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In this work Bell polytopes and quantum correlations were explored for Semi-Device Quantum Key
Distribution (SDI QKD). To that end, different new Bell polytope were explored in order to find new Bell
inequalities that show promise in quantum communications. We present a first complete description of
the polytopes (6,3,2,2) (3,3,3,2) and (3,2,3,3) and an incomplete description of the polytopes (2,2,4,4),
(3,3,2,4) and (4,3,3,2). For every inequality generated we provide some properties of interest, namely
the quantum bound, the minimum detector efficiency to close the detection loophole and an upper
bound on the dimension the states necessary to achieve the maximum quantum score. We explored
how these inequalities performed under an SDI QKD setting. This protocol was performed under a
dimension bound, where the system shared between Alice, Bob and Eve was limited to a maximum
dimension of d = 64. The best performing inequalities were I22441 and I[[2, 2, 3, 3], [2, 2, 2]]2. I22441

showed a minimum detector efficiency to distil a secret key rate of ηQKD = 0.920 and a maximum
secret key rate of 1.979. I[[2, 2, 3, 3], [2, 2, 2]]2 showd a minimum detector efficiency to distil a secret
key rate of ηQKD = 0.912 and a maximum secret key rate of 1.284. This shows some advantages
when compared with the simplest scenario (CHSH) for which we found a minimum detector efficiency
to generate randomness of η = 0.706, a minimum detector efficiency to distill secret keys of ηQKD =
0.928 and a maximum secret key rate of 1.000.

Introduction

The development of quantum computers has the po-
tential to usher a revolution in computation and science.
Indeed, a quantum computer can utilize the quantum
properties of nature to gain computational advantages.
At the same time this poses a new challenge regarding
security: the hard computational problems that a quan-
tum computer could potentially solve much faster than a
classical computer are the same kind of problems that
are the cornerstone of modern day encryption.

A typical example would be the vastly used crypto-
graphic protocol RSA (Rivest–Shamir–Adleman) for se-
cure data transmission that is built upon the assumption
that integer factorization is a hard problem for computers
and therefore it would take a vast amount of resources
and time to decode the data, making it practically impos-
sible. This however, is not true if the attacker has access
to a quantum computer as shown by Peter Shor in 1994
[? ].

Given the recent investment by governments and
companies on quantum computers this is a problem that
needs to be solved. One possible solution is Quantum
Key Distribution (QKD), a collection of protocols that har-
nesses the potentials of quantum mechanics and are
provably secure.

However, it has become clear that we can go even fur-
ther with device independent (DI) cryptography. In these
types of protocols quantum correlations are exploited to
achieve QKD even with untrusted devices, a remark-
able achievement. This type of security is based only
on the assumption that the laws of quantum mechan-
ics are complete and not on time or computational re-
sources. Any potential faults introduced intentionally or
unintentionally are detected automatically making these

protocols inherently more robust.
There are a few drawbacks to DI cryptography how-

ever, namely it’s extreme difficulty of implementation in
the lab. Therefore, it is more important to take realis-
tic approaches when creating cryptographic protocols
whilst trying to preserve the interesting ideas of de-
vice independence. Such protocols are known as Semi-
Device independent (SDI) protocols and require a well-
founded assumption about the measuring devices or the
resources used. Common approaches involve imposing
an upper bound on the dimensions of the quantum re-
sources used in the protocol, as was used in [? ], im-
posing a bound on the information content of the source
of the quantum states, as was used in [? ] or imposing
a limit in the energy used by these resources, as was
used in [? ].

The objective of the work here presented is to study
these new quantum cryptographic protocols with the ulti-
mate goal of going beyond the established protocols and
identifying new quantum scenarios that could be useful
for DI and SDI cryptography in the future.

Preliminaries

Approaching Device Independence

To achieve DI and SDI we need a quantum resource
that can be used to validate the measuring devices from
the statistics obtained from the measurements alone. If
we tested a device by using a local/classical resource
an evil genius could figure out a way to cheat in the test
based solely on the measurements of the device com-
promising the protocol’s security.

To better illustrate this let us consider the following
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scenarios: the Bell games (called games in analogy to
a quiz - we have participants -Alice and Bob - that are
tested with some question to which, depending of their
response, they can either win/pass or lose/fail).

A Bell game consist of many rounds. In each round
the players are separated, each receives an input and
provides an output. The rules of the game and the list
of all possible inputs are known by the players in ad-
vance. They then work out some common strategy in
order to try to beat the game. This strategy is simply
what kind of process the players will use in each round.
It is also important to know what kind of resources the
players have available. These can be classified into 2
categories, (classical) signaling resources which allow
communication between the players and no-signaling re-
sources which do not.

A Bell game is won if the statistics produced by the
players are nonlocal. Signaling resources allow for the
players to beat any kind of Bell game because in this
case the game is no longer local and based on the in-
puts the players can always decide on the right answer.
Therefore signaling resources must not be allowed and
we need to focus on no-signaling.

