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Resumo

Usou-se um impulso de laser infravermelho ultra-curto (1014 W/cm2, 50 fs, 800 nm), para criar plasmas de

densidade sólida, com dezenas de eV de temperatura, de espessura comparável à profundidade de absorção

do Titânio, nos 800 nm. A estrutura eletrónica da amostra aquecida foi sondada com um impulso XUV de

energia próxima da borda de absorção M2;3. O perfil espacial dos impulsos XUV transmitidos foi gravado

numa única medição com uma resolução de (10 —m), e foi resolvido temporalmente em intervalos de 50 fs,

com um tempo de aquisição máxima de cerca de 20 ps. Modelos foram depois usados para simular a respostas

nas diferentes escalas temporais.

Palavras-chave: plasmas densos; geração de harmónicas de alta frequência; ma-

peamento ultra-rápido; plasmas fora do equiĺıbrio; interação laser-

sólido de femtossegundos; inferência Bayesiana.
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Abstract

An experimental set up consisting of an ultrashort infra-red laser pulse (10(14) W/cm2, 50 fs, 800 nm) was

used to create up to tens of eV solid-density plasma in the skin depth of a Ti metal film. The electronic

structure of the heated sample was probed by sending a XUV pulse with energy close to that of the M2;3

absorption edge. The transmitted XUVs spatial profile was recorded in a single-shot with 10 —m resolution,

and scanned with up to 50 fs resolution, for tens of picoseconds. A map of XUV transmission for variable

laser fluences was then recorded in every shot. Models were deployed to simulate the response in the different

temporal scales at play.

Keywords: dense plasmas; high harmonic generation; ultrafast imaging; non-

equilibrium plasmas, femtosecond laser-solid interaction; Bayesian

parameter estimation.
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Chapter 1

Introduction

Warm Dense Matter (WDM) states are characterized by temperatures ranging from 0.1 to 100 eV and close

to solid-state densities (0.1 to 10 times ȷsolid). Having thermal and Fermi energies close to one another, these

states of matter are placed in between the quantum regime of strong degeneracy and the classical regime of

non-degeneracy. Atomic or ionic binding energies also close to the average thermal energy makes WDM states

sit in the transition between solid, liquid gas and plasma [1].

This chapter describes the motivations for the study of Warm Dense Matter, in terms of its applications in

technological fields and as states of inherent theoretical interest. It ends with a brief overview of the current

methods for creating WDM states in a laboratory and a review of the fundamental physical processes that

take place under isochoric heating (IH).

1.1 Applications

The interest in the WDM field was been fueled, in recent years, by its broad applications. WDM is created

in Inertial Confinement Fusion (ICF) experiments - when a driving laser heats up and compresses a solid fuel

target - and is present in astrophysical objects such as gas giants, brown and white dwarfs and low-mass stars.

It is also created in intense laser-matter interactions, common in material processing techniques.

Inertial Confinement Fusion

ICF works, in theory, by igniting a target (starting a fusion reaction) and extracting energy from it. There

are different types of ICF, requiring different targets specifically optimized to absorb the driving energy that

can take multiple forms. They will, however, always include a fuel capsule (most likely spherical and made

of Deuterium and Tritium) and an ablator surrounding it. To reach ignition, energy must be provided to the

ablator by the driver, which is usually a laser. The ablator will heat considerably and high-velocity ablated

material will be propelled away, while, in reaction, the fuel capsule will be pushed inwards. [2]

In direct drive ignition, irradiation of the target causes the energy from the driver to couple directly to

electrons of the ablator material. These subsequently equilibrate with the ions, heating the atomic lattice
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enough to remove the ablator coating and turn it into a coronal plasma [1]. The electron-electron (e-e) and

electron-ion (e-i) coupling coefficients, or equilibration rates, will determine laser energy absorption, transport

properties and ablation rate, along with the mass and temperature of the coronal plasma. These equilibration

rates are, then, vital for both simulation and target design in ICF experiments [2].

The compressed fuel will move rapidly through the phase diagram, transversing WDM conditions before

exceeding them. Knowledge of the equation of state in this regime is of vital importance for the proper

understating of the processes leading to ignition of the capsule.[1]

Astrophysical Objects

Some layers of the interior of giant planets like Jupiter and Saturn are WDM. These states of matter can

also be found in brown and white dwarfs, low-mass stars, and the hot metallic core of terrestrial planets.

Much of the early WDM research has been and is driven by geophysics and planetary sciences. The possibility

of studying astrophysical conditions such as WDM states in a laboratory has, relatively recently, given birth

to the field of laboratory astrophysics [3]. The discovery of a large number of exoplanets has expanded the

conditions and materials where WDM states can be observed in the universe and, as such, has fueled the need

for further investigation into this topic [4] [5].

Elucidation on the properties of WDM, such as the equation of state of compressed hydrogen, has great

implications for the determination of the size and thermodynamical state of the core of Jupiter and other gas

giants. The number of layers in the planetary interior, the phase state transitions happening in the boundary

between these layers (possibly including de-mixing of hydrogen and helium or the transition of hydrogen to a

metallic phase), the mass-radius relation and formation process of gas giants, and the nature of the planetary

dynamo and the magnetic field it generates are all open questions also requiring further knowledge of WDM

conditions. [4]. The X-ray opacity of WDM states is also of great consequence as much of the energy transport

within stars and other hot astrophysical objects is done by radiation [3].

Material processing

Femtosecond laser technology provides many practical applications for material modification, including the

promising technique of laser ablation that enables precise micro and nano machining [6]. In biology and

medicine, ultrafast lasers have also led to considerable advances, including precise biological tissue manipula-

tion, with possible surgical applications [7].

In laser ablation techniques sub-picosecond pulses have two distinct advantages when compared with longer

pulses: they require lower fluences for ablation to occur (the intensity delivered in the focal spot will still be

very high) and they produce considerably sharper contours, which can be seen in figure 1.1. This last effect

is possible due to the unique energy delivery system that couples the energy to the electrons. After the pulse

stops, the ionic temperature can quickly rise above the critical one and ejection of the material will follow,

allowing for the removal of most of the absorbed laser energy as well. Very little collateral damage might be

expected then since there is not much thermal energy to be dissipated through the bulk of the material [8].
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Figure 1.1: SEM micrographs of holes drilled in 100-—m-thick steel foils by ablation using laser pulses with
the following parameters: (a) pulse duration (fip): 200 fs, pulse energy: 120 mJ, fluence (F): 0.5 J/cm2, – =
780 nm; and (b) fip =3.3 ns, pulse energy: 1 mJ, F = 4.2 J/cm2, – = 780 nm. The scale bars represent 30
—m. Integrally taken from [9].

Despite these advantages, many fundamental aspects of material response to femtosecond irradiation re-

main poorly understood. The electronic population directly excited by the laser achieves a non-equilibrium

temperature high above the ionic one. This induces a variety of effects, including energy exchange between elec-

trons and ions, modification of the inter-atomic potential, evolution of material properties, phase transitions,

etc. [10]. Proper parameterization of WDM models is then crucial to understand how these non-equilibrium

transient states affect the outcomes of the technological processes previously mentioned.

1.2 WDM: In the crossroads between plasma and condensed matter

WDM sits between cold solids and classical plasma conditions both because of the strongly correlated nature

of the ions and quantum nature of the electrons and of the high temperatures it exists in. The interplay of

these factors makes it so that WDM states can exist between the degenerate and non-degenerate regimes.

The goal of this section will be to provide an elementary description of the (semi) degenerate and strongly

correlated nature of these states, with the discussion mainly based on [11], unless otherwise mentioned.

1.2.1 Equilibrium distribution function: degeneracy

For rarefied plasmas, whose constituent particles can be treated classically, (non-degenerate plasmas) equilib-

rium momentum distribution function of species a is given by the Boltzmann distribution:

fa(p) = e−(1=kBT )(p
2=2ma−—a) (1.1)

where kB is the Boltzmann constant, —a is the chemical potential and T is the temperature. Furthermore, the

chemical potential can be written, with the help of the usual constraints on the number of particles, as [11]:

—a = kBT ln
naΛ

3

2sa + 1
and Λa =

s
2ı~

makBT
(1.2)

where Λa is the thermal wavelength, sa is the spin and na is the number density of species a.

If the plasma is dense, however, we cannot neglect the quantum nature of its constituent particles. From

this new starting point, the state of a particle with momentum p is characterized by a wave function Ψp(r),
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rather than a classical trajectory. The probability density of finding a particle with momentum p and position

r is then given by: d!(p; r) = |Ψp(r)|2dr. In equilibrium conditions, the spatial width of the most likely region

for the electron is roughly given by Λa. The mean particle distance, on the other hand, can be written as

da ∝ 1= 3
√
na. For dense plasmas, such as solid density ones, the inter-atomic distance may be of the order of

the thermal length, i.e naΛa ≈ 1. In this case, the indistinguishability of the plasma particles has to be taken

into account (degenerate plasmas) and, as such, the spin-statistics theorem will govern their behavior. Their

momentum distribution will now be dependent on their spin:

fa(p) =
1

e(1=kBT )(p2=2ma−—a) ± 1
(1.3)

with the + sign for fermionic species and the − sign for bosonic ones. This difference in sign is more important

for low temperatures: for fermionic systems, the distribution leads to an uppermost occupied state, called the

Fermi level; while for bosonic systems it leads to the bunching of particles in the lowest energy state.

The boundary between degenerate and non-degenerate plasmas is, then, roughly given by:

naΛ
3
a = na

„
h√

2ımakBT

«3

= 1 (1.4)

with the strongly-degenerate result recovered for naΛ
3
a ≫ 1 and the non-degenerate one recovered for naΛ

3
a ≪

1, for which both equations in expression 1.3 reduce to their common limit, expression 1.2.

Closely related to this discussion and to equation 1.4 is the Θ parameter, defined specifically for fermionic

systems, as the ratio between electronic temperature and the Fermi temperature (TF ) [3]:

Θ =
Te
TF

= Te

"„
8ı

3ne

«2=3
2mekB
h2

#
(1.5)

where TF = ›f =kB and ›f is the energy of the uppermost occupied states, i.e., the Fermi energy. The boundary

between the plasma regimes being discussed is also at Θ ≈ 1.

With the knowledge of the distribution of the species, all thermodynamical properties of degenerate plas-

mas can be determined [11]. To fully characterize an equilibrium situation one needs to calculate the chemical

potential —, which is the generalization of the Fermi temperatures for non-zero temperatures. Thermodynam-

ically, it is the variation of the internal energy required to add a particle to a given ensemble of particles, at

constant entropy and volume. For non-degenerate systems — will be negative: a new particle can be added

with zero energy but the energy of the system must decrease to keep entropy constant; while for a strongly

degenerate fermionic system it will be positive: to respect Pauli’s exclusion principle a particle enters an

unoccupied state (whose energy is above zero), thus increasing the internal energy [3].

This important quantity, which controls the number of particles in the Grand Canonical Ensemble, can be

calculated by inversion of the number of particles constraint, mentioned earlier, as:

na =
2sa + 1

Λ3
a

I1=2(xa) with I(x) =
1

Γ( + 1)

Z ∞

0

dt
t

et−x + 1
(1.6)
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with the family of integrals I(x) being referred to as the Fermi integrals and x = —=kBT the dimensionless

chemical potential. The condition states that the integral of the distribution function integrated over all

phase space needs to correspond to the number density of the ensemble of particles. Well-known analytical

expressions for —a exist for the limiting cases of strong degeneracy and non-degeneracy, however, near the

boundary defined by equation 1.4, the required integrals have to be computed numerically. In figure 1.2 one

can see the limiting cases as well as a bold line, with the full calculation performed computationally.

Figure 1.2: Chemical potential — as a function of Θ. From [3].

1.2.2 Screening in Coulomb plasmas

An important phenomenon in plasma is the screening of the potential of an electric charge. To discuss this

phenomenon a point-like charge (e0) is introduced, moving with velocity v0 through the plasma. Such a

particle will change its surrounding medium by creating an induced charged density. Another charged particle,

at position r, will feel both the test charge and the induced charged density. The potential at r results from

these two different contributions and can be named Φeff(r; t). Under the electrostatic approximation (for

non-relativistic plasmas) the particles interact with each other via the binary Coulomb potential and one can

write, for species a:

Φeff(r; t) = Φext (r; t) +
X
b

Z
dr′

eaeb
r− r′

Z
dp

(2ı~)3
fb (p,r,t) (1.7)

with the ea and eb the electric charges of the respective plasma species and Φext the potential induced by

the moving point-like charge. In the case of non-external perturbation, this potential will add to zero due to

charge neutrality.

Determining the time evolution of the distribution function fb(p,r,t)) requires the well known Boltzmann

equation, if we wish to consider non-equilibrium situations:

@fa
@t

+
p

m
· @fa
@r

+ F · @fa
@p

=

„
@fa
@t

«
coll

(1.8)

where on the right-hand side, beside the temporal derivative, there is the diffusion term and the force term,

with F the external force the system is subject to. The collision term on the left-hand side describes the details
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of the two-, three- and many-body collisions that can take place.

Taking the right-hand side to zero, the Vlasov equation is obtained, which describes most collective

phenomena in plasmas. Furthermore, for non-relativistic plasmas, the force term can be reduced to the

electrostatic approximation and it is possible to write:

»
@

@t
+

p

ma
· @
@r
− @

@r
Φeff (r; t) · @

@p

–
fa (p; r; t) = 0 (1.9)

with Φeff described by expression 1.7. Splitting the distribution function into an equilibrium component plus a

perturbation (fa (p; r; t) = f 0a (p) + ‹fa (p; r; t)), which is assumed small, allows equation 1.9 to be linearized.

After a subsequent Fourier Transform the solution can be written as:

‹fa(p; r; t) =
ea

k · p
ma
− ! − i›k‹Φ

eff (k; !) · @f
0
a (p)

@p
(1.10)

with › term arising from the usual adiabatic switching scheme for proper pole integration.

Finally, equation 1.10 can be introduced in the Fourier transformed version of equation 1.7 to obtain:

Φeff(k ; !) =
Φext(k ; !)

1−
P

d
e2d
k2

R
dp

(2ı~)3
k·@f 0c =@p

(k· p
mc

−!−i›)

=
Φext(k ; !)

"(k; !)
(1.11)

with "(k; !) defined as the retarded response function of the medium, i.e the dielectric function and Φext(k ; !) =

Φeff(r; t) can be determined by the Fourier transformed Poisson equation which, enables us to write the po-

tential as the sum of the test particle contribution, with the usual form: Φtest(k ; !) = (4ı=k2)e0‹(!−k ·v0).

If v0 is much smaller than the typical thermal velocity of the plasma constituents, they can be said to follow

any oscillation of the potential instantly. The statistic limit of the dielectric function "(k; 0) (instantaneous

response function), corresponding to the charge being immobile, v0 = 0, is then sufficient to describe this

interaction. From the above result:

"(k ; 0) = 1 +
X
d

4ıe2d
k2

Z
dp

(2ı~)3
@

@
“
p2

2m

” fd „ p2
2m
− —c

«
= 1 +

X
d

4ıe2d
k2kBT

d

d (—d=kBT )
nd (—d) (1.12)

where nd(—d) is the number density of species d . These relations are both valid for arbitrary degeneracy as

they do not assume a form of the distribution function. To make the physical meaning of the function clear

it can be rewritten as:

"(k; 0) = 1 +
1

k2r20
, where r−2

0 =
4ı
P

c e
2
c

kBT

@nc
@ (˛—c)

: (1.13)

where r0 is then a distance (and » the inverse of said distance) and can be interpreted as the screening radius,

as can be seen by the resulting effective potential:

Φeff(k; 0) =
e0

k2 + »2
−→ Φeff(r) =

e0
r
exp(−r=r0): (1.14)

6



The expression above makes clear that the long-range nature of the Coulomb potential of the point charge

is suppressed by the polarized plasma particles, in a phenomenon called screening or shielding. The potential

mediating the interaction between two constituent plasma particles is the Coulomb one, up to a radius of ≈ r0
and decays exponentially for larger radii.

Valuable physical insight is hidden, as usual, in the limiting cases. By rewriting equation 1.13 in terms of

its Fermi integrals and setting naΛ
3
a ≪ 1, i.e. in the non-degenerate regime, the well-known Debye screening

length is obtained:

r0 = rD =

 
4ı

kBT

X
c

nce
2
c

!−1=2

: (1.15)

In the strongly degenerate regime where naΛ
3
a ≫ 1 , on the other hand, the Thomas-Fermi screening length

is recovered:

r0 = rTF =

 X
c

6ıe2cnc
"Fc

!−1=2

: (1.16)

Electrons in metals at room temperature, for example, are subject to Thomas-Fermi screening, which is very

pronounced since rTF s 10−10 m.

To uncover the temperature-density boundary between the two regimes we turn to more ad hoc arguments.

To have a strongly correlated, i.e., non-ideal plasma, the condition ⟨Epot⟩ ≥ ⟨Ekin⟩ needs to be met. In this

regime, the particles stop being nearly free and ”feel” the Coulomb potential in a more significant way: bound

states appear and the dispersion relation of the particles is modified. Introducing the characteristic length lab

as the distance between a particle of species a and one of species b for which the Coulomb interaction is of the

order of the mean kinetic energy, in the case of a non-degenerate plasma, we can estimate Ekin ≈ kBT such

that kBT = |eaeb=lab|. This can be generalized for arbitrary degeneracy with the appropriate Fermi integrals.

Further defining the mean particle distance as da = (3=4ına)
1=3 the potential and kinetic energies can be

compared through Γab = lab=d , where strong correlations are expected if Γ ≤ 1. Ideal gas behavior, on the

other hand, is expected if Γ≪ 1, such that the kinetic energy is much stronger than potential energy, making

free particle scattering the dominant interaction.

1.3 The Temperature - Density Plane

Having defined, in the previous section, the parameters of interest to characterize non-ideal plasmas, namely

Θ and Γ, we can now define the Warm Dense region in a phase space diagram. We expect quantum effects to

dominate, namely strong correlations and degeneracy effects, where Γ > 1 and neΛe > 1. These boundaries

push our regime to the hotter and denser side of the diagram. At high enough densities, however, full ionization

will take place and the quantum correlations lose importance. This places an upper bound to our regime at

the line rs = 1, with rs called the Brueckner parameter, and being the ratio between the mean particle distance

and the Bohr radius.
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Figure 1.3: Temperature-density plane with several adimensional parameters plotted,
for the equilibrium case, along with demarcations of different zones of physical and
technological interest. From [11].

1.4 Creating WDM states in the lab

Several methods can be used to achieve WDM conditions in the laboratory, among them static and dynamic

compression and isochoric heating. All try to solve the experimental difficulties in creating a large enough

sample with uniform conditions that arise either because the compression or the heating process necessarily

create temporal and spatial gradients in the temperature and/or density profiles [5]. The degenerate plasma

that is created from these methods is typically a Coulomb plasma with its constituent particles being electrons

and ions. Table 1.1 presents an overview of some of the most commonly used sources to produce warm dense

conditions. They will be expanded upon through the remainder of this section.

Source Equilibrium Heating depth Steady Conditions ∆Tmax
e Density

fs laser ✗ (10-100) nm 10’s ps keV ∼ ȷsolid
ns laser (Dynamic Comp) ∼ (10-100) —m ns keV 1000 · ȷsolid

Diamond Cell (Static Comp) ✓ — ∞ <1 eV 10 · ȷsolid
X-rays ✗ (10-100) —m 10’s ps 100’s eV ∼ ȷsolid
Protons ✗ (10-100) —m 10’s ps 10’s eV ∼ ȷsolid

Table 1.1: Table summary of the methods used to create warm dense matter.

Static compression relies on mechanical pressure induced by a diamond cell while dynamical compression
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usually takes advantage of direct high-intensity irradiation of the sample with nanosecond lasers. The latter

and more commonly used method is based on the density shock wave created (due to ablation) propagating to

the bulk of the material [5]. It uses nanosecond ablation modes that take place after equilibration between the

electronic and ionic populations. Both of these processes are not well suited for the study of non-equilibrium

states, as they rely on density changes which, even for shorter pulses, would be on ionic (10’s of picoseconds)

time scales.

Isochoric heating (IH) of thin films creates states of solid density but higher electronic temperatures,

in which only transverse spatial temperature gradients exist and the sample can be said to be at a single

temperature in all its width: idealized slab approach [12]. Different types of sources that drive the energy

into the sample result in different initial out-of-equilibrium states in which only the electronic or the ionic

population is perturbed. They will equilibrate afterward, on a time scale bigger than the energy deposition

process.

IH can be achieved with X-ray sources or proton beams than penetrate inside solid density material beyond

the skin depth, depositing their energy in —m, length scales before significant hydrodynamic expansion kicks

in [13]. The expansion process is expected to happen at roughly the speed of sound (cs ≈ 104 m/s for

metals) which can be easily converted to expansion timescales in the tens of ps to tens of ns, for targets of

thickness between 100 nm and 1mm, respectively [5]. Until the advent of Free Electron Lasers (FEL), with

their combined ultra-short pulse duration (tens of femtoseconds) and high intensities, X-ray pulse duration

only allowed for the study of states where electronic and ionic temperatures were already the same. Now, this

emerging technology has renewed interest in the non-equilibrium properties of WDM states, with the possibility

of additional insight into the optical and transport properties in this regime, such as the transparency of WDM

Al to XUV due to fast electronic occupation of excited states [14, 15]. FELs, however, are limited in access

and beam time due to high construction and operational costs.

