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Abstract

False positives are an inherent part of bug analysis tools, but developers lose faith in tools that present

false positives too frequently. SmartBugs in particular, a framework designed to analyse Ethereum

smart contracts, provides reports from 11 different analysis tools, and consequently reports many false

positives. We extend SmartBugs with a bug prioritization algorithm that leverages machine learning and

that sorts bug reports, ranking true positives above false positives, thus providing a better experience

for developers. Using SARIF only features and ensemble regressor models we save up to 80% of a

developer’s time, an almost 5x gain in time efficiency in the process of analysing bug reports.
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Resumo

Os falsos positivos são uma parte inerente das ferramentas de análise de bugs, no entanto progra-

madores perdem a fé em ferramentas que apresentam falsos positivos com demasiada frequência.

SmartBugs em particular, é um projeto que analisa contratos inteligentes em Ethereum, fornecendo re-

latórios de 11 ferramentas de análise diferentes e, consequentemente, relatando muitos falsos positivos.

Estendemos o SmartBugs com um algoritmo de priorização de bugs que classifica relatórios de bugs

usando aprendizagem de máquina, classificando os verdadeiros positivos acima dos falsos positivos,

proporcionando assim uma melhor experiência para os programadores. Usando apenas caracterı́stica

SARIF e modelos compostos regressivos, conseguimos salvar até 80% do tempo de um programador,

aumentando a eficiência de analisar bugs em quase 5x.

Palavras Chave

SmartBugs, Prioritização de Bugs, Aprendizagem de Máquina
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Bug analysis tools must find a balance between false positives and false negatives, therefore it is

likely that any given analysis has a number of both. However, developers have a particular discon-

tentment for the former. Each false positive bug report implies time wasted in manual analysis, and

developers tend to ignore tools that waste their time. A report by Kremenek and Engler [5] showed that

developers quit tools that present between 10 to 20 false positives in a row. For that reason it is crucial

that bug reports are organized and prioritized by their likelihood of being true bugs, so that developers

can focus their efforts on reports that are more likely to cause real issues.

In this project, we aim to improve the SmartBugs framework by extending it with a bug prioritization

mechanism. SmartBugs [1] is an extensible and easy-to-use execution framework that simplifies the

execution of analysis tools on smart contracts written in Solidity, thus allowing easy execution of multiple

analysis tools. Solidity [6] is the main programming language through which smart contracts are written

for the Ethereum blockchain. As of the time of writing, Ethereum sits as the second biggest blockchain-

based platform, worth almost 500 billion US dollars. Most of this value comes from Ethereum’s capacity

to deploy distributed applications (Dapps) that are executed across a decentralised network of nodes. As

a key component of a half a trillion dollar industry, it is crucial that smart contracts written in Solidity have

no dangerous bugs that affect the integrity of the Dapps they define. Even the smallest of bugs could

lead to catastrophic consequences, such as TheDAO exploit [7] that resulted in the theft of 50 million

USD, and that could have been fixed by exchanging two lines of code. Unfortunately, writing bug-free

smart contracts is no trivial feat, and SmartBugs was created in order to allow its users to analyse their

smart contracts with multiple tools. As of today, SmartBugs makes use of 11 analysis tools, that give 11

different outputs for each smart contract analysed. However 11 different outputs means a much greater

number of bug reports, both true and false positives.

An empirical study on the status of smart contracts in the Ethereum blockchain using SmartBugs [2]

resulted in 93% of 47,587 analysed contracts to be marked as vulnerable, foreshadowing a large ratio of

false positives. Another difficulty appears as the consequence of the variety of tools. Some of these 11

tools are static analysis tools (e.g. Securify [8]), some are dynamic analysis tools (e.g. Maian [9]) and

some, like HoneyBadger [10], even focus on finding code structures that might look like bugs, but that are

in fact not bugs at all. This means that whatever approach taken must consider this heterogeneity. Each

tool has its own internal methodology and gives a different output. One of the features of SmartBugs

is to parse every tool output and produce a consistent result in the Static Analysis Results Interchange

Format (SARIF) [11] that provides the only common ground between all results. This heterogeneity

proves to be both and advantage and a disadvantage that will be further discussed in future sections.

Previous work has been performed on the issue of bug prioritization, but all previous approaches

focus on prioritization of bug reports created by a single tool. Since our goal is to improve SmartBugs,

in this project we focus on prioritization of multiple bug reports from different tools. Our context opens
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up new opportunities that can be explored to improve the prioritization process. For example, it brings

the possibility of using consensus between multiple tools.

It seems reasonable to assume that if a certain bug is detected by multiple tools simultaneously,

it is more likely to be a true bug. Alternatively, bugs reported by a single tool might prove to be less

trustworthy reports. There also exist other tools such as eThor [12], that can probably guarantee the

absence of Reentrancy bug and would therefore be useful in a consensus scenario. Like previous work

that we will explore in a later section( [4], [3]), we will also explore machine learning techniques to reach

our solution.

1.1 Work Objectives

The main goal of this project is to extend the SmartBugs framework with a bug prioritization mechanism

capable of ranking analysis reports created by multiple tools. In particular, we hope to be able to quickly

present the vast majority of true positives from multiple different analysis tools to users who want to have

their smart contracts analysed.

This is achieved with help from a machine learning model whose features are the SARIF output

of each tool. As mentioned above, one of SmartBugs’ features is to reduce all bug reports to the

SARIF format. Short for Static Analysis Results Interchange Format, SARIF [11] is a format designed

to integrate and standardize results from multiple analysis tools. Through the use of SARIF, every tool

present in SmartBugs has an equivalent representation in the machine learning model. This is, all tools

present the same features (the SARIF features) to the model, instead of using tool-specific features that

might not be available to other tools. This provides the model with information on consensus between

the analysis of each tool.

The model must then use this consensus information to learn how to prioritize bug reports, presenting

those considered as most likely to be true positives towards the beginning of the prioritized list of bug

reports. If the tool presented in this project achieves good results, than a developer tasked with analysing

a list of prioritized bug reports provided by SmartBugs will have a much easier time doing so than another

developer analysing the same, but non-prioritized, list of reports. The better prioritization is, the more

time the developer saves while looking for bugs in his program, and the less likely he is to abandon the

framework.

To achieve the best result possible in prioritization, it is important to understand what machine learn-

ing algorithm would be a better fit for our context. We experiment with multiple models and analyse

their results. We try classification models, regressor models and ensemble models to know which one is

the most suitable for this environment. The results also provide an analysis on the effectiveness of the

SARIF format in this context. If SARIF provides enough information for consensus, than the machine
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learning model is more likely to have good results, if it does not, the opposite may apply.

To test and train the machine learning model, this work must also have an annotated bug dataset.

Our dataset was created by joining multiple other datasets together and is now available for use in other

works. As it merges multiple other datasets into one, it became a necessity to parse them all to the

same format. This format must be flexible enough to take advantage of consensus, something we found

lacking in most bug datasets. Therefore our own format had to be created.

In conclusion, this work addresses the following research questions:

• RQ1: Does the SARIF format provide enough information on consensus to achieve reasonable

results in bug prioritization?

• RQ2: Can consensus of bug reports between multiple tools be used to better predict true and false

positives?

• RQ3: What are some effective machine learning algorithm to prioritize bug reports from multiple

tools in the context of SmartBugs?

1.2 Contributions

This work makes contributions to the research of bug prioritization from reports provided by simultaneous

analysis of multiple analysis tools. We explore the information present in the SARIF format and how it

is useful as a feature for consensus in the context of our environment. We also explore how to use

consensus between multiple tools to achieve efficient bug report prioritization, as well as an analysis of

multiple machine learning models to learn which one is the most suitable this purpose.

We analyse classification and regression models, explain why the latter is more suitable than the

former, and follow the leads of our related work to test the ensemble models theorized to be the most

efficient. We contribute that, according to our findings, the Random Forest Regressor model is the most

suitable machine learning model for this thesis. This model achieves an APBD value of 0.933 and is

capable of finding all true bugs in the dataset after analysing only 21% of bug reports, an almost 5x

increase over non-prioritization .

Additionally, our project contributes a new bug dataset of 1,657 faulty smart contracts to the commu-

nity. This dataset is composed of multiple other datasets in a unique format. The format is more expres-

sive than any other we have come across and we hope to see it implemented in other bug datasets to

come.
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1.3 Organization of the Document

The rest of this thesis is is organized as follows:

• Chapter 2 (Background), where relevant background information is presented in order to allow

readers to better understand this work;

• Chapter 3 (Related Work), where previous work on the subject is discussed and analysed, explain-

ing the reasoning behind this thesis’ approach;

• Chapter 4 (Data Processing), where we discuss how information is prepared and propose a new

standard for metadata in bug datasets;

• Chapter 5 (Machine Learning Model), where we discuss the models implemented and their fea-

tures;

• chapter 6 (Evaluation), where we present our evaluation metrics as well as their results;

• Chapter 7 (Conclusion), where we present some final thoughts, the main contributions of this work

and future work.
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This chapter will explore all concepts and projects necessary to understand the solution presented

in the following chapters. Specifically, it focuses on the concept of true and false positives, bug prioriti-

zation, as well as the SmartBugs framework.

2.1 The Problem of False Positives

A true positive occurs when a report correctly (true) gives a positive (positive) result. In the context of

this work a true positive refers to a bug report that is indeed a bug. A false positive occurs when a report

incorrectly (false) gives a positive (positive) result. In the context of this work a false positive refers to a

bug report that is not actually a bug. The same logic applies to true and false negatives.

Ideally a bug analysis tool would only give true positives and true negatives, meaning that it could find

all bugs present in smart contracts and give no incorrect report. In reality however, both false positives

and false negatives occur during the execution of most analysis tools. False negatives happen when a

bug is not detected by the tool and false positives happen when an incorrect bug report is given.

False positives represent a great hurdle for widespread use of bug analysis tools. This is because

false positives imply time wasted on manual analysis of nonexistent bugs. Legunsen et al. [13] reported

spending 1,200 hours to inspect, discuss and patch 852 violations, averaging 1.4 hours per violation.

Breno at all. found in their study [4], that there was little time difference in analysing a true or a false

bug report, only that false positives skip the patch implementation phase. Therefore, each false positive

has a significant time loss implication for the developer. If a bug analysis tool returns too many false

positives, developers lose faith in said tool and abandon it due to its high time cost. Kremenek and

Engler concluded in their study [5] that in order for a developer not to lose faith in a bug analysis tool, it

must not present any false positives in the first 3 reports and have no more than 10-20 false reports in

a row. Should any of these conditions be broken, there is a high chance that the developer will stop the

inspection. In this work we will thrive to maintain these conditions.

2.2 Bug Prioritization

The issue of bug prioritization has existed ever since bugs came to be, that is to say since the beginning

of computer science. Initially, when all bug reports were written manually by developers, the priority of

a bug was a field that was manually filled by the developer in question. Taking into account how much

impact and consequence it had on the system, developers would use their experience to decide on a

suitable priority level. The issue with this approach is the heavy reliance on the developer’s experience

and familiarity with the system. After all, a developer with little to no experience and that is not familiar

with the system could hardly be expected to give accurate priority values to bug reports.
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This became apparent when bug reports became open to the public. Without the techinical expertise

of developers and with no deep understanding of the inner works of a system, the general public was

unable to give accurate levels of priority to their bug reports. To solve this issue, junior developers

were hired to test bug reports and assign priorities to them. This approach however, still maintains

the reliance on developer experience and is unable to keep up with large amount of bug reports. This

issue was doubled when automatic bug analysis tools appeared and provided even larger number of

bug reports, many of which are false positives.