At this point it is also important to formalize the defini-
tion of locality in the context of a Bell game. This defini-
tion follows the one used by Valerio Scarani in [? ]. By
denoting λ as the process we can say that Alice gen-
erates a from probability distribution Pλ(a|x) and Bob
generates b from Pλ(b|y). The process is local if the
statistics observed by a verifier can be expressed as:

P (a, b|x, y) =
∫
dλQ(λ)Pλ(a|x)Pλ(b|y) (1)

where Q(λ) describes the strategy used. In an ex-
periment, the statistics P (a, b|x, y) are obtained from
Alice’s measurement on her system with the output a
associated to a Positive Operator Valued Measurement
(POVM) Πa

x and from Bob’s measurement on his system
with the output b associated to the POVM Πb

y:

P (a, b|x, y) = Tr(Πa
x ⊗Πb

yρAB) (2)

where ρAB describes the shared quantum resource
between Alice and Bob.

Not all statistics P (a, b|x, y) can be written as in 1 as
was proven by John Bell in 1964 [? ] and that’s exactly
what will allow for DI, SDI protocols and self-testing of
measurement devices.

The Local Polytope

Having identified the need to look for quantum corre-
lations it is now necessary to understand how these can
be found in different scenarios and to establish the nec-
essary analysis techniques that allow their identification.

To achieve this it is necessary to study probability dis-
tributions and to characterize the set L of all local be-
haviours. To this end it is useful to first define the no-
signalling conditions that all local processes must obey
and define local deterministic processes, given that this
class of events plays a crucial role. First and foremost
a process λ is called no signaling if the outcome for one
player is not affected by the inputs of another player.
That is:

Pλ(a|x, y) =
∑
b

Pλ(a, b|x, y) = Pλ(a|x, y′) = Pλ(a|x)

Pλ(b|x, y) =
∑
a

Pλ(a, b|x, y) = Pλ(b|x′, y) = Pλ(b|y)

(3)
for any input and output. At the same time a process

is deterministic if it can be written as Q(λ) = δ(λ − λd)
(a probability distribution is deterministic when it takes
only values zero and one) and therefore combining the
no signaling conditions with 1 we can write:

Pλ(a|x) = δa=f(λ,x) Pλ(b|y) = δb=g(λ,y) (4)

where f and g are deterministic maps dependent on
the process λ and the respective input for each player.

From these, it’s possible to extract the properties of L.
First, by Fine’s theorem [? ] a behaviour P will be local
if and only if it is a convex mixture of local deterministic
processes:

P (a, b|x, y) =
m

MA
A∑

j=1

m
MB
B∑

k=1

qjkδa=fj(x)δb=gk(y) (5)

At the same time since probabilities are bounded, that
is 0 ≤ P (a, b|x, y) ≤ 1, the set L is compact. Since
a compact convex set is the convex hull of its extremal
points as shown in the Krein-Milman theorem [? ] the
extremal points of L will be all the deterministic ones.
This way, from these points we can construct a geomet-
ric structure in which all the local behaviours exist, the
Local Polytope.

This geometric construction is incredibly helpful in
finding non-local behaviours. Indeed the facets of the
polytope (i.e the generalization of the concept of face
from 3 dimensions to N dimensions) represent the bor-
der between local and non-local sets of behaviours.
That is, the inequalities that need to be violated in or-
der to attain DI and SDI will be facets of a polytope.
Given that polytopes can be fully identified by either the
facets or the extremal points these representations are
the dual of each other. Therefore the problem of ob-
taining the facets from the extremal points, which are
easy to obtain, is a feasibility linear program, a simple
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instance of convex optimization. This problem, the facet
enumeration problem, quickly becomes computationally
challenging because the number of vertices and the di-
mension of the polytope increase very rapidly with the
numbers of inputs/outputs.

In this work we use the Collins-Gisin notation, first in-
troduced in 2004 in [? ]. Indeed in the CG notation
we take full advantage of the no signaling conditions
and positivity conditions to write the polytope in it’s ir-
reducible form. In this notation there are entries for
each value of the inputs while one value of the output
can be skipped and reconstructed from the rest. This
is very convenient for obtaining the extremal points of
the local polytope for the values of PA and PB simply go
from 0 to N-1 in binary (N being the number of marginal
probabilities here considered) and the remaining values
are simply the product of the respective marginals (i.e
P (00|00) = PA(0|0) × PB(0|0). L represents the local
bound of the facet.

For a more compact notation, we consider that Alice’s
outputs are labelled going from 0 to mA-1 and her inputs
go from 0 to MA − 1. The same for Bob. We represent
the probabilities in vector form were we first write the
coefficients of the joint probabilities between Alice and
Bob followed by the coefficients of Alice’s marginals and
then Bob’s. The last term of the vector represents the
local bound.