Optical lasers also present an opportunity to create IH states in non-equilibrium setups, but only in the

skin-depth layer, with a typical scale of tens of nm, for metals. As such the need for thinner samples arises

to achieve idealized slab conditions of constant density and minimal transverse Te gradients. The method is

still constrained by the expansion times of the foil, which are on the lower end for thinner foils. This approach

has the distinct advantage of being widely accessible when compared to FEL isochoric heating experiments,

while still allowing access to non-equilibrium states of WDM of well-defined density if benchmarked against

compression approaches.

In this thesis, our focus will be on the transient, warm dense, non-equilibrium states created by isochorically

heating metals with femtosecond laser pulses. For the conditions stated above a simple mental picture can

approximate the process: the energy being isochorically deposited in the electronic population within hundreds

of fs which then equilibrates with the ions in tens of ps, that is, before they have time to move significantly

thus maintaining solid/liquid density levels. Note that after significant expansion takes place, the warm dense

state reverts to a classical plasma which is no longer in the purview of this thesis. We will focus on states

with well-defined densities, only lightly touching upon different expansion and ablation mechanisms.
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1.5 IH: Physical processes

A quick overview of the fundamental physical processes going on during and after excitation of a thin metal

sample by an ultra-fast, tabletop, optical laser is now in order. Early theoretical frameworks for the absorption

and relaxation of energy in the sample will be touched on.

1.5.1 Absorption of Energy

The energy from the femtosecond laser pulses is deposited in a solid by one of the following mechanisms [16]:

• intra-band absorption by the free charge carriers in the conduction band - this is a 3-body process (to

first order), known as Inverse Bremsstrahlung (IB), where a phonon or ion is also required to participate

to conserve overall crystal momentum;

• inter-band transitions - direct gap transitions as a first-order contribution and indirect ones (where again

a phonon is required) appearing as a second-order contribution to the cross-section;

• absorption by collective excitations;

• absorption due to impurities and defects;

• ionization of core electrons.

The extent to which each of these contributes to the overall absorption cross section depends on some

fundamental laser parameters including laser wavelength –L; laser frequency !L = 2ıc=–; energy per pulse Ep;

pulse duration fiL; and focal spot area Sf . From these, we can also derive the average intensity I = Ep=Sf ·fiL,

measured in W/cm2, and the fluence F = Ep=Sf , measured in J/m2. For femtosecond infrared pulses with

intensities up to I ≈ 1014 W/cm2 (F ≈ 5×104 J/m2), and in the case of metal samples that have conduction

band electrons free to partake in the IB, the sheer number of available photons quickly saturates the inter-band

channel of absorption, making intra-band absorption the dominant process. Direct absorption by phonons does

not play a significant role as the pulse duration is much shorter than their period. Ionization effects are still

expected to provide a small contribution since, under IH conditions, the density never surpasses solid ones and

so rs remains below one.

In the Drude picture, nearly free electrons move in the conduction band due to the laser field, while e-i

collisions, with a frequency e−i , dampen their movement. Since IB is an intra-band phenomenon, the average

energy increase is correctly described by this picture [17].

To obtain the Drude dielectric function for metals, a classical equation of motion for the free electron

displacement needs to be written. Besides the electron acceleration term under the driving electric field, a

frictional damping force of the medium is also present. Naturally, no restoration force is present if electrons are

considered free. Using the equation of motion, the polarization vector can be determined if a linear response

of the medium is assumed. This is justified, as the peak electric fields of interest to this work are well below

the non-resonant non-linearity threshold (roughly where the driving electric field matches the one binding the
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electron to the nucleus) and no fine tunning to achieve resonant non-linearities will be performed. By solving

for the electronic displacement and assuming a direct proportionality to the polarization vector, it is possible

to write the latter. Since the polarization is, by definition, the response of the medium to the electromagnetic

(E-M) field, it is closely related to ", such that we can write [18]:

"(!) = "0

„
1−

“!p
!

”2 1

1− ie−i=!

«
(1.17)

with "0 the vacuum permittivity and !p =
p
nee2=me›0 the plasma frequency. From equation 1.17, the

behavior of the electric field propagating inside the medium can be extracted. Defining the complex refractive

index as ñ =
p
›(!) = n + ik and assuming the electric field is a plane wave propagating in the z-direction

according to Maxwell’s equations, inside the material we will have [18]:

E(z; t) = E0 · exp (i (kz − !t)) = E0 · exp
“
i
“
ñ
!

c
z − !t

””
(1.18)

with E0 the electric field magnitude at the boundary of the material and k the wave-vector of light. As a

limiting case, one can study the system with friction turned off, i.e., e−i = 0. In these conditions, the Drude

term in equation 1.17 disappears if ! ≫ !P , making the free electron medium transparent to high-frequency

radiation, and the same term becomes strongly negative if ! ≪ !p, making ñ an imaginary number which, in

turn, by equation 1.18, makes the electric field decay exponentially, in what is known as the skin effect. The

critical frequency at which the system transitions from reflective to transparent is !p.

In the general case, from the definitions introduced above, the skin depth ‹s can be defined as the

characteristic decay length of the electric field inside the material and write ‹s = c=!k. For metals at room

temperature and optical wavelength radiation, ‹s typically falls in the 10-60 nm range, or hundreds of atomic

layers [19]. The fact that this distance is much smaller than the typical focal spot of the driving laser, tens of

micrometers, generally justifies a 1-dimensional approximation (semi-infinite plane with a given thickness).

Still within the purview of linear response, the absorbed power density (energy absorbed per unit time

and unit volume) is considered proportional to the photon flux, i.e., pulse intensity, which itself will decay

exponentially in the direction of propagation. This results in the Lambert-Beer law of exponential decay with

an attenuation coefficient equal to 2=‹s . Also considering the Fresnel formula for absorption at a boundary,

the absorbed energy density rate per unit time is then given by [17]:

Qabs(x; r; t) =
2

‹s
AI(t; r) exp(−2x=‹s) and A = 1− |n − 1|2

|n + 1|2 : (1.19)

Several caveats apply to this overly simplistic picture. Note that, during and after the pulse variations,

the material parameter e−i can change, as the e-e population thermalizes. It is known that electron-phonon

or e-i collision rates are temperature-dependent, even in equilibrium conditions. In the limit of a cold solid,

below the Fermi temperature, the electrons are degenerate and so the collision frequency only depends on

ionic temperature and only by proxy on electronic temperature, Te = Ti . In the fully ionized plasma limit,

dominated by Coulomb collisions, the collision frequency decreases with the increase in electronic temperature,
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as expressed by Spitzer’s formula [20]. In figure 1.4, the collision frequency for Aluminium (Al) was plotted, for

different temperatures of equilibrated electron and ion populations, by a harmonic mean interpolation between

the behaviors in known regimes [21]. The dashed line imposes the physical constraint that the electron’s mean

free path is not smaller than the ion radius. Depending on the metal, the overall free electron density might

also change during the pulse (through lowering the continuum and ionizing some bound states), also affecting

the collision frequency.

Figure 1.4: Electron-ion collision frequency for solid Al, interpolated between known regimes, with resource to
a harmonic mean. The dashed line represents the plausible requirement that the electron’s mean free path is
bigger than the ion radius. From [22].

Inter-band absorption phenomena were also not part of the above calculation. Metals with valence d

band electrons, more localized in energy than the s and p, close in energy to their ”freer” s and p bands,

for example, give rise to a complicated array of possible optical transitions, for sufficiently energetic photons.

More sophisticated analytical models may be applied, with the inclusion of, for example, Lorentz-like discrete

oscillator terms in the dielectric function at the expense of the inclusion of significantly more phenomenological

parameters.

Finally, the ultra-fast excitation electrons are subject to puts into question the very notion of temperature,

as it was discussed for electrons and ios in equilibrium. The initial (after absorption) non-thermal distribution

of electrons can itself affect the band structure which would be reflected both in the intra-band contribution

(for example through the electron effective mass) and the inter-band one.

1.5.2 Relaxation processes

After the pulse energy is initially deposited in the electrons, it will gradually start being shared by the electron

and ion populations. Electron-electron collision rates, at WDM temperatures, are roughly e−e ≈ 1016 Hz

≈ !p and, as such, e-e energy exchange rates are on the order of 0.1 fs. Even if several collisions are necessary

to obtain e-e equilibrium, it should still be achieved on the order of the pulse duration length fip ≈ 50 fs.

This can be seen in [23] where Boltzmann equations for two fluids at different temperatures are solved with

ultra-fast excitation of the electronic population by a laser pulse with peak intensity 1011 W/cm2. From
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their results, it can be deduced that, from very early on, an electron equilibrium distribution with a given

electronic temperature Te is established and follows the pulse fluence adiabatically. Similar conclusions were

experimentally obtained in [24] for intensities in the 1012 W/cm2 range.

As for the ions, they will remain cold for significantly longer, even when their collision rates with electrons

are at their peak, i.e. e−ion ≈ e−e (corresponding to the flat top of figure 1.4), because of their much bigger

mass which makes energy transfer rates slower. For example, in the case of copper, the characteristic energy

exchange time will be on the order of tens of picoseconds [19].

From the moment equilibrium is reached in the electronic population, thermodynamic properties - like

heat capacity - can be safely used to describe the energy exchange between electrons and ions. These will

be dependent on the temperature of both electrons (with well known degenerate - Ce ≈ ı2k2BTe=2›
f , and

classical limits Ce = 3kb=2) and ions (where for lower temperatures Cph ≈ 3kB due to harmonic character of

atomic motion changes to Ci ≈ 3kB=2 as said motion turns to a translational mode).

The electrons are subject to multiple forces (or drifts) during irradiation. The most consequential one, in

our regime, due to its bigger magnitude and lasting effects (still active after the pulse) is the thermal drift

[17][19]. For intensities I < 1013 W/cm2, this drift will act as a perturbation to the ionic potential exciting

harmonic motion. As the lattice heats up, through electron-phonon collisions, the phonons lose their harmonic

behavior and start interacting with each other. The average displacement goes from zero to temperature

dependent and the material will experience lattice expansion and melting.

For higher intensities, above the so-called ablation threshold, electrons might transfer enough energy to

ions to vaporize them, in which case they are removed from the solid at relatively long time scales (∼ ‹s=cs
). This effect is preceded by a disordering of the material, at densities close to the solid one, which can

be interpreted as melting [17]. Figure 1.5 schematically shows all of the processes discussed so far, from

the non-thermal excitation of electrons to the final equilibration of the electrons and ions above the melting

temperature. In some cases, even while the ions are still cold, but after the electrons are thermalized, the

abrupt change in effective electronic potential the latter feel due to electronic heating might originate forces

strong enough to quickly disorder the material. In this scenario (non-thermal melting), the increase in ionic

temperature and decrease in density will happen in an already ”melted plasma” state.

Figure 1.5: Sketch of energy deposition and relaxation processes in laser irradiated metal. First, the cold
electronic population is excited into a non-thermal population, then the population thermalizes and forms a
Fermi-Dirac before relaxation to the ions to a joint temperature. From [17].

A controversial but even more extreme mode of ablation may also exist, called Coulomb explosion. This

process is known to happen in large molecules or clusters, where highly excited electrons leave the structure,
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resulting in repulsive forces between the ions that destroy the cluster [17]. In [25] the possibility of this

electrostatic ablation mode was studied for solids. It was concluded that while in dielectrics sufficient charge

can build up at the surface boundary to create electrostatic pressure comparable to the mechanical binding

strength; in metals the higher electron number density and mobility resulted in a more efficient neutralization

of the electrostatic field, generally excluding the Coulomb explosion ablation mode.

1.5.3 The Two-temperature Model

From the discussion in section 1.5.2 we expect transient (non-equilibrium) states of elevated temperatures and

unchanged density (roughly solid one) to exist in our sample, for at least a few picoseconds, after excitation

and before ablation. To describe the thermal equilibration of electrons with ions across different phase states

(from cold solids to non-equilibrium dense plasma) the two-temperature model (TTM), first proposed in [26],

is often used. From the moment e-e population reaches equilibrium, and while total mass and momentum

remain conserved, i.e., no hydrodynamic motion has taken place, energy conservation can be expressed as

[19]:

@CeneTe
@t

= Qabs −∆Qe−th − Qe−i and
@CiniTi
@t

= Qe−i (1.20)

where Qabs is given by equation 1.19, Qe−i = Ee−ine(Te − Ti ) where Ee−i is the e-i energy exchange rate and

ne is the electron number density; finally ∆Qe−th = »e∇Te is the conduction term.

Now from [27], we know that in solids:

»e = CeneD and D =
e lmf p

3
=

2e
3vmome−ph

(1.21)

with D the diffusion coefficient, mome−ph the electron-phonon exchange rate, e the electronic velocity and lmf p

the electronic mean free path. This diffusion approximation is also legitimate, on a skin-layer length scale,

for intensities above the ablation threshold, here mome−ph should be replaced with mome−i = (Mi=me)
E
e−i the

electron-ion collision rate. Some authors considered enhanced laser energy penetration by conduction due to

ballistic electrons (high energy tail electrons) but this approach is phenomenological and not based on sound

kinetic arguments [17] (where another commonly used parameterization of »e between known ideal plasma

and solid regimes is also given).

The dependencies on electron and ion temperatures of Ci , Ce and e−ph also remain up for debate. For

the latter parameter, the situation in figure 1.4 is no longer applicable as electrons and ions do not share

a single temperature. Furthermore, the concept of phonons is no longer applicable after lattice disordering

(”melting”) and other models are needed, as in [28], where non-thermal distributions were accommodated in

the calculations. These will be discussed more in-depth in 2.2.3.

As previously stated, this picture also assumes that there is no macroscopic material expansion. To know

up to when this is a valid assumption, phase state information is needed - for which other approaches are

required. One of the simplest analytical hydrodynamic models that attempted to describe the expansion of
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the material after fs laser excitation was proposed in [26], for intensities close to the ablation threshold.

The initial excitation is viewed as isochoric heating of the electrons. e-i equilibration is assumed faster than

material expansion, which is, in turn, considered faster than heat conduction times. These approximations re-

sult in an adiabatic expansion (i.e., along an isentrope) of the material, at the sound velocity cs =
p
(@p=@ȷ)S,

after the heating and equilibration temperature is reached. At the typical sound velocities for metals cs = 5000

m/s it still takes tens of picoseconds for the ions to travel 100 nm, justifying our previous approximations,

even for thin foils.
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Chapter 2

State of the art

2.1 Probing non-equilibrium WDM states

Time-resolved diagnostics of appropriate time resolution are necessary to study the properties of the transient

warm dense states generated during IH. Otherwise, a measurement with a single time stamp can be con-

taminated by widely different temperatures, pressures and densities, as these quantities vary over time. The

study of conditions before a thermal electronic distribution is established is only possible with sub-picosecond

resolution techniques, which are then deployed to study fast equilibration dynamics and subsequent processes.

With these aims in mind, several pump-probe techniques have been developed to access the exotic states

following laser excitation, among them: optical probing, X-ray absorption spectroscopy, emission spectroscopy

and time-resolved electron and X-ray diffraction [5]. They have in common that an adjustable time delay

between the pump signal (that ”creates” the conditions in the sample we wish to study) and a probe pulse (of

varying nature, depending on what we wish to probe) allows us to study some optical or transport property

at a certain time after the excitation. As the pump and probe are perfectly synchronized and the time delay

is adjusted by changing the optical paths, the time resolution is usually limited by pulse duration.

Of these methods, the simplest to implement (due to the availability of light sources) are the optical

probe ones. In these experiments, simultaneous measurements of reflectivity and transmissivity or phase in

both polarisations can lead to the complete determination of the dielectric function [29], which can be used

to determine e−ph in different regimes, among other properties. The relationship between measurements

and electron/structural properties is however indirect and based on a model such as Drude’s. Other common

optical probing techniques are velocity interferometry system for any reflector (VISAR) that allows for the

measurement of the velocity of a reflecting surface, such as an ablated and extended plasma plume; and

streaked optical pyrometry where the black-body radiation relation is used to measure time-dependent peak

surface temperature (as the medium itself is opaque to optical radiation and, as such, radiation from the bulk

of the material is trapped) [5].

Time-resolved diffraction experiments, on the other hand, are typically carried out with X-rays. They have

several advantages including penetrating the bulk of the material. Due to the nature of X-ray diffraction,
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they are good probes of ionic structure and consequently of phase transitions and states that the sample goes

through as it becomes warm dense. The birth of the X-ray free electron laser (XFEL) greatly improved the time

resolution of these experiments as it can provide a femtosecond source of high-brightness collimated X-rays.

Ultrafast laser-accelerated electrons have also been deployed to study diffraction patterns and consequently

long-range order of ions. Bright X-ray sources can be deployed in WDM diagnostics for Thompson X-Ray

scattering experiments, as well. These can measure the dynamic structure factor that can be linked to the

dielectric function [5].

X-ray absorption experiments, when close to absorption edges (XANES: X-ray Absorption Near Edge

Spectroscopy) provide direct information about both the valence electrons and the short-range atomic order.

For the diagnostics to work, however, it needs broadband high-brightness radiation on a time scale compatible

with the desired time resolution. On the side of large facilities, while synchrotrons provide the necessary

broadband radiation their pulse width of fip ≈ 100 ps severely limits temporal resolution and consequently

the ability to perform IH non-equilibrium studies. XFELs offer a possible avenue for improvement of XANES

techniques, despite their narrow spectral range, because tunability of the beam spectral jitter can be used to

obtain enough range for X-ray absorption spectroscopy experiments [5].

The tabletop versions of such experiments are constrained in their time resolution by the availability of

broadband X-ray sources of small enough duration (they are typically produced from plasma emission inherently

limited due to heating and cooling dynamics of the plasma [29]). Source intensity is also a limiting factor as it

regulates the number of shots needed for obtaining a spectrum. In WDM conditions, the sample is expected

to ablate, creating a bottleneck in said acquisitions, since there is a need to move or replace the sample after

each shot.

A schematic electron density of states (DOS) is present on figure 2.1. The probe pulse of a XANES

experiment will have energy centered around one of the edges (K, L, M, etc) and as such will be able to make

an electron on the sample transition from a core state to a near-free (continuum) one. The cross-section of

such a process is dominated by the photoelectric effect coupling the two levels and is given by [29]:

ff(h) = c · h| ⟨ i |R| f ⟩ |2 [1− f (E)] (2.1)

where R is the electric dipole operator, c is a constant and f (E) is the Fermi Dirac distribution, explicitly

dependent on energy instead of momentum. The last factor in the above expression describes the availability

of the final state for the transition since for fermions the Pauli exclusion principle needs to be respected.

Generically, then, the absorption spectrum will have a sharp edge (as the X-ray probe energy moves from

lower to higher than the edge’s energy) followed by additional higher energy features. For ∼ 10 eV after

the edge, these features result from the near continuum electronic structure (contained in | f ⟩ whose square

modulus gives us the DOS), further features are a consequence of short-range order, i.e scattering of | f ⟩

on nearest neighbors atoms. As such, X-ray absorption measurements can directly probe the distribution of

valence electrons and, consequently, be sensitive to the disturbances to the electronic population as the sample

is isochorically heated to warm dense conditions.
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Figure 2.1: Energy diagram of different core states transitions to near continuum states. Ef is the Fermi
energy and the different edges are labeled. Adapted from [29].

2.2 Simulating non-equilibrium WDM

This section will focus on the warm dense conditions achieved by isochorically heating thin metal samples.

When modeling such conditions, with several important effects competing for dominance at any given phase

state, the question often becomes which effects is our type of experience most sensitive to. From now on,

X-ray and extreme ultra-violet (XUV) time-resolved studies near absorption edges with pump fluences up to

5 × 104 J/cm2 (corresponding to I ≈ 1014 W/cm2) will be our main concern. As mentioned before, these

types of experiments are most sensitive to the behavior of the electronic distribution function. This function

is in turn heavily dependent on the electronic temperature, which will vary abruptly throughout the experience

and lead to multiple degeneracy regimes and many-body effects. These may change the screening of outer

electron shells and as such the band structure and DOS of the metal.

Since the shielding and degeneracy regimes change rapidly in the warm dense region of the phase space

diagram, as explored in section 1.2, our models will generally need to be tailored for the high-density regime

(close to solid density), while they will need to ”withstand” a range of degeneracy regimes as the electrons

quickly heat up and then equilibrate with the ions.

To know at which point sample expansion starts to be significant, equilibration dynamics and equation

of state considerations usually need to be taken into account in what we will call TTM - Hydro simulations.

These will be discussed first, together with a more detailed description of the possible avenues for simulating

the behavior of the electronic population during and after IH.

2.2.1 Hydrodynamic Regime

The pure TTM equations, discussed in section 1.5.3, are only valid so long as mass conservation can be

reasonably assumed, i.e., up until significant hydrodynamic expansion takes place. To take into account phase

state effects, such as moderate changes of density from solid to liquid phase or more abrupt ones to a vaporized

state, it is possible to couple these equations to the equation of state (EOS), obtained from other means,

which models thermodynamical properties of materials at high temperatures and pressures. For our purposes,

these simulations will be used to define the time range we are interested in, namely up to what point, after

heating, the density remains close to the solid one.
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This type of study was done in [21] where TTM equations were coupled to an EOS to simulate equilibration

and expansion effects happening concurrently, on an isochorically heated metal sheet, with an optical laser

pulse. The equation of states was taken from the SESAME database, for Al, whose electronic component

resembles a free electron gas. The parameters for the TTM result from interpolation between known regimes

(where electrons and ions are thermalized) and are extrapolated for the non-equilibrium situation, following

the method used to construct figure 1.4. Simulations at I = 1015 W/cm2 were selected and density and

temperature profiles were presented. The density profile is observed to significantly deviate from a vacuum-

solid step-like shape on a picosecond time scale, as is illustrated in figure 2.2. Intensity scaling laws of pressure

and temperature were also reported (these suggest that for aluminium (Al) irradiated with I = 1014W/cm2,

peak electronic temperatures - Te - of around 70000 K are to be expected).