As seen in the previous section, false bug reports come with high time cost for the developers charged

with exploring them. As such it became necessary to find a way to prioritize large amounts of bug

reports without depending on the experience of a single developer. Two main approaches were taken:

Natural Language Processing (NLP) and Machine Learning (ML). NLP is used to read manual bug

reports written by real users in an effort to understand what it says and then apply a suitable level of

priority. Since this work focuses on bug reports provided by automatic analysis tool this approach is not

as relevant, but some insights from it have been taken for the purpose of prioritizing bug reports from

analysis tools.

Machine learning aproaches take information from a selected number of features and try to figure out

patterns that could help predict the correct priority level of a bug report. It is an efficient way to process

large amount of reports with high accuracy. This approach has been used to prioritize both manual

reports by users and automatic reports by analysis tools, which are the most relevant for this work.

Chapter 3 will take a closer look at some examples on how machine learning can be used to assign

priorities to bug reports provided by analysis tools. The selected works analyse a variety of machine

learning techniques and how they can be used for the purpose of bug prioritization.

2.3 SmartBugs

SmartBugs [1] is an extensible and easy-to-use execution framework that simplifies the execution of

analysis tools on smart contracts written in Solidity. As described in the introduction chapter, SmartBugs

was developed to satisfy a necessity to evaluate the validity of smart contracts written for the Ethereum

blockchain. Its objective was to create an environment where users could test their smart contracts,

developers could test their bug analysis tools, and researchers could perform empirical studies on the

state of smart contracts in the blockchain.

SmartBugs architecture is composed of a web dashboard, a command line interface, the runner, the

tool configurations, the bug analysis tools and datasets. The two aspects of greater importance are the

tools and the datasets. Tools in SmartBugs are implemented as docker images stored in DockerHub [14].

Where images were available said images were used, otherwise they were created and publicized. The
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Figure 2.1: SmartBugs Architecture [1]

choice to use Docker images was made to ease the addition of new tools, allow the execution to be

reproducible and to use the same execution environment for all tools.

The 11 tools currently supported are: HoneyBadger [10], Maian [9], Manticore [15], Mythril [16],

Osiris [17], Oyente [18], Securify [8], Slither [19], Smartcheck [20], Solhint [21] and Conkas [22]. What is

important to note here is the wide variety of bug analysis tools. Some are static analysis tools and some

are dynamic, each with their own characteristics. HoneyBadger is a particularly interesting example,

as it hopes to find not bugs, but honey pots. Honey pots are traps laid by developers that are made to

look like bugs, but that are actually not bugs at all. The peculiarity of each tool is part of the appeal of

SmartBugs, as it easily allows users to have their smart contracts analysed by multiple tools and angles.

As mentioned above, adding more tools is relatively easy, and the number of tools has been steadily

increasing with each published work on this framework. The approach presented in our solution must

take this design philosophy into account.

The datasets are the smart contracts to be analysed by the tools. The sbcurated dataset consists of

143 smart contracts with 208 tagged vulnerabilities. Contracts in this dataset are either real contracts

that have been identified as vulnerable or contracts that have been purposely created to illustrate a

vulnerability. Developers can use this dataset to test and compare their bug analysis tools with the

rest of the market. It can also be used to rank and evaluate the 11 tools against a variety of known

vulnerabilities. The next section will describe the results of such an evaluation.

The sbwild dataset contains 47,398 contracts extracted from the Ethereum blockchain. The set of

vulnerabilities of those contracts is unknown, as they have not been manually studied by experts. This

dataset allows researchers to perform empirical analysis of the state of the blockchain at large. Smart-

Bugs developers have performed an intensive analysis of this dataset that took over 564 days to run and

that will be further discussed in the next section.
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Figure 2.2: SmartBugs results in the sbcurated dataset [2]

Figure 2.3: SmartBugs results in the sbwild dataset [2]

2.3.1 Empirical Study

SmartBugs developers used their platform to make an empirical review of the automated analysis tools

available to SmartBugs at the time. The authors applied their framework both to the sbcurated dataset

and to the sbwild dataset. Figure 2.2 shows the results of the sbcurated dataset. Some conclusions can

be drawn from this information. First, it is clear that tools have their strengths and weaknesses, better at

finding bugs in some categories when compared to others. Second, we can notice that denial of service

bugs were never found, showing a lack of tools capable of finding vulnerabilities of this type. And third,

only 42% of all bugs were found, leaving more than half yet to be reported. This once again shows the

current limitations of the available tools.

Figure 2.3 shows the results for the sbwild dataset. This dataset contains more than 47 thousand

contracts and it took 564 days and 3 hours to complete a total of 428,337 analyses by all tools. The

analysis wielded some very interesting results. First it can be noted that 93% of contracts were marked

as vulnerable, with the Oyente tool alone reporting 72% of contracts to have arithmetic vulnerabilities.

This suggests a high number of false positives. As described in the previous section, false positives are

one of the biggest hurdles that must be surpassed for these tools to achieve widespread use. Another

interesting takeaway is that only a small number of reports were in consensus of 4 or more tools (937

for Arithmetic and 133 for Reentrancy). Most reports came from a single tool.
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A lot of work has been done on the issue of bug prioritization over the years. As far back as 2013,

Alenezi and Banitaan [23] developed a system to help developers triage bug reports manually written by

users by leveraging machine learning. Their study took care to analyse what features and classifiers to

choose, a trend that would continue.

While work continues on bug prioritization of manual reports, this thesis is focused on bug prioritiza-

tion of reports provided by automatic analysis tools. Far less work have been done on this side of the

issue, but recent studies provide some good insights. This chapter will analyse some of these studies.

3.1 An Empirical Assessment of Machine Learning approaches

for Triaging Reports of a Java Static Analysis Tool

Koc et al. explored in their aptly named report ”An Empirical Assessment of Machine Learning ap-

proaches for Triaging Reports of a Java Static Analysis Tool” [3] how effective different machine learning

techniques are at classifying a bug report as a true or a false positive. Their motivation, as well as ours,

was to lower the cost that false positives represent to developers in order to make static analysis tools

more useful. The goal of this study is to build a classifier that identifies a bug report as either a true or a

false positive. They studied the following approaches:

• Learning with Hand-engineered Features (HEF): This method represents the approach used by

the majority of studies up to this point. Hand-engineered features are features manually created

by experts to provide information on weather a certain bug report represents a true or a false

positive. By design, this approach never looks at the source code that is represented by the hand-

engineered feature, as classifiers only ever see the hand-engineered features themselves and not

the source code that triggered it. Another thing to take into consideration is the fact that using

hand-engineered features limits the performance of the machine learning model to the information

provided by said features. For their work, Koc et all. adapted and used the hand-engineered tools

from a previous study by Trip et al. [24]

• Program Slicing for Summarization: This technique is used as an intermediate step in the

following approaches, and refers to a way to grab a summary of the program that caused the bug

report. To do this Koc et al. use a method called backward slicing with help from Joana [25],

a program analysis framework for Java. Backward slices are a way to isolate what part of the

program could have influence over a certain event. In this context it means that the classifier will

only look at the part of code that could effect the bug report, not introducing noise from the rest of

the program.
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• Bag of Words (BoW): The idea behind this approach, inspired in text classification problems, is

to used tokens extracted from the backward slice of the program as the features for the machine

learning classifier. From here on we refer to tokens as ”words” as that is how this technique is

usually implemented. It is used in this study in two different variants: as a binary vector of words

(BoW-Occ), where for each slice we mark words that appear in the slice as 1 and words that don’t

appear in said slice as 0. The second variant counts the frequency of words, keeping track of how

many times each word exists in the program slice (BoW-Freq). Bag of Words ignores order, only

keeping track of what words / frequency of words exist in the program slice.

• Recurrent Neural Networks (RNN): In contrast to the previous approach, order in RNN is im-

portant. RNN processes a sequence of words where features take into consideration not only the

current word, but all previous words. That is to say that the meaning of a word (in this case related

to true and false positives) takes into consideration the meaning of all words analysed before it.

This an intuitive approach for text analysis as the final word of a sentence changes meaning based

on the rest of the words in the same sentence, and the same applies to code analysis. More

specifically, this work uses a version of RNN known as LSTM (Long short term memory), suitable

for the long sequences expected in this context. To use LSTM, authors needed to transform pro-

gram slices into sequences of tokens by including the following transformations: Data Cleansing

and Tokenization (LSTM-Raw), Abstracting Numbers and String Literals (LSTM-ANS), Abstracting

Program-specific Words (LSTM-APS) and Extracting English Words From Identifiers (LSTM-Ext).

Each stage of the transformation is represented as a different approach in the results section.

• Graph Neural Networks (GNN): While RNN sees programs as a sequence of tokens, GNN does

something similar but represented as a graph. Authors chose to focus their efforts on a variation of

GNNs called Gated Graph Neural Networks (GGNN). GGNNs had been used to learn properties

about programs, but had not yet been applied to classify static analysis reports or to learn from

program slices. The authors used three different ways to initialize the input node representations:

Using Kind, Operation, and Type Fields (KOT), Extracting a Single Item in Addition to KOT (KOTI)

and Node Encoding Using Embeddings (Enc). Once again, each variant is considered a different

approach in the results section.

The static analysis tool selected for the study was FindSecBugs (version 1.4.6) [26], a popular se-

curity checker for Java web applications. Two benchmarks were chosen as well, the OWASP Bench-

mark [27], used to benchmark previous static analysis tools in the past, and one manual benchmark

created and labelled by the authors (RW). The manual benchmark was divided into two to express two

different scenarios. RW-Rand is meant to mimic a scenario where a program is developed with help

from a static tool, this is the tool is constantly run on the same program and is able to learn program
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specific identifiers. Second scnenario happens when the analysis tool is used to analyse a new program,

and therefpore must train in one program to be later applied to another, this scenario is represented in

RW-PW. The metrics tested are precision, to measure how many of the true positives classifications

were correct, recall to measure how many of the true positives were correctly classified and accuracy to

measure how many samples were correctly classified in total.

The results presented in figure 3.1 show the various approaches and their variants. HEF variants

refer to different classifiers tested while BoW, RNN and GNN variants are the ones presented above.

The results show LSTM to have the best overall performance throughout the experiment, with LSTM-

Raw able to reach 100% accuracy for the OWASP dataset. This proves there is ample credibility to

this triage technique. Looking more carefully at results we can see the gap between LSTM and other

approaches increase in the RW-PW dataset, meaning that LSTM proves more adaptable at triaging bug

reports of new programs when compared to other approaches, with GNN as a close second. Authors

theorise this is because these are the two approaches that keep the most information from the initial

program, keeping both code and order/relationship.

We can also analyse the effect of different levels of data preparation in performance. The goal goal

of data preparation is to provide the most effective use of information that is available in the program

context. LSTM-Ext produced the best overall accuracy of all datasets. LSTM-Raw did achieve 100%

accuracy for the OWASP dataset but authors conclude this has to do with the OWASP benchmark

itself. Specifically, in order to test static analysis tools OWASP has variables with names such as ”safe”,

”unsafe” and ”tainted” that giveaway the answer and that LSTM-raw utilizes to ”cheat”. Even for less

successful approaches, GNN variants with better data preparation (GGNN-Enc) prove more accurate

then their less prepared counterparts. This proves the significant positive influence that data preparation

can have on the accuracy of the models.

In summary, this study proved the validity of triaging bug reports from static analysis tools with ma-

chine learning, as well as multiple techinical conclusions. For their context, authors found the recurrent

neural network of LSTM to be the most accurate of all aproaches and that data preparation can have

great positive influence in the accuracy of the solution.