[CP (00|00), ..., CP (mA − 2mB − 2|MA − 1MB − 1),

CPA(0|0), ..., CPA(mA − 2|MA − 1), CPB(0|0), ...,
CPB(mB − 2|MB − 1), L]

(6)

Equivalent Bell Inequalities

Bell inequalities can be written in many forms. There-
fore it is important to divide them into classes where any
inequality can be shown to be equivalent to any other
inequality. Inside of each class there are 4 types of
equivalence between inequalities: positivity conditions,
no-signaling conditions, relabeling of inputs and relabel-
ing of outputs conditioned on inputs.

Positivity conditions arise from the normalisation of
probabilities (

∑
a,b P (a, b|x, y) = 1) which means equiva-

lent inequalities can be obtained by summing a positivity
condition to a previous existent inequality. In the same
way we if sum no signaling conditions that add up to
zero, (for example:

∑
b Pλ(a, b|x, y)−

∑
b Pλ(a, b|x, y′) =

0) we can obtain new inequalities that are equivalent to
the original inequality. To solve this problem we simply
write the inequalities in spaces that are invariant to pos-
itivity and no signaling conditions, the same approach
taken in [? ]. There are many spaces that satisfy such

condition including the Collins-Gisin, which we will used
to write all inequalities in this work.

Relabeling conditions arise from Alice’s and Bob’s
choices of labeling inputs and outputs. This way from a
specific inequality, others can be obtained just by choos-
ing different labels. However this obviously does not
produce new inequalities .This way, Alice and Bob can
chose any permutation of their inputs, as long as the
inputs permuting have the same number of outputs, to
produce equivalent inequalities. Specifically if Iabxy is
an inequality, π(x) a permutation of Alice’s inputs for
some specific number of outputs and π′(y) a permuta-
tion of Bob’s inputs for some specific number of outputs
then Iabπ(x)π′(y) is also a valid inequality. The same ap-
plies to each output conditioned on the inputs. Indeed,
for a given input, Alice is free to label her outputs with-
out generating new classes of inequalities. This way, if
π(a|x) is a permutation of Alice’s outputs given a spe-
cific input x and π′(b|y) is a permutation of Bob’s outputs
given a specific input b then Iπ(a|x)π′(b|y)xy is also a valid
inequality.

Finally the last symmetry that needs to be considered
is when the scenario is completely symmetric (MA =
MB and mA = mB)) and therefore we can switch Al-
ice and Bob label’s. In the script written this was solved
using P notation where each probability P (ab|xy) trans-
lates to P (ba|yx).

Methods

Polytope Cutting

As previously mentioned the facet enumeration prob-
lem is an NP-Hard problem. Therefore the number of
Bell polytopes completely solved is extremely limited.
However this does not mean that we can not extract
useful information and unknown classes of facets from
unsolved polytopes.

In this work we use a new approach to these hard
to solve polytopes - cutting them into smaller, easier to
work with, subpolytopes. This method was first used in
[? ]. Indeed, for this method we take previously known
facets of simpler polytopes and we lift them to the di-
mension of the polytope in which we are interested in.
Then, by manipulating the local bound of this lifted facet
we can check which vertices will violate this half-plane
and which will not, creating this way 2 subpolytopes -
the one formed by the vertices that violate the fabricated
facet and the ones that don’t. By manipulating the lo-
cal bound, we can construct subpolytopes with less ver-
tices which are much easier to analyse by using software
such as PANDA [? ]. This means that given a vertex
description of a polytope, xk and a half-plane A such as
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Ax = c, then the set of vertices that satisfy:

Axki ≥ c (7)

defines the cut polytope.
This way, we can then look for facets in the cut poly-

tope. All facets that are generated by vertices of the
original polytope that are also in the cut polytope will
obviously be present in the subpolytope and we can
extract them much faster. Obviously there will also be
new facets of the subpolytope that do not belong to the
original polytope but here we can take advantage of the
fact that while facet enumeration is an NP-hard problem,
checking if half-planes are facets of polytopes given their
vertex description is not and is actually quite easy.

Indeed to verify if a half-plane is a facet of a poly-
tope all that is needed is to check that no vertex of the
polytope violates the half-plate and that at least d-1 non
collinear vertices belong to the half-plane. This way we
can then use the symmetry of Bell polytopes to discover
all the facets belonging to the same class as the facets
extracted from the cut subpolytope and obtain a more
complete description of the original object.

This process can then be repeated with as many half-
planes as we want to obtain more and more facets. In-
deed it is quite easy and quick to perform hundreds and
even thousands of cuts and analyse them. Although
there is no stopping condition, because to know when
the description of the polytope is complete we would
have to solve the facet enumeration problem, exactly
what we are trying to avoid, this can provide valuable
information of large and complex polytopes which would
be very hard to obtain otherwise. Additionally, these in-
complete descriptions can be provided to software such
as PANDA [? ] in order to speed up the algorithms and
obtain complete descriptions of polytopes which other-
wise would take much more time.

This way, when no new facets appear after cutting
we can then take the ones produced so far and try to
solve the Facet Enumeration Problem and check if the
description of the polytope is complete .