In [30], simulations of isochorically heated metals, with an infrared laser pulse, were performed by coupling

the EOS to the TTM. The EOS takes into consideration known information about phase transitions and meta-

stable states, along with a separate model for evaporation. It was shown that at intensities of I = 5 × 1014

W/cm2 (F = 5× 104 J/m2) a melting front develops. This shock wave moving through the liquid is followed

by a rarefaction wave (low pressure) leading to negative tensile stress and spallation (droplet formation).

Simulated ablation depths appeared to be in broad agreement with experimental results for the several metals

tested. For all of them, the overall picture remained similar: for the highest tested fluence a stable liquid

phase forms over ≈ 100 nm of thickness and during 10’s of picoseconds. This fluid state is characterized by

a density only slightly lower than the solid one, on the same order of magnitude. It is also noticeable that for

lower fluences the vacuum-material boundary remains mostly unchanged for tens of ps while at the highest

ones a gas appears from the earliest times, indicating some amount of material ejection from very early on.

Figure 2.2: Temperature-desity profile of an Al sample irradiated for 150 fs with a 400 nm pulse with intensity
I = 1015 W/cm2. Adapted from [21].

Although computationally more expensive, molecular dynamic (MD) simulations are another option to

study the ablation process. They consist of individually solving Newton’s equation of each atom, with the

main challenge being the choice of the interaction potential between the atoms [17]. These have the advan-

tage of not needing a priori assumptions about the kinetics of metastable states and phase transitions, but

thermodynamical quantities need to be averaged out of simulated conditions. Smaller MD simulations often

inspire the metastable phase states information that is then introduced in less demanding hydro-dynamical

codes, through the EOS.
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2.2.2 Modelling electronic distribution of WDM

The non-equilibrium states the metal’s electronic population goes through, when isochorically heated, are not

taken into account by hydro-TTM models. These states arise from the interplay of many-body correlations

and the Pauli exclusion principle. When they do incorporate some quantum effects, this is achieved through

EOS obtained from more accurate quantum mechanical simulations.

This section disucsses both finite temperature density functional theory created to overcome the problems

arising from solving the quantum many-body Schrodinger equation (originally for much colder systems, but

now often extended to WDM) and Boltzmann equation methods for non-ideal quantum plasmas. Both have

advantages and disadvantages and can lean on one another. While finite temperature DFT does not model the

deposition of energy, requiring an ad hoc source, and only works in equilibrium conditions (when the electrons

have thermalized amongst themselves, but not necessarily with the ions); the Boltzmann equation methods

successfully model both of those responses but are not capable of calculating the many-body properties of a

correlated system, like the electronic band structure.

Density Functional Theory

Assuming we can determine the ionic potential separately (usually from quantum mechanics calculations for a

single atom at long distances) our generic goal is to solve the many-body Schrodinger equation that governs

the dynamics of any quantum system. One such system of N electrons subject to an external static potential

(created by the ions) is described by the spin-independent Hamiltonian [31]:

H =
NX
i=1

„
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!i j(ri ; rj) (2.2)

with V the external potential and !i j the e-e interaction energy. The desired result is to discover Ψ(r1; :::; rN)

describing stationary electronic states. Density Functional Theory (DFT) offers a way to map this N-body

interacting problem into a non-interacting single-body one (i.e without !i j), making use of the density operator,

expressed in coordinate space as:

n(r) = N

Z
d3r2...

Z
d3rNΨ

†(r; r2; ...; rN)Ψ(r; r2; ...; rN): (2.3)

In [32] it was proven that there is a universal functional of the density F (n(r)), independent of the external

potential, such that
R
V (r)n(r)dr+F (n(r)) has its minimum equal to the ground state energy of the interacting

electron problem. To do so, the authors used the fact that the ground state wavefunction is a unique functional

of n0(r) (a given ground state density), which can be derived from equation 2.3. The functional itself was

written as:

F (n(r)) =
1

2

Z Z
n(r’)n(r)

|r− r’| d
3r’d3r+ VXC(n(r)) (2.4)

where the first term is a Hartree-like one (responsible for e-e repulsion) while the second one is an exchange
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term, that parameterizes all the many-body interactions. This proof was extended to finite temperature

systems in [33] by using the grand canonical ensemble. Proving that for a given temperature, number of

particles, and external potential the equilibrium density is unique, the authors were able to add a chemical

potential term to the functional. As the electrons can be excited into infinitely many continuum states, the

occupancy of those states becomes needed in our density definition, which becomes [31]:

n(r) = 2
∞X
i=1

f (›i )

Z
d3r2:::

Z
d3rNΨ

†
i (r; r2; :::; rN)Ψi (r; r2; :::; rN) (2.5)

with f (›i ) the occupancy factor for a given energy state’s energy ›i and where the factor of two comes from

spin independence. Now for our stationary case, f will be a Fermi-Dirac distribution (i.e equilibrium one).

With the knowledge of the form of the distribution, we can then use charge conservation to determine the

chemical potential needed in the functional [31].

In [34], the Kohn-Sham (K-S) equations governing the behavior of the auxiliary non-interacting system

(resultant from the mapping of the original system of interacting fermions) were derived. The Hamiltonian

present in the K-S equation was of the form of equation 2.2 but without the last term (the system is now

non-interacting) and with V (ri ) replaced by Vef f (ri ) = V (ri ) + Ft(n(ri )) with Ft the finite temperature form

of the functional in expression 2.4. These equations yield static orbitals ’i (ri ) related to the original system

by n(ri ) =
PN

i=1 |’i |2(ri ) and need to be solved self-consistently, i.e., iteratively.

The bottleneck of the DFT method is the determination of the exchange correction part of the functional.

In general, and specifically for WDM, the exact form of this functional is not known and depends explicitly on

the temperature and density [31]. Moreover, this method is not translatable into non-equilibrium situations,

for example during and after irradiation of a sample, i.e., during the heating process. The density functional,

defined in 2.5, is only properly defined if the form of the occupancy factor is known. To properly account for

the excitation of electrons, time-dependent DFT would be needed but it is too computationally demanding at

the time scales and levels of perturbation we are interested in.

In [35], finite temperature DFT simulations (hot electrons and cold ions) were used to calculate the

electronic density of states of several metals. The location in energy of the d band, the number of free

electrons, and the chemical potential were then extracted for different electronic temperatures up to 50000K.

In the case of Al, the electronic structure is similar to the free electron gas (FEG) structure, for all the studied

temperatures. The number density of conduction electrons remains constant with increasing temperature: 10

electrons occupy core bound states while three are in the conduction band, delocalized. Since the dispersion

relation of the FEG is › ∝ k2, the closely related density of state (DOS) can be calculated as D(›) ∝
√
›.

The constancy of the DOS for different temperatures is an indication that there are no significant ultra-fast

properties modifications due to electronic excitation, such as bond hardening.

For Titanium (Ti), a transition metal with a semi-full 3d band, the DOS is higher and flatter band resulting

from a bigger localization, in energy, of the d electrons and only at higher energies decays to D(›) ∝
√
›,

characteristic of the s and p free like electrons. The number of conduction electrons in Ti varies little from

its cold value and the d band location, in terms of energy location, is also scantly affected: there is only a
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slight reduction of the energy of the continuum. For both Al and Ti the chemical potential variation from the

Fermi energy, with increasing temperature, is roughly the same. The DOS for both metals at 0 K, 10000 K,

and 50000 K of electronic temperature are shown in figure 2.3 as solid lines. Overlaid on the same plot are

Fermi-Dirac distributions at for the same Te and appropriate chemical potentials.

Figure 2.3: Electornic density of states (DOS) for Al and Ti at finite temperatures. The dashed lines are the
chemical potentials and the dots overlaid are the corresponding Fermi-Dirac distributions. Adapted from [35].

In the case of noble metals, whose d orbital is full and lower than the Fermi level, significant variations

of the parameters discussed above can be observed. This can be understood as changes in screening, due

to the depletion of the d orbitals resulting from electronic excitation. Most changes occur abruptly, after

a given temperature threshold (usually the temperature needed for electrons from the d orbital to cross to

empty energy levels). As the more energy-localized electrons get excited to higher energies, the screening of

the charge of the nucleus is reduced (electrons stop bunching together closer to the nucleus and disperse into

the lower-density part of the DOS, which is also further away from the core) and the energy of the continuum

is lowered. This effect is limited in Ti because the d orbital was not full to begin with, and also because, at

the studied electronic temperatures, a significant proportion of excited electrons scatters to the empty part of

the d orbital.

Ab initio simulation of X-ray absorption experiments

Changes in the ionic structure due to heating of the lattice and, at some point, of the ions can not be properly

modeled in a DFT simulation, since it concerns only the electronic population. Moreover, finite temperature

DFT simulations have as input an electronic temperature and as such, by themselves, they can not model the

heating process.

To achieve a full description of the sample, especially when time resolutions are on the order of picoseconds,

coupling the simulation of quantum electrons with that of classical ions becomes necessary, in what is typically

termed a DFT-MD (density functional theory-molecular dynamics) approach [36]. The TTM is also used, in

this scheme, to simulate energy exchange between the populations and define the temperatures at each time

step. From this process, it is possible to gauge the different configurations of ions that appear over time, as

the sample is being heated to WDM conditions and afterwards. This information is often condensed in an

EOS (such as the ones in SESAME data base [37]) that drives hydrodynamical simulations.

For the simulation of optical properties of the isochorically heated metal (in our case, absorption near

one of the edges), the above procedure needs to be inverted. To drive the DFT-MD simulations that require

electronic temperature and ionic density information, we extract said parameters from TTM-hydrodynamical
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simulations and/or experimental benchmarking. Starting from cold ions on a lattice and excited electrons at a

given Te , DFT can be used to calculate the electronic band structure and the forces the electrons apply to the

ions (by the Hellman-Feymann Theorem) and then let them move according to classical MD. The procedure

can be repeated iteratively, for each time step of the simulation, always recalculating the DOS, until reaching

the expected phase state (i.e, level of equilibration expected at a given time, according to the TTM). [29]

Electronic and ionic temperatures need to be attributed independently because truly ab initio simulations

with time-dependent DFT can not be run on a scale - time and length-wise - enough to simulate the excitation

and equilibration (both e-e and e-i) in the macroscopic metals films starting from a cold state. The less

demanding stationary DFT methods provide adequate results as long as time resolutions are of the order of

e-e equilibration times. When sufficiently small time scales are achieved, time-dependent DFT will be needed,

for the first few steps, to simulate possible non-equilibrium distributions coming directly from excitation effects.

With this method we can calculate the absorption cross section (in linear response theory), for any given

k point in the electronic continuum [38]:

ffk(h) = 4ı2h
X
n

[1− f ("n;k)]× |⟨ n;k|∇|fficore⟩|2‹("core − "n − h) (2.6)

with |fficore⟩ electronic core states. The optical properties are, then, consistently determined with | n⟩ calcu-

lated with DFT-MD and the core states are determined separately, as DTF-MD does not consider the quantum

nature of the ions. To take into account the experimental resolution, when it is larger than the state’s lifetime,

the delta function is replaced by a Gaussian.

In practice, one can not include the infinite near continuum excited electronic orbitals in a computer

simulation. The projector-augmented wave method is among the ones that can be used to describe both the

near continuum and core states. Care is needed to include sufficiently many excited states in the continuum

and to include the state with a hole in the core (that can be created by the probe itself) if this effect is not

completely screened out by valence electrons. [29]

Quantum Boltzmann Statistics

The method summarized above assumes equilibrium within the electronic population along with an ad hoc

method of absorption. To truly account for non-equilibrium dynamics, a kinetic quantum equation is required

with detailed collision terms describing both e-e interaction and interaction of the ”free-like” electrons with

the IR ultrafast laser pulse. This can be done via the Boltzmann equation, as introduced in section 1.2.2. The

remaining problem pertains to writing the collision term explicitly.

Focusing on the two particle collisions with momentum p1 and p2, the total number of out-scattered

particles into momentum states p1 and p2, assuming that the colliding particles are uncorrelated (molecular

chaos assumption), as a function of p1 is given by [11]:

Iout (p1) =

Z
dp2dp1dp2W (p1p2p1p2) f (p1) f (p2)× (1± f (p1)) (1± f (p2)) (2.7)
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with W (p1p2p1p2) the transition probability per unit time. Note that the factor f (p1) f (p2) encodes the

assumption of molecular chaos and the ± symbol reflects the fact that while fermions can only scatter into

unoccupied states, bosons tend to scatter into the most occupied states. Naturally the Iout factor has the

same form but p1 switches places with p1 and the same for p2. The total two-body collision term can then

be written as: (@f =@t)coll = I in (p1)− Iout (p1).

If the interaction potential between the particles can be considered weakly time-dependent, perturbation

theory from standard Quantum Mechanics can be used to derive the Fermi Golden Rule [11]:

W (p1p2p1p2) =
1

(2ı~)6
|V12 (p1 − p1)|

2
‹ (p1 + p2 − p1 − p2)×

2ı

~
‹
`
E12 − Ē12

´
(2.8)

where V12 (p1 − p1) is the Fourier transform of the two particle interaction potential and the energy and

momentum conservation are explict. In the simplest case of free particles, it is possible to write E12 =

p21=2m1 + p22=2m2.

The Boltzmann equation (1.8), presented with the proper collision term, describes the relaxation of an

arbitrary initial distribution into an equilibrium state conserving the mean kinetic energy, instead of the total one

that includes the potential energy. Moreover, if the molecular chaos assumption is used, the kinetic equations

are only valid for timescales large enough so that the initial correlations of the systems have decayed.

Boltzmann statistics: IH heating of metals

In [23], a much-used Boltzmann equation model for thin metal sheets being irradiated by femtosecond IR and

optical laser light was developed. Several simplifying assumptions are laid out first since the computational

problem of solving the Boltzmann equation with detailed collision integrals quickly becomes intractable.

Firstly, the material is assumed homogeneous and isotropic. This is justified by the fact that the metal

sheet is composed of micro-crystals oriented differently from one another and it allows us to take an average

of all polarization directions of the incident laser light. Furthermore, spatial variations of the intensity of the

laser pulse, as it is being absorbed transversely, can be neglected, for films with thickness on the order of the

absorption depth of the metal. Other transverse spatial effects, such as diffusion and energy transport were also

neglected. This last assumption is consistent with a thin layer approximation and a focus on time-dependent

effects such as energy absorption and thermalization amongst the electrons (first) and of electrons with the

lattice (later).

Taken together, these impositions make the distribution function only dependent on time and energy and, as

such, reduce the left-hand side of equation 1.8 to the partial temporal derivative. The dynamics of the systems

are then encapsulated in the collision terms, caused by different microscopic processes. The relevant terms are

e-e, e-i, and electron-phonon collisions (the latter are included in the original model, but are of questionable

use for pump intensities above the damage threshold). As was previously discussed in section 1.5.1, the main

process for deposition of energy, at these fluences and wavelengths is IB, i.e. e-i/electron-phonon collisions

that allow for momentum conservation while absorbing one or multiple photons.

All these considerations lead to a system governed by two kinetic equations:
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@f (k)

@t
=
@f (k)

@t

˛̨̨̨
el−el

+
@f (k)

@t

˛̨̨̨
el−phon

+
@f (k)

@t

˛̨̨̨
absorb

(2.9)

@g(q)

@t
=
@g(q)

@t

˛̨̨̨
phon−el

(2.10)

with f (q) the electronic distribution function and g(q) the distribution functions of the phonons. No ionic

equation is present due to the electronic-to-ionic mass ratio, which makes e-i collisions approximately elastic.

Here the focus shall be on equation 2.9, disregarding the el-phon term, since detailed calculations are mainly

required to determine the dynamics of e-e thermalization, after being excited by the laser pulse. After the

electronic population is distributed according to a Fermi-Dirac, the conditions of validity of the TTM are met.

This simplified version of the original model is then expected to work for up to hundreds of fs only, before

electron-phonon/e-i thermalization becomes significant.

Two detailed collision terms need to be determined: the e-e and the absorption (electron-ion-photon)

terms. Both will have probabilities per unit time proportional to expression 2.8 where the |V12 (p1 − p1)|
2

term can be identified with expression 1.14, i.e., the statically screened Coulomb potential. Assuming a single

parabolic conduction band the dispersion relation of the free electrons is given by ›(k) = ~2k2=2me . It is then

possible to write, in the two-body scattering approximation:

@f (k)

@t

˛̨̨̨
el−el

=
2ı

~
X
k1

X
k3

„
e2

"0Ω

1

∆k2 + »2

«2

‹ (› (k3) + › (k1)− › (k2)− ›(k))

×[f (k3) f (k1) (1− f (k)) (1− f (k2))− f (k)f (k2) (1− f (k3)) (1− f (k1))]

(2.11)

where ∆k = k1 − k2 = k − k3 is the exchanged momentum and k2 = k1 − k + k3 to ensure conservation

of momentum. The Fourier Transform operation performed on the screened Coulomb potential leads to

the appearance of a volume term Ω, corresponding to the total volume of the crystal being modeled, but

is inconsequential as it cancels out further along when the sums are transformed to integrals. The inverse

screening radius can be obtained from equation 1.13, valid for arbitrary degeneracy, encompassing different

temperature and density regimes. With the quasi-free dispersion relation being assumed, the expression can

be written as:

»2 =
e2me
ı2~2›0

Z ∞

0

f (k)dk: (2.12)

As for the absorption term, the aim is to accurately model the IB process, in a microscopic and kinetic

fashion. As derived in [39] and used in [23], the probability of absorption of n photons by an atom departs for

the usual form - expression 2.8 -, for the collision of two particles. To calculate the probability of transition

from a state with energy › to a state with energy ›′ the authors wrote the time-dependent Schrödinger for

free electrons disturbed by classical E-M radiation (the quantum nature of the photons can be disregarded as

there is a great many of them in a given energy state). Afterward, first-order perturbation theory was applied

to calculate the desired transition probability (taking the nucleus potential as the perturbation), resulting in:
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W (›→ ›′) = |V12 (∆k)|2
+∞X
‘=−∞

J2‘

„
eEL ·∆k
mew

2
L

«
‹(›′ − ›+ ‘~!L) (2.13)

where ‘ is the number of absorbed or emitted photons, EL is the electric laser field, V12 is still the screened

Coulomb potential that mediates e-e interaction, but in this case for e-i interaction, and J‘ is the ‘th order

Bessel function of the first kind. If it is also assumed the ions are classical particles and that they have infinite

mass (such that there is no energy transfer to the ions), the absorption term for the Boltzmann equation can

then be written as:

@f (k)

@t

˛̨̨̨
el−ion−phot

=
2ı

~
X
∆k

„
e2

"0Ω

1

∆k2 + »2

«2 ∞X
‘=−∞

J2‘

„
eEL ·∆k
mew

2
L

«
× ‹ (› (k +∆k)− › (k) + ‘~!L) [f (k +∆k) (1− f (k))− f (k) (1− f (k +∆k))]

(2.14)

where in this case Ω will not cancel out, since there is a single sum that will be transformed to an integral,

and can be identified with the volume of the unit cell Ω0, as in [23].

While in general phonons also contribute to the IB process, calculations performed in [40] for IH of an Al

thin film showed that the term |V12(q)|2 for phonons is two orders of magnitude lower than for ions, assuming

a Debye dispersion relation ›pn(q) = csq, as can be seen in figure 2.4. This channel of absorption will be

disregarded as, for experimental analysis purposes, second-order effects are both too costly computationally

and unlikely to offer any significant benefits.

Figure 2.4: Modulus squared of the screened two-particle interaction potential for e-i and electrons-phonon
interactions. From [40].

To summarize, the two terms here detailed, introduced into equation 2.9, while neglecting phonon con-

tributions, provide a model for the behavior of nearly free electrons in thin metal sheets based on a single

master equation, that needs to be solved in time. This model is expected to work on reduced time frames

only because it assumes both that the lattice remains intact and that the transfer of energy from electron to

ions or phonons is negligible (which will probably be true enough, at our experimental resolution - chapter 3,

for a few hundreds of fs).

2.2.3 The TTM and e-i coupling

Section 2.2.2 covered computationally expensive simulations. In this section, we will discuss how these fun-

damental theories can be incorporated into the temperature dependency of the parameters of the TTM. This
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has the distinct advantage of computational simplicity and has been amply shown to describe the pre-ablation

moments of a thin irradiated metal sample after the electronic population is in equilibrium, within itself, and

can be said to have a temperature. Note that, since we are interested in the first few ps after irradiation of

a thin film, thermal dissipation effects will be neglected in the TTM. Changes in the electronic density will

also be disregarded, as there is little to no ionization of core electrons expected at our irradiation intensities.

Equation 1.20 can then be simplified to:

Ce (Te)
@Te
@t

= Sabs(r ; t)− G (Te) (Te − Ti ) and Ci
@Ti
@t

= G (Te) (Te − Ti ) (2.15)

Sabs(r ; t) is the absorbed laser power density and G(Te) is the electron-phonon/ion coupling factor.

In [41] (Lin), the heat capacities of electron populations with finite temperatures in a cold metal lattice as

well as the e-i coupling coefficient were determined, for different metals. The authors considered the electronic

energy distribution as well as the DOS of the different metals. No deviations from the cold DOS due to

electron heating were considered, however. The electronic heat capacity was calculated from the definition,

i.e, the derivative of total electron energy with respect to Te , as such:

Ce (Te) =

Z +∞

−∞

@f (›; —; Te)

@Te
D(›)›d› (2.16)

where D(›) is the DOS that the authors calculated for cold metals, using ab initio DFT simulations and

assumed constant for different electronic temperatures.