3.2 Prioritizing Runtime Verification Violations

This study by Miranda et al. [4] has a slightly different nuance from the last. While Koc et al. were looking

to triage their bugs and drop those considered as false positives, Miranda et al. only wish to prioritize

them. This is, they will re-organize bug reports and change their order based on the probability of being a

true or a false bug. Reports considered more likely to be true will be put towards the beginning of the list,

while reports less likely to be true will be presented last. This way, no incorrectly identified true positive
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Figure 3.1: Results from Koc et al. experiments [3]
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will be lost to the user. Therefore, strictly speaking, the authors of this paper are not trying to classify

bugs as true or false, but instead trying to calculate likelihood of being true positives and then using that

information to organize a list of prioritized bug reports. This approach has the same advantages as the

previous one, saving precious developer time, while it avoids the downside of missing true bugs that

have been incorrectly identified as false positives.

To do this, authors prepared five probability categories with the values of: very-low, low, medium,

high and very-high probability of being true bugs. The various bug reports were then classified to one of

these categories with help from a classifier machine learning model, and then later prioritized according

to these values.

For a quick introduction of Runtime Verification (RV), it is a dynamic (while the last study was static)

analysis technique that works by keeping track of properties throughout a test’s execution. Should any

of the defined proprieties be violated, this is not conform to a predefined specification, then a violation is

raised, warning the user of a possibility of a bug. The problem is that, according to previous studies [28],

only 10% of reports presented by runtime verification represent true bugs. As such, authors of this paper

developed RVPrio, an automated approach for prioritizing RV violations in order of likelihood of being

true bugs. Using RVPrio, developers can focus their time on the violations with the highest probability of

being true.

As with any machine learning project, the first step is to choose which features to use. Authors

selected features in a 2-step process. First, features are extracted from properties associated with

violations and from the source code that triggered violations. This is inline with the conclusions from

Koc et al.’s study, which concluded that features selected from source code were of more use than those

that were made artificially. However, this resulted in a very large number of features, which can have

a negative effect in performance. To solve this issue authors used Recursive Feature Elimination with

Cross-Validation (RFECV), an algorithm that discards bad features to select a final, more concise, set

of useful features.

With features selected, authors tested different binary classifiers to see how good they were at pre-

dicting if violations represent true or false bugs. To do this, they used the following metrics: Precision

as a proxy for measure of amount of false positives, Recall as a proxy for measure of amount of false

negatives and F1-Score an average of both. Higher is better for all cases, and they are compared to a

DummyClassifier that chooses at random and therefore scores 0.5 in all metrics. Results are presented

in table 3.1.

Analysing the results, we can see that the top four results (excluding logistic regression) are en-

sembles. Ensembles are machine learning models that are trained by joining the results of multiple

other models. This is something suggested by Koc et al. during the future work section of the previous

study. There he suggested that ensemble classifiers might provide better classification performance
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Classifier Precision Recall F1-score

Gradient Boosting Classifier 0.74 0.73 0.73
Logistic Regression 0.76 0.70 0.71
Random Forest 0.73 0.70 0.71
AdaBoost 0.74 0.68 0.70
Decision Tree 0.70 0.68 0.69
Gaussian Processes 0.67 0.65 0.66
Neural Net 0.74 0.65 0.64
Nearest Neighbors 0.67 0.63 0.64
Naive Bayes 0.62 0.75 0.55
Linear SVM 0.70 0.54 0.53
DummyClassifier 0.50 0.50 0.50

Table 3.1: Performance of different classifiers in RVPrio [4]

when compared to simple classifiers, and RVPrio confirms this to be the case.

Authors also tested the end result of RVPrio as a prioritizer of violations. Since Gradient Boosting

Classifier had the best performance, that is the variant chosen for the following results presented in

figure 3.2. The test had a list of RV violations, some true and some false, and the objective is to prioritize

the list in such a way that true positives are at the top. The x axis has the number of violations analysed

and the y axis has the percentage of true bugs revealed. Different strategies are represented by the

differently colored lines.

The blue line represents an optimal prioritization, where all true bugs are shown at the beginning of

the list, represented by the linear increase in true bugs found as the violations are analysed. After all

true bugs are found only false reports remain, and as such the line remains horizontal after it reaches

100%. The red line represents random prioritization. In this case true and false reports are randomly

mixed together and we would have to, on average, analyse half the violations to find half the bugs,

explaining the constant trend of the line. Spikes on the line are due to randomness. Lastly, the green

line represents RVPrio. As can be seen, the line closely, but not perfectly, resembles the optimal blue

line. Most bugs are quickly revealed in the first analysed violations, with only a few being incorrectly put

towards the end of the list. RVPrio reached 90% effectiveness of the optimal prioritization.

The advantages of this prioritization are best illustrated in the table of table 3.2. Here it can be seen

that if a developer would only analyse 5% of the violations in the violation list using random prioritization,

then he would have only found 4.17% of true bugs. However, analysing the same 5% of violations in a list

prioritized with RVPrio, than the same developer would have found 17.26% of all bugs, a 4.13x increase

over random prioritization. Using RVPrio, a developer would have found 88.10% of all bugs by looking

at only 25% of violations, saving a great deal of time. To be guaranteed to find all bugs, developers must

still manually analyse all violations, but as we can expect the majority of developers to be satisfied with

only 90% of bugs found, developers can focus their time on only a small portion of the list.
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Figure 3.2: RVPrio prioritization performance [4]

% of violations 5% 10% 15% 25% 50% 75%

RVPrio-GBC 17.26% 32.74% 60.71% 88.10% 96.43% 97.62%
Random 4.17% 5.36% 14.29% 24.40% 56.55% 64.29%

Improv. 4.13x 6.11x 4.25x 3.61x 1.71x 1.51x

Table 3.2: RVPrio percentage of true bugs revealed at different fractions of the violation list [4]
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Following the steps of the related work presented above, we have also chosen to implement a ma-

chine learning model to help us classify bug reports as either true or false positives. This classification

will later be used to prioritize our reports, achieving the goals stated in Chapter 1.

While the details of the machine learning model will be discussed during the next chapter, this chapter

discusses the data collection and processing that was used for the development of this thesis. This is

the preparation of the data that will be fed to the machine learning model. In addition we also discuss

some practices that we believe could be useful as standards for bug datasets and that could facilitate

their use for a wider range of works.

From the next section onwards we will present and discuss every step in the data preparation

pipeline, including our reasoning behind each decision taken.

4.1 Data Preparation Pipeline

The data preparation pipeline followed in this project is the following:

1. Acquire datasets

2. Run SmartBugs on acquired datasets

3. Parse output SARIF file from SmartBugs’ execution to a bug reports CSV file

4. Parse the dataset’s metadata (information about the actual bugs in the dataset) to a solutions CSV

file

5. Join the bug reports CSV file and a solutions CSV file, into a final CSV file containing all bug

reports as well their solution (i.e. if they represent a true or false positive bug report).

The next sections will discuss each step of this pipeline in detail.

4.2 Datasets

For this project, we have chosen to implement supervised machine learning techniques. This is, the

machine learning model is trained with already classified data. In our case it means that the bug reports

provided to the machine learning model will already have information that classifies them as either true

or false positives. Supervised machine learning techniques allow developers to train more accurate

models when compared unsupervised machine learning techniques (techniques that allow us to train

models without previously classified data), but it requires that we prepare data that already has said

classification.
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In order to achieve this, our bug datasets must already have metadata information about which bugs

exist in the datasets so that we can later match that information with the reports provided by SmartBugs’

execution. It is a consequence of this method however, that we trust the classification provided by the

dataset itself. Should the classification that is used to train the machine learning model be proven to

be untrustworthy, then we can also assume that the trained machine learning model will also be as

inaccurate as the data it is trained on.

Taking all this into consideration, the datasets used in this project are:

1. SmartBugs’ sbcurated dataset, including 143 faulty smart contracts manually analysed by experts

2. SolidiFI’s bug dataset [29], containing 550 faulty smart contracts created through bug injection

3. HuangGai’s manual dataset [30], containing 964 faulty smart contracts manually analysed by ex-

perts

The datasets chosen can be roughly separated into two categories:

1. Datasets that have been manually verified by experts

2. Datasets that have been automatically generated through bug injection, but not manually verified

by experts

Datasets that have been manually verified have the advantage of being more likely to be correctly

classified. As an expert familiar with the bugs in question has verified its content, the probability of it

being incorrectly classified is smaller when compared to a purely automatic procedure. The downside of

this approach is its high cost of development. After all, an expert must spend a significantly high amount

of time to manually evaluate all the bugs in the dataset. As a result, these datasets are often much

smaller than their automatic counterparts.

Datasets that have been automatically generated through bug injection but not manually verified by

experts are the opposite. The completely autonomous process through which they are created requires

very little of the developers time if we consider that the tool that provides the injection has already

been developed. As a result, these datasets are usually much larger than those that have a higher

human component in their development cycle. The downside is that it leaves more room for error in

classification, as no expert will verify the results provided by the bug injection tool.

For this project we chose a mixture of the two, using manually verified datasets when possible, and

then bolstering the numbers of our dataset through bug injection.

It is also important to notice that no further datasets could added to this work, due to exponential

time it takes to run all contracts of said datasets with SmartBugs. As mentioned above, SmartBugs has

11 different analysis tools, so each contract is run 11 different times, making the analysis process very

lengthy. Further datasets would have taken too long to run, making them unviable for our project.
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After acquiring the datasets, the next step is to run the SmartBugs framework with all tools enable

and save the output SARIF file. As mention before, this is an extremely time consuming process. Having

the results in hand, the next section explains the start of the data processing proper.

4.3 From SARIF to bug reports CSV

The first step of data preparation is to join the multiple reports given in SARIF format in such a way that

we can see which reports belong to the same bugs. Do note that if all 11 tools present in SmartBugs

report a bug, there would exist 11 different reports concerning the same bug. The goal is to join all

reports of the same bug together in the same line of a CSV file, thus allowing the machine learning

model to grasp information on consensus.

Each CSV line has a bug id, followed by the report of each tool. Each tool’s report is further divided

into the rule id of the bug that was found by the tool, as well as the level of the bug the tool characterized

it as (error or warning). Should a tool not have found the bug, than the columns related to it will be left

empty. The final result is a CSV file where each line represents a bug, and each column has the reports

of each tool on that same bug. These columns will be used as our machine learning model’s features,

this is the information though which it learns.

Take for example the line:

1 buggy 40.so l :620 , UncheckedLowCalls 7 , warning ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 , AccessControl 19 , e r r o r

The line expresses that bug id buggy 40.sol:620, was reported by two tools. First it was reported as a

warning by SmartCheck [20] with a rule id of UncheckedLowCalls 7 and then as an error by Slither [19]

with a rule id ofAccessControl 19.

This approach, however, raises a technical difficulty: How to determine if the two bug reports concern

the same bug? When a large file is analysed, multiple bugs can be present, and consequently multiple

bug reports may appear on the analysis tools. The issue of how to organize these bug reports appears.

To resolve this issue, we need a systematic way to join our reports together. The solution imple-

mented in this paper is as follows:

1. Two reports concern the same bug if they are reported on the same line and source file

2. Two reports concern the same bug if the bug in question is of the same category

If both of the rules above apply we consider these reports to be about the same bug, if not we

consider them to relate to different bugs.

The first item is easy to verify, but the second proved more complicated. When it comes to category,

we have mapped each of the rule id’s of each tool to a category and use said category in the rules
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described above. This is, if a tool reports an arithmetic bug, while a different tool reports an access

control bug on the same line, then we consider them to be referring to different bugs.