Semidefinite Programing (SDP)

A key tool to calculate many properties of Bell in-
equalities is semidefinite programing (SDP) [? ]. This
technique is concerned with the minimization of a linear
objective function subject to the constrain that an affine
combination of symmetric matrices is positive semidefi-
nite. This restraint is by definition convex, and so SDP
belongs to the subfield of convex optimisation and can
be considered a generalisation of linear programming
(where a linear objective function is maximized or mini-
mized over a polytope). This way, we can define a gen-
eral SDP problem as :

min(cTx) (8)

subject to:

F (x) ⪰ 0

F (x) = F0 +

m∑
i

xiFi

(9)

Where x ∈ Rm and c ∈ Rm represents the problem
data. Extra constraints can be added on top of the semi-
positive definite constraint for the matrix X (for instance
one can also constraint its trace Tr(X)).

Duality theory applies to SDPs. Therefore, given a
problem, a primal, in the form 8 a dual can be generated
of the form:

max(−Tr(F0Z)) (10)

subject to:

Tr(FiZ) = ci

Z ⪰ 0
(11)

Where i = 1, ...,m and Z is symmetric and Z ∈ Rn×n.
Clearly the dual is also an SDP problem. The Weak Du-
ality theorem [? ] states that any value of the dual SDP
will lower-bound the value of the primal SDP. This can
be seen from the duality gap, ∆, the difference between
the primal and dual objectives:

∆ = cTx+ Tr(F0Z) =∑
i

Tr(ZFixi) + Tr(F0Z) = Tr(ZF (x)) ≥ 0 (12)

Where the last equality comes from the fact that both
Z and F are positive semidefinite. A consequence of
this theorem is that any point x that defines a feasible
solution of the primal will define a feasible solution of the
dual. This theorem is important, because it establishes a
relationship between the solutions of the primal and the
dual that can be used to establish primal-dual interior
point methods to solve SDPs.

The core idea behind these kind of methods is the us-
age of already known self-concordant barrier functions
based on the constraints imposed on the problem. An
example is the logarithmic barrier function:

B(x) = cTx− µ

m∑
i

log(ci) (13)

Where µ is the barrier parameter and is positive. From
the barrier function, one computes its potential ∇B and
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minimizes said potential according to some direction δx
and δZ. By taking this minimum, xm and Zm respec-
tively, we update x and Z according to the direction cho-
sen, i.e, x+xmδx and Z+ZmδZ. This is iterated until the
dual gap ∆ is sufficiently small or the problem is deemed
unfeasible.

In this work to solved the SDPs that arose, we used
a free, academic license of the software MOSEK [?
] that implements an efficient primal-dual interior point
method.

Properties of Interest

Quantum Bound

The first property of interest is the maximum score
that one can get by using quantum resources in a Bell
Game with respect to a specific facet. To compute this
property we use the recently developed NPA hierarchy
[? ] to relax non-commutative polynomial problems to
semidefinite programs.

To understand this hierarchy let us consider a finite
Hilbert space H, an alphabet of bounded operators X =
(X1, X2, ..., Xn) and the state |ψ⟩ ∈ H. We say that each
operator in X is a letter and collectively they form strings
of length k. The identity I is considered to be the empty
string and has length 0.

Given these elements, it is now possible to construct
a moment matrix Γk based on the set W k of strings of
length lesser or equal than k. Considering 2 elements of
this set, W1 and W2, the elements of Γ will be indexed
by the elements of W :

Γk
(W1,W2) = ⟨ψ|W1W2|ψ⟩ = P (W1W2) (14)

and

Γk(I, I) = 1 (15)

Γk
(W1,W2) is a certificate of level k and on their origi-

nal paper [? ], Navascués, Pironio and Acı́n have shown
that it is positive semidifinite for all k ∈ N. Obviously for
each level we have W 1 ⊆ W 2 ⊆ W 3 ⊆ ... ⊆ W k ⊆
W k+1 so we say that each certificate establishes a hi-
erarchy of conditions satisfied by quantum probabilities
where each certificate is stronger than the previous (be-
cause for each the matrix will be positive semidifinite).
Computing the entries of the momentum matrix can be
done efficiently with semidinite proraming. Additionally
the original authors of [? ] have shown that for a specific
strategy p if there is a momentum matrix Γ that realizes
p then p belongs to the quantum set.

For the problem at hand additionally we need a relax-
ation of non-commuting problems to commuting prob-
lems. Indeed, let us consider the following example

based on a facet of CHSH where objective is to maxi-
mize the score defined by:

S = ⟨ψ|A0
0 ⊗B0

0 |ψ⟩+ ⟨ψ|A0
0 ⊗B0

1 |ψ⟩+ ⟨ψ|A0
1 ⊗B0

0 |ψ⟩
−⟨ψ|A0

1 ⊗B0
1 |ψ⟩ − ⟨ψ|A0

0 ⊗ IB |ψ⟩ − ⟨ψ|IB ⊗B0
0 |ψ⟩

(16)

where Aa
x and Bb

y represent respectively Alice’s and
Bob’s measurement operators that exist in a finite Hilbert
space H where ψ ∈ H. Clearly, if we relax the tensor
product to a commuting measurement strategy where
Alice’s and Bob’s measurements are projectors then we
see that the function to optimize is simply a linear sum of
terms of a moment matrix of level k = 2 with an alphabet
composed by the operators that Alice and Bob apply to
the state |ψ⟩:

S = ⟨ψ|A0
0B

0
0 |ψ⟩+ ⟨ψ|A0

0B
0
1 |ψ⟩+ ⟨ψ|A0

1B
0
0 |ψ⟩−

⟨ψ|A0
1B

0
1 |ψ⟩ − ⟨ψ|A0

0I|ψ⟩ − ⟨ψ|IB0
0 |ψ⟩

= Γ2
(A0

0,B
0
0)

+ Γ2
(A0

0,B
0
1)

+ Γ2
(A0

1,B
0
0)

− Γ2
(A0

1,B
0
1)

− Γ2
(A0

0,I)
− Γ2

(I,B0
0)

= p(00|00) + p(00|01) + p(00|10)− p(00|11)− pA(0|0)− pB(0|0)
(17)

where the following properties are imposed:

• Aa
x = Aa†

x and Bb
y = Bb†

y

• Aa
xA

a′

x′ = δxx′δaa′Aa
x and Bb

yB
b′

y′ = δyy′δbb′B
b
y

•
∑

aA
a
x = 1H and

∑
bB

b
y = 1H

• [Aa
x, B

b
y] = 0

The first 2 properties are a consequence of consider-
ing projectors whilst the third and fourth property impose
no-signaling correlations and spacial separation respec-
tively (i.e Alice and Bob each perform their measures
separately on the state |ψ⟩ and their marginals are well
defined). This relaxation is valid due to 2 reasons: first
we have not limited the dimension of the Hilbert space
in consideration, we have merely imposed that it is finite.
Therefore, given that any POVM can be expressed as a
projector on a higher dimension Hilbert space we can
go from 16 to by expanding the space in consideration.
Secondly, the structure of the tensor imposed in 16 is im-
posed to denote that the measurements are performed
separately which is also imposed by the commutativity.
Clearly, if we swap our labels and exchange Alice with
Bob the result of our measurements must be the same
(because the probabilites can not change if we first con-
sider Alice or Bob i.e p(a, b|x, y) = ⟨ψ|Aa

x ⊗ Bb
y|ψ⟩ =

⟨ψ|Bb
y ⊗Aa

x|ψ⟩. Therefore the quantum Q set used in 16
has to be contained in the quantum set Q’ defined in by
the algebra above, Q ⊆ Q′.
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This way, any feasible point of will define a feasible
point of 16 with the same objective and we can take full
advantage of the NPA hierachy to maximize the score
achievable with quantum resources. To that end we de-
fine the following problem:

max(S) = Γ2
(A0

0,B
0
0)

+ Γ2
(A0

0,B
0
1)

+ Γ2
(A0

1,B
0
0)

−Γ2
(A0

1,B
0
1)

− Γ2
(A0

0,1)
− Γ2

(1,B0
0)

= Tr(CΓ2)
(18)

subject to:

Tr(XiΓ
2) = bi (19)

Γ2 ⪰ 0 (20)

where the first condition stems naturally from the fact
that the entries of Γ2 being probabilities by construction.
This is precisely the definition of a semidefinite program
that can be solved using MOSEK.

The conversion of the initial problem to a semidefinite
problem was made possible through the python package
Ncpol2sdpa developed by Prof. Peter Brown and used
in [? ].

Minimum detection efficiency to close detection Loophole

Give the correct state |ψ⟩ the score achieved by a
Bell game should in theory be its maximum value Smax.
However, in practice we are working with detectors that
have a limited efficiency η and for a number of measure-
ments the detector will not measure the incoming state.
From this arises one question, what is the minimum de-
tection efficiency necessary for a Bell game to detect
non-local behaviour, i.e, the minimum efficiency for the
score to be above the local bound of a facet?

To determine this we now consider a mixed score
composed of the score obtained when both detectors
work Q, when Alice’s detectors work but Bob’s does not
fire MA, when Bob’s detectors work but Alice’s does not
fire MB and when both parties detectors fail to register
XX. This way, in the limit of a game with infinite sam-
ples and independent identically distributed rounds the
expected score will be:

S = η2Q+ η(1− η)(MA +MB) + (1− η)2XX (21)

We can extract an upper bound of the minimum de-
tection efficiency by solving this equation with respect to
η when the score matches the local bound S = L, one
only needs Q, MA, MB and XX.

The value of Q can be obtained by following the steps
in the previous section (define the commuting polyno-
mial problem associated with the facet, use the NPA

hierachy to write the SDP problem and solve it using
MOSEK). To obtain the values of the remaining quan-
tities we compute the score from the probabilities ob-
tained via the momentum matrix under a specific strat-
egy employed. Indeed, when a detector fails Alice and
Bob can choose whether to consider an output of ’0’ or
’1’ for that detector. This way there will be n = AX ×BY

strategies to be considered for when the detectors fail to
trigger (for each input Alice has to choose an output and
so does Bob).