The parameter G(Te) is calculated from a rate equation (Boltzmann-like) reflecting the Fermi golden

rule. The two-particle interaction potential (matrix element) was replaced by the zero temperature Eliashberg

function, which is the product of the phonon density of states with the frequency-dependent coupling parameter

that incorporates all the allowed scattering processes at a given frequency [42]. After some calculations, this

process results in the following expression:

G (Te) =
ı~kB–

˙
!2
¸

D(›F )

Z +∞

−∞
−@f (›; —; Te)

@›
D2(›)d› (2.17)

where – is the mass enhancement parameter and
˙
!2
¸
is the second momentum of the phonon spectrum

which represents the integrated contributions of the Eliashberg spectral function. This function, commonly

used in superconductivity theory, is a description, within Green’s function formalism, of the probability of

scattering of electrons with a transfer of crystal momentum to a phonon, of a given frequency. Originally

developed from electrons near the Fermi surface and cold lattice, it can be extended to higher temperatures,

with dubious results in the case of loss of crystal structure. In practice –
˙
!2
¸
was measured experimentally,

for these calculations, and differed for each metal considered in [41]. Expression 2.17 was used to calculate

the Te-dependent e-i coupling coefficient with the results for Al shown in figure 2.5a and for Ti in figure 2.5b.

Notably, the G coefficient for Ti is one order of magnitude higher than that of both Al and the Rethfeld free

electron gas approximation. A decrease in the coupling also starts at around 6000 K, for Ti. In extended

tabular calculations provided by the author, this decrease continues for at least up to 50000 K.

The Rethfeld calculations [23], previously described in section 2.2.2, also contained a electron-phonon
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(a) Results for Al. The Rethfeld et al 2002
result pertains to results from [23].

(b) Results for Ti.

Figure 2.5: Electron ion coefficient G as a function of Te obtained in [41].

collision term, with a simplified matrix element based on Debye models for phonons and on static screening of

the Coulomb potential. It is then possible to model the behavior of both phonons and electrons, specifically

the electron and phonon population energies, and from there extract a constant G coefficient plotted in figure

2.5a. For these calculations, the free dispersion relation was assumed, with mef f set to the free electron mass.

In [43] (Petrov et al), a similar Boltzmann approach with static screening of the Coulomb potential and

Debye phonon dispersion relation was followed, but different effective masses were considered for the s and d

electrons, with their contributions to the e-i collision frequency calculated separately. The screening length was

calculated from the Lindhard dielectric function [44]. Considerably corrections were shown to appear when the

single band assumption is a poor one. In the case of transitions metals, for example, the overlapping shapes of

d and s/p orbitals make inter-band excitation possible and render the single-band assumption a poor one, for

moderate intensities. In the case of Al, due to its free electron dispersion relation and DOS, the predictions

match up with the earlier results in [41], while there are no Ti results to compare.

In [45] (Muller et al), a Boltzmann approach was also used to write down a rate equation. Here the electron-

phonon interaction potential was assumed the same as in [23], but instead of a free dispersion relation, a more

realistic one was extracted from the DOS obtained from DFT simulations. The results were averaged in

an isotropic one-band dispersion relation, enabling the uncovering of differences in the coupling coefficients

between metals. Refinement of earlier results was achieved for Al, with broad agreement with the previous

results from Rethfeld [23]. For lower temperatures, the coupling is below the prediction in [23], with the results

quickly converging to the estimated value after that. For other metals, namely Ni, a transition metal with the

Fermi edge at the end of the d orbitals, significant discrepancies are reported, compared to Lin’s results.

In [42] (Waldecker et al), a procedure similar to Lin’s was followed. After the by now ubiquitous rate

equation was written, the two-particle interaction potential term of the Fermi Golden Rule was replaced by the

Eliashberg function, but this time the dependence on the electronic and lattice temperature was maintained.

To solve the system of equations, two inputs from ab initio DFT simulations were needed: the DOS function

and the temperature-dependent Eliashberg function. The resulting calculations were performed within the

accuracy of the DFT approach and did not have any experimentally determined parameters. The calculation
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for Al suggests an underestimation of the coefficient by Lin et al, at somewhat low temperatures. Their

experimental results, based on ultra-fast electron diffraction, seem to agree with Lin’s calculations, however.

The authors argue that this comes from the fitting of the –
˙
!2
¸
parameter to experimental values. A non-

thermal lattice model that considers three different non-thermalized phonon populations that they propose

also produces agreement between their data and their first-principles calculations.

Finally, in [10] (XTANT-3), a hybrid model specific for material response under femtosecond irradiation was

produced. The photoabsorption by the metal was modeled by a Monte Carlo, along with the dynamics of high-

energy electrons. The band structure was calculated through a tight binding (TB) description, while the atomic

motion was modeled by molecular dynamics. Boltzmann collision integrals (using the TD calculated band

structure, which naturally varies with temperature and density) were used to couple the lower energy continuum

electrons to atomic motion. The G parameters were extracted from the knowledge of this Boltzmann collision

integral along with the electronic and ionic temperatures. The authors ran simulations for a considerable

amount of different metals. More often than not, when comparison was possible, an overestimation of the G

parameter by Lin et al was found.

The G coefficients as a function of electronic temperature, for Al, are shown in figure 2.6a, for all the

different calculations discussed. The black points are experimental results, using ultrafast electron diffraction

as a lattice temperature diagnostics. For Ti the results are shown in figure 2.6b, with simulations only available

for the Lin et al and XTANT-3 case.

(a) Results for Al. The Rethfeld et al 2002 per-
tains to results from [23].

(b) Results for Ti.

Figure 2.6: Electron ion coefficient G as a function of Te obtained from the different
references mentioned above. Adapted from [10].

2.3 X-ray Absorption Near Edge Spectroscopy: XANES

This section will be dedicated to the exploration of experimental results in metal samples isochorically heated

to warm dense conditions. The focal points of interest will be near-edge absorption experiments, that either

take a full absorption spectrum or XUV/X-ray measurements at some finite number of frequencies where the

sample is heated by a femtosecond optical or infra-red laser. X-ray Free Electron Lasers are excluded as sources

for IH (pump pulses) because the absorption and relaxation pathways they entail are substantially different

and require different models when electronic populations are driven far out of equilibrium.
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XANES offers us the possibility of studying the effects of excitation of the electrons in tabletop setups

or high-powered facilities. The experimental limiting factor is the X-Ray probe pulse that allows for the

measurement of the absorption spectrum. On the side of large facilities, synchrotrons provide the necessary

bright, broadband radiation but have a usual pulse duration of ∼ 100 ps, which severely limits time resolution.

Several methods for obtaining lower time resolution have been successfully applied, like using a streak camera

[29]. X-ray free electron lasers, on the other hand, offer high brightness along with femtosecond pulse duration,

overcoming many challenges of previous sources, but also a narrow spectral range requiring a large number

of shots to recover an absorption spectrum. As for tabletop X-ray sources, considerable progress has been

achieved with thermal emission from laser-produced plasmas and Bremsstrahlung emission produced from a

water target (that is collected afterward) [29]. X-ray betatron radiation, produced from a laser-generated

plasma from a tabletop setup, was used in [46] to probe the transition to a warm dense state of Cu, with

fs time resolution. High Order Harmonic Generation (HHG), achieved by focusing an ultra-fast optical laser

onto a gas cell [47], also produces XUV radiation with a duration of tens of fs that can prove useful to study

the transition from upper core states to the continuum such as M shell transitions.

Despite the discussed time resolution limitation and limited control of hydrodynamic gradients in position

space due to the lack of spatial resolution (complicated by the need for multiple shots to obtain the spectra,

taken in different parts of the sample), XANES offers us a direct view into the behavior of the electronic

population. To simulate the absorption rate, for different XUV and X-ray energies, on a picosecond timescale

(compatible with the time resolutions of XANES experiments), the method used is typically the one described

in section 2.2.2.

2.3.1 Aluminium

As previously mentioned in section 2.2.2, the Al DOS is free electron gas like up to high Te . This result also

holds for up to three times the solid density. Bellow it, however, a transition is observed from a conduction band

to localized atomic orbitals [48]. Given the nature of its DOS, the interpretation of Al absorption spectra after

IH heating, at least before the density drops, is fairly straightforward. Figure 2.7 reports XANES spectra from

ab initio simulations. The modulations above the edge are progressively attenuated, for higher temperatures,

which reveals their direct relation with short-range atomic order. As for the edge itself, since the electronic

structure is not significantly affected by electronic excitation, it can be interpreted directly as the frontier

between occupied and unoccupied states according to the Fermi distribution. The decrease of its slope with

temperature is related to the thermal broadening of the Fermi level.

In [38], time-resolved XANES measurements of the K-edge of an isochorically heated thin Al film were

reported (fiL = 120fs, –L = 800nm, F = 6 × 104 J/cm2, p-polarized light at 60º incidence) as shown in

figure 2.8. The macroscopic evolution of the heated sample was also estimated with a TTM-Hydro code

(temperatures and density), revealing e-i equilibration in all time steps except for the 2:5 ps one. The first

spectrum at −7:5 ps is identical to the cold Al one. At 2:5 ps the modulations above the edge have completely

disappeared revealing a solid-to-liquid transition (a fit of the slope of the edge indicates a Te compatible with
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the TTM prediction). For 22:5 ps and longer, a progressive transition to the 1s-3p atomic line appears.

While the experiments and simulations reported here are mostly in equilibrium conditions, these methods

are promising for non-equilibrium situations as well, as in exemplified in figure 2.9. The slope of the edge

changes while the ions are cold but the modulations above the edge only disappear for higher-temperature

ions.

Figure 2.7: Ab initio QMD sim-
ulations of Al-K edge XANES
spectra, for different (equili-
brated) temperatures and solid
density. Adapted from [29].

Figure 2.8: Time evolution of
XANES near the K-edge for a
100nm isochorically heated Al
sample. From [38].

Figure 2.9: Ab initio QMD simu-
lation of Al-K edge XANES spec-
tra for non-equilibrium at solid
density. From [29].

2.3.2 Molybdenum

Molybdenum is a transition metal that exhibits significantly different DOS in liquid and solid form and non-

equilibrium electronic structure modifications. It is a somewhat close example to Ti, despite the way the DOS

changes with excitation, being strongly dependent on which material is being considered. The near Fermi

energy structure of Mo is dominated by the behavior of the 4d band which for cold solid conditions is defined

by two peaks, one on each side of the Fermi level. The band broadens and flattens for liquid densities and

electronic temperatures of a few eV. When the liquid phase expands, a significant downward shift of the Fermi

level and the d band takes place [29].

The L3 absorption edge of Mo is controlled by the coupling of 2p core level states with ones just above

Ef [29]. XANES spectra near this edge essentially reveal the occupancy of the dominant 4d band. Because

of the localization in energy of d electrons, the spectra are expected to be dominated by an absorption line

of finite width. This can be seen in figure 2.10 where ab initio QMD simulations of the XANES spectra were

performed for equilibrium situations. The line does not change position despite the Fermi level shifting with

lowering density because this effect is compensated by a lowering of the 2p levels. As the ab initio simulation

approach taken is not possible for core states, this energy shift with density has to be calculated separately.

In non-equilibrium situations, but with well-defined hot electronic and cold ionic temperatures, the Mo

DOS remains mostly unchanged [29]. As a result, the absorption spectra present in figure 2.11 are a direct

result of electron excitation: the increase in electron temperature promotes some electrons to above Ef , these

unoccupied states are responsible for the pre-edge structure that forms with increasing temperature.

In [49], time-resolved XANES measurements of femtosecond laser-heated Mo were reported, along with
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the absorption spectra for cold Mo, at 5 ps and 1 ns after heating with fiL = 300 fs, F = 4 × 104 J/m2,

–L = 800 nm laser light at 12º incident angle. The thermodynamical conditions determined by a TTM model

- with the G coefficient of [41] used, suggest thermalization after 2 ps (the density however seems to remain

constant for up to ≈ 20 ps). At the 5 ps mark, a pre-edge is evident from the data, suggesting that actually

thermalization has not been achieved yet and that the e-i coupling coefficient was overestimated.

Figure 2.10: Ab initio QMD simulation of
XANES spectra for the L3 Mo edge calcu-
lated in equilibrium. From [29].

Figure 2.11: Ab initio QMD simulation of
XANES spectra for the L3 Mo edge calcu-
lated in the non-equilibrium situations, at
solid density. From [38].

2.3.3 Long lived non-thermal electrons: Copper

In [50], time-resolved XANES measurements of isochorically heated copper with resource to a fiL = 40 fs

–L = 400 nm laser with a fluence of F = 3:3× 103 J/cm2 were reported. The probe pulse was sourced from

a free electron laser to measure the absorption coefficient at four distinct photon energies, both before and

after the L absorption edge. The temporal resolution afforded by the setup was 200 fs.

Figure 2.12: Evolution of x-ray absorption at selected energies. Experimental results are compared with
calculations for different non-thermal lifetimes fint . The experimental results are convoluted with the time
resolution. From [50].

The authors first attempted to describe the measured absorption peaks, which remain visible until 1600 fs,

with the standard TTM equation 1.20: with G calculated as in [41] and the assumption that the DOS remains

the cold one. They found that the calculated peak abated too quickly and shifted rightwards in energy too

quickly. To obtain better agreement, between the model and the data, the authors considered two additional

effects: the lowering of the d-band energy with an increase in electronic temperature and the non-immediate

thermalization of the hot electron population excited by the pump pulse. An effective lifetime approach was

taken, allowing the 11 electrons in the 3d and 4s=p bands, initially excited at a one-to-one rate with the
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number of absorbed photons, to gradually transfer to the thermal electron population. The result from the

simulations compared to experimental measurements can be observed in figure 2.12. It could be concluded

that 500-600 fs provides reasonable agreement with both energies presented.

2.4 Bayesian Inference: tackling uncertainty

Replicating experimental outcomes obtained in controlled settings is the cornerstone of verifying theoretical

models against empirical data. The models used for this purpose are called forward models as they rely on

a set of inputs (typically related to the experimental conditions) to generate the experimental observables.

To process of analyzing the data typically amounts to varying the inputs of the physical forward model until

the output matches the experimental data, within its uncertainty. This ”fitting” process can be seen as an

inversion problem, where we wish to discover the expected value of the input parameters (in general designated

x and in vector form) from some known experimental data (written as d). A scheme illustrating this process

is present in figure 2.13.

Figure 2.13: The fitting process to compare forward model and experimental data. From [51].

Two main problems arise when dealing with the inversion problem: brute force is intractable, and inversion

instabilities exist. The former relates to the dimensionality curse common in all machine learning problems. The

brute force approach would entail running different simulations for different combinations of input parameters,

typically laid out as a grid in parameters space. As the number of parameters in the model increases, however,

the volume of the space that needs to be searched increases even faster, quickly rendering this approach

unusable. The latter relates to the forward model being used. In lots of cases, different combinations of input

parameters can produce similar outputs (for example when some input parameters are highly correlated with

one another), making the inversion problem itself not well defined.

These problems typically plague warm dense matter experiments and models since there are a lot of

unconstrained experimental variables (due to the difficulty of creating homogeneous warm dense conditions)

that increase the dimensionality of the problem. There are also competing models with high degrees of

flexibility and, as such, inversion instabilities.

These shortcomings can be tackled by a probabilistic approach. Instead of the often-used frequentist

interpretation, in which probabilistic statements can only be made about random variables occurring in identical

repeats of an experiment, a Bayesian interpretation of probability can be used. In this scheme, probabilistic

statements are viewed as measures of the plausibility of a given hypothesis, conditional on the truth value of

some other information, typically obtained through experiment [52]. Within this interpretation we can write
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the Bayes theorem:

P (x|d) = P (d|x)P (x)
P (d)

: (2.18)

Here P (d|x) is the probability of obtaining a given data set if the input parameters are true, also called

the likelihood function, P (x) is the prior distribution of parameters, that encodes prior knowledge about the

experiment, such as known physical constraints on the input parameters, and P (d) is the marginal likelihood

of the observed data set. The last quantity is treated as a scaling constant since it is independent of x and is

usually hard to calculate. The posterior and the likelihood distributions need to be specified. Finally, P (x|d) is

known as the posterior probability distribution and represents the probability of a given set of input parameters

being the true ones, given the observed data and prior knowledge.

The inversion problem can then be solved, even in the face of instabilities or lack of uniqueness, by knowing

the posterior probability function, which will give us, for all of input space, the likelihood that a given set

of inputs is the right one. The posterior will be wide or multipolar if the forward model can produce similar

outputs over a wide range of inputs, reflecting the uncertainties of the model itself that can not be resolved by

acquired data, and it will be narrow and well-defined for a model that offers little flexibility on the produced

outputs. All there is left now is to specify the prior distribution and how to calculate the likelihood, along

with a sampling or approximation method that removes the brute force component of knowing the posterior

distribution.

2.4.1 Priors and Likelihood

The choice of prior distribution highly depends on the amount of knowledge previously accrued about a given

phenomenon. Oftentimes, however, a situation of relative initial ignorance needs to be tackled. As such, our

attention will turn to two types of ”uninformative priors”, used for two different types of parameters, following

a discussion in [52].

A location parameter is always measured against a specified origin and scale, and it can be positive or

negative. If we are completely ignorant about the true value of a location parameter, this must be expressed

in the probability density function as shift (or origin) invariance, that is P (x′)dx′ = P (x)dx where x′ = x+ r

and r is a shift-vector. If the probability density function is defined as f (x), we then have f (x + r)d(x + r) =

f (x + r)d(x) = f (x)d(x) ⇐⇒ f (x) = constant. When hard boundaries on the parameters are known

this constant can be normalized to f (x) = 1=(xmax − xmin), otherwise an improper prior - defined up to a

normalizing constant - can be used, for parameter estimation.

A scale parameter behaves differently as it is not measured against a variable origin and can only take

positive values (e.g., a lifetime parameter). If we are completely ignorant about the scale variable, a shift

in the measuring scale of the problem must leave the prior unaffected, which can be written as P (fi ′)dfi ′ =

P (fi )dfi where fi ′ = ˛fi . For a probability density function defined as before, f (˛fi)d(˛fi) = ˛f (˛fi)d(x) =

f (fi)d(fi) ⇐⇒ f (fi) = constant=fi . If parameter bounds are known we can obtain f (fi) = 1=(fi ln fimax=fimin),

although the normalization is only necessary if Bayesian model selection is required and not for parameter
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estimation.

A likelihood function, written as L(x) = P (d|x) to emphasize that d is fixed by observation, is the joint

probability distribution of actually measuring the data d, given that x, i.e, the model inputs, are true. As such,

it depends on knowledge about the process being modeled as well as a degree of confidence that the physical

model can indeed generate accurate predictions. In the simplest case, the physical model itself is unique and

deterministic (as well as the independent variables it depends on). For a given value of the model parameters,

then, the measured data d is not fully determined due only to possible experimental measurement error.

Uncertainty about which physical model would correctly describe the phenomena being studied or intrinsic to

the forward model itself would not be considered.

The nature of experimental errors in measurements is often approximated as Gaussian noise. Each point

in an experimental data set is then obtained by independently sampling a multivariate Gaussian with average

value —i equal to the true value one wishes to measure and width equal to the level of experimental noise

of our measurement apparatus ffi , where i indexes the different data points that comprise a data set. In a

deterministic framework, this ”true value” is given by the physical model, with the appropriate parameters,

and can therefore be rewritten as a function of the model inputs {—i} → —(x). If the data points are sampled

independently (such as when we are dealing with a time series, for example), the joint likelihood function is

the product of the sampling likelihood functions for each of the data points:

L(x) =
nY
i=1

1√
2ıffi

· exp
ȷ
− (di − —(x))2

2ff2i

ff
⇒ logL(x) = ‘(x) = −1

2

nX
i=1

„
di − —(x)

ffi

«2

+ constant (2.19)

where ‘ is the log-likelihood function, often used when computationally sampling.

2.4.2 Markov Chain Monte Carlo (MCMC)

Being able to write down the joint posterior distribution P (x|d) still leaves the open question of how to

acquire knowledge about its general form. Once known, parameter estimation in Bayesian Inference reduces

to calculating the marginalized distribution of the posterior over all but one parameter, and knowledge of

2-dimensional correlations is also an exercise in marginalization.

An efficient estimate of the posterior distribution can be obtained through Markov Chain Monte Carlo

algorithms. The basic principle consists of creating a random walk procedure of moving through the model

input space such that the probability of being in a region of space is proportional to P (x|d). One, or several,

parallel Markov Chains are then employed where the new sample xt+1 dependents on the previous one xt

through P (xt+1|xt). This often converges to the posterior distribution as t →∞ if the chains are irreducible,

aperiodic, and reversible (follow detailed balance) [52]. The range of cases for which convergence occurs, and

the speed of such convergence (usually measured as the burn-in period or number of ensemble iterations until

convergence occurs) is highly dependent on the MCMC algorithm employed.

A commonly used algorithm for sampling posteriors is the Metropolis-Hasting (M-H) [53]:

• Given a current position in input space xt draw a proposal y from a know proposal distribution q(xt |y),

draw u ∼ uniform(0; 1).

36



• Calculate r = P (y|d) · q(xt |y)= (P (xt |d) · q(y|xt))

• if min(1; q) > u then xt+1 = y; otherwise xt+1 = xt .