The categories we have chosen to use for this project follow the DASP10 (Decentralized Applications

Security Project Top 10) regulation [31]. DASP10 divides solidity bugs into 10 categories:

1. Reentrancy Occurs when external contract calls are allowed to make new calls to the calling

contract before the initial execution is complete

2. Access Control Vulnerabilities that give attackers straightforward ways to access a contract’s

private values or logic

3. Arithmetic This category contains issues such as integer overflow and underflow

4. Unchecked Return Values For Low Level Calls Vulnerabilities created by low levels calls such

as call() and send() failing silently without the developer noticing and while the program continues

executing

5. Denial of Service Vulnerabilities that stop the service

6. Bad Randomness Vulnerabilities created by variables that are not truly random

7. Front-Running Refers to vulnerabilities that occur when users spend more gas to have their trans-

action run first

8. Time Manipulation Vulnerabilities created when miners purposely manipulate the exact time their

blocks are mined (a variable that can be used inside smart contracts)

9. Short Address Attack Vulnerabilities created when poorly coded clients encode arguments incor-

rectly before including them in transaction

10. Unknown Unknowns Everything else

The mapping utilized between the tools in SmartBugs and the categories shown above is shown in

figure A.1, available in appendix A of this paper. Using these categories we can follow the two rules

presented above and join our bug reports together.

4.4 From metadata to solutions CSV

The next step in the data processing pipeline is to prepare a CSV file containing the solutions to our

experiment. Since our machine learning model uses supervised learning methods, it is important to

prepare data where we know the classification results beforehand. This way we can train a better

model.
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To obtain said data, we need to look at each dataset used, and parse the location and category of

each bug to a solutions CSV file that will later be joined with the bug reports CSV file prepared in the

previous section. In this section we will discuss the steps taken to prepare said solutions CSV file, while

also suggesting a standard that could be used to declare bugs in a bug dataset.

Since each dataset used in this project had its own unique way to declare the bugs it carries, a unique

parser had to be developed for each dataset to parse their bug metadata to our desired CSV file.

Another issue concerns categories. To match up with the DASP10 categories described in the last

section, we have also mapped a DASP10 category to each bug of each dataset. This is possible since

every bug on the datasets was created to purposely illustrate a certain bug type. The details of each

mapping will be described in each dataset’s subsection.

In short, there are two pieces of information we need to extract from every bug’s metadata:

1. The location (file and line of code) where said bug appears

2. The category of the bug in question

The following subsections will describe how this extraction is done for each of the datasets used.

4.4.1 SmartBugs sbcurated dataset

The SmartBugs dataset was fairly easy to parse. Since the bugs had already been organized by DASP10

category, there was no need to map between SmartBugs category division and DASP10 category di-

vision. After all, this dataset was created by the developers of the SmartBugs framework this work

extends, having already been prepared with DASP10 categories in mind.

As for the location of the bug, this information had been left in the form of comments in the source

code of the files from which the bugs originated.

There was also an additional JSON file containing all bugs in the dataset, including their location and

category. In practice it was this file that was read. To have a standard from which to judge all datasets,

this information was parsed to our solutions CSV file. The format this file has, as well as the standard

we wish to start, will be explained in the last subsection of this section.

4.4.2 SolidiFI

As for the SolidiFI dataset, its metadata had been left in the form of CSV files (one for each source code

program). Said metadata contains only the location of the bug in the source file. To extract the location

of the bug, it sufficed to simply read it from the corresponding file’s CSV auxiliary file.

To get the bug’s category, we had to map the folder category of this dataset (which separated each

bug by it’s own category) to the DASP10 category system. This is necessary for the future step of
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SolidiFI Category DASP10 Category

Overflow-Underflow Arithmetic
Re-entrancy Reentrancy
Timestamp-Dependency Time Manipulation
TOD (Time Order Dependency) Front-Running
tx.origin Access Control
Unchecked-Send Unchecked Return Values For Low Level Calls
Unhanded-Exceptions Unchecked Return Values For Low Level Calls

Table 4.1: Vulnerabilities mapping between SolidiFI and DASP10

joining the bug reports CSV file and solutions CSV file. As mentioned in the previous section, we

consider two bug reports to concern the same bug if they are reported on the same line, and are of the

same category. This second requirement would be impossible to fulfill if there was no common ground

to compare categories from each dataset.

The mapping we followed is presented in table 4.1.

4.4.3 HuangGai

Lastly we have the HuangGai dataset. In this case a CSV file accompanied the source file (one CSV file

for each source file), which provided the lines of code where the bugs occurs.

While the idea is similar to the SolidiFI’s dataset described above, the way the CSV file itself is

presented is different. For this reason, a separate parser had to be developed to extract HuangGai’s

metadata from their CSV files.

As for the category, it was mapped from the folder category of the dataset to the DASP10 category

system presented above, in a similar matter to the SolidiFI dataset.

The mapping utilized for HuangGai’s categories is as presented in table 4.2.

4.4.4 Solutions CSV file organization and standards

After extracting bug information from all datasets, we can now populate the solutions CSV file described

at the beginning of the section. To fully utilise the advantages of consensus a new format was developed.

This format represents a CSV file where each row has the following columns:

1. Contract name: The contract name of the contract in question, including its relative path from the

main folder. This way we can differentiate between multiple contracts with the same name, but on

different folders.

2. Lines: The next piece of information is the lines where the bug is located on. To allow more

versatility in expressing bugs that can be accepted to be reported on multiple lines, there exist
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HuangGai Category DASP10 Category

contractAffectedByMiners Bad Randomness
DosByComplexFallback Denial of Service
forcedToReceiveEthers Arithmetic
hashWithMulVarLenArg Unchecked Return Values For Low Level Calls
integerOverflow Arithmetic
lockedEther Denial of Service
nonStandarNaming Unchecked Return Values For Low Level Calls
NonpublicVarAccessdByPublicFunc Access Control
preSentEther Arithmetic
publicFuncToExternal Access Control
reentrancy Reentrancy
shortAddressAttack Short Address Attack
specifyFuncVarAnyType Unchecked Return Values For Low Level Calls
suicideContract Access Control
transactionOrderDependancy Front-Running
txOriginForAuthentication Access Control
unhandledException Unchecked Return Values For Low Level Calls
uninitializedLocalVariables Unchecked Return Values For Low Level Calls
unlimitedCompilerVersions Unchecked Return Values For Low Level Calls
wastefulContracts Access Control

Table 4.2: Vulnerabilities mapping between HuangGai and DASP10

multiple ways to declare in what lines a bug is located. First, a simple number can be used to

express a single line, i.e. the row ”contract.sol,100,access control” describes that there is a bug in

contract contract.sol, on line 100 whose category is access control. Another way to express lines

is using a ”-” operator. A lines value of 100-120 implies that a bug can exists between line 100

and line 120. Lastly, our format also accepts the ”/” operator. A line value of 100/105 means that a

bug exists on either line 100 or line 105. It is also important to notice that multiple operators can

be used simultaneously. For example a lines value of 100-120/132 means that a bug exists either

in between lines 100 and 120 or in line 132. This way of expressing lines can be used to better

describe bugs that can be reported on multiple lines

3. Category: The last piece of information described in each row of our solutions CSV file is the

category of the bug in question. As mentioned above this, category must be one of the previously

described DASP10 categories. Similarly to lines, there exist multiple different ways to express

which categories to accept a bug report as. The simplest way is to simply write a single category

in the category field. The row ”contract.sol,100,access control”, as mentioned above, describes

that there is a bug in contract contract.sol, on line 100 whose category is access control. Another

way would be to use the ”/” operator. A category value of arithmetic/denial service would mean

that a certain bug is either of the arithmetic or of the denial service category. Since there is no

continuity between different categories as exists between numbers, there is no ”-” operator for the
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category value. There is however an ”ANY” value that matches to any category. As for the lines

value, this way of expressing the category of a bug is more expressive, allowing us to accept bug

reports of bugs whose categories are ambiguous.

In most cases, when parsing from the datasets used to our CSV format, there is a single line and

single category reported, making little use of the ”-” and ”/” operators. That isn’t to say however, that

there is no use to them. The datasets we used simply did not have that information available, so it

would have required manual analysis of all 1,657 faulty smart contracts in our final dataset to add this

information to their metadata. There are plenty of use cases for the proposed format.

Take this bad randomness vulnerability for example:

1 function deal(address player) internal returns (uint8) {
2 uint b = block.number;
3 uint timestamp = block.timestamp;
4 return uint8(uint256(keccak256(block.blockhash(b), player, timestamp)) / 52);
5 }

Variables with bad randomness were declared in lines 2 and 3. They were however, only used in line

4, which is where the vulnerability applies. Where should this bug be reported? In lines 2 and 3, or line

4? Both approaches seem reasonable and it is up to the dataset’s author to decide. If the author marks

lines 2 and 3, he is marking 2 different bugs, and a report on line 4 would be considered false. If the

author marks line 4, then only one bug is declared and any reports on lines 2 or 3 will be considered

false. Using our format however, the author could write 2-3/4 on the lines value and accept both cases.

It is also important to note that different analysis tools take different approaches and may report

the bug in any of the two present cases. Only using our format could both reports be counted as true

positives.

Because we do believe our format to be more expressive than any other we have come across, we

would like to suggest to our readers to use it as well in their bug datasets. This level of flexibility will

allow for better descriptions, and therefore analysis, of bugs.

Based on the study of multiple bug datasets available, table 4.3 describes what methods are currently

in use to present the metadata related to bugs in nine datasets.

As seen in table 4.3, most datasets already use CSV files for their metadata (usually one per source

file), so a transition to a different format shouldn’t be overly difficult. Furthermore, we would suggest for

it to be a CSV file for each source code file (as it is already common practice) as well a single CSV file

containing all bugs in the dataset to facilitate works such as ours that look at the dataset in its entirety.

Lastly, it is important to notice that multiple ways to select metadata can be used simultaneously,

such as the case for the SolidiFI dataset, where both CSV files and comments are used. So there is no

need to exclusively use the standard suggested while disregarding previous approaches.
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Dataset Bug Language Method

SmartBugs [1] solidity JSON and Comments
SolidiFI [29] solidity CSV and Comments
Jiuzhou [32] solidity Json
Huang Gai [30] solidity Txt and Comments
Defects4JS [33] java CSV
BugsJS [34] java CSV
The Bug Prediction Dataset [35] java CSV
Bug-Fix Dataset [36] java CSV
Unified Bug Dataset [37] java CSV

Table 4.3: Metadata method per bug dataset

4.5 Final CSV

Returning to our own data processing pipeline, after preparing both a bug reports CSV file and a so-

lutions CSV file, the last step is to join them both, obtaining a single CSV file with all bugs and all bug

reports. The objective is to classify each bug report in the bug reports CSV file as either a true or a false

positive based on the bug information available in the solutions CSV file.

The final CSV file will have all the columns of the bug reports CSV (the rule id and level found by

each tool) as well as a final column describing if this report refers to a true or a false positive.

A report from the bug reports CSV file is considered a true positive when:

1. The bug report was reported on the same file as a bug in the solutions CSV file

2. The bug report’s lines matches, or are at least a subset of, the same bug’s line in the solutions

CSV file. Do note that the solutions CSV file can accept multiple lines as the location of the bug as

per described in the previous section.

3. The report’s category matches at least one of the categories of the bug in the previous line

Should all these conditions prove true, then the bug report is considered to be a true bug report,

otherwise it is considered to be a false positive bug report. At the end of file we put all the true positives

not caught by the tools, making sure all bugs and bugs reports are properly represented in the final CSV

file.

