
90% of the data, is then split according to the derived
proportion. While the adaptive approach allows for better
workload distribution in general, it requires the first 10% of
the data to be processed serially in relation to the remaining

90%. When compared to the purely static approach, this
tends to be better unless the static distribution is already
very close to the one derived by the adaptive approach.

4. Exploring Sparse Tensor Processing on
Specialised Architectures

Unlike the general-purpose architectures, the design
deployed in the FPGA is not fixed. It is instead defined
depending on the target algorithm, therefore the analysis of
these specialized architectures requires different methodol-
ogy. It consists of theoretically computing both the AI and
peak performance of the implemented designs. By relying
on this analysis and the CARM concepts, it is expected to
confirm the bottlenecks and test the utilization limits.

On the FPGA, typically the operations performed by
the Digital Signal Processings (DSPs) are considered to
determine the Peak Performance. Depending on the design
and operation being executed, the operating frequency and
percentage of available resources for the actual design may
change, hence soft-logic is not considered for the sake of
a fair comparison. Throughout this study, we assume the
resource limiting the number of Processing Elements (PEs)
is the amount of DSPs available on the FPGA.

4.1. Tensor Times Matrix
Our design for TTM processing on the FPGA is depicted

in Figure 1a, which is organized in a similar fashion
as the previously elaborated kernels for general-purpose
architectures. For each fiber in the tensor, it loads the fiber
boundaries. Then, for each non-zero element in the fiber,
it loads the index and value of that element. Finally, a row
of the matrix is loaded and computed against the element.
When all elements of the current fiber have been computed,
the output fiber is stored to global memory.

The main bottleneck of this design is the number
of loads, specifically the ones from the matrix. For each
non-zero element, a full row is loaded. However, due to
the absence of cache hierarchy, even if the same row is
requested by one of the following elements, that row will
always have to be loaded again. To overcome this challenge,
we resorted to the FPGA on-chip memory. By loading the
whole matrix to this faster memory before starting the
computations, it is possible to reduce the average access
time to data in the matrix. However, it comes with a trade-
off, as matrices for real-world datasets tend to be very large,
the amount of resources used is greater, which causes the
design to either not fit in some FPGAs or to be constrained
to a maximum amount of columns in the matrix. It is
important to notice that adjusting the unroll factor, can also
contribute to providing certian flexibility between resource
utilisation and performance.

The AI of this design depends on the characteristics of
the tensor as well as the number of columns in the matrix.
The total amount of loads associated with the tensor are
FbrCnt + 1 for the fiber boundaries and 2 × NnzCnt for the
non-zero indexes and values. The loads associated with
the matrix are NnzCnt × ColCnt, as one row is loaded per



TABLE 3: AI on Specialised Architectures

TTM MTTKRP
Nops 2 × ColCnt × NnzCnt 2 × ColCnt × (FbrCnt + NnzCnt)

Nloads FbrCnt + NnzCnt × (ColCnt + 2) + 1 SlcCnt + 2 + (ColCnt + 2) × (FbrCnt + NnzCnt)
Nstores FbrCnt × ColCnt SlcCnt × ColCnt
AImin 1/12 1/10
AImax 1/2 1/2
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Figure 1: Diagram of Processing Element

non-zero element. There are FbrCnt × ColCnt stores and
NnzCnt×ColCnt MACs, meaning twice as much operations.

From Table 3, it is possible to minimise and maximise the
AI by changing the tensor’s characteristics. To minimise it,
one must decrease the number of operation while increasing
the number of loads and stores. This means NnzCnt and
ColCnt are at their minimum and FbrCnt is at its maximum.
For the first two, the minimum is one, i.e., one non-zero
element in the tensor and a matrix with one column (vector).
As for the latter, since only fibers with at least one non-zero
element are stored, the maximum is as many fibers as non-
zero elements, which in this case is also one. Consequently,
for the maximum, both NnzCnt and ColCnt must be as large
as possible (to perform more operations), while FbrCnt must
be as small as possible (to decrease the number of data
movements), i.e., one fiber holding all non-zero elements.
Finally, we analyse the maximum attainable performance
by this Processing Element PE and how it compares to the
total FPGA Peak Performance. This design uses one DSP for
every column of the matrix, therefore one PE uses ColCnt
DSPs and performs 2 × ColCnt operations per cycle.