One of the common proposal distributions q(xt |y) is a multivariate Gaussian centered on xt and with a

covariance matrix tuned, case by case, for faster convergence. The main problem with this algorithm is the

sheer amount of parameters of the proposal distribution that need to be predetermined and the fact that proper

adjusting these often requires advanced knowledge of the posterior distribution, such as possible bimodalities

of the distribution or regions of high correlation. Without the proposal distribution being shaped to reflect

these attributes, the convergence often requires a lot more time steps. [53]

An affine invariant MCMC algorithm was developed by [54] and implemented for python by [53], that

significantly outperforms the M-H, especially for highly correlated posteriors. It achieves this while not needing

any preset parameters to adjust for the proposal distribution. The method involves updating an ensemble

of walkers altogether. In the simplest case, a proposal for a walker in the ensemble is generated by the

transformation y = xj + Z[xk(t)− xj ], where xk is the walker being updated, xj is a walker randomly drawn

from the remaining ensemble and Z is a random variable drawn from a distribution, usually, one proposed in

[54]. A ratio for acceptance of the probability, similar to the M-H one can then be written that ensures the

detailed balance condition is fulfilled.

Over time, other affine invariant ”moves” or ways to evolve the ensemble of walkers have been developed,

more suitable to deal with different posterior distribution topologies and different initializations of the problem.

Since they retain the affine invariance (that is, the proposal formula remains invariant to all transformations

that preserve planes and straight lines, including translations, rotations, and scale transformations), they can

all be expected to perform better than M-H in situations where there are strong correlations between the

forward model’s parameters.

Figure 2.14 shows the results of an MCMC search, performed with the simple affine invariant move described

above, which we will call the ”stretch move”. The likelihood function is of the form of equation 2.19 was

sampled and the toy data set was created from the equation below:

f (x) = As · sin(!sx) + Ac · cos(!cx) (2.20)

superimposed on Gaussian noise, drawn from a normal distribution, for each data point. The values used

were As = 1, !s = 1, Ac = 1, !c = 3 with the noise level at 0.5. Equation 2.20 was also used as a forward

model when calculating L(x). The initial ensemble of parameters was drawn from a very narrow distribution

(ff = 0:1), around the global minima.

Theoretically, initialization of the Markov Chain would be more robust if it were well spread out across

the credible range of the parameters. Empirically, however, if the function being sampled has several high-

probability local minima, there is a significant chance that walkers get stuck for a long time in one of these

regions. This can be seen in figure 2.15, where a similar experiment was performed but with parameters

initialized randomly over a [0; 5] interval. Comparison between the two sets of results shows a diminished

efficiency of sampling in the second case, with walkers initially stuck in local minima, sometimes taking a long

time to converge to the known optimal solution. Usually, then, walkers are initiated close to either a known or
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estimated robust candidate to global minima [53]. Often prior knowledge can give us good initial estimates,

otherwise, optimization algorithms equipped to deal with inversion problem instabilities, are often used.
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Figure 2.14: Results for an MCMC sampling of the likelihood function, using the ”stretch move. An ensemble
of 40 walkers and a total of 2500 ensemble steps were used. Initialization of the walker was done in a tight
ball around the true value.

The chains plotted in figure 2.14a, each representing the path of a different walker of the ensemble, in a

given free parameter, are a good example of a sampling that has converged to a stationary state. After an

initial burn-in period, the walkers no longer cover new ground but randomly repeat steps in the same region of

parameters. Looking to figure 2.14b, the 2D correlations allow us to conclude that the model parameters are

uncorrelated from one another. Although in two different length scales, each is allowed to vary in whichever

direction from the central estimate, and the other can do the same.
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Figure 2.15: Results for an MCMC sampling of the likelihood function, using the ”stretch move. An ensemble
of 40 walkers and a total of 2500 ensemble steps were used.
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Chapter 3

Experiment and Data

This chapter aims to describe the experimental process of data acquisition and analysis. Having established the

experimental framework that serves as the basis for further data analysis, the rest of the chapter is dedicated

to getting us from that raw state to statistically significant data series, with the background effects taken care

of as well as an appropriate error estimate.

3.1 Experimental Set Up

The experimental setup is shown in figure 3.1. A Near-Infrared fs laser with wavelength –l = 800 nm, pulse

duration fil = 50 fs, a spot size of Wl = (90 − 140) —m and a Gaussian spatial profile was used. The initial

beam was split using a polarizing beam splitter into a pump (marked IR in figure 3.1) and a probe pulse

(marked XUV).

C
C

D

XUV

IR

KB1

L1 Target

Iris
KB2

Vacuum chamber

Figure 3.1: The experimental setup. Marked IR is the 800 nm pump laser of variable intensity ∼ 1014 W/cm2,
while the XUV laser pulse is the probe pulse obtained through HHG, of much lower intensity and with a mean
photon energy of 26.2 eV. The target being irradiated is a 100 nm thick Ti foil and the transmitted probe
pulse is recorded with a CCD prepared for XUV radiation.

The pump pulse’s total energy was varied between 50 —J and 1 mJ, which represents a range of laser

intensities Ipp ≈ (1013 − 2:5 · 1014) W·cm−2 . The probe pulse was focused onto a gas cell to create an XUV

spectrum through HHG. After the HHG gas cell, filters remove any remaining NIR and we are left with an

ultrashort XUV pulse.

39



The HHG process created a low intensity pulse with fluence Fpb = 5 nJ/cm2 and pulse duration tpb = 25

fs, corresponding to an intensity Ipb = 2 · 105 W/cm2. As such, this pulse needed to be kept in primary

vacuum so that it would not be attenuated by air. The generated spectrum was measured at the exit of KB2,

through a slit and gradient combination, and is shown in figure 3.2. Taking into account the several harmonics

present, the weighted average of the probe is 26.2 eV.

Figure 3.2: The HH spectrum.

Both the pump and the probe pulses were focused onto

a thin (100 nm) Ti film, with Kirkpatrick–Baez (KB) mir-

rors being used for the probe. The spatial imprint of the

radiation transmitted through the film was recorded by a

CCD with an Al filter that only allows radiation in the (17-

80) nm or, approximately, (15.5-73) eV range. Using a

translation stage, the optical path of the probe pulse was

altered and, thus, the time delay between the arrival of the

pump and the probe was indirectly varied. This allowed for

the collection of temporal data series composed of several

transmitted XUV spatial imprints.

The temporal resolution of the collected data was at best 50 fs due to the probe pulse’s duration, while the

spacial resolution is constrained by the overall resolution of the system: each pixel of the final image translates

to (7× 7) —m2 of the foil.

At the pump intensity range achieved by this setup, the metal ablates away some time after the initial

excitation, as was discussed in section 1.5.2. As such, after each shot, the target’s position needed to be

changed so that a new portion of the film was irradiated. The shot-by-shot nature of the experiment was the

main limitation in terms of the number of data points that could be measured.

3.2 Collected Data

For each of the translation stage’s position (representing a time delay between the arrival of the pump and

the probe to the Ti film) and each of the pump pulse’s total energy chosen values (50, 150, 250, 500, 1000)

—J, three different types of images of the transmitted XUV radiation were recorded.

First, an image of just the XUV pulse was taken, shown in figures 3.3a, 3.4a and 3.5a; immediately after,

and because the metal did not ablate, both pulses were sent in and a second image was taken - figures 3.3b,

3.4b and 3.5b. A final shot was acquired, with the pump switched off, as exemplified in figures 3.3c, 3.4c and

3.5c. These last ones were designed to image the ablated portion of the metal film, due to the pump sent in

the previous shot.

The grid that can be seen in all the acquisitions are images of the support bars for the metal film. The

area of each square is (360× 360) —m2. It is not orthogonal due to optical aberrations, namely astigmatism

caused by the grazing optics nature of the KB mirrors utilized. The acquired images can have both positive

or negative time stamps. It is positive if the pump arrived before the probe, and vice-versa.
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(a) Image of pump and probe signal. (b) Image of pump and probe signal. (c) Image of pump and probe, t = ∞.

Figure 3.3: Images of the transmitted XUV radiation. Shots concerning a pump pulse with 150 —J of pulse
energy, at -125 fs of pump-probe delay.

(a) Image of just the probe signal. (b) Image of pump and probe signal. (c) Image of pump and probe, t = ∞.

Figure 3.4: Images of the transmitted XUV radiation. Shots concerning a pump pulse with 150 —J of pulse
energy, at 425 fs of pump-probe delay.

(a) Image of just the probe signal. (b) Image of pump and probe signal. (c) Image of pump and probe, t = ∞

Figure 3.5: Images of the transmitted XUV radiation. Shots concerning a pump pulse with 500 —J of pulse
energy, at 200 fs of pump-probe delay.

Analyzing the transition from figures 3.3b to 3.4b, it can be seen that at negative times the pump and

probe signal resembles that of the XUV pulse only (figure 3.3a) since the probe was still passing through

undisturbed Ti; at positive times, a dip in intensity appears where the black arrow is. It can be concluded

that the pumped metal has a lower XUV transmission coefficient, at the probe’s energy, than that of the

undisturbed sample. It was also observed that at later times this dip gradually becomes less pronounced,

specifically in the picosecond regime.

Finally, comparing 3.4 to 3.5, i.e., shots at different pump energies, the same overall feature set can be
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observed, and this remains the case for the other temporal series. The main difference between them is the

size of the area where the XUV transmission depression occurs, which increases with the total pump energy.

The increase in area can also be observed when comparing figures 3.3c and 3.4c to 3.5c; in the latter the

area ablated away by the pump is increased. This effect is related to the increase in energy deposited in the

sample, which makes the size of the area exposed to laser fluences above the damage threshold increase.

3.3 Feature Extraction

The collected data needed proper treatment so that it could be directly compared to theoretical models. The

relative change of the XUV transmission coefficient, from the undisturbed solid to the pumped one, for the

different temporal delays, was the desired data set, to be extracted from each of the acquired data series.

The data acquired was spatially resolved, this transmission change was recorded for different absorbed

pump fluences in each picture taken. Each CCD pixel in the pumped zone of the metal absorbed a different

amount of energy, due to the Gaussian spatial profile of the pump beam. As such, for each data series, we have

access to a myriad of temporal responses (of the XUV transmission) that correspond to different conditions

of the Ti sample. The amount of data obtained is greatly increased because multiple series were acquired, for

different total pump energy.

Since the need for more data, without increasing the number of images acquired, has to be balanced

against the need for that data to be statistically significant, only three ”spatial regions of interest” were used,

whereas in the limit we could use one per pixel. The significantly reduced number of zones chosen has to do

with the level of variation in intensity measurements of side-by-side pixels, in a given shot, which indicated

high temporal noise levels, attributable to dark current on the CCD.

Taking advantage of the reproducibility of the spatial imprint of the absorbed pump pulse, the three XUV

transmission time series that were extracted from each original data series could be categorized by absorbed

laser fluence. This approach offers a data expansion opportunity without the need for more data acquisition,

while also allowing spatial gradients of the pump and probe to be properly taken into account.

What follows is a detailed description of the steps taken to get from the data presented in section 3.2 to

the final desired data sets, three for each acquired data series, in the framework just discussed.

3.3.1 Background removal

CCD Background

The temporal Gaussian noise of our CCD, coming from the dark current, is overlaid by spatial inhomogeneities.

To avoid discrepancies in the data due to differences in the location of our pumped area relative to the CCD

frame, the averaged background was subtracted from every image. As some of the time series were acquired

on different days from the background images, this subtraction did not always result in the average intensity

of the dark parts of the CCD (outside the illuminated XUV spot) averaging out to zero. The dark current

temporal noise is not immediately corrected by this subtraction but can be estimated from the side-by-side
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pixel variations of what should be an almost continuous, if inhomogeneous, background.

In figure 3.6, the yellow points represent line outs of a dark zone of all the shots in a given family. Figure

3.6a concerns a time series of images taken on the same day as the background acquisitions and exhibits

the expected and desired behavior of stochastic noise hovering around zero. Figure 3.6b, on the other hand,

concerns a time series of images taken on a different day and shows a systematic deviation along with residual

spatial variation.

(a) For 150 —J the dispersion is reduced.
(b) For 500 —J a systematic deviation is corrected out
and the remaining spatial variance is abated.

Figure 3.6: Line outs of a dark part of the CCD image, after subtracting figure the average background. Taken
for all the images in a given time series. Yellow points are from before setting the average noise level to zero
and blue points are from after.

These deviations needed to be corrected, to be able to compare on an equal footing all the images. To do

so, a 200×800 pixels cut-out of the dark zone was used to calculate the average noise level of each image.

This level was subsequently subtracted from every pixel in every image. A lineout of the result, again in a dark

region, is shown as the blue points in figure 3.6. Figure 3.6b shows reduced spatial systematic variance and

an average level closer to zero for the blue points, compared to the yellow, as desired. Both figures also show

a reduced spatial variance of the blue points, also a positive effect for ease of comparison between different

time series and, in this case, even for different shots of the same family.

Spatial Features Background

From figures 3.3 to 3.5, it became apparent that besides the zone with the transmission dip, which will be

called zone of interest, several other spatial features are present in each image. Since the film is 100 nm thick,

slight tears can appear causing bright spots; over big enough length scales the probe pulse’s spatial shape

becomes visible; and, since the same film is used more than once, other ablated zones might also be present.

Properly defining and zooming in on the zone of interest was then a necessary next step to keep the relevant

information of each picture only.

To do so, all the superfluous information was disposed of, i.e., the zones away from the one of interest

were cropped. A square region was used to define what pixels would be kept, with sizes ranging from (25×25)

pixel to (40×40) pixel, increasing with increased total pump energy of the laser. The increase in area mimics
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the size of the area of interest, which varies similarly. The center of the square region was defined by user

click, approximately in the middle of the hole visible in the t =∞ shot.

As previously ablated zones are also present, for every time step in our time series we compare the pumped

and probed shot to the t = ∞ acquisition, to discover the new bright spot that appears from the latter to

the former. The t = ∞ acquisition was, then, important to remove ambiguity and serve as an independent

indicator of the true position of the pumped region of the sample. This was especially significant for negative

time shots and shots in the several picoseconds, as in both of these cases the signature of the pump in the

pumped and probed images becomes faint to indistinguishable.

Figures 3.7 and 3.8 exemplify the obtained results after cropping. They also show the increase in area of

the zone of interest with a depressed XUV transmission coefficient, for higher pump energies.

(a) XUV only shot.
(b) Shot probed with and XUV pulse
and probed with a NIR pulse.

(c) Shot at t = ∞.

Figure 3.7: 25×25 zoom in of XUV transmission images concerning a pump pulse with 150 —J of pulse energy,
at 425 fs of pump-probe delay.

(a) XUV only shot.
(b) Shot probed with and XUV pulse
and probed with a NIR pulse.

(c) Shot at t = ∞.

Figure 3.8: 40×40 zoom in of XUV transmission images concerning a pump pulse with 500 —J of pulse energy,
at 200 fs of pump-probe delay.

To unambiguously define the zone of interest, we turned to figures 3.7c and 3.8c. The ablated area could

be defined as the zones where the CCD counts are significantly higher, i.e. where the XUV pulse of the t =∞

acquisition, is not attenuated by the Ti film. To obtain matrices, or masks, like the ones shown in figure 3.9

(ones inside the zone of interest and zeros outside) a threshold method was applied.

Pixels above the threshold values were put to one, while all others were kept at zero. For the 50 —J and
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Figure 3.9: Masks of the zone of interest, obtained with a threshold method. Pixels set to one correspond
to ablated regions, that went through a warm dense state while pixels set to zero correspond to regions that
remained solid Ti. Based on the zoomed-in shots at t =∞.

150 —J series, the threshold value was chosen as the average of all pixels in the image, th = av . As the size

of the ablated region of the sample grows, however, refraction patterns of the XUV radiation imaging it also

do so. The condition was then slightly relaxed to th = av − 500 for the 250 —J series and th = av − 1500 for

the 500 —J and 1000 —J series. The values were chosen as the ones that maintained an approximately circular

area of interest, throughout the series.

Thermal Self Emission signal

For shots taken at higher pump energy, i.e, at 500 —J and in a more pronounced manner for 1000 —J, a

spatially non-homogeneous signal appears in the pumped and probed shot that does not appear in the one

that is only probed, as shown in figure 3.10. This was attributed to plasma self-emission, which for sufficiently

high temperatures (achieved for higher deposited energies) emits a non-neglectable portion of its thermal

radiation in the UV regime.

(a) XUV only shot. (b) Pumped and probed shot. (c) Shot at t = ∞.

Figure 3.10: Images of the transmitted XUV radiation. Shots concerning a pump pulse with 1000 —J of pulse
energy, at 100 fs of pump-probe delay.

The presence of this signal pollutes the desired measurement, i.e., the relative XUV transmission coefficient,

both by affecting different zones of the plasma differently and by not being present in the benchmark (probe

only) shot. It was therefore necessary to correct for it.

It was impossible to acquire the shape of the signal without the transmission dip, for non-negative times,
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since the thermal signal is created by the pump. As for the negative time acquisitions, there are few of them

and the existent ones are subject to significant noise fluctuations. The averaging of those signals was also

made difficult by the different positions of shots of the same family, relative to the supporting grid. A different

method for estimating the self-emission signal was, as such, needed. We took an approach relying on the

fact that the thermal emission signal is, spatially, much larger than the XUV dip, thus varying little inside the

zone of interest. For the zoomed-in versions of the images, as in figure 3.15a, the thermal emission can be

approximated by a slanted plane.

The thermal emission’s imprint was then corrected for by employing a 2-dimensional least-squares regression

(using sicpy ’s curvefit [55]) of the probed-only image to the expression:

Spb(t) = S′pp(t)− (a · x + b · y + c) (3.1)

where Spb(t) is a matrix containing the pixel-by-pixel counts of the acquired probe-only images corrected for

the background and zoomed in, for a given time delay t, and S′pp(t) is a similar matrix but for the pumped-

and-probed images (named pumped image from now on). The x and y are coordinate matrices, i.e, each row

of x and each line of y are composed of vectors with all coordinates set to that row/line count. The shape of

the coordinate matrices is the same as that of Spb(t) and S′pp(t).

The only regions of the zoomed-in shot where the slanted plane correction was expected to bring the

pumped-and-probed shot to approximately the same as the probed-only one were outside the pumped zone of

interest. And, so, the fit was only performed there, i.e., for the pixels marked zero in the matrices like the ones

in figure 3.9. Since the estimate of the thermal emission spatial profile was required to be unbiased relative

to the drop, this is a desirable feature as well, not just a necessity.

For consistency, the correction was applied for all time series, even the lower energy ones, where no

significant self-emission signal was observed. Some representative results of the described algorithm can be

seen in figures 3.11 and 3.12. The overall trend is represented there with significantly larger and less spatially

homogeneous corrections for the higher pump energies.

With the thermal radiation corrected for, Spp(t) is defined as the matrix of the pumped image, zoomed-in,

corrected for all the effects discussed so far, namely the CCD fluctuations and the thermal emission signal, for

a given time delay t.

3.3.2 Subdividing the zone of interest

To fully take advantage of our spatial resolution, the zone of interest was subdivided into multiple sub-zones.

Since a significant experimental constraint was the need to alter the region of the film being hit (shot-by-shot

acquisition), this allowed for the increase in the number of time series by a factor equal to the number of

sub-zones, without the need for more experimental beam-time. For the noise levels of the acquired data

and the overall size of the zone of interest, consequence of the CCD spatial resolution, a division into three

sub-zones was judged appropriate.

The main hurdle of dividing the zone of interest was related to the fact that, from image to image, even in
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(a) Area of interest uncorrected for
thermal emission S′

pp.
(b) Corrected area of interest Spp. (c) Correction plane a · x + b · y + c.

Figure 3.11: Correcting pumped shots for thermal emission, 150 —J series at t=425 fs, by fitting expression
3.2 to the unpolluted XUV-only shot.

(a) Area of interest uncorrected for
thermal emission S′

pp.
(b) Corrected area of interest Spp. (c) Corrected are of interest Spb

Figure 3.12: Correcting pumped shots for thermal emission, 1000 —J series at t=100 fs, by fitting expression
3.3 to the unpolluted XUV-only shot.

the same time series, the depression in transmission moves from ine place to another and it also moves relative

to the geometric center of the defined area of interest. To accurately track the center of the depression, a

new 2-dimensional least-squares regression was performed, using the same least-squares regression method as

before [55], for each shot in all the different time series. The lower and higher energy time series were fitted to

different expressions since the shape of the depression was observed to be changing from a connected shape

to a ”ring” one.

For the lower energy series (50 to 250 —J), the pumped image was fitted to an expression of the form:

Spp(t) = Spb(t) · (1− A · exp[a · (x − x0)2 + c · (y − y0)2 + b · (x − x0) · (y − y0)])

and a =
cos2(„)

2ff2x
+

sin2(„)

2ff2y
; b = − sin(2„)

4ff2x
+

sin(2„)

4ff2y
; c =

sin2(„)

2ff2x
+

cos2(„)

2ff2y

(3.2)

with x0 and y0 the center of the transmission depression, which was assumed to be a two-dimensional Gaussian

overlapping the probed-only image. The other parameters control the spatial features of the Gaussian and

thus their particular numerical values are not of interest. Figures 3.13a and 3.13b show representative results

of this least-squares fit, where good agreement was found between the zoomed-in and corrected data and the

reproduction based on the best fit of the expression 3.2 to the same data. This fact provides confidence in
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the estimation of the center coordinates.

As for the higher pump energy series (500 and 1000 —J), the pumped image was fitted to an expression

of the form:

Spp(t) = Spb(t) ·
»
1−

„
(x − x0)2 + (y − y0)2

A2
+ b

«
·
„
exp

»
− (x − x0)2 + (y − y0)2

2ff2

–«–
(3.3)

where x0 and y0 are, again, the desired center coordinates. This function was designed to smoothly parame-

terize, without too many degrees of freedom, the transition from a Gaussian-shaped hole to a shape with a

smoother top and eventually a ”ring” shaped depression. It was also required that the function varies between

0 and 1 and to be asymptotically 1 when r →∞. The variable b controls the intensity of the depression and

its center, while ff approximately controls the overall ring radius and A approximately controls the intensity at

the center of the ring. Again, the accuracy of the signal replication only mattered in so far as it improved the

accuracy of the center point estimation, and the other parameters’ numerical values were not of use.