This final CSV file contains all bug reports and all bugs properly connected, so the machine learning

model can learn which reports represent true positives, and which reports represent false positives.
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This chapter describes the machine learning models utilized in this project. The goal of said machine

learning models is to classify bug reports provided by SmartBugs as either true or false positives. We

will then re-organize the list of bug reports, putting first those classified as true positives, and then those

classified as false positives. This way we can achieve a prioritized list of reports, allowing developers to

focus their time at the top of the list, where bug reports are more likely to be correctly identified.

The following sections describe the important aspects of the machine learning models.

5.1 Features

The data provided to the machine learning model is the final CSV file described at the end of the

previous chapter. To re-iterate, it is a CSV file where each row represents a bug, and columns represent

the analysis provided by each tool on said bug. Each tool is represented in two columns, one for the

rule id of the rule broken that originated the bug report, and one for level the tool classified this bug as

(either warning or error). Should a tool not have reported this bug, than these columns are left empty. At

the end there is a final column classifying the bug report as either true or false.

The last column will be used to help train the model with already classified data, so it is not counted

as one of the features. The other columns (excluding the id column), are the features provided to our

machine learning model. This is, the features provided to the model are the results of the analysis of

each tool for the same bug, as per determined in the previous chapter. The model will have access to

the rule id and level that results from the analysis of each tool on the same bug.

The consequence of this feature selection is information about consensus. Our machine learning

model has information about the same bug, from all tools’ points of view and can use that information to

better classify bug reports as either true or false positives.

Should a specific tool (or conjunction of tools) prove to be more reliable than others at classifying a

certain type of bug report, then our machine learning model can learn this information and rely more

on said tools. Should a specific tool (or conjunction of tools) prove to be less reliable than others at

classifying a certain type of bug report, the opposite can apply.

This is the benefit of consensus between multiple analysis tools and this is what we expect our

machine learning model to learn with.

5.2 Data preparation

The data presented to machine learning model is that which is presented in the previous chapter, but

besides the data preparation there mentioned, there is still two matters that must still be prepared, further

described in the following subsections.
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5.2.1 Data division

The first is related to data division between training and testing sets. Here, a balance must be struck

between increasing the size of the training set and increasing the size of the testing set.

On one hand, increasing the size of the training dataset will give more information for the machine

learning model to train with. Having more information could allow for better trained models, that can bet-

ter predict the classification of our bug reports. Increasing our model’s accuracy is of crucial importance,

so the bigger the training set, the better.

On the other hand, increasing the size of the testing dataset allows for a better evaluation of the

machine learning model. A bigger testing set means there is more data to test the model with, and will

consequently allow us to test the model under a wider range of scenarios. Just like the data training set,

the bigger the testing set, the better.

To strike a balance between these two conditions we have chosen to use 80% of our total data as

the training set data, and the remaining 20% as the testing set data. This way we can spend most of

our data on training, while retaining a significant amount for testing. The advantage of separating our

data as such, is that we can test the model with data it has never seen before, avoiding any biases in

the model itself for the data it is tested with.

Lastly, it is important to note that the data for each set is randomized. This is, 20% randomly chosen

data will be used for testing, and the remaining 80% will be used for training. The order of each dataset

is also randomized. This way we can avoid any unwanted correlation between training and testing sets.

5.2.2 Data balancing

The second matter that must be addressed in the context of data preparation is data balancing. Due to

the nature of the data in this thesis, we can expect the majority of bug reports used as data to refer to

false positive bug reports. From the data used, 166,348 out of 192,073 reports concern false positives,

while only 25,725 out of 192,073 reports concern true positives.

The implication of this imbalance is great. As the vast majority of bug reports concern false positives,

a machine learning model that always predicts the bug report as false will be correct the vast majority

of the time. As 86% of our reports concern false positives, a machine learning model that always

classifies reports as false positives will have an accuracy of 86%, which might seem high but would in

fact be useless. To avoid this issue, developers can look at more metrics besides accuracy that will be

described and discussed in the next chapter, and developers can also balance their data to minimize or

avoid the issue altogether.

There exist two major approaches to achieve data balancing:

• Undersampling techniques
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• Oversampling techniques

Undersampling techniques reduce the majority class in the imbalanced dataset until the dataset is

balanced. In our case, since we have 166,348 false positive bug reports and 25,725 true positive bug

reports, we would need to eliminated 166,348 - 25,725 = 140,623 false positive bug reports to reach

a balance. There exist multiple different algorithms to achieve this, but the common point between all

undersampling techniques is that data will be lost to achieve a balance. The disadvantage of these

techniques is that we must effectively ignore the vast majority of the data we have acquired.

Oversampling techniques are the opposite, they increase the minority class in the imbalanced dataset

until the dataset is balanced. In our case, since we have 166,348 false positive bug reports and 25,725

true positive bug reports, we would need to create 166,348 - 25,725 = 140,623 true positive bug reports

to reach a balance. There exist multiple different algorithms to achieve this, but the common point

between all oversampling techniques is that data will be created to achieve a balance. The disadvantage

of creating data is that the model will be trained with data that was algorithmically created to be similar

to previously classified data, having the potential of being incorrectly classified, or too being similar to

the original data, creating biases in the model.

For this work we have chosen to use oversampling techniques, as we have concluded that the cost of

throwing away 73% (140,623 eliminated false positive reports out of 192,073 total reports) of our dataset

via undersampling techniques to be too high.

The specific algorithm chosen was the SMOTE (Synthetic Minority Oversampling Technique) algo-

rithm. SMOTE creates synthetic data points of the minority class by declaring data points on the vector

line between an original data point of the minority class and their nearest neighbors of the same class.

This way it creates data points that are similar, but not equal, to the data points previously existing,

increasing the number of data points in the minority class while maintaining high probability of a correct

classification.

5.3 Machine learning models used

In this thesis we have chosen to utilize three types of machine learning models:

• Classification models

• Regression models

• Ensemble models

The following subsections will describe the difference between the three types, as well as some

details of their implementation, namely how classification is set and how prioritization is done.
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5.3.1 Classification models

Classification models are in one sense, the simplest. They simply classify each report as either a

true positive or a false positive. There is no need for any further work when it comes to classification.

Examples of this models are decision tree classifiers and KNeighboors classifiers.

As for prioritization, since our results are classified into true or false positives, we can only sort our

bug reports list by presenting those with a true positive value first, and then those with a false positive

value after. As there is no distinction between multiple reports with the same value, there is no way to

further organize the list after the previous step has been completed. This is, there is no way to sort the

list between two reports considered as true positives. The same applies for false positives.

As both the classification and the prioritized list will be used to calculate the evaluation metrics

described in the next chapter, there is an inherited level of randomness to the metrics related to the

order of the prioritization list. As sorting between multiple reports with the same classification cannot

be done, their order will depend on the order that the reports were presented in. As such, depending

of the random sorting of the data preparation section 5.2, the order of the prioritized list can be slightly

different, and therefore slightly affect the results on each run. As machine learning models already have

inherent differences between multiple iterations on the same data, this small randomness did not prove

to be noticeable.

5.3.2 Regression models

Regression models such Logistic Regression and KNeighboors Regressor work differently from classifier

models. Instead of providing a final result of either true or false positive, they instead provide a probability

value of the report being a true bug.

For metrics that require binary classification of either true or false positives, we consider a prediction

to refer to a true positive when it’s probability is above 50% and consider it to refer to a false positive

when it’s probability is below 50%.

As for prioritization, regression models allow for a more flexible approach when compared to clas-

sification models. Regression models give continuous (instead of discrete) values. As such, a much

more detailed sorting can be achieved by sorting the reports list by the probability value provided by the

machine learning model. Using probabilities, not all true positives are the same, which allows for better

prioritization.

5.3.3 Ensemble models

Ensemble models are machine learning models created using a combination of other machine learning

models. They can be either classifiers or regressors, taking classification models or regression models
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for their creation accordingly.

Some of this models, such as the Extra Trees Classifier, have predetermined models as part of their

ensemble algorithms (in this case decision trees), while other models, such as the Voting Regressor,

have the user choose which estimator models to use as part of their learning mechanism. For models

where this is the case the better performing models of each category (including other ensemble models

that do not require the user to choose models by hand) where chosen as the input for the ensemble

models.

The estimator models we used to train our ensemble models were the following:

• Decision Tree

• K Neighbors

• Ada Boost

• Extra Trees

• Gradient Boosting

• Random Forest

• Hist Gradient Boosting

All of these models have both classifier and regressor versions, where classifier versions were used

for ensemble classifiers, and regressor versions were used for ensemble regressors.

For the ensemble classifiers we processed their data as per the classification models section, and

for the ensemble regressors we processed their data as per the regression models section.
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This chapter discusses the evaluation of the machine learning models presented in the previous

chapter. The first section of this chapter presents the metrics utilized for the evaluation procedure, while

the following sections provide detailed information on the performance of each model.

6.1 Evaluation metrics

This section of this chapter describes the metrics utilized to evaluate the varied machine learning models.

It is further divided into three subsections, discussing the different types of metrics.

6.1.1 Classification Metrics

The first set of metrics are the classification metrics. They require discrete classifications to be calcu-

lated, and where those are not provided (such as regression models that provide continuous output)

they are treated as presented in the previous chapter. These metrics are:

1. Accuracy

2. Precision

3. Recall

4. F1-Score

Accuracy is a metric that quantifies the amount of correctly identified samples, divided by the total

number of samples. In simpler terms, it measures the accuracy of the model, this is the probability of

a sample being correctly classified. As mentioned in the previous chapter, highly imbalanced datasets

can easily achieve a high accuracy by using simple blind classification to the majority class, so further

metrics are also needed. The worst value for this metric is 0, and the best value is 1. The formula for

this metric is:

Accuracy =
True positives+ True negatives

True positives+ False positives+ True negatives+ False negatives

Please do note that true and false positives in this section refer to the final classification of the

machine learning model. This is, true positives are bug reports considered as positive by the model and

that actually correspond to bugs according to the dataset’s classification. False positives refer to bug

reports the machine learning model considered as positives but that in fact do not correspond to bugs

according to the dataset’s classification. Likewise true negatives are reports the model considers as

false and that do not correspond to bugs, and false negatives are reports the model considers as false

but that do in fact correspond to actual bugs.
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The next metric used is recall, used to evaluate the machine learning model’s ability to find all positive

samples. This is a great counter-metric to accuracy, as a model that uses blind classification to have

good accuracy in an imbalance dataset will instead have the lowest value of recall available. The worst

value for this metric is 0, and the best value is 1. The formula for this metric is as follows:

Recall =
True Positive

True Positive+ False Negative

The next metric utilized is precision. Precision measures the model’s ability to not misclassify a

positive sample as negative. Same as recall, it is also a great counter-metric to accuracy for the same

reasons. The worst value for this metric is 0, and the best value is 1. The formula for this metric is as

follows:

Precision =
True Positive

True Positive+ False Positive

The last metric in this section is F1-Score. F1-score measures the harmony between precision and

recall. This is a useful metric, both precision and recall must be high in order to have an effective

machine learning model. The worst value for this metric is 0, and the best value is 1. The formula for

this metric is as follows:

F1− Score = 2 ∗ Precision ∗Recall

Precision+Recall

All these metrics will be applied to each machine learning model, both in its training and testing

datasets. The reason these metrics are applied to both the training and testing sets is to check if the

model suffers from overfitting. Overfitting occurs when a statistical model fits exactly against its training

data, but then performs poorly on never seen before testing data. By applying these metrics to both

training and testing sets, we can see if there is a big difference between the two. Should that be the

case, than the machine learning model shows signs of overfitting. After checking these metrics, we

have concluded that our machine learning model does not suffer from overfitting, as the results of these

metrics are very similar in both training and testing sets. For this reason, we have abbreviated the training

metrics from the tables presented in the next subsections, but full tables are presented in appendix B of

this paper.