4.2. Matricised Tensor Times Khatri-Rao Product
Our design for MTTKRP processing on the FPGA is

depicted on Figure 1b. Although introducing another layer
of depth with the inclusion of slices, it is similar to the
design presented for TTM processing. For each slice in the
tensor, it loads the slice boundaries. Then for each fiber
in the slice, it loads that fiber’s boundaries and for each

non-zero element within the fiber, it loads the index and
value of that element. Next, a row of matrix2 is loaded and
computed against the element. When all elements of the
current fiber have been computed, the accumulated results
of all elements are computed against a row of matrix1. Once
the current slice has no more fibers to process, the output
row is stored to global memory.

In this design, the AI depends on the tensor character-
istics and the number of columns in the matrices. The total
amount of loads associated with the tensor are SlcCnt+1 for
the slice boundaries, 2×FbrCnt + 1 for the fiber boundaries
and indexes and 2 × NnzCnt for the non-zero indexes and
values. The total amount of loads for the matrices are
FbrCnt × ColCnt for matrix1 and NnzCnt × ColCnt for
matrix2. Whenever a fiber is processed, a row from matrix1
is loaded and whenever a non-zero element is processed,
a row from matrix2 is loaded. There are SlcCnt × ColCnt
stores and 2 × ColCnt × (FbrCnt + NnzCnt) operations. For
each fiber, ColCnt MACs and for each non-zero element,
ColCnt more MACs.

Table 3 provides some insight on how the dataset affects
the AI of the design. The AI is at its lowest when NnzCnt
and ColCnt are at their minimum, i.e., one. Since there is
only one non-zero element this causes SlcCnt and FbrCnt to
also be one, as only slices and fibers with at least one non-
zero element are stored. As for the maximum AI, ColCnt
and (FbrCnt + NnzCnt) must be as large as possible. On
the other hand, SlcCnt must be as small as possible in
order to decrease the number of loads, i.e., all non-zero



elements are in the same slice. In what concerns its peak
performance, this design uses two DSPs for every column
of the matrices, therefore one PE uses 2 × ColCnt DSPs
and performs 4 × ColCnt operations per cycle.

5. Experimental Results
A direct performance comparison between the previ-

ously elaborated data-parallel approaches, for TTM and
MTTKRP, also depends on factors other than the kernels’
AI ranges, such as the processing capabilities of the device
performing the computations (e.g., multi-core CPU or GPU),
as well as on the characteristics of the sparse tensor dataset
under evaluation. Therefore, we aim at describing the
behaviour of the aforementioned kernels as well as un-
covering their performance upper-bounds. For this purpose,
we construct a set of synthetic sparse tensors in such a
way that the worst-case and best-case performance can be
attained. These synthetic best-case and worst-case sparse
tensors are constructed based on the AIs, on Table 2, as
well as on the architectures of the CPU and GPU devices.

To identify the performance upper bounds, it is nec-
essary to create a tensor that enforces load-balancing as
well as data locality. Hence, the prime candidate to achieve
maximum performance of the TTM kernels is a semi-sparse
tensor. This tensor is sparse in all its dimensions except
for one, meaning there are several dense fibers sparsely
scattered across the tensor. For the MTTKRP kernels, the
tensor that maximizes the performance consists of several
dense slices sparsely scattered across the tensor.