The flat top behaviour of 3.3 can be made out in figure 3.14b and its ring-like behavior in figure 3.15b. In

both cases, with adequate agreement to the corrected experimental data in figures 3.14a and 3.15a, respec-

tively.

Both equations 3.2 and 3.3 still had significant amounts of parametric freedom and, so, when fitting with

them there is a risk of convergence to a local minimum, which in this case could be some change between Spb

and Spp, other than the transmission depression being studied, due to noise fluctuations. To prevent this, the

center coordinates were constrained to remain inside this zone of interest.

(a) Corrected area of interest. (b) Fit to 3.13a with equation 3.2.
(c) Desired division of the zone of in-
terest.

Figure 3.13: Subdividing zone of interest, 150 —J series at t=425 fs. 3 different zones are defined, after the
center of the pulse is found, based on a fraction of the radii of the total zone of interest, defined in figure 3.9.

For sufficiently negative times in a given temporal series and for very long times, ≈20 ps, there is no

discernible depression. As a result, the fit could not be expected to result in the proper center coordinates.

Since the center point could not be better chosen by hand, due to the same problem, it was defined, for each

of these images, as the center of mass of the area of interest.

With the center coordinates of the depression uniquely determined for all temporal times stamps, in each

data series, circular and concentric subdivisions of the zone of interest could be drawn, for given radii values
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(a) Corrected area of interest. (b) Fit to 3.14a with equation 3.3.
(c) Desired division of the zone of in-
terest.

Figure 3.14: Subdividing zone of interest, 500 —J series at t=200 fs. 3 different zones are defined, after the
center of the pulse is found, based on a fraction of the radii of the total zone of interest, defined in figure 3.9.

(a) Corrected area of interest. (b) Fit to 3.15a with equation 3.3.
(c) Desired division of the zone of in-
terest.

Figure 3.15: Subdividing zone of interest, 1000 —J series at t=100 fs. 3 different zones are defined, after the
center of the pulse is found, based on a fraction of the radii of the total zone of interest, defined in figure 3.9.

defining two inner zones. These values were calculated as a fraction of the radii of the zone of interest. As

such, the radii of the sub-zones vary from image to image, in the same series, just as the radius of the overall

zone of interest. These differences, however, are not more than one to two pixels inside the same temporal data

series, while being considerably larger for different series. The fraction of the total radii used was manually

adjusted, between different series, to guarantee that the area of the sub-zones did not differ too much, which

was important for statistical experimental error determination, described in section 3.4.

In figures 3.13c, 3.14c and 3.15c, examples of the resulting subdivisions can be seen. While the size of the

outer zones changes significantly, along with the size of the ablated zone, the inner zone’s size changes much

less. In the case of the 1000 —J series, the inner zone roughly corresponds in size and location to the bright

spot in the center of the transmission depression and the middle one to the darker ring surrounding it.

3.4 Results

With the zone of interest properly located and subdivided and with the Spp,E and Spb,E matrices corrected for

the different spatial background effects (here the subscript E refers to the total energy of the pump pulse used
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in the corresponding data series), the calculation of the relative transmission for each zone could be tackled.

This was done by a straightforward calculation of the form:

TE(z; t) =
X

(i ;j)∈z

Spp,Ei j (t)

ffi X
(i ;j)∈z

Spb,Ei j (t) (3.4)

where TE(z; t) represents the relative (to the probe only image) XUV transmission of zone z , indexed by its tem-

poral series’ pump energy E and relative position of the sub-zone being calculated (z = {inner, middle, outer}),

at a time delay between the pump and the probe t. The sum was performed pixel by pixel, subject to the

restriction that they belong to the appropriate sub-zone.

Due to averaging out of the CCD background noise, a ”dark” pixel in the CCD can now result in a negative

intensity, as can be seen by the lineouts of dark regions in figure 3.6. This would have had a perverse effect

on the expression above. In the cases where the dip in transmission being studied is more intense, numerical

values below zero would appear and artificially reduce the transmission value. To correct for this effect, every

time expression 4.1 was applied, a search for the minimum value of Spp in the overall zone of interest was

performed. If the minimum was below zero, a correction of the form: Spb = Spb − m and Spp = Spp − m,

where m is the minimum, was applied to the data matrices, before calculating T (z; t) with expression 4.1.

The data series, resulting from the described process, are shown in figure 3.16, along with trend lines

calculated as the moving average with a window size appropriate to each series. The error bars that are

present only differ for the different zone positions, remaining the same for different temporal series. They are

meant to encapsulate the random errors and as such were estimated statistically by:

• searching through every time stamp in every series and singling out the cases where three or more

measurements were taken for the same timestamp;

• for each of these time stamps, three standard deviations of the data sampled were taken - one for each

of the defined sub-zones;

• an average overall all standard deviations for the inner, middle, and outer zone was taken, resulting in

3 different error measures (inner: ±0:06, middle: ±0:04, outer: ±0:03).

The tagging of the series with the total pump energy and spatial position of the sub-zone is, however, not

useful, since they do not properly encapsulate the physical information needed for a forward model to simulate

our data sets. As such, the average absorbed fluence on each sub-zones was calculated by reconstruction of

the spatial profile of the laser and knowledge about the ablation threshold from multi-pulse ablation studies

on Ti with an 800 nm 40 fs laser pulse [56].

As the measurements were taken a few days apart, the waist of the laser possibly changed from series to

series. Changes in the aperture of the pump beam also contributed to this effect. To quantify such changes,

an inverse problem was solved, consisting of determining the waist, w , of the pump laser pulse that would

create an ablated zone equal in area to the average area of the zone of interest of a given series. The ablation

threshold, measured as an absorbed fluence, was reported in [56] to be Fth = (74±13) mJ/cm2. Their central
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(a) 50 —J family of data series. (b) 150 —J family of data series. (c) 250 —J, first family of data series.

(d) 250 —J, second family of data se-
ries.

(e) 250 —J, third family of data series. (f) 500 —J family of data series.

(g) 1000 —J family of data series.

Figure 3.16: Relative (to probe only) transmission, as a function of time, calculated for all the sub-zones of
all the acquired series (with varying total pump energy). Data showed up to 1 ps pump-probe delay. Laser
pulse peaks at 0 s.

estimates, along with the knowledge of the pump’s total energy, were used to construct a spatial profile of the

absorbed laser fluence, assumed to be shaped like a radially symmetric Gaussian function:

Fi (w;E; x0; y0) = A(E) · exp
»
− (x − x0)2 + (y − y0)2

w2

–
(3.5)

where A(E) = Epp ·N ·R and N is the normalization constant of a similar Gaussian function with magnitude

one, Epp is the total absorbed energy of the pump pulse, and R = 0:558± 0:001 the measured reflectivity of

the sampling.

For every temporal series, the laser waist size, at the film plane, (w) was determined from the average

radii of our overall zone of interest. This amounted, computationally, to a process of discreetly varying w and

using expression 3.5 and Fth to determine, for each w value, the ablated area’s radius and keeping the one

closest to the experimental averaged value. In table 3.1 w , defined as the distance where the laser intensity

falls to I0=e
2 in the Ti film plane, of each data series is shown.
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Zones 50 —J 150 —J 250 —J, 1st 250 —J, 2nd 250 —J, 3rd 250 —J, 1th 500 —J 1000 —J
w (—m) 60 44 44 73 70 70 77 80

Table 3.1: Average w (where intensity decays to I0=e
2) of the laser taking, in the Ti film plane, for each of

the data families.

Using expression 3.5, it was possible to calculate a spatial average of the absorbed fluence by each of the

sub-zones of each series. Since average radii values of the sub-zones in a given series were used, each temporal

series of a single sub-zone is stamped with a unique ”data tag”.

In figure 3.17, the same series as presented before in figure 3.16 are shown, now organized by average

absorbed laser fluence, a meaningful physical parameter. The series with similar average absorbed fluence

were grouped for better understanding, as in total there are 21 different temporal series, each referring to a

different sub-zone, i.e., a different fluence and final state.

Figure 3.17: Relative (to probe only) transmission, as a function of time, grouped by
absorbed fluence of the respective sub-zone. Laser pulse peaks at 250 fs. Log scale.

In the plot the initial drop in the XUV transmission coefficient can be seen, approximately at the same

time as the laser is peaking (t=250 fs), with a possible small delay relative to the pump pulse, to positive

times. This was interpreted as the fast electronic response to the laser pulse of the electrons in the skin depth

of the material, as discussed in section 1.5. In general, it can be concluded that the higher the absorbed

fluence, the higher the XUV opacity (lower transmission coefficient), with the notable exception of the higher

fluence group, exemplifying the ”ring” effect discussed in section 3.3.2. After the (200-300) fs mark, there is

stabilization and even a slight recovery of the transmission.

The picosecond response can also be observed, with all the data collected plotted, i.e., up to t=20 ps,

depending on the series. Given it takes picoseconds to be noticeable, this trend is necessarily ionic. Since the

probe pulse was XUV and, thus, only sensitive to changes in the electronic distribution, this response can be

identified with the release of thermal energy from the electronic to the ionic population. In this regime, the

XUV transmission coefficient can be seen to recover along a similar time scale for all the fluence groups, with

its value approaching the cold measurements in all cases.
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3.5 Summary and Conclusions

• Using XUV light to image a thin, solid-density plasma, we can spatially resolve areas of different condi-

tions and thereby access a range of conditions in a single acquisition (shot);

• By correct selection of the XUV photon energy to match energy levels, we can access the bound-to-free

transitions in titanium, thereby probing the free electrons as they are heated;

• Several 2D data series were acquired for different total laser energies;

• The spatial imprint of the pulse laser was divided into 3 sub-zones of interest, for each shot;

• The final extracted data corresponds to these three sub-zones, for the different total energies of the

pump pulse;

• These sub-zones can be tagged by average incident fluence, on that sub-zone, after a correction to the

total laser energy of each shot, obtained from the damage threshold and the ablated area.

53



54



Chapter 4

Algorithms, Results and Discussion

This chapter will be dedicated to two different physical models developed as forward simulations of the

experimental setup described in the previous chapter. That is, they aim to get to the physical observable -

the data series of figure 3.17 - from experimental inputs.

We will start with the TTM initially developed and well-suited for simulating e-i energy exchange while

using macroscopic energy conservation considerations to model the absorption of the NIR laser energy by

the target. The second model employed does not consider e-i energy exchange but does use a detailed light

absorption mechanism, in this case, IB. The absorption of energy is, then, not ad hoc but based on microscopic

rate equations, as shall be described in detail.

4.1 Forward Modelling the Relative XUV Transmission

Both physical forward models used rely on calculating the electronic distribution function f (k; x; t), in different

ways. From that point onward, an estimation of the relative to cold XUV transmission can be reached based on

the spectral HHG profile - represented in figure 3.2 -, the knowledge of f (k; x; t), and the DOS for Titanium

- D(k). Here, we approximate the latter by its cold values calculated from DFT, with the VASP package

[57–61]. The cold DOS approximation is justified as long as only the electrons are significantly excited, as is

patent in the results from figure 2.3, where little change is reported near the Fermi energy, for excited electrons

and cold ions.

A schematic representation of the pumping and probing process, complete with the electronic distributions

and the cold DOS of Ti, is present in figure 4.1. The only allowed transitions, at the probe pulse’s average

energy, are the 3p → continuum ones. Since the probe is of low intensity, linear response theory applies and

we can assume the absorption cross section to be of the form of equation 2.6. Crucially, ffk ∝ (1 − f ("k))

and the electric dipole term remains approximately constant for the different excitation levels of the electronic

population in the cold DOS. As such, the variation in time of the absorption of the probe is, to first order,

dependent on the distribution function of the pumped continuum electrons.

As the 3p core states are very localized in energy, the pump will induce electronic transitions to the
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continuum with an energy distribution in the shape of the HHG spectrum (figure 3.2). This happens because

the number of XUV-excited electrons that transition to the continuum is proportional to the intensity of the

radiation (linear response regime), at a frequency matching the energy gain of those electrons. The transitions

will only be allowed if there are free continuum states for the core electrons to occupy, according to the Pauli

exclusion principle.

The absolute energy levels the XUV-excited electrons will try to occupy in the continuum are difficult to

pinpoint, since the absolute energy difference between the core state (3p) and the beginning of the continuum

(or, more practically, between the core state and the Fermi energy) is hard to estimate, in a DFT framework.

This is due to a different treatment being applied to the core states, whose properties are usually obtained

through separate atomic code simulations and fed to the DFT. The energy levels that the probe-induced

transitions are trying to occupy in the continuum will, therefore, span a range of possibilities. Two different

factors allow us to pace bounds on this parameter space.

First, the fact that the data sets, for all excitation fluences, show a drop in transmission, recovering only in

time scales compatible with electronic cooling, confirms that, on average, the harmonic spectrum transitions

must excite electrons to states below the Fermi energy. Note that a decrease in the relative transmission is

equivalent to a proportional increase in abortion, as XUV reflectivity remains roughly constant in the conditions

studied here. Given that the absorption of XUV photons increases while the continuum electrons are being

excited, we can conclude that, over time, more empty spaces became available for the core electrons to

transition to, meaning that, on average, they reached a zone in the continuum that gets depleted by electronic

excitation.

Figure 4.1: A schematic representation of the pump-
ing and probing process complete with the electronic
distributions and the cold DOS of Ti.

Figure 4.2: Spectrum of the HHG pump pulse after
going through a cold Ti film (red) and through the
whole in the film (blue).

Second, a set of acquired spectra (figure 4.2) adds that all the harmonics peaks that compose the pulse,

even the most energetic, excite electrons to states below the Fermi energy. Comparing the spectrum of the

pulse traveling unimpeded to the detector and the one that goes through the cold Ti film, one can conclude

that the peaks maintain their relative heights. This means that either all the energies induce transitions to

above or below the Fermi level; otherwise there would be a relative difference in the absorption of different

harmonic peaks. Finally, taking into account the ionization energy of solid titanium - 32 eV -, we can conclude

that we are probing the occupation of the DOS of the continuum electrons, and not inducing photoionization

transitions.
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To obtain the relative to cold XUV transmission time series from the knowledge of the electronic distribution

function, it can be stated that:

A(f ; "t) ∝
R
(1− f ("; t)) ·HHG("; "t)d"R

HHG("; "t)d"
⇒ T (f ; "t) ∝ 1−

R
(1− f ("; t)) ·HHG("t)R

HHG("; "t)d"
d" (4.1)

with A being the absorption coefficient, T being the transmission coefficient (both averaged in energy over all

the XUV spectrum), and HHG("; "t) being the XUV-excited electronic distribution, in the shape of the HHG

spectrum. The "t model parameter defines the position of this spectrum in the energy scale of the continuum

electrons. It is the distance, in energy, between the location of the highest harmonic peak and the Fermi

energy. For the forward model simulation run henceforth, this "t parameter will be allowed to vary in the

range [−10;−4] eV, meaning that, on average, electrons are being excited to states below the Fermi energy

and the harmonic excitation can indeed induce bound-free transitions in our sample. This acts as a prior since

it is encoding our knowledge.

Figure 4.3 shows the integrand of equation 4.1, plotted against energy, with the zero energy level being

the beginning of the continuum states. Plotted also is an inverse Fermi-Dirac distribution and an XUV-excited

electronic spectrum, for a given "t . As 1 − f comes from a TTM simulation where the DOS is assumed to

be the free electron gas one and the effective electronic mass is allowed to vary, the Fermi energy is higher

than the observed cold Ti Fermi energy. From figure 4.3a to 4.3b, energy has been deposited in the electronic

distribution and, so, the Fermi-Dirac tilted. Since most of the harmonic spectrum was below the Fermi level,

this tilting contributes to an opening of vacancies for transitions, observable in the increase in the area below

the total integrand function. This will translate into increased absorption and decreased transmission.

0 10 20 30 40 50 60
E (eV)

0.0

0.2

0.4

0.6

0.8

1.0 HHG
1-f
HHG (1-f)

(a) Plot of (1− f ) calculated at the beginning of the
simulation, for cold Ti.
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(b) Plot of (1 − f ) calculated 150 fs after the peak
laser energy was deposited.

Figure 4.3: Integrand of equation 4.1, as a function of energy and its two components for "t = 4 eV. (1− f )
was calculated from a TTM simulation.

Finally, the relative to cold XUV transmission can be obtained, from these proportionality relationships,

by a simple normalization procedure: Tr ("t ; t) = T (f ; "t ; t)=T (f ; "t ; 0). The remaining challenge is then to

forward model, from the initially known conditions (energy deposited by the pulse, time of deposition, and

pump laser wavelength), the electron distribution as a function of time.
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4.2 Two-Temperature Model

The TTM is a relatively simple way of modeling the e-e equilibration in a metal after irradiation by a fem-

tosecond laser that relies on an ad hoc source term and assumption of instantaneous e-e equilibrium. It has

been discussed in section 1.5.3 and 2.2.3.

The TTM will be applied as stated in its simplified form - equation 2.15 -, where heat conduction is

neglected. It is important to note that lateral heat conduction can be disregarded because the spot size of the

laser is much bigger that the absorption depth, making it such that energy deposited in a given zone of interest

does not escape to another in a relevant timescale. From the diffusion coefficient, calculated with equation

1.21, it is possible to extract a heat diffusion time as fiheat ∼ d2=D, where d is the traversed distance. For Ti

near the ablation threshold where the e-e collision frequency is at its broad and flat maximum (figure 1.4), the

diffusion coefficient can be estimated as D ∼ 0:0001 m/s2. Considering a typical zone of interest distance of

d ∼ 10 —m, the heat diffusion time is theat ∼ 1 —s, orders of magnitude above the scales we are interested in.

As for longitudinal heat conduction, the same calculations produce theat ∼ 0:1 ns, for our 100 nm foil, which

is still significantly larger than the tens fs to tens of ps time scales over which absorption and equilibration take

place. Within the skin-depth of Ti - measured to be ‹s = 27 nm in [56], for a wavelength and pulse duration

similar to ours, significantly faster transport is expected, with fiheat ∼ 7 ps, within the e-i equilibration time

scale. Because this implies that smoothing out over the skin depth starts taking place quickly after absorption, a

simplifying assumption can then be deployed regarding the absorbed power density term Qabs(x; r; t) (equation

1.19): a constant power density is assumed, over the skin-depth, with the same total power as the exponentially

decaying distribution.

Since the ablated region was divided into three sub-zones, we assumed that the laser intensity does not

vary spatially, within each one. That is, a single average fluence (corresponding to the same total absorbed

energy per zone, as with the Gaussian distribution) is considered for each of the zones, as referenced in section

3.4. The source term expression is then written as:

Sabs(t) =
Ia(t)

‹s
, with Ia(t) =

r
4 ln(2)

ı

F (1− R)
fip

exp

(
−4 ln(2)

»
(t − t0)
fip

–2)
(4.2)

with Ia being absorbed intensity, F being the average incident fluence of a given zone of interest and R =

0:558± 0:001 the measured reflectivity coefficient.

Finally, with all the terms in equation 2.15 properly defined, a computational algorithm can be deployed to

solve it for the time evolution of the distribution function. Note that, since an equilibrium electronic distribution

is assumed and the model only evolves temperature, the chemical potential — has to be determined separately.

This can be accomplished with equation 1.6, which ensures particle number conservation - consistent with the

fact that no ionization of core electrons is expected. The condition can be re-written as:

ne =

Z
f ("; —; Te) ·D(")d" (4.3)

with ne the electronic density. The electronic heat capacity was calculated as in equation 2.16, while the ionic
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heat capacity was set to Ci ≈ 3kb=2. The algorithm comprising the TTM forward model is presented below.

In algorithm 1, F and tf are data series specific, while mef f , "t , ‹s and G or – are free parameters. The

parameter mef f is only necessary when working under a nearly free electron DOS assumption, such that:

D(";mef f ) =

√
2 · " ·mef f ·mef f

ı2~3
: (4.4)

In some of the model runs, this was replaced by a room temperature Ti DOS calculated from DFT. In these

cases, the DOS is fully defined without any free parameter and needs only to be interpolated in energy, to be

used.

Algorithm 1 The algorithm for the TTM physical forward model. * means this variable is not always utilized
and or represents two different ways of calculating the coupling parameter.

TTM(F, tf , mef f *, "t , ‹s , G or –)

t1 ← [0; 5; 10; :::; 200] fs
t2 ← [225; 250; :::tf ] fs . tf := timestamp of the last acquisition in a given data family.
Ti ; Te ← {300; 300} K
"← [0:001; 0:011; 0:021; :::; 1000] eV
etest ← [0; 0:2; 0:4; :::; 25] eV . etest := range of energies to be tested for the Fermi Energy.
L← Sabs(t1; F; ‹s) . L := laser profile vector, peaking at 100 fs. F := average fluence of the zone being
tested.

i ← 0
while

R
f ("; etest [i ]; Te) ·D(";mef f )d" ̸= ne do . f ("; —; Te) always corresponds to the Fermi-Dirac

function.
i ← i + 1

end while
—← etest [i ]

for k in len(t1) do
dt1 ← t1[2]− t1[1]
etest ← [—− 3; —− 3 + 0:12; —− 3 + 0:24; :::; ef + 3− 0:12; ef + 3]
i ← 0
while

R
f ("; etest [i ]; Te) ·D(";mef f )d" ̸= ne do . Calculation if the chemical potential, at each time

step.
i ← i + 1

end while
—← etest [i ]
Ce ← C(";mef f ; Te ; —) . With the Fermi-Dirac of a given time step fully determined we can calculate

Ce and Gei , that depend on its derivatives, calculated analytically (equation 4.5).
G ← G or G ← G(";mef f ; Te ; —; –)
f ← spl ine(f ("; —; Te))
M[k ′]← Tr ("t ; f ) . XUV transmission with improved k resolution.
Te ← Te + (L[k] + G · (Ti − Te)) · dt1=Ce . Update of the temperatures, for next step.
Ti ← Ti + (L[k] + G · (Ti − Te)) · dt1=Ci

end for

for k in len(t2) do
k ← k + len(t1)
Repeat the previous ”for” cycle but without L.

end for
Return M
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As for the G or – dichotomy, present in algorithm 1, it arises from two different ways of calculating G

parameters being deployed. One uses equation 2.17, with – being allowed to vary since it is an experimental

parameter, providing model flexibility, in an otherwise completely predetermined calculation. The other one

considers a constant G, in time, that is a free parameter, differing for each sub-zone. Since different sub-zone

attained different peak electronic temperatures, this method still allows us to extract the Te dependence of G,

without assuming an analytical expression.