6.1.2 APBD

APBD stands for Average Percentage of Bugs Detected. It is a metric presented in RVPrio’s report [4],

discussed in Chapter 3. This metric takes a prioritized list of bug reports (how this is list is calculated is

further discussed in the previous chapter) and computes the weighted average of the percentage of true

46



bugs revealed over the course of said list. The worst value for this metric is 0, and the best value is 1.

The definition of APBD for a set of n bug reports R with m bugs B existing in R is:

APBD = 1− RB1 +RB2 + ...+RBm

nm
+

1

2n

RB1 represents the first true bug present in the list of reports R, RB2 the second bug, and RBm the

last bug present in set R.

The higher the APBD value, the more true positive bug reports are presented at the beginning of

the list, which is good. In counterpart, the lower the APBD value the fewer true positive bug reports

are presented at the beginning of the list, which is bad. This is a useful metric, because it measure the

prioritization of the sorted list, rather than the model itself, which is our final output.

In practice, APBD is our most valued metric, as it is the only metric presented so far the measures

the prioritized list presented to the user directly. It was to achieve this prioritized list that the machine

learning model was developed to begin with.

6.1.3 Prioritization graph

The last important metric is the prioritization graph. The same as APBD, this metric works directly over

the prioritized list that results from our machine learning model’s predictions.

It fundamentally measures the same thing, but presents it in form of a graph instead of a number.

Figure 6.1 shows an example of a prioritization graph.

The horizontal axis in this graph represents the number of reports analysed, starting from zero and

ending at the end of the prioritized list. The vertical axis represents the percentage of true bugs found

until that point in the horizontal axis, and goes from 0 to 100%.

The graph starts at 0,0 as no true bugs (0% on vertical axis) have been found after analysing 0

reports (0 on the horizontal axis). The graph must also end at end of list,100% as all true bugs (100%

on vertical axis) have been found after analysing all bug reports in the prioritized list (end of list on the

horizontal axis).

The green line in the example represents the perfect prioritized list, where all true bugs are at the

beginning of the list. Since every report at the beginning of the list is a true positive, the vertical axis

quickly grows to 100% until the all true bugs are found, and then remains constant at 100% as only false

positives are left. The green line represents the ideal prioritization, so the closer our models follows the

green line the better.

The red line represents a non-prioritized list, where true positives bug reports have been equally

spaced throughout the list. This is, to find 50% of all true positives bug reports we would have to look at

50% of all reports, and to find 75% of all true positive bug reports we would also have to look at 75% of
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Figure 6.1: Example of a prioritization graph

all available reports. Basically, the red line represents a list that has not been prioritized at all, and what

would happen if no prioritization is applied. The closer our model follows the red line the worst. If the

model performs even worst than the red line (that is to say it is constantly bellow the red line) then the

model has failed as its prioritization results are even worse than not prioritizing at all.

Lastly, the blue line represents the prioritization list resulting from the analysis of our machine learning

model. As mention above, the closer this line follows the green line the better, the closer it follows the red

line the worst. In the example shown, the line closely, but not perfectly, follows the green line showing

a rather good performance. Further discussion of the result of these metrics will be presented in the

following sections.

6.2 Classification models

The classification models tested, as well as their results in the various metrics, can be seen in table 6.1

An analysis of the table justifies the selection of metrics presented above. Taking the Passive Ag-

gressive Classifier model as an example, it has a high accuracy of 0.833, but a low recall of just 0.161.

This likely means that this model is heavily biased towards marking any report as false, only achieving a

high accuracy due to the imbalanced dataset and failing to find most true positive samples in the dataset.

This phenomenon is further explained above and shows the need to look at all metrics as a whole. Since

the objective of this paper is prioritization, it is important to take all the metrics into consideration, and
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Model Accuracy F1-Score Recall Precision APBD

Decision Tree Classifier 0.985 0.947 0.987 0.909 0.921
Perceptron 0.836 0.606 0.941 0.447 0.830

Passive Aggressive Classifier 0.833 0.206 0.161 0.285 0.541
Ridge Classifier Cross Validation 0.822 0.594 0.971 0.428 0.835

SGD Classifier 0.837 0.613 0.961 0.450 0.838
KNeighbors Classifier 0.967 0.891 0.999 0.803 0.916

Table 6.1: Testing metrics for each classification model tested

Figure 6.2: Decision tree classifier model’s prioritization graph

we can thus consider the Passive Aggressive Classifier model to be a poor fit for our context.

Taking this into consideration, our results point to the Decision Tree Classifier and the KNeighbors

Classifier as the most suitable machine learning classification models for our environment. This is

because these are the models that have consistently higher metric scores, namely the APBD metric

which we consider to be the most important. Figure 6.2 presents Decision Tree Classifier’s prioritization

graph, while figure 6.3 presents the same graph for the KNeighbors Classifier model.

Both graphs are similar as these two models have similar metrics. As can be seen, and in both

cases, the blue line representing the model closely resembles the perfect green line of a perfect system

where all bugs are correctly prioritized. As was explained in the previous section, this means our models

can almost perfectly prioritize the vast majority of true bugs towards the beginning of the prioritization

list, with only a few being incorrectly put at the end of the list.

The difference between the two graphs can be explained by the metrics of their respective models.

The Decision Tree Classifier has better accuracy and precision and therefore more samples are correctly
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Figure 6.3: KNeighbors classifier model’s prioritization graph

Approach 10% 25% 50% 75%

Non-prioritized 10% 25% 50% 75%
Decision Tree Classifier 67% 98% 99% 99%

Increase 6.7x 3.92x 1.98x 1.32x

Table 6.2: Time table for the Decision Tree Classifier model

classified when compared to the KNeighbors Classifier model. This can be seen by how closely its blue

line resembles the green line in figure 6.2. Alternatively, the KNeighbors Classifier model has a near

perfect recall and therefore very few true positives samples are incorrectly classified by this model.

This can be in figure 6.3 by how the blue line overlaps with the green line after a while. This means

that the Decision Tree Classifier provides better prioritization towards the beginning of the list, while

the KNeighbors classifier model can find all true positive samples sooner. Prioritizing different metrics

results in different advantages for each model.

Perhaps the best way to express the usefulness of this prioritization is though table 6.2. The table

expresses that after analyzing 10% of bug reports in a non-prioritized list we would have found only 10%

of true bugs, but analysing the same 10% of reports of a list prioritized by a Decision Tree Classifier,

we would instead find 67 % of all true bugs, a 6.7x increase over a non-prioritized list. This represents

a major increase in utility from the point of view of a developer that has too look through so many bug

reports. By simply analysing 25% of bug reports a developer would have already found 98% of all bugs

in the dataset.
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Model Accuracy F1-Score Recall Precision APBD

Decision Tree Regressor 0.985 0.947 0.987 0.909 0.932
Logistic Regressor Cross-Validation 0.868 0.655 0.935 0.503 0.884

KNeighbors Regressor 0.967 0.891 0.999 0.803 0.930
Linear Regressor 0.822 0.594 0.971 0.428 0.882
SGD Regressor 0.753 0.516 0.980 0.350 0.899

Ridge Cross-Validation 0.882 0.594 0.971 0.428 0.882
ARD Regressor 0.822 0.594 0.971 0.428 0.901
Bayesian Ridge 0.822 0.594 0.971 0.428 0.882

Table 6.3: Testing metrics for each regression model tested

Returning to the graphs, a clear point of transition between two different line gradients can be seen

in figure 6.2 on the blue line, at around the 95% mark on the vertical axis. This is a consequence

of prioritizing reports based only on the binary classification of true and false. As explained in the

previous chapter, classification models cannot differentiate between two different reports that have been

both marked as false bug reports. As a consequence, it cannot make any further prioritization besides

presenting the bug reports classified as true first, and those classified as false second. Since this model

shows high values in both accuracy and precision, it is very effective at classifying bug reports. This

can be seen in the graph by the almost perfectly stable incline of the blue line until said 95% mark.

However, by fault of being a classifier and not a regressor, it cannot minimize the errors of any missed

classifications and therefore have an equally stable, but worse, incline after the mark. The regression

models presented bellow will have a different behaviour.

6.3 Regression models

The regression models tested, as well as their results in the various metrics, are presented on table 6.3.

Similarly to the classification models discussed in the previous section, it is once again the Decision

Tree Regressor and KNeighbors Regressor that perform the best in our environment. Also similarly

to the previous sections there were many models, such as the Linear Regressor model, that perform

well on a specific category (namely recall) but them perform poorly in others, leading to an overall bad

performance. As expressed above, we are interested most in models that have consistently high scores

in all presented metrics, so the Linear Regressor is a poor fit for our solution.

One thing to notice is that, when comparing this table to the previous one, APBD values are overall

higher with regression models over classification ones. This is due to the higher versatility in prioriti-

zation that comes from the continuous output of regression models. This point is further shown in the

prioritization graphs for these two models presented in figure 6.4 and 6.5 respectively.

When looking at figure 6.4, one can see a much smother curve around the 95% mark that was
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Figure 6.4: Decision tree Regressor model’s prioritization graph

Figure 6.5: KNeighbors Regressor model’s prioritization graph
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Approach 10% 25% 50% 75%

Non-prioritized 10% 25% 50% 75%
Decision Tree Regressor 75% 99% 100% 100%

Increase 7.5x 3.96x 2x 1.33x

Table 6.4: Time table for the Decision Tree Regressor model

discussed in the previous section. This is because the Decision Tree Regressor has the potential to

recover quickly from any missed classifications. Even when it makes an incorrect classification, due to

the continuous output, it can still differentiate from the multiple reports considered to be false positives,

allowing the prioritization algorithm to take this into consideration. The result is a much more consistent

prioritization list. Table 6.4 shows the same time table discussed in the previous section for the Decision

Tree Regressor model.

This table shows even better results than the last. By simply analysing 10% of bug reports with a list

prioritized by a Decision Tree Regressor model, a developer could find 75% of all bugs in the dataset.

This represents a 7.5x increase over a non-prioritized list, where the same developer could only hope

to find 10% of true bugs. Likewise, by looking at only the first 25% of bug reports, the developer would

be able to find 99% of all bugs in the dataset by using the prioritize list, and even the full 100% before

the 50% mark of analysed reports. This is the great benefit of prioritized bug report lists over their

non-prioritized counterparts.

6.4 Ensemble models

Lastly, the ensemble models tested, as well as their results in the various metrics, can be seen on table

6.5.

The table presents better results for both ensemble classifiers and ensemble regressors when com-

pared their simpler versions. It is also noticeable that results are consistent throughout most models,

whereas the previous sections had a considerable amount of models with poor results. Results are so

consistent in fact, that some of the models have exactly similar results in many metrics (at least as far as

third decimal case precision). This seems to support the related-work’s suspicion that ensemble models

provide better results than simpler models in the context of bug prioritization.