Following a similar reasoning as for the best-case, it is
also possible to determine the performance lower bound
on both CPU and GPU architectures. The strategy followed
herein aims at analysing the worst-case scenario under the
condition that the full utilization of processing resources is
attained with a data distribution in the specifically created
synthetic sparse tensor that hinders performance. The
idea behind the worst-case scenarios is to prevent any

Figure 2: CARM for TTM on the CPU

data reuse, thus limiting the kernel’s performance to the
lowest bandwidth available on the architecture. To further
accentuate the worst-case performance scenario, a lower AI
is also desirable, hence a synthetic worst-case sparse tensor
must have long fibers, each with a single non-zero element.
It is worth noting that the non-zero elements are displaced
across fibers in such a way that they do not allow for any
reuse of the matrix elements. For MTTKRP, the worst-case
tensor follows a similar pattern, i.e., large slices with a
single fiber (conversely, a long fiber with a single non-zero
element). In addition, both fibers and non-zero elements
are displaced across the slices and fibers, respectively.

We also analyse our implementations with real-world
execution scenarios. We performed tests on an Intel Core i9-
11900KB multi-core CPU (16 threads at 3.30 GHz), with an
integrated GPU, Intel 11th Gen UHD Graphics (32 Execution
Units at 1.45 GHz). For the FPGA device, we used Intel
Arria 10 GX 1150, with 427200 Adaptive Logic Modules
(ALMs), 1708800 Registers and 1518 DSPs with a maximum
frequency of 450 MHz. All experiments refer to the single-
precision floating-point data and the performance numbers
are averaged over five runs. Real-world sparse tensors from
the FROSTT dataset [36] are shown in Table 4.

5.1. CPU Results
Figure 2 portrays the CARM characterisation of both

our TTM kernels. The highlighted zone represents the AI
range for the kernels and, from it, it is possible to observe
that the kernels are memory bound for all memories except
for L1 cache. It is important to notice that the performance
for tensors nell-2 and vast-3D is within the range defined by
the upper and lower bounds as expected. For MTTKRP, the
performance attained for real-world tensors is also within
the ranges defined by the best and worst-case scenarios,
as can be observed in Figure 3. Tensor vast-3D provides
better locality in the more frequent accesses to matrix2,
hence providing a better utilisation of the cache hierarchy

Figure 3: CARM for MTTKRP on the CPU



TABLE 4: Description of used sparse tensors

SlcCnt FbrCnt NnzCnt Mode 0 Mode 1 Mode 2
vast-3D 165 427 26 021 945 165 427 11 374 2
nell-2 12 092 337 365 76 879 419 12 092 9 184 28 818
nell-1 2 902 330 17 372 417 143 599 552 2 902 330 2 143 368 25 495 389

Figure 4: CARM for TTM on the GPU

in the CPU, which justifies the better performance when
compared to the one attained in tensor nell-2. It is worth
noting that on the CPU, compiler optimisations, namely
the vectorisation of kernel loops, are important for both the
AI and performance. For that reason, the Element-Centric
approach is the one that performs better for both methods
as the other approaches do not attain loop vectorisation.

Figure 5: CARM for MTTKRP on the GPU

Figure 6: TTM performance on FPGA for varying number
of columns

5.2. GPU Results

TTM and MTTKRP, on the GPU, are memory bound for
all memories in the system, hence AI and memory access
pattern are the determining factors for the performance
on each dataset. From the CARM characterisation for TTM
present on Figure 4, tensor nell-2 achieves an AI and
performance close to the best-case scenario, only short
due to the lack of data locality. On the other hand, tensor
vast-3D achieves AI and performance close to the worst-
case scenario, slightly better due to the matrix fitting in L3
cache. For the MTTKRP characterisation on the same device,
Figure 5, the AI is close to the theoretical maximum for both
datasets. Performance-wise, tensor vast-3D has displaced
accesses to matrix1 and localised accesses to matrix2, in
opposition to tensor nell-2, whose accesses are displaced for

Figure 7: MTTKRP performance on FPGA for varying
number of columns



Figure 8: Speed Up over State of the Art

both matrices. Thus, the implementations achieving better
performance for the tensor vast-3D.