The code itself was written in Python3 with resource to the NumPy [62] and SciPy [55] packages. The

integration required for the Ce and G calculations were performed within the SciPy ’s Simpson method and

the splines under the InterpolatedUnivariateSpline SciPy method.

Both the Ce and G calculations, when using the Lin et al (equation 2.17) formula, require derivatives of

the Fermi-Dirac function, which varies abruptly, possibly creating problems with overflows. To prevent this,

the derivatives were analytically calculated and restructured, taking the form:

@f

@Te
=

"− —
kB · T 2

e

· 1

exp
“
"−—
kB ·Te

”
+ 1= exp

“
"−—
kB ·Te

”
+ 2

,
@f

@"
=
−1

kB · Te
· 1

exp
“
"−—
kB ·Te

”
+ 1= exp

“
"−—
kB ·Te

”
+ 2

: (4.5)

With the exponential factors only in the denominators, even for energies distant from the chemical potential,

the exponential factor overflows go safely to zero.

As can be seen from algorithm 1, the temperature time evolution was solved within a finite differences

framework, with the time step carefully studied to be the largest that still allows for proper convergence.

Now that the physical forward model is well defined we will show results for Bayesian Inference samplings of

the posterior distribution relying on the collected data. These searches were performed with using the likelihood

function, priors, and affine MCMC techniques described in section 2.4. Regarding the non-informative priors,

all of the scale parameters (mef f , ‹s , and – or G) were normalized to their expected value, as they were found

in the literature. The utilized values and references are present in table 4.1. The Python3 package used for

the affine invariant MCMC was emcee [53] and the optima used for the Monte Carlo initiation were extracted

form an evolutionary algorithm implemented in the package cma [63]. All 40 walkers deployed in each MCMC

run were initialized on a small ball around the optima.

Parameter Theoretical Value Reference

m0
ef f 9:101× 10−31 kg –
‹0s 27 nm [56]

–0
˙
!2
¸

350 meV2 [41]
G0
ei (FEG) 3× 1017 W·m3K−1 [41]

Table 4.1: Theoretical (and normalizing) values of the free scale parameters of the TTM.

4.2.1 MCMC searches with Lin’s Gei

In this section, MCMC searches of the posterior distribution using physical forward models based on the TTM

will be presented, where the coupling coefficient was calculated according to Lin’s equation 2.17. Two different
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types of models were deployed, within this framework, one with a nearly free electron DOS and the other with

a DFT-calculated cold Ti DOS. Only the former has an effective mass-free parameter and, so, the latter

provides less parametric freedom.

For the nearly free DOS model, two different MCMC searches were run: one considering the three different

zones of interest in the 150 —J series (figure 3.16b, which is our cleanest and most complete series) and the

other considering all the different data series and sub-zones except for the second 250 —J family (figure 3.16d)

and the 1000 —J one (figure 3.16g). The former was excluded because it only pertains to the first 150 fs after

the pumping (before significant e-e equilibration takes place), and the latter because of the unusual ring-like

pattern, which makes the middle sub-zone the least bright, instead of the inner one. This is inconsistent with

our theoretical considerations and might be due to a mirror defect created by the high fluence of the pump in

the central region of the beam. In both cases, the free parameters discussed above will be shared by all data

series, while the series-dependent ones (F and tf ) will vary according to the sub-zone being simulated.

Free electron DOS

Figure 4.4 displays results from two different MCMC searches of posteriors performed for the same forward

model - a free electron DOS TTM model with Lin-like e-i coupling. One of them only sampled the joint

posterior of the three sub-zones from the 150 —J family, while the other sampled the posterior of all data but

the above-mentioned families. Since 3 or 4-dimensional plots are not possible, the results of these searches are

presented in the form of marginalized posterior distributions (the diagonal plots), and 2D correlations between

parameters. The marginalized posteriors can be used to calculate the most likely value of each parameter

and the associated 1ff error bars. To this end, the value of the {0:16; 0:5; 0:84} quantiles of the marginalized

distribution of each parameter are presented in table 4.2, corresponding to the region where 68% of the walker

steps are concentrated, for a given free parameter, and its central estimate.

On a macro level, the results appear in broad agreement with each other, that is, between the two different

searches considering the 150 —J data set and the extended one. Focusing on the central estimate in table

4.2, the scale parameters are close to one another and have broadly compatible uncertainty ranges. These

are also the parameters with the most physical significance, while the harmonic peak’s distance to the Fermi

energy ("t), the more problem-specific parameter, seems to be the most discrepant. The 1ff error bars are

significantly increased for this parameter along with the ones for ‹s . Looking at the shape of the marginalized

posteriors themselves, in figure 4.4, strong but uneven bi-modality is observed, cautioning that presenting the

data as in table 4.2 might be somewhat misleading.

Parameter 150 —J series All series

–=–0 0:83+0:15
−0:19 0:85+0:10

−0:42

"t (eV) −6:75+1:10
−0:63 −8:57+3:91

−0:22

‹s=‹
0
s 0:52+1:38

−0:06 0:46+3:14
−0:01

mef f =m
0
ef f 1:89+0:12

−1:38 1:57+0:04
−1:00

Table 4.2: Most likely value and 1ff errors of the MCMC searches performed for a physical forward model of
a TTM, with Lin-like coupling parameter and DOS as in equation 4.4.
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Figure 4.4: 2D correlations and marginalized posterior distribution of the free parameters of a physical forward
model based on the TTM, with Lin-like coupling parameter (equation 2.17) and DOS as in equation 4.4. The
estimations were performed with MCMC searches, over the free parameter space, with an ensemble of 40
walkers and a least squares likelihood function. The darker line on the 2D correlation is the 1ff band.

Considering, now, the 2D correlations between the parameters displayed in figure 4.4, we shall focus first

on the ones involving the skin depth, as this is the parameter that directly controls the power density absorbed

by a given sub-zone of interest (the average fluence and fip are fixed). The energy density deposited in the

Ti film determines, in turn, the physical regime we are dealing with. In the ‹s correlations the bi-modality is

clear but the relative position of the two local minima allows for further interpretation.

First, it is important to note that since the simplified TTM employed disregards the transverse absorbed

energy gradient (section 4.2) a longer skin depth is associated with a lower energy density for a given sub-zone.

This is due to the fact that the volume over which the same fluence is attenuated/absorbed is bigger. From

here, the direct correlation between "t and ‹s becomes apparent: the further the HHG spectrum is from the

Fermi energy, the higher Te needs to reach, to achieve the same min(Tr ("t ; t)) - our observable. Since a higher

Te , all else being equal, requires more energy density - that is a smaller skin depth -, the direct correlation

between the parameters, present in the two MCMC runs of figure 4.4, is then explained.

The inverse correlation between ‹s and mef f can be explained similarly: heavier electrons take more energy

to achieve a given Te than lighter ones. As such, the higher the electronic mass, the higher the skin depth

needs to be to achieve the same XUV transmission. It is also worth noting that this correlation weakens from

figure 4.4a to figure 4.4b as one of the bi-modality modes is suppressed, probably due to higher amounts of

data adding certainty about which of the two modes is the best.

Regarding ‹s vs –, an inverse correlation between the parameters is found in both searches, again weakened

in the one over the extended data set, probably due to similar reasons. In this case, more deposited energy,

62



in the form of a lower ‹s , leads to a higher e-i coupling. Having reached higher energy, to recover to the

same final XUV transmission, in an amount of time determined by the experimental data, electrons need to

exchange energy with the ions at a faster rate, explaining the correlation.

Finally, the inverse correlation between – and "t appears as strong and persistent between the two figures.

It can be interpreted in a similar fashion to the other ones: an HHG spectrum further away still requires higher

Te to achieve the same transmission. It also requires more rapid thermalizing when recovering to the same

higher level of XUV tansmission.

To evaluate the efficacy of the MCMC searches, the results of the forward model runs are typically projected

into the space of the observed data. To do that, 100 samples were chosen, independently, from the MCMC-

generated ensemble with the burn-in period discarded. The plots for both searches are presented in figures

4.5 and 4.6.
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Figure 4.5: 100 model runs with parameters sampled independently from the ensembles generated by the
MCMC searches, for a physical forward model of a TTM, with Lin-like coupling parameter (equation 2.17)
and DOS as in equation 4.4, plotted on top of the experimental data. In log scale with the laser fluence
peaking at 100 fs.

Observing figure 4.5a, it can be concluded that the model had enough parametric freedom to match, in

all 3 sub-zones, the low plateau of the Tr ("t ; t) data. The interplay between achieved maximal Te (controlled

by the power density, mainly related to ‹s and heat capacity, mainly related to mef f ) and "t is enough to

achieve proper agreement, in these timescales, with the several data series. The ps recovery to values close

to the cold ones, however, is more discrepant, for the higher fluency region, in red. Since the recovery is

slower than the data suggest it should be, we conclude that the e-i coupling coefficient is underestimated for

higher fluences. At the same time, for the lowest fluence region, an overestimation is apparent, which rules

out longitudinal thermal conduction as the cause of the previous underestimation. These mismatches suggest

that the formula being used to calculate Gei (equation 2.17) does not apply to all the regimes of excitation,

at least in the nearly free electron gas approximation. Since the MCMC search was performed for all three

sub-zones simultaneously, a compromise is then struck between how well the parameters adjust to each series.

Figure 4.5b was plotted from the MCMC results of the combined search over all data series, but only

displays the three 150 —J sub-zones results, to allow for direct comparison between the searches. The overall
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features are very similar, with some slight differences: less dispersion of the model results and less agreement,

in the series of intermediate fluence, at the point of minimal Tr ("t ; t). The former is reflected in the weaker

bi-modality of the marginalized posteriors in figure 4.4, itself a consequence of more experimental data allowing

for a better decision to be made between different regimes; the latter is related to the compromise already

discussed having to be struck between more data series than before.

Figure 4.6 was plotted along similar lines, for the complete MCMC search. This time, more data series

are plotted so a fuller picture can be grasped. Specifically, we plot one data series for each of the five fluence

ranges presented. It is clear that the model results and the data sets agree less than when a narrower search

was performed. As was discussed for figure 4.5b, here the plateau of minimal simulated Tr ("t ; t) agrees with

the experimental data as often as not. Furthermore, the relaxation time of the electronic temperature is

somewhat underestimated for the series with the least fluence and overestimated for the highest absorbed

fluence ones, leading to similar conclusions about the unsuitability of Lin’s formula (equation 2.17) for the

different regimes at play, within a nearly free electron DOS assumption.
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Figure 4.6: 100 model runs with parameters sampled independently from the ensemble generated by the
MCMC search, considering all sub-zones, for a forward model comprised of a TTM with Lin-like coupling
parameter and DOS as in equation 4.4, plotted on top of the experimental data. In log scale with the laser
fluence peaking at 100 fs.

From the MCMC searches here presented, it is also possible to extract estimates of other variables of

interest, not only the model parameters themselves. To do so, one calculates the desired observable in each

of the 100 model runs used to construct figure 4.5 and 4.6 and takes the mean and standard deviation of the

generated ensemble, to get a central estimate and 1ff error bars. This process is illustrated only once, further

down in 4.17.

The first such variable of interest is the Gei and how its time-averaged value depends on electronic tem-

perature. To grasp what the input parameters estimated by the MCMC can tell us concerning this, figure 4.7

was constructed. It plots the central estimate and 1ff error bars of the temporal average of the Gei parameters

against the maximum achieved Te in the given data series. It does so for each of the considered sub-zones,

resulting in a single data point for each of them. Both figure 4.7a and 4.7b depict the same overall trend of

a gently declining slope with increased Te . Comparing the results with different calculations from literature,

presented in section 2.2.3, the agreement between the calculated Gei and the XTANT-3 estimated one is quite
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Figure 4.7: Temporally averaged Gei vs maximum Te , for each sub-zone considered. Central estimate and
error bars obtain by sampling 100 model runs, from MCMC search results for a forward model comprised of a
TTM with Lin-like coupling parameter and DOS as in equation 4.4. The light green line is Lin’s result ([41])
for a cold Ti DOS and the dark blue line refers to calculations with the same formula but an Al (or FEG-like)
DOS. In dark green the result of Rethfeld ([23]) for a FEG and in light blue the XTANT-3 code predictions
for Ti [10].

good, although the calculations were only performed up to 2 eV.

Lin’s aluminum results and Rethefeld’s FEG present a similar behavior but consistently underestimate the

absolute value of the parameter. This probably reflects the posterior of mef f , which for both searches vanishes

at around mef f ≈ 1. The most discrepant theoretical prediction is Lin’s Ti one. In this case, since a different

DOS is introduced in equation 2.17, the shape of the curve was expected to differ from the data. Even with

the additional degree of freedom (mef f ), it is striking that the absolute values of the data points and the curve

are incompatible, with a consistent and significant overestimation of the theoretical values compared to the

MCMC extracted data.
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Figure 4.8: Ce simulated vs maximum Te , for each sub-zone considered. Central estimate and error bars were
obtained by sampling 100 model runs, from MCMC search results for a forward model comprised of a TTM
with Lin-like coupling parameter and DOS as in equation 4.4. The light green line is Lin’s result ([41]) for a
cold Ti DOS and the dark blue line refers to calculations with the same formula but an Al (or FEG-like) DOS.
The black dots are the heat capacity estimates from a finite temperature DFT simulation with a cold lattice.
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Figure 4.8 shows the heat capacity, estimated with the method described above, of each of the sub-zones

considered in a given MCMCM search. In this case, the observable Ce was not calculated from equation 2.16

but was approximated along simpler lines:

Ce(T
max
e ) ∼ F

Tmaxe · ‘f
(4.6)

with ‘f = 100 nm the thickness of the film, and F the observed fluence of a given sub-zone. This was done

to compare these Ce results with those from section 4.3. Both figures 4.8a and 4.8b exhibit a linear growth

trend, with similar slopes, more compatible in shape with the Al Lin’s calculation, than with the Ti ones.

The absolute values of the heat capacities are within the range of magnitude of both theoretical calculations.

A significant mismatch in the shape of the curve is also present when comparing the data points with the

black ones, obtained from a finite temperature DFT simulation, performed in the VASP package [57–61], that

assumes a cold ionic structure and excited electrons - along the lines drawn in section 2.2.2. Broad agreement

in the orders of magnitude can be observed, with the relative error being close or smaller than 1ff for Te above

7500K, especially in figure 4.8b.

0 2 4 6 8 10 12 14
Tsim

max (eV)
0.0

0.2

0.4

0.6

0.8

1.0

M
in

 X
UV

 Tr
an

sm
iss

io
n 

(s
im

ul
at

ed
)

F=2.84e+03J/m2

F=1.35e+04J/m2

F=4.21e+04J/m2

(a) For the search with only the sub-zones of the 150
—J series as data points.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Tsim

max (eV)
0.0

0.2

0.4

0.6

0.8

1.0

M
in

 X
UV

 Tr
an

sm
iss

io
n 

(s
im

ul
at

ed
)

(1.0E+03-3.0E+03) J/m2

(3.0E+03-5.0E+03) J/m2

(5.0E+03-1.5E+04) J/m2

(1.5E+04-3.0E+04) J/m2

(3.0E+04-7.0E+04) J/m2

(b) For the search with all sub-zones except the second
250 —J and 1000 — J series as data points.

Figure 4.9: Minimum XUV transmission vs maximum Te , for each sub-zone considered. Central estimate
and error bars were obtained by sampling 100 model runs, from MCMC search results for a forward model
comprised of a TTM with Lin-like coupling parameter and DOS as in equation 4.4. The black dots are the
optical response properties estimates from a finite temperature DFT simulation with a cold lattice.

Finally, figure 4.9 displays the minimal XUV opacity versus the maximum Te , plotted with the process

described earlier in this section. The black dots are theoretical predictions from the same finite temperature

DFT code described above. The overall trend in the data is similar to the predictions, although the magnitude

of it is significantly different. This might be due to the fact that DFT does not provide good estimates of

the core state energy. In the DFT simulations presented, the 3p state energy was -24.5 eV, for a cold lattice.

Using the central photon energy in figure 3.2, this would imply a parameter "t ∼ −5:5 eV. Our physical

forward model allows for variation of such parameters, allowing us to obtain its posterior distribution, exactly

to account for this DFT uncertainty. Our more data-driven estimation of this parameter yields significantly

different results, as can be seen in table 4.2. Since the XUV transmission is highly sensitive to "t , this might,

66



in large part, explain the observed difference.

Ti DOS

In this section, we discuss the results of an MCMC search of the posterior distribution, for a forward model

consisting of a TTM with fixed, cold Ti DOS, calculated from DFT. The coupling coefficient Gei and the

electronic heat capacity Ce were calculated from equations 2.17 and 2.16, respectively. Figure 4.10 displays

the marginalized posteriors of each of the model parameters alongside the 2-dimensional correlations. The

corresponding central estimate and error bars are: –=–0 = 0:93+0:17
−0:10, "t = −4:51+0:10

−0:12 and ‹s=‹
0
S = 0:31+0:01

−0:02.

Figure 4.10: 2D correlations and marginalized pos-
terior distribution of the free parameters of a phys-
ical forward model based on the TTM, with Lin-
like coupling parameter (equation 2.17) and Ti DFT-
calculated DOS. The estimations were performed with
MCMC searches, over the free parameter space, with
an ensemble of 40 walkers and a least squares likeli-
hood function. The darker line on the 2D correlation
is the 1ff band. 40000 total model evaluations were
performed and the first 20000 were discarded.
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Figure 4.11: 50 model runs with parameters sam-
pled independently from the ensemble generated by
the MCMC search, for a physical forward model of a
TTM, with Lin-like coupling parameter and TI DFT-
calculated DOS, plotted on top of the experimental
data. In log scale with the laser fluence peaking at
100 fs.

Looking at the marginalized posteriors, the main difference to note, compared to 4.4, is the very narrow

peak in the skin depth - ‹s . The little bi-modality that remains still allows us to make out an inverse correlation

between this parameter and "t . The physical reasoning for this was already given above and should be expected

to remain a strong feature of the searches, as the two parameters are so closely linked. The other correlation

observed in figure 4.4 that could also be present in the current corner plot is the ‹s to – inverse correlation,

very muted in this search. This might be due to the relative stiffness of the model and lack of ability to

properly simulate the recovery period of the transmission, as we shall see next.

Focusing on figure 4.11, this inability to model the recovery immediately becomes apparent. While the

zone of intermediate fluence is properly simulated, the model overestimated the recovery rate of the lower

fluence zones and, concurrently, underestimates the recovery rate of the zone of higher fluence to a high

degree. This attempted compromise, between different sub-zones, results from the inability of equation 2.17
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(when coupled to a DFT calculated DOS) to provide either adequate results in our fluency range or enough

parametric freedom to adjust to this ”theoretical knowledge gap”.

In figure 4.12, the estimates for the coupling coefficient produced from the MCMC search are plotted against

the theoretical predictions already discussed. These show great compatibility with Lin’s Ti calculations, which

is unsurprising since the same formula was used, with an estimated – ∼ 1 and an otherwise rigid model.
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Figure 4.12: Temporally averaged Gei vs maximum Te , for each sub-zone considered. Central estimate and
error bars obtain by sampling 100 model runs, from MCMC search results for a forward model comprised of a
TTM with Lin-like coupling parameter and DFT calculated Ti DOS. The light green line is Lin’s result ([41])
for a cold Ti DOS and the dark blue line refers to calculations with the same formula but an Al (or FEG-like)
DOS. In dark green the result of Rethfeld ([23]) for a FEG and in light blue the XTANT-3 code predictions
for Ti [10].

Results from figure 4.13 are somewhat more noticeable since they do not seem to follow Lin’s Ti prediction,

although their order of magnitude is the same. This might be due to the approximated way the heat capacity

was obtained (equation 4.6). The substitution of the temperature derivative by a simple division gives an

overall approximation of the heat capacity but might miss some more subtle behavior (since it gives a more

cumulative estimate). Again, in this case, the shape of the heat capacity curve more closely resembles that of

a FEG (or Al).
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Figure 4.13: Ce vs maximum Te , for each sub-zone
considered. Central estimate and error bars obtain by
sampling 100 model runs, from MCMC search results
for a forward model comprised of a TTM with Lin-
like coupling parameter and DFT calculated Ti DOS.
The light green line is Lin’s result ([41]) for a cold Ti
DOS and the dark blue line refers to calculations with
the same formula but an Al (or FEG-like) DOS. Heat
capacity estimates from a finite temperature DFT sim-
ulation with a cold lattice (black dots).