Our overall best models are the Extra Trees models and the Random Forest models. These two

models are extremely similar, being in fact two different variants of the same algorithm. Since they

have exactly similar metrics, we have chosen to select the Random Forest models as the example of

choice for the rest of this section. The reason we chose the Random Forest models over the Extra Trees

models is because the Random Forest algorithm chooses deterministic split points where the Extra
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Model Accuracy F1-Score Recall Precision APBD

Ada Boost Classifier 0.952 0.874 0.991 0.741 0.906
Extra Trees Classifier 0.985 0.947 0.987 0.909 0.921

Gradient Boosting Classifier 0.964 0.882 0.999 0.789 0.915
Random Forest Classifier 0.985 0.947 0.987 0.909 0.921

Hist Gradient Boosting Classifier 0.985 0.946 0.987 0.909 0.921
Stacking Classifier 0.985 0.947 0.987 0.909 0.921
Voting Classifier 0.985 0.947 0.987 0.909 0.921

Ada Boost Regressor 0.897 0.710 0.942 0.570 0.884
Extra Trees Regressor 0.985 0.947 0.987 0.909 0.932

Gradient Boosting Regressor 0.964 0.883 0.999 0.791 0.931
Random Forest Regressor 0.985 0.947 0.987 0.909 0.932

Hist Gradient Boosting Regressor 0.984 0.946 0.987 0.908 0.932
Stacking Regressor 0.967 0.891 0.998 0.803 0.929
Voting Regressor 0.967 0.891 0.999 0.804 0.932

Table 6.5: Testing metrics for each ensemble model tested

Approach 10% 25% 50% 75%

Non-prioritized 10% 25% 50% 75%
Random Forest Regressor 75% 100% 100% 100%

Increase 7.5x 4x 2x 1.33x

Table 6.6: Time table for the Random Forest Regressor model

Trees algorithms chooses the best split point between multiple randomly tested splits. This results in the

Extra Trees algorithm running faster when presented with a large number of features, but at the cost of

potentially growing more inaccurate. While that inaccuracy has not made itself felt in this project, it could

perhaps start to show as more and more tools are added to SmartBugs which results in more and more

feature being available to the machine learning model. Taking this into consideration, we have chosen to

follow the slower but safer algorithm, and thus select the Random Forest algorithm as the most suitable

model for this project.

Figure 6.6 shows the prioritization graph for the Random Forest Classifier model, and figure 6.7

shows the same graph but for the Random Forest Regressor model instead.

As per the findings of the previous sections, we once again conclude that regressor models are

more suitable for our environment when compared to classification models. This makes us wonder why

has the related work instead chosen the latter, choosing to classify bug reports into the very low, low,

medium, high and very high probability categories. The comparison between figure 6.6 and figure 6.7

implies that regression models leave better results in this context.

Table 6.6 shows the time table for the Random Forest Regressor model.

As can be seen in the table, merely analysing 10% of results would lead to a developer finding 75%

of all true bugs in the dataset, having actually found all 100% of true bugs before the 25% mark on
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Figure 6.6: Random Forest Classifier model’s prioritization graph

Figure 6.7: Random Forest Regressor model’s prioritization graph
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the horizontal axis. In fact, all true bugs of the dataset would have been found after analysing only

21% of bug reports, saving almost 80% of the developer’s time should he had analysed the whole list

instead. This once again proves that analysing a prioritized list of bugs is multiple times more efficient

than analysing the same list without prioritization.
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This project extends the SmartBugs framework with a bug prioritization mechanism capable of rank-

ing true positive bug reports over false positive bug reports. To implement this mechanism we first start

by preparing and processing data. We prepare a new bug dataset composed of multiple other bug

datasets in a newly proposed format, we join multiple SARIF reports resulting from SmartBugs’ exe-

cutions together, we extract bug information from our prepared dataset and we finally join the reports

extracted from SmartBugs’ execution and the dataset’s metadata together into a final CSV data file.

We then feed this information to a machine learning model, taking extra care to discuss data division

and balancing before describing the implementation details of various types of machine learning models.

After the models are implemented we then evaluate them based on a variety of discussed metrics

and compare their results to see which one is the most suitable for this environment.

7.1 Contributions

The contributions of this thesis start with the new bug dataset created for the purposes of this project as

well as the format it is in. The proposed format is more flexible than any other we have come across and

it is most suitable for the purpose bug prioritization through consensus of multiple analysis tools. We

hope to see it implemented in more bug datasets in the future.

The implementation of a machine learning model based on consensus from SARIF only features

resulting from the analysis of multiple analysis tools on the same contract, contributes to field to bug

prioritization. To our knowledge there are no other extensive works on this field, and our project shows

that consensus can be a valuable feature for the purpose of bug prioritization.

The evaluation of multiple machine learning models is also a contribution. The best results from

our experiments correspond to the Random Forest Regressor model. We thus conclude that regression

models are more suitable than classifiers models for prioritization problems, unlike what was used by the

related-work. We also conclude that ensemble models are the most suitable models for our prioritization

environment, this time as suggested by the related-work.

As for final results, our best model proved to able to shorten the extensive work of bug analysis by

almost 80%. A developer analysing bug reports prioritized by this model would have encountered all

true bugs after analysing only 21% of all reports in the dataset, an almost 5x increase in efficiency when

compared to non-prioritization.

7.2 Answer to research questions

After discussing the whole project we can now answer the research question posed at the beginning of

this thesis.
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RQ1:Does the SARIF format provide enough information on consensus to achieve reasonable results

in bug prioritization?

A:Yes, using SARIF only features our machine learning models were capable of achieving high

values in all presented metrics. Our best model could even make use of SARIF to reach an APBD level

of 0.932. As explored in Chapter 4 we have also used the SARIF format to join multiple reports about the

same bug together, so it clearly has enough information to do that. Considering that the format did not

hinder our development cycle and that it allowed for good results, we can thus conclude that the SARIF

format does provide enough information on consensus to achieve reasonable results in bug prioritization

RQ2: Can consensus of bug reports between multiple tools be used to better predict true and false

positives?

A: Yes, consensus was used in this thesis to develop multiple worthwhile machine learning models

capable of prioritizing bug reports. The best model was even capable of putting all true bug in the

dataset in the first 21% of the prioritized list of reports. This would have saved the developer tasked with

analysing said list almost 80% of its time. As this result was achieved through a model that learns on

consensus alone, we can safely conclude that consensus of bug reports between multiple tools can be

used to better predict true and false positives.

RQ3: What are some effective machine learning algorithm to prioritize bug reports from multiple

tools in the context of SmartBugs?

A: Based on our experiments, the most effective machine learning algorithm to prioritize bug reports

from multiple tools in the context of SmartBugs is the Random Forest Regressor model. Regressor

models proved to be more effective than classifiers and ensembles more effective than their simpler

counterparts. Out of all ensemble regressors tested, the Random Forest Regressor model had the

better results, with an APBD of 0.932.

7.3 Threats to validity

Throughout this thesis we have presented a conjunction of assumptions, that if false, could prove a

danger to the findings presented. First amongst them is the data used in the datasets. As manually

checking the thousands of bugs in our datasets is unviable, we have trusted the classification provided

by the datasets themselves. Should this classification prove largely incorrect, than it is highly likely

that our model is also inaccurate. As these classifications are used for training and testing both, all

evaluation metrics become untrustworthy if the datasets used prove to have a high amount of missed

classifications. This is to say that not only will the model prove to be inaccurate, the evaluation will be

equally unusable. This is a common danger between all machine learning models.

The second danger is the mapping utilized in Chapter 4. As described in the same chapter, said
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mapping is used to join multiple reports of multiple analysis tools together, as well as deciding their

classification. If the mapping proves to be massively incorrect, than the data fed to machine learning

model will also be incorrect. Although its consequences would likely be smaller than that of the first

danger presented, it danger itself is similar.

The third danger refers to all the libraries imported during the development of this work. Many of

the machine learning models and metrics were implemented with help from the scikit-learn library for

python [38], so if the library itself has bugs, so will the function implemented with it. The probability of

this being the case in incredibly small, as this is a massive open-source library that has been peered-

reviewed multiple times.

7.4 Future work

Future work on this topic should look to further increase the amount of tools available to the SmartBugs

framework, therefore increasing the potential upside for consensus between multiple tools. This work

has shown that consensus can be a useful metric for bug prioritization, so future work should seek to

further capitalize on this knowledge.

Second, it might be useful to develop a machine learning model that not only depends on SARIF

features and consensus although they have proven to be useful features. It could prove effective to not

only use consensus but to also to look at the source code directly in some way, shape or form. This is, to

develop our own bug analysis tool that would work in tandem with the solution presented in this paper.

This would be in agreement with Koc et al [3], that concluded for their context that machine learning

models that use the source code as features have better results than models that do not. While the

context of our work only looked at the results of tools available to SmartBugs, it could perhaps show

even greater results by merging both aproaches.
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[13] O. Legunsen, W. U. Hassan, X. Xu, G. Roşu, and D. Marinov, “How good are the specs? a study

of the bug-finding effectiveness of existing java api specifications,” in 2016 31st IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE), 2016, pp. 602–613.

[14] Docker. (2021) Docker documentation. [Online]. Available: https://www.docker.com/

[15] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brunson, and

A. Dinaburg, “Manticore: A user-friendly symbolic execution framework for binaries and smart

contracts,” CoRR, vol. abs/1907.03890, 2019. [Online]. Available: http://arxiv.org/abs/1907.03890

[16] B. Muelle, “Smashing ethereum smart contracts for fun and real-

profit,” 2018. [Online]. Available: https://conference.hitb.org/hitbsecconf2018ams/sessions/

smashing-ethereum-smart-contracts-for-fun-and-actual-profit/
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A
Mapping Tables

This appendix section has the mapping tables presented in chapter 4

A.1 Mapping between SmartBugs tools’ vulnerabilities and DASP10

vulnerability types
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Tools Vulnerability name Vulnerability Type
Maian is_lock_vulnerable Other
Maian is_prodigal_vulnerable Access Control
Maian is_suicidal_vulnerable Access Control
Manticore Delegatecall to user controlled address Access Control
Manticore Delegatecall to user controlled function Access Control
Manticore INVALID instruction Other
Manticore Potential reentrancy vulnerability Denial of Service
Manticore Potentially reading uninitialized memory at instruction Other
Manticore Potentially reading uninitialized storage Other
Manticore Reachable ether leak to sender Access Control
Manticore Reachable ether leak to sender via argument Access Control
Manticore Reachable external call to sender Access Control
Manticore Reachable external call to sender via argument Access Control
Manticore Reachable SELFDESTRUCT Access Control
Manticore Reentrancy multi-million ether bug Denial of Service
Manticore Returned value at CALL instruction is not used Unchecked Return Values For Low Level Calls
Manticore Returned value at CALL instruction is not used Unchecked Return Values For Low Level Calls
Manticore Unsigned integer overflow at ADD instruction Arithmetic
Manticore Unsigned integer overflow at MUL instruction Arithmetic
Manticore Unsigned integer overflow at SUB instruction Arithmetic
Manticore Warning BLOCKHASH instruction used Other
Manticore Warning NUMBER instruction used Other
Manticore Warning ORIGIN instruction used Access Control
Manticore Warning TIMESTAMP instruction used Time Manipulation
Mythril Call data forwarded with delegatecall() Access Control
Mythril DELEGATECALL to a user-supplied address Access Control
Mythril Dependence on predictable environment variable Other
Mythril Dependence on predictable variable Other
Mythril Ether send Access Control
Mythril Exception state Other
Mythril Integer Overflow Arithmetic
Mythril Integer Underflow Arithmetic
Mythril Message call to external contract Denial of Service
Mythril Multiple Calls Ignore
Mythril State change after external call Denial of Service
Mythril Transaction order dependence Front-Running
Mythril Unchecked CALL return value Unchecked Return Values For Low Level Calls
Mythril Unchecked SUICIDE Access Control
Mythril Use of tx.origin Access Control
Osiris callstack_bug Denial of Service
Osiris concurrency_bug Ignore
Osiris division_bugs Arithmetic
Osiris overflow_bugs Arithmetic
Osiris reentrancy_bug Denial of Service
Osiris signedness_bugs Arithmetic
Osiris time_dependency_bug Time Manipulation
Osiris truncation_bugs Arithmetic
Osiris underflow_bugs Arithmetic
Oyente Callstack Depth Attack Vulnerability. Denial of Service
Oyente Integer Overflow. Arithmetic
Oyente Integer Underflow. Arithmetic
Oyente Parity Multisig Bug 2. Access Control
Oyente Re-Entrancy Vulnerability. Denial of Service