This way we can compute for every possible strategy
the values of MA, MB and XX of each facet and extract
the minimum values of η. This value is common for each
facet belonging to the same class (for a relabel can not
change the properties of the game at hand).

Resistance to Noise

Another very important property to compute is an in-
equality’s resistance to noise. By noise here we mean
the introduction of white noise that is mixed with the state
shared between Alice and Bob. This way, if an inequal-
ity is maximally violated by the state |ψ⟩, its resistance
to noise λ will be the maximum amount of white noise
that can be mixed into the state such that the inequality
is still violated:

ρ = λ|ψ⟩⟨ψ|+ (1− λ)
I
d2

(22)

where d is the dimension of the state shared (so if
Alice and Bob share qubits, d = 2). To obtain this quan-
tity we need to know the optimal measurements Aa

x and
Bb

y for which the inequality is maximally violated. From
these one can then compute the achievable score with
white noise as its state, SWN , and then the extraction of
λ is quite triviall:

λ =
L− SWN

Q− SWN
(23)

To obtain these we need to again construct SDPs, but
this time without relying on the NPA hierarchy. Indeed,
although the hierarchy allows us to extract the maximally
quantum violation for each inequality, we only have ac-
cess to the resulting probabilities that produce the viola-
tion, not the specific measurements that we need. This
way, a new program was developed using the Python
package CV XPY [? ], [? ].

In this program, the first step is the generation random
measurements Aa

x and Bb
y From here we can define the

necessary SDP as to maximize the score.
Its important to notice that since we are not using the

NPA hierarchy here, we can not use a relaxed version
of the problem and the tensor product structure must be
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imposed. This has the obvious disadvantage of not be-
ing dimension agnostic, contrary to the NPA hierarchy,
and a dimension of the state and measurements has to
be assumed. In this work, we computed an upper bound
on the minimum dimension required, dmin, for each facet
in order to achieve the calculated quantum bounds Q. It
must be said, as recently discovered in the works of [?
] and [? ], that behaviours that are only observed using
higher dimension states could go undiscovered by tak-
ing this approach. However, one must take into consid-
eration the limited resources available to the author and
that to simulate higher and higher dimensional systems
quickly becomes computationally costly.

Having done this first SDP to optimize the state |ψ⟩⟨ψ|,
we know take a ”seesaw” approach where in each iter-
ation we optimize the state, then Alice’s measurements,
then Bob’s measurements. In each iteration we save the
state and the measurements as the starting point for the
next iteration.

This iterative process goes on until the maximized
score gets close enough to the computed quantum
bound. Specifically, we considered as the stopping con-
dition |Q− S| < 0.01× |Q− L|. If after extensively sam-
pling initial points for the algorithm this stopping condi-
tion was not realised then the dimension would increase.
This is iterated until the stopping condition is fulfilled and
we extract an upper bound on the minimum dimension,
dmin, required to achieve Q.

Having successfully obtained the optimal measure-
ments, now one just needs to compute the white noise
score SWN and follow 23 to compute an inequality’s
noise resistance.

Scenario Analysis

In this work we analysed the following scenar-
ios: (2,2,2,2), (3,3,2,2), (4,3,2,2), (5,3,2,2), (6,3,2,2),
(4,4,2,2), (2,2,3,3), (2,2,3,4), (2,2,3,5), (2,2,4,4),
(2,3,3,2), (3,2,3,3), (3,3,3,2), (3,3,4,2) and (4,3,3,2).
Of these we present a new complete description of
(6,3,2,2), (3,2,3,3) and (3,3,3,2) and conjecture that the
description of (2,2,4,4), (3,3,4,2) and (4,3,3,2) is com-
plete. For every facet their properties of interest were
calculated.

In the (6,3,2,2) scenario there are 7 classes of facets
for a total of 253 872 facets. In the (3,2,3,3) scenario
there are a total of 793 854 facets and in the (3,3,3,2)
scenario there are 25 classes for a total of 252 558
facets. The completeness of (3,3,3,2) scenario had al-
ready been conjectured in [? ] but as far as the author
knows this is the first time that such completeness is
proven.

For the (2,2,4,4) scenario we found a total of 11 665
992 facets (64 are positivity facets). They are classi-
fied into 34 facets. For the (3,3,4,2) scenario we found

159 classes for a total of 23 973 264 facets and for the
(4,3,3,2) we found 80 classes for a total of 9 960 696
facets.

The most important facets found were the ones whose
minimum efficiency to close the detection Loophole or
resistance to noise is inferior or equal to the CHSH facet.
They are presented in table ??.

To demonstrate the strength of the new cutting
method we used the (4,4,2,2) scenario as a performance
test. Given the high degree of complexity of the scenario
and that the complete list of facets was already known,
this poses an excellent benchmark test for our new ap-
proach. Indeed, using a single inequality from the I3322
class to provide a cut we obtain 40,57% of all the avail-
able classes. This cut polytope was solved in less than
20 seconds which clearly shows the strength of this ap-
proach.