5.3. FPGA Results
We deployed an tested our TTM and MTTKRP designs

on a FPGA. Figures 6 and 7 portray the performance for
these designs with a varying number of columns on the
matrices. For TTM, we include the results for tensors vast-
3D and nell-2. We also include, for tensor nell-2, the results
for the same design with the matrix being loaded to on-chip
memory before the computation. Performance increases
exponentially for ColCnt ≤ 32, since it is the maximum
data-width the FPGA’s load units can load in a single cycle.
For the on-chip memory version, performance is always
better than its counterpart, however the FPGA can only fit
the design for ColCnt ≤ 16. For MTTKRP, we also include
results for tensors vast-3D and nell-2 with the performance
displaying a similar, exponential, behaviour. The reason for
the exponential growth of performance lies in the FPGA’s
programmable hardware. The number of DSPs in the design
is adjusted to the number of columns in the matrices. There
is, naturally, a limit to how many DSPs can be used.

In regards to the resource utilisation, it varies depending
on the number of columns in the matrices. For ColCnt = 16,
our first TTM design uses the following resources: 86033
ALMs, 129422 registers, 527 RAM blocks and 16 DSPs. While
our design with on-chip matrix uses 85341 ALMs, 130635
registers, 1549 RAM blocks and 16 DSPs. When compared
the major difference is, as expected, in the number of
RAM blocks, since these are used to store the matrix. Our
MTTKRP design uses 97834 ALMs, 143979 registers, 590
RAM blocks and 32 DSPs. Comparing to our first TTM
design, it is important to notice the number of DSPs used
doubles, as can be observed on Figure 1.

5.4. Comparison with Related Works
We focus herein in comparing our implementations to

some of the state-of-the-art implementations, SPLATT [23]
for MTTKRP on the CPU and ParTI [24] for both methods
on CPU and GPU. From our implementations, we decided
on the Element-Centric TTM and MTTKRP. These provide
better performance across the tested datasets and devices.
For modern CPU architectures, we resorted to Intel Core
i9-11900KB and to AMD EPYC 7B13. For GPU architectures,

we had to resort only to Nvidia A100 - 40GB, since the state-
of-the-art implementations are in vendor-specific CUDA.

Figure 8 portrays the average speed up of our imple-
mentation over the state-of-the-art implementations for
the datasets presented in Table 4. For each of the tensors,
we measured execution times with different numbers of
columns in the matrices. As can be observed, our implemen-
tation achieves better performance on both CPUs, except
for TTM on tensor Vast-3D. This tensor has a single non-
zero element per fiber, thus there is no advantage in using
the CSF format over the COO format (used by ParTI).

Nvidia GPUs imposed further limitations when running
our SYCL kernels. Besides the already present limit in
the number of threads per work-group, a limit in the
number of work-groups is also imposed. This forced our
implementation to launch multiple kernels for a single
tensor, hence hindering the performance. Still, it is possible
to observe that for the tested datasets our implementation’s
performance is either comparable or better than the state
of the art (up to 6×).

6. Conclusion
The main goal of this study was to delve into sparse

tensor computations, namely TTM and MTTKRP, on het-
erogeneous systems. To achieve that, a detailed analysis
of the algorithms’ behaviour on the most common com-
putational architectures was made. For the programmable
devices, we exploited the available parallelism and data
locality in memory accesses. To provide further insight
on the algorithms, we built a set of synthetic tensors to
validate our AI and performance predictions. This study,
also featured designs for specialised architectures, which,
by utilising their programmable hardware, are the most
scalable implementation. Experimental results have shown
the proposed sparse tensor methods can achieve, in multi-
core CPU, GPU, heterogeneous and FPGA-based platforms,
speedups of up to 6× for TTM and 7× for MTTKRP, when
compared to the state-of-the-art approaches. Developing
our implementations in SYCL assures portability, while
creating a heterogeneous solution. While there is always
potential for more optimisation, this study corresponds to
a significant step towards sparse tensor computations on
heterogeneous systems.
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