Oyente Timestamp Dependency. Time Manipulation
Oyente Transaction-Ordering Dependency. Front-Running
Securify DAO Denial of Service
Securify DAOConstantGas Denial of Service
Securify LockedEther Other
Securify MissingInputValidation Ignore
Securify RepeatedCall Ignore
Securify TODAmount Front-Running
Securify TODReceiver Front-Running
Securify TODTransfer Front-Running
Securify UnhandledException Unchecked Return Values For Low Level Calls
Securify UnrestrictedEtherFlow Access Control
Securify UnrestrictedWrite Access Control
Slither arbitrary-send Access Control
Slither assembly Ignore
Slither calls-loop Denial of Service
Slither constable-states Ignore
Slither constant-function Ignore
Slither controlled-delegatecall Access Control
Slither deprecated-standards Ignore
Slither erc20-indexed Ignore
Slither erc20-interface Ignore
Slither external-function Ignore
Slither incorrect-equality Other
Slither locked-ether Other
Slither low-level-calls Unchecked Return Values For Low Level Calls
Slither naming-convention Ignore
Slither reentrancy-benign Denial of Service
Slither reentrancy-eth Denial of Service
Slither reentrancy-no-eth Denial of Service
Slither shadowing-abstract Ignore
Slither shadowing-builtin Ignore
Slither shadowing-local Ignore
Slither shadowing-state Ignore
Slither solc-version Ignore
Slither suicidal Access Control
Slither timestamp Time Manipulation
Slither tx-origin Access Control
Slither uninitialized-local Other
Slither uninitialized-state Other
Slither uninitialized-storage Other
Slither unused-return Unchecked Return Values For Low Level Calls
Slither unused-state Ignore
Smartcheck SOLIDITY_ADDRESS_HARDCODED Ignore
Smartcheck SOLIDITY_ARRAY_LENGTH_MANIPULATION Arithmetic
Smartcheck SOLIDITY_BALANCE_EQUALITY Other
Smartcheck SOLIDITY_BYTE_ARRAY_INSTEAD_BYTES Ignore
Smartcheck SOLIDITY_CALL_WITHOUT_DATA Denial of Service
Smartcheck SOLIDITY_DEPRECATED_CONSTRUCTIONS Ignore
Smartcheck SOLIDITY_DIV_MUL Arithmetic
Smartcheck SOLIDITY_ERC20_APPROVE Ignore
Smartcheck SOLIDITY_ERC20_FUNCTIONS_ALWAYS_RETURN_FALSE Ignore
Smartcheck SOLIDITY_ERC20_TRANSFER_SHOULD_THROW Ignore
Smartcheck SOLIDITY_EXACT_TIME Time Manipulation



Smartcheck SOLIDITY_EXTRA_GAS_IN_LOOPS Ignore
Smartcheck SOLIDITY_FUNCTIONS_RETURNS_TYPE_AND_NO_RETURN Other
Smartcheck SOLIDITY_GAS_LIMIT_IN_LOOPS Denial of Service
Smartcheck SOLIDITY_INCORRECT_BLOCKHASH Other
Smartcheck SOLIDITY_LOCKED_MONEY Other
Smartcheck SOLIDITY_MSGVALUE_EQUALS_ZERO Ignore
Smartcheck SOLIDITY_OVERPOWERED_ROLE Ignore
Smartcheck SOLIDITY_PRAGMAS_VERSION Ignore
Smartcheck SOLIDITY_PRIVATE_MODIFIER_DONT_HIDE_DATA Ignore
Smartcheck SOLIDITY_REDUNDANT_FALLBACK_REJECT Ignore
Smartcheck SOLIDITY_REVERT_REQUIRE Ignore
Smartcheck SOLIDITY_SAFEMATH Ignore
Smartcheck SOLIDITY_SEND Unchecked Return Values For Low Level Calls
Smartcheck SOLIDITY_SHOULD_NOT_BE_PURE Ignore
Smartcheck SOLIDITY_SHOULD_NOT_BE_VIEW Ignore
Smartcheck SOLIDITY_SHOULD_RETURN_STRUCT Ignore
Smartcheck SOLIDITY_TRANSFER_IN_LOOP Denial of Service
Smartcheck SOLIDITY_TX_ORIGIN Access Control
Smartcheck SOLIDITY_UINT_CANT_BE_NEGATIVE Arithmetic
Smartcheck SOLIDITY_UNCHECKED_CALL Unchecked Return Values For Low Level Calls
Smartcheck SOLIDITY_UPGRADE_TO_050 Ignore
Smartcheck SOLIDITY_USING_INLINE_ASSEMBLY Ignore
Smartcheck SOLIDITY_VAR Arithmetic
Smartcheck SOLIDITY_VAR_IN_LOOP_FOR Arithmetic
Smartcheck SOLIDITY_VISIBILITY Ignore
Smartcheck SOLIDITY_WRONG_SIGNATURE Ignore
Solhint indent Ignore
Solhint max-line-length Ignore
Honeybadger hidden_state_update Ignore
Honeybadger uninitialised_struct Other
Honeybadger inheritance_disorder Ignore
Honeybadger straw_man_contract Denial of Service
Honeybadger hidden_transfer Other
Honeybadger balance_disorder Ignore
Honeybadger type_overflow Arithmetic
Conkas Reentrancy Denial of Service
Conkas Integer_Overflow Arithmetic
Conkas Integer_Underflow Arithmetic
Conkas Unchecked Low Level Call Unchecked Return Values For Low Level Calls
Conkas Transaction Ordering Dependence Front-Running
Conkas Time Manipulation Time Manipulation



B
Full results table

This table contains the full list of results presented in chapter 6

B.1 Full results table, including training and testing metrics for all

tested models.
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Model TR Accuracy TR F1-Score TR Recall TR Precision TE Accuracy TE F1-Score TE Recall TE Precision APBD
Decision Tree Classifier 0.984 0.984 0.984 0.983 0.985 0.947 0.987 0.909 0.932

Perceptron 0.882 0.889 0.943 0.840 0.836 0.606 0.941 0.447 0.830
Passive Aggressive Classifier 0.548 0.285 0.157 0.719 0.833 0.206 0.161 0.285 0.541

Ridge Classifier Cross Validation 0.886 0.895 0.970 0.830 0.822 0.594 0.971 0.428 0.835
SGD Classifier 0.890 0.898 0.961 0.842 0.837 0.613 0.961 0.450 0.838

KNeighbors Classifier 0.980 0.980 1.0 0.962 0.967 0.891 0.998 0.803 0.916
Decision Tree Regressor 0.984 0.984 0.984 0.938 0.985 0.947 0.987 0.909 0.932

Logistic Regressor Cross-Validation 0.897 0.900 0.934 0.869 0.868 0.655 0.935 0.503 0.884
KNeighbors Regressor 0.980 0.980 1.0 0.962 0.967 0.891 0.999 0.803 0.930

Linear Regressor 0.980 0.980 1.0 0.962 0.822 0.594 0.971 0.428 0.882
SGD Regressor 0.980 0.980 1.0 0.962 0.753 0.516 0.980 0.350 0.889

Ridge Cross-Validation 0.980 0.980 1.0 0.962 0.822 0.594 0.971 0.428 0.882
ARD Regressor 0.980 0.980 1.0 0.962 0.822 0.594 0.971 0.428 0.901
Bayesian Ridge 0.980 0.980 1.0 0.962 0.822 0.594 0.971 0.428 0.882

Ada Boost Classifier 0.968 0.969 0.991 0.947 0.952 0.847 0.991 0.740 0.906
Extra Trees Classifier 0.984 0.984 0.984 0.983 0.985 0.947 0.987 0.909 0.921

Gradient Boosting Classifier 0.979 0.979 1.0 0.960 0.964 0.882 0.998 0.789 0.915
Random Forest Classifier 0.984 0.984 0.984 0.983 0.985 0.947 0.967 0.909 0.921

Hist Gradient Boosting Classifier 0.984 0.984 0.984 0.983 0.985 0.946 0.987 0.909 0.921
Stacking Classifier 0.984 0.984 0.984 0.983 0.985 0.947 0.987 0.909 0.921
Voting Classifier 0.984 0.984 0.984 0.983 0.985 0.947 0.987 0.909 0.921

Ada Boost Regressor 0.917 0.918 0.940 0.898 0.897 0.710 0.942 0.570 0.884
Extra Trees Regressor 0.984 0.984 0.984 0.983 0.985 0.947 0.987 0.909 0.932

Gradient Boosting Regressor 0.979 0.979 1.0 0.960 0.964 0.883 0.999 0.791 0.931
Random Forest Regressor 0.984 0.984 0.984 0.983 0.985 0.947 0.987 0.909 0.932

Hist Gradient Boosting Regressor 0.983 0.983 0.984 0.983 0.984 0.946 0.987 0.908 0.932
Stacking Regressor 0.980 0.980 1.0 0.962 0.967 0.891 0.999 0.803 0.929
Voting Regressor 0.980 0.981 1.0 0.962 0.967 0.891 0.999 0.804 0.932

Table B.1: Full metrics for all models tested. TE stands for testing metrics and TR stands for training metrics

72



73


	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Work Objectives
	1.2 Contributions
	1.3 Organization of the Document

	2 Background
	2.1 The Problem of False Positives
	2.2 Bug Prioritization
	2.3 SmartBugs
	2.3.1 Empirical Study


	3 Related Work
	3.1 An Empirical Assessment of Machine Learning approaches for Triaging Reports of a Java Static Analysis Tool
	3.2 Prioritizing Runtime Verification Violations

	4 Data Processing
	4.1 Data Preparation Pipeline
	4.2 Datasets
	4.3 From SARIF to bug reports CSV
	4.4 From metadata to solutions CSV
	4.4.1 SmartBugs sbcurated dataset
	4.4.2 SolidiFI
	4.4.3 HuangGai
	4.4.4 Solutions CSV file organization and standards

	4.5 Final CSV

	5 Machine Learning Model
	5.1 Features
	5.2 Data preparation
	5.2.1 Data division
	5.2.2 Data balancing

	5.3 Machine learning models used
	5.3.1 Classification models
	5.3.2 Regression models
	5.3.3 Ensemble models


	6 Evaluation
	6.1 Evaluation metrics
	6.1.1 Classification Metrics
	6.1.2 APBD
	6.1.3 Prioritization graph

	6.2 Classification models
	6.3 Regression models
	6.4 Ensemble models

	7 Conclusion
	7.1 Contributions
	7.2 Answer to research questions
	7.3 Threats to validity
	7.4 Future work
	Bibliography


	Bibliography
	Appendix A

	A Mapping Tables
	A.1 Mapping between SmartBugs tools' vulnerabilities and DASP10 vulnerability types
	Appendix B

	B Full results table
	B.1 Full results table, including training and testing metrics for all tested models.