The most interesting facets found were:

TABLE I – continued from previous page
Name Scenario Q η λ dmin

CHSH (2,2,2,2) 0.2071 0.8284 0.7071 2
F6 (4,4,2,2) 0.2879 0.8179 0.8128 4
F57 (4,4,2,2) 1.6430 0.8021 0.7917 3
F72 (4,4,2,2) 0.4554 0.8245 0.7935 2
F79 (4,4,2,2) 1.6056 0.8281 0.7676 2
F80 (4,4,2,2) 0.4353 0.8179 0.7751 2
F146 (4,4,2,2) 1.5932 0.8261 0.7468 2
I2233 (2,2,3,3) 0.3050 0.8139 0.6861 3
I22441 (2,2,4,4) 0.3648 0.8044 0.6728 4
I22447 (2,2,4,4) 0.4485 0.8156 0.7316 3
I22448 (2,2,4,4) 0.4681 0.8185 0.7062 4
I22449 (2,2,4,4)) 0.4733 0.8074 0.7039 4
I224410 (2,2,4,4) 0.4564 0.8142 0.7088 3

I[[2, 2, 3], [3, 3]]2 (3,2,3,3) 0.3038 0.8190 0.6976 3
I[[2, 3, 3], [3, 3]]2 (3,2,3,3) 0.4448 0.8151 0.7141 3

I32332 (3,2,3,3) 0.4448 0.8151 0.7141 3
I[[2, 2, 3], [2, 2, 2]]2 (3,3,3,2) 1.3913 0.8255 0.7616 2
I[[2, 3, 3], [2, 2, 2]]4 (3,3,3,2) 0.3913 0.8255 0.7616 2
I[[2, 3, 4], [2, 2, 2]]1 (3,3,4,2) 0.4771 0.8170 0.7774 3
I[[2, 3, 4], [2, 2, 2]]2 (3,3,4,2) 1.3913 0.8255 0.7616 2
I[[2, 2, 2, 3], [2, 2, 2]]3 (4,3,3,2) 0.3944 0.8259 0.7601 2
I[[2, 2, 3, 3], [2, 2, 2]]2 (4,3,3,2) 1.4866 0.8189 0.7740 3

New Semi-Device Independent Protocols

For the most interesting facets we investigate how
they performed in an SDI QKD setting. To that end we
lower bound the secret key rate achievable by using the
Devetak-Winter bound [? ]:

r ≥ H(A|X = 0, E)−H(A|B) (24)
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The entropy H(A|X = 0, E) can be lower bounded by
calculating the min entropy between Alice and Eve:

H(A|X = 0, E) ≥ Hmin(A|X = 0, E) = −log2(Pg)
(25)

Where Pg is the guessing probability of Eve over Al-
ice’s results. This relations is established due to the fact
that the min entropy is the smallest entropy of the Rényi
family [? ]. We take an SDI approach where we use
CV XPY , and bound the dimension of the available sys-
tem. This way, we take as the dimension of Alice and
Bob’s measurements the minimum dimension, dmin, to
achieve the expected maximum score and we use the
same optimal measurements as the ones obtained be-
fore and limit the dimension of Eve’s Hilbert space to
some dE . This follows the same approach as the works
in [? ]. Here we considered that dE = 4, where Eve
performs qutwart measurements.
H(A|B) on the other hand can be calculated by ap-

plying the following equation:

H(A|B) = H(AB)−H(B) (26)

Where the first term represents the entropy obtained
from the joint probabilities between Alice and Bob
and the second term the entropy obtained from Bob’s
marginals. Given a set of probabilities p = {p(ab|xy)}
the entropy of this is:

H(p) = −
∑
abxy

log2(p(ab|xy)) (27)

So to obtain H(A|B) we simply need the joint proba-
bilities between Alice and Bob and Bob’s marginals for
when they select the correct inputs to produce a secret
key. To obtain these we consider a scenario where Bob
has an extra input for key producing. This way, if we for
example consider a CHSH facet, then in our QKD setting
Alice will have its typically 2 inputs each with 2 outputs
but Bob will have 3 inputs - an extra for key generation.
Therefore, every time that Alice selects the input X = 0
and Bob selects the extra input, Y = 3, then the results
from this measurements are used for key generation.

We know need to choose Bob’s strategy for the extra
input. With the ultimate goal of minimizing the uncer-
tainty between Alice and Bob, we can intuitively chose
for him to have the same measurements that Alice has
when X = 0. This way the probability outcomes for Al-
ice given that X = 0 will be the same as the ones ob-
tained by Bob when Y = 3. Alice’s results in turn can be
extracted by computing the expected score for some η
using the NPA hierarchy and so we have all the neces-
sary ingredients to extract device independent rates for
a given facet and detector efficiency. We also maintain

the same binning strategy for Alice when the minimum
detection efficiency was calculated. For Bob however,
the work in [? ] has shown that we can achieve a lower
entropy (and therefore a higher key rate) if he does not
bin the non detection results and instead storage them
as an extra measurement.

Of the results obtained the facets that performed bet-
ter were facet I22441 and facet I[[2, 2, 3, 3], [2, 2, 2]]2.
These results were

FIG. 1. Comparison between secret key rate obtained using
the dimension bound for the I22441 facet and CHSH in terms
of detector efficiency η

FIG. 2. Comparison between secret key rate obtained using
the dimension bound for the I[[2, 2, 3, 3], [2, 2, 2]]2 facet and
CHSH in terms of detector efficiency η

Facet I22441, as expected from equation ??, pos-
sesses the highest maximum secret key rate, 1.979. For
the CHSH facet this value was limited to 1.000. The min-
imum detector efficiency to extract secret key rates also
improved: it went from ηQKD ≈ 0.928 for the CHSH facet
to ηQKD ≈ 0.920 . All in all, this facet outperforms the
CHSH facet for all detector efficiencies.

On the other hand the maximum secret key rate
achieved by facet I[[2, 2, 3, 3], [2, 2, 2]]2 was smaller than
the one obtained for I22441, it was only 1.284, but this
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was the facet with the smallest minimum detector effi-
ciency to extract secret key rates, ηQKD ≈ 0.912. This
facet also outperforms the CHSH facet for all detector
efficiencies.

Conclusion

In this work, we explored the world of bell correlations
with the objective of finding new bell inequalities that can
be used for DI and SDI QKD. To achieve this goal we
looked at previously unsolved Bell polytopes of high di-
mensions under a new framework - polytope slicing. We
demonstrated the capacities of this technique with the
(4,4,2,2) scenario, a single slice provided 40.7% of all
the classes of this scenario and could be solved in a few
seconds. This allowed us to solve previously unsolved
polytopes: (6,3,2,2); (3,3,3,2); (3,2,3,3); and (2,2,3,5)
confirming previously estabelished conjectures regard-
ing the (6,3,2,2) and (3,3,3,2) scenarios and giving a first
full description of (3,2,3,3) and (2,2,3,5).

We didn’t stop at these scenarios however, and
also looked at even more complex Bell polytopes: the
(2,2,4,4); (3,3,4,2) and (4,3,3,2) scenarios. For these,
although we could not solve the facet enumeration prob-
lem with the resources at our disposal, we conjecture
that the list of facets presented is complete given that
no new classes of inequalities appeared with increasing
slices.

For each class identified we also tried to understand
its fundamental properties. To this end, new com-
putational techniques such as Semi-Definite program-
ming were used. The new NPA hierarchy was also de-
fined and used to establish tight quantum bounds for
each class presented. Additionally, with the focus of
qkd implementations, we also identified in a complete
measurement agnostic setting a minimum detection ef-
ficiency necessary to close the detection loophole for
each class.

The resistance to noise of each class was also ex-
plored, although in this case we could no longer work
in the same setting as before. Indeed, for this property
it was necessary to define the dimensions used by Al-
ice and Bob. Nonetheless, this also allowed us the op-
portunity to explore what the minimum dimension of the
states shared between Alice and Bob should be in order
to achieve the quantum bounds previously found via the

NPA hierarchy.
Based on these properties, and in comparison with

the most simple scenario of all (the CHSH cenario) we
identified 22 inequalities, including the CHSH inequal-
ity, that should be useful for QKD settings and can be
found in table ??. Of these, to the best knowledge of the
author, 12 were found in the most complex scenarios
analysed and were previously unknown in the literature.

For each of the I22441 inequality we then explored
how well it preformed at tasks like Randomness and
Secret Key generation in settings with inefficient detec-
tors. For the cases studied, the inequality demonstrated
the advantages already expected of looking beyond the
simplest case scenario by dis- playing higher secret key
rates and lower experimental requirements

To conclude, we reinforce just how important these
new results are. Indeed, the field of Bell inequalities
and correlations, despite being more than 50 years old,
still has many open questions that could provide new
insights and practical technologies to the second quan-
tum revolution. Indeed, this field is such a cornerstone of
physics that the 2022 Nobel prize was awarded to Alain
Aspect, John Clauser and Anton Zeilinger “for experi-
ments with entangled photons, establishing the violation
of Bell inequalities and pioneering quantum information
science” [? ]. Therefore, the hope is that this work can
actively contribute to the field and answer some ques-
tions regarding high dimension Bell polytopes and their
uses.

Nonetheless, there are still many questions unan-
swered. For instance, one could consider multi-partite
Bell inequalities with more than 2 players like in [? ]
or sequential Bell inequalities, where new correlations
arise from multiple sequential measurements, like in [?
]. Another interesting direction would be to consider the
inequalities that required a dimension higher than 2 to
achieve the maximum expected score and explore their
applications in dimension witnessing [? ] where by veri-
fying a certain score for certain facets we can certify the
dimension of the states and measurements used. These
directions could inspire new research projects in the fu-
ture.
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