68



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Tsim

max (eV)
0.0

0.2

0.4

0.6

0.8

1.0
M

in
 X

UV
 Tr

an
sm

iss
io

n 
(s

im
ul

at
ed

)
F=2.84e+03J/m2

F=1.35e+04J/m2

F=4.21e+04J/m2

Figure 4.14: Minimum XUV transmission vs maxi-
mum Te , for each sub-zone considered. Central es-
timate and error bars obtain by sampling 100 model
runs, from MCMC search results for a forward model
comprised of a TTM with Lin-like coupling parame-
ter and DFT calculated Ti DOS. The black dots are
the optical response properties estimates from a finite
temperature DFT simulation with a cold lattice.

Finally, figure 4.14 is very similar to figure 4.9, with the same shape of the curve as the DFT results

but severely underestimating the magnitude of the drop. The reasoning that justified this observed behavior

previously remains sound.

4.2.2 MCMC searches for constant Gei

In this section, a different approach is described, regarding how the MCMC searches are performed. In order

to provide more parametric freedom an independent MCMC search was run for each of the sub-zones. As a

result, a different set of marginalized posteriors and 2-dimensional correlations was obtained for each of the

sub-zones studied, namely all the 150 —J (figure 3.16b) series and the two innermost zones of the third family

of series with 250 —J (figure 3.16e), each represented by a different color in 4.15 and 4.16.

Figure 4.15: 2D correlations and marginalized poste-
rior distribution of the free parameters of a physical
forward model based on the TTM, with constant Gei
and DOS as in equation 4.4. The estimations were
performed with MCMC searches, over the free param-
eter space, with an ensemble of 40 walkers and a least
squares likelihood function. The darker line on the 2D
correlation is the 1ff band.
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Figure 4.16: 50 model runs with parameters sampled
independently from the ensembles generated by the
MCMC searches, for a physical forward model of a
TTM, with constant Gei and DOS as in equation 4.4,
plotted on top of the experimental data. In log scale
with the laser fluence peaking at 100 fs.
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For these MCMC searches, the Gei coefficient was considered constant, during a given time series, with its

value being one of the free parameters. Nonetheless, a nearly free electron DOS approximation was deployed

to calculate Ce . The marginalized posteriors distributions of figure 4.15 are plotted alone, for better reading,

in appendix A. In table 4.3, the central estimations and 1ff error bars are shown, for all sub-zones and inputs

of the physical forward model. Combining these two pieces of information, agreement between the searches

can be found for the parameters ‹s and "t . Looking at the 1ff intervals, they appear broadly compatible with

one another and the posterior distribution of these two parameters have overlaying highest probability regions.

Physically, this was expected to be the case, since neither skin-depth nor core-to-continuum energy differences

are expected to be dependent on laser intensity, at first order. Their constancy through the different MCMC

searches is then a sanity check for the convergence of the algorithm and an indication of the robustness of the

estimation of such parameters. The remaining correlations, with some exceptions, are proxies of the physical

relations of the ‹s ones, with very similar physical reasonings behind them.

Zone Gei=G
0
ei "t (eV) ‹s=‹

0
s mef f =m

0
ef f

150 —J, outer 0:74+0:56
−0:41 −4:85+0:68

−2:04 0:67+0:53
−0:38 4:16+3:22

−2:32

150 —J, middle 1:17+0:55
−0:39 −4:28+0:2

−0:43 1:38+0:47
−0:42 1:66+0:82

−0:66

150 —J, inner 4:53+2:15
−2:29 −4:23+0:16

−0:36 0:80+0:76
−0:26 3:04+0:25

−0:67

250 —J, middle 1:69+1:02
−1:08 −5:47+1:14

−2:11 0:83+1:14
−0:34 2:62+2:19

−1:40

250 —J, inner 3:86+2:45
−2:25 −4:78+0:65

−2:71 0:52+0:95
−0:28 2:26+1:98

−0:60

Table 4.3: Most likely value and 1ff errors of the 5 MCMC searches performed, one
for each sub-zone, for a physical forward model of a TTM, with a constant coupling
parameter and nearly free electron DOS.

Considering the Gei and mef f posteriors and estimates, they appear to change more from zone to zone (or

incident fluence). This behavior is expected of Gei since it depends on Te (as covered in section 2.2.3)), inti-

mately linked with the absorbed fluence of a given sub-zone. The mef f dependency on electronic temperature

is subtler in nature and comes from the fact that different deposited energies excite continuum electrons into

different parts of the Ti DOS. Looking at figure 2.3, or more schematically at figure 4.1, it is clear that lower

excitation energies that do not dislocate the electrons from the d-band have a higher effective mass than the

hotter ones that are excited into the 4s band. These theoretical considerations are only partially confirmed by

the results from the MCMC searches, with the notable outlier being the 150 —J inner zone, with higher than

expected mef f . This deviation from expectations might be the result of the increased parametric freedom of

the forward model, as important correlations between the input parameters were expected (such as mef f , a

proxy for Ce , vs ‹s , controlling the absorbed power density).

Looking at the 2-dimensional correlations of figure 4.15, the analysis remains similar to that of the first

searches presented. A positive correlation exists between "t and ‹s=‹
0
s while negative correlations prevail

between ‹s=‹
0
s and both Gei=G

0
ei andmef f =m

0
ef f . The physical reasoning between these correlations is expected

to be the same as explained above. With added parametric freedom, or, conversely, with each MCMC search

running with fewer data points against which to benchmark a given model, the high likelihood regions area

naturally increases. This allows for a wider average step of the ensemble walkers and results in a broader

1ff band that, unlike in the previous runs, allows us to envisage the non-linear nature of the correlations in
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question.

Figure 4.16 displays 100 forward model runs (for each sub-zone), selected independently from the MCMC-

generated ensemble of walker chains, with the burn-in period extracted, plotted over the data of each sub-

zone considered. The second and third-highest fluency zones display overlapping model predictions but also

somewhat superimposed data points. A good match was achieved between the experimental data and the

forward model 1ff band. Most data points, when considered with their uncertainty, fall within the band of

results for their respective sub-zone. This is to be expected since significantly more flexibility was allowed

in this physical forward model than for the ones used to produce figures 4.4 and 4.5, which already yielded

reasonable agreement between model and data.

(a) Each point is the result of a model run, from the 100
sampled.

(b) A single data point is produced for each of the sub-
zones. Central estimate obtained by averaging and error
bars by standard deviation calculation.

Figure 4.17: Gei vs maximum Te , for each sub-zone considered. Sample comprised of 100 model runs, from
MCMC search results for a forward model comprised of a TTM with constant Gei and DOS as in equation
4.4. The light green line is Lin’s result ([41]) for a cold Ti DOS and the dark blue line refers to calculations
with the same formula but an Al (or FEG-like) DOS. In dark green the result of Rethfeld ([23]) for a FEG and
in light blue the XTANT-3 code predictions for Ti [10].

In figure 4.17, no temporal averaging procedure was needed to obtain a single representative numerical

value of Gei , for each model run of the different sub-zones, since it was considered a constant. Taken together,

however, the results of all the sub-zones, plotted vs the maximum Te for that sub-zone, allow us to estimate

Gei ’s temperature dependency. The results seem in agreement with FEG predictions for the three lowest

fluency zones and shows a marked increase in coupling for the highest fluency zones. The overall tendency

then is that of a sustained increase in Gei with Te , not predicted by any of the theoretical models considered.
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Figure 4.18: Ce vs maximum Te , for each sub-zone
considered. Central estimate and error bars obtain
by sampling 100 model runs, from MCMC search re-
sults for a forward model comprised of a TTM with
constant Gei and DOS as in equation 4.4. The light
green line is Lin’s result ([41]) for a cold Ti DOS and
the dark blue line refers to calculations with the same
formula but an Al (or FEG-like) DOS. The black dots
are the heat capacity estimates from a finite temper-
ature DFT simulation with a cold lattice.
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Figure 4.19: Minimum XUV transmission vs maximum
Te , for each sub-zone considered. Central estimate
and error bars obtain by sampling 100 model runs,
from MCMC search results for a forward model com-
prised of a TTM with constant Gei and DOS as in
equation 4.4. The black dots are the optical response
properties estimates from a finite temperature DFT
simulation with a cold lattice.

The heat capacity central estimates (calculated from 4.6) and 1ff error bars, are present in figure 4.18.

Since each sub-zone had its own effective mass, this parameter, as others presented in this section, offers

much more parametric freedom than before. From the Bayesian Inference discussion in section 2.4, one could

say that the estimates rely on less prior information than before (encoded in the forward model itself), and, as

such, are more closely dependent on the experimental data itself. The heat capacity parameter, despite this

high parametric freedom, closely resembles Lin’s Al prediction and the time-dependent DFT Ti results, with a

notable outlier being the highest fluence sub-zone. Interestingly, this zone also exhibits a difference from the

trend in terms of its effective mass. In both cases, the anomaly is positive, which is expected since heavier

electrons should take, in general, more energy to reach a given Te .

Finally, figure 4.19 displays the time-dependent DFT predictions for the XUV transmission, as a function

of Te vs the results of the MCMC search, for each zone. The analysis of this plot stays consistent for the three

different TTMs used.

4.2.3 Summary and Conclusions

• Several different MCMC searches were performed for TTM models. The e-i coupling was calculated

either from Lin’s equation or considered constant in time. The DOS structure was also made to vary

from a nearly free one (with varying effective mass) to the Ti DFT calculated one.

• Overall, the models based on a nearly free DOS (both with Gei (t) calculated from Lin’s and when

Gei (t) = const) produce significantly better agreement with the experimental data. A caveat to this

conclusion is that the Ti DOS is pre-determined, removing a degree of freedom from the model.

• When considering searches of just three sub-zones vs searches with all sub-zones of interest (18 in total,

since two families of shots were removed), the posteriors of the latter are more strongly peaked. This is

an expected effect of increasing the number of experimental data points. This is not particularly visible

in the 1ff error bar since remnants of posterior bi-modality sometimes persist.

• The searches for Gei=constant in time offer more parametric freedom, since each sub-zone takes its own

free parameters, and produce the best agreement with the data.
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• Figure 4.17 thus offers the most data-driven and less constrained estimation of Gie(Te). Interestingly,

while it is in the range of theoretical predictions, it draws its own distinct shape through Te , although

with significant error bars.

4.3 Quantum Boltzmann Statistics

In section 2.2.2, a Boltzmann equation model (Rethfeld) that simulates the absorption process of an ultrafast

laser pulse by a thin metal film was described. In this section, we deployed it, as a physical forward model.

This model was meant to study the first hundreds of fs after the arrival of the pump laser. Since the lattice

and/or ionic response was left out of our considerations, e-i equilibration will not be part of the simulated

phenomena.

In stark contrast to the TTM, the quantum Boltzmann equation does not assume instantaneously ther-

modynamical equilibrium within the electronic population, nor does it assume ad hoc absorption of the non-

reflected part of the pump pulse power density. It instead incorporates e-e and electron-ion-photon (e-i-pt)

collision terms that model these effects from first principles.

The differential equation 2.9, without the electron-phonon term, and the other two collisions terms de-

scribed by equations 2.11 and 2.13, was used. The assumptions that lead to a simplified Boltzmann equation

were discussed in section 2.2.2. To these, some of the TTM assumptions were added, since the same physical

arguments still hold and are given more force by the fact that only hundreds of fs of time evolution will

be modeled. As such, the absence of lateral heat conduction and a constant absorbed laser intensity were

assumed, for each of the sub-zones of interest. The latter assumption implies that the laser intensity inside

the material (necessary in the Bessel function argument of equation 2.13) takes the form of equation 4.2, that

is only time and incident fluence dependent, for each of the sub-zones considered.

Since Rethfeld’s model is fully deterministic, some parameters were freed, besides "t , which is intrinsic to

the way the observable (XUV transmission) is calculated from fe(k). The free electron mass was replaced by

an effective one mef f , in a nearly free electron DOS approach - to include the differences between the Ti and

a FEG DOS -; and the e-e and e-i screening coefficients, k, were allowed to vary by multiplying equation 2.12

by a dimensionless free constant, resulting in two different inverse screening radii »ie and »ee .

4.3.1 Analytical simplification of the collision terms

We now wish to solve the Boltzmann equation in time and obtain the evolution of the electronic non-equilibrium

distribution function, as it is being excited by the laser. This solution will be the forward model used to calculate

the likelihood function. To do so, it is necessary to transform the double and single sum of the detailed collision

terms (equation 2.11 and 2.13, respectively) into integrals. To simplify the computational task to tractable

levels, symmetry arguments will be used to solve some of them while others will be solved analytically and still

others will be left for numerical methods.

The derivations that follow were based on [40]. The usual substitution for the sum of discrete momentum

points
P

k → Ω=(2ı)3 was performed on equation 2.11 and the variables of integration were changed from

73



k1 and k2 to k1 and k3 (the out-scattered momentum vectors) such that it was possible to obtain:
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with k2 = k1 − k + k3, ∆k = |∆k | = |k1 − k2| = |k − k3|, —3 = cos\(k ; k3), —1 = cos\(∆k ; k1) and

Ω = 1:058×10−28 m3 the volume of the Ti unit cell. For ease of reading f (ki )→ fki . Note how the azimuthal

angles were summed over and the choice of —3 and —1 corresponds to choosing a z-axis, for the polar angle

of k3 („3), oriented as k and a z-axis oriented as ∆k for „1.

These definitions of the polar angle allow us to write ∆k2 = (k − k3)2 = k2 + k23 + 2kk3—3 from where

d—3 = ∆k=(kk3)d∆k and analogously d—1 = k2=(∆kk1)dk2. Both —1 and —3 can now be replaced by ∆k

and k2, respectively. Noting that integrating with —3 between -1 and 1 is equivalent to integrating between

where k1 and k3 are parallel to where they are anti-parallel we can obtain the corresponding ∆k interval

[|k − k3|; k3 + k]. A similar argument can be applied to find the extremes of the k2 integral resulting in:
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(4.8)

The last integral can be solved with the Dirac-‹ resulting in mek2=(~2k2)F (with F the Pauli blocking

terms) subject to k2 = k23 + k
2
1 − k2 and |k1 −∆k| ≤ k2 ≤ k1 +∆k, which is equivalent to |k2 − k1| ≤ ∆k ≤

k1 + k2, introduced as new constraint on the ∆k integral. Writing it alone, it will be possible to analytically

solve it:Z min{k+k3;k2+k1}

max{|k−k3|;|k2−k1|}
d∆k

„
e2

"0Ω

1

∆k2 + »2ab

«2

=

„
e2

"0Ω

«2
1

2»3ab

»
arctan

∆k

»ab
+

∆k»ab
∆k2 + »2ab

–min{k+k3;k2+k1}

max{|k−k3|;|k2−k1|}
:

(4.9)The integral we are left with to solve numerically is then:
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(4.10)
still subject to k22 = k21 + k23 − k2. The condition k21 + k23 ≥ k2 comes from the that ∆k2 is positive, used

when collapsing the ‹ integral.

Now regarding the electron-ion-photon collision term, written in equation 2.13, the sum can be first

transformed, through the procedure discussed above, in a triple integral. The azimuthal integration can be

performed immediately, resulting in:
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with — = cos\(E;∆k) and p = cos\(k ;∆k). Having defined the polar angle of ∆k in such a fashion the

equality (k +∆k)2 = k2 +∆k2 − 2k∆kp can also be written, from which the last integral becomes:

74



Z 1

−1

dp
ˆ
f|k+∆k|(1− fk)− fk

`
1− f|k+∆k|

´˜
‹

„
~2

2me
∆k2 − ~2pk∆k

me
+ ‘~!L

«
=

me
~2k∆k

ˆ
f|k+∆k|(1− fk)− fk

`
1− f|k+∆k|

´˜
p∈[−1;1]

with p =
`
∆k2 + ‘2me!L=~

´
=(2k∆k) ∈ [−1; 1]:

(4.12)

As an average over all laser light polarizations is to be considered (discussed in section 2.2.2), the Bessel

function sum in equation 4.11 is averaged over all — according to:fi
J2‘

„
eEL∆k

me!
2
L

«fl
—

:=
1

2

Z 1

−1

J2‘

„
eEL∆k

me!
2
L

—

«
d—: (4.13)

Thus the collision term modeling IB absorption that needs to be solved analytically takes the form:

@f (k)

@t

˛̨̨̨
el−ion−phot

=
2ı

~
Ω

(2ı)3
2ı

me
~2k

„
e2

"0Ω

«2 Z ∞

0

d∆k∆k

„
1

∆k2 + »2

«2

×

X
‘

fi
J2‘

„
eEL∆k

me!
2
L

«fl
—

[f (|k +∆k|)(1− f (k))− f (k)(1− f (|k +∆k|))]

˛̨̨̨
˛
p∈[−1;1]

With |k +∆k |2 = k2 +∆k2 − 2k∆kp and p =
`
∆k2 + ‘2me!L=~

´
=(2k∆k) ∈ [−1; 1]:

(4.14)

4.3.2 Algorithm

By adding the two analytically simplified terms in equations 4.10 and 4.14, we obtain the time derivative

of the distribution function of the electrons. Using a finite differences framework the time evolution of the

distribution can be solved. Algorithms 2 and 3 describe the process of solving the Boltzmann equation and

obtaining the XUV transmission. The e-i-pt collision term as written in equation 4.14 requires the electric

field inside the material, as an input parameter. To calculate it, the average incident fluence of each sub-zone

was converted to intensity through equation 4.2 and subsequently the formula EL(t) =
p

2I(t)=(c"0) was

applied. Note also that J2‘ (x) = J2−‘(x), which is going to be used below.

3D tensors are required to calculate the integrand: for the e-i-pt term one dimension is required for the

different Bessel function orders and two for k and ∆k; and for the e-e term three dimensions are required for

k; k1 and k3, with k2 pre-determined. As such, all coordinate-dependent tensors, not expected to change in

time, were calculated before the time iterations, to ensure the minimal amount of burdensome calculations

required. This can be seen in algorithm 2.

The momentum scale was tuned for the lowest possible cut-off point that still allows for particle conservation

in the highest fluence zone. The temporal scale, on the other hand, was defined based on a study of the

maximum time step possible for a given fluence. Naturally, as the fluence increases the electrons move faster

through momentum space, requiring a smaller time step (or higher number of total steps). A linear fit was

then performed to the number of time steps needed (obtained from experimentation), as a function of the

fluence. The results were used to define the time step.

The number of Bessel function orders to be considered also had to be decided, since our high laser intensity

causes multiphoton absorption processes to be non-negligible. To assess where the cut-off should be, the sum

of all orders of the Bessel function, integrated in ∆k, averaged in —, and pondered by the number of absorbed

photons was plotted, versus the electric field intensity inside the material, for different cut-off values, in figure
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4.20. The EL range was calculated from the average absorbed fluences and adjusted so that it achieves field

intensities comparable to the ones received by the highest fluence zone being considered, the inner zone of

the 150 —J family. The pondered sum increases, for higher EL, as more orders of the Bessel functions are

included. As this sum is proportional to the number of absorbed photons, this is a demonstration of the need

to include several orders o the Bessel function, not in the least because the number of absorbed photos is not

expected to decrease with EL as in figure 4.20a. Figures 4.20b and 4.20c, on the other hand, have identically

behaved sums, linearly increasing with EL, and the same numerical values. This implies that orders above 30

do not need to be considered, in our case.

Algorithm 2 The Boltzmann equation, used as a physical forward model. The multiplicative constant with *
is changed in some circumstances. Here the tensors of constants (in time) are precalculated.

Boltzmann(F, »ei , »ee , mef f , "t)

kprov ← [0; 0:00008; 0:00016; :::; 8] aB
etested ← [0:0016; 0:0032; :::; 81:6] Eh . etest := range of energies to be tested for the Fermi Energy.
Te ← 300 K
i ← 0
while

R
feq(kprov; etest [i ]; Te ; mef f ) ·D(kprov; mef f ) · ~2=mef f · dkprov ̸= ne do

i ← i + 1 . feq(kprov; etest [i ]; Te ; mef f ) corresponds to the Fermi-Dirac function.
end while
{eF ; kf } ← {etest [i ]; 2eFmef f =~}
k; k1; k3;∆k ← [10−21; (7 · kf − 10−21)=100; 2 · (7 · kf − 10−21)=100; :::; 7∗ · kf ] a−1

B

f (k)← feq(k; etest [i ]; Te ; mef f ) . This is the initial condition of our distribution function.

—← [−1;−0:98; :::1]
d—← —[2]− —[1]
orders← 25 . Number of orders of the Bessel function that will be considered.
t1 ← [0; 200=n; 2 · 200=n; :::; 200] fs with 5n=3 = F=(5:385) + 300.
t2 ← [200 + (1=n); 200 + (1=n) + (500− 200− 1=n)=n; :::; 500] fs with 5n=2 = F=(5:385) + 300. . n was
studied for proper convergence of the algorithm, as described below.
{dt1; dt2} ← {t1[2]− t1[1]; t2[2]− t2[1]}
EL ← EL(t1; F ) . EL := Laser electric field array, peaking at 100 fs. F := average fluence of the zone
being tested.

for j in [0,1,...,orders] do
{p[j ]; p−[j ]} ← {1=(2k)⊗

`
∆k2 + 2jmef f !L · I=~

´
; 1=(2k)⊗

`
∆k2 − 2jmef f !L · I=~

´
} . I := vector

of ones the size of k1, k3, etc. p := variable of integration in equation 4.14.
{pbool[j ]; p−1

bool[j ]} ← {True where p[j ] ∈ [−1; 1] False elsewhere.,True where p−1[j ] ∈ [−1; 1] False
elsewhere.}
{a[j ]; a−[j ]} ← {k2 ⊗ I + I ⊗∆k2 − 2 · p[j ] · k ⊗∆k; k2 ⊗ I + I ⊗∆k2 − 2 · p−[j ] · k ⊗∆k} . a; a− :=

|k −∆k |2 both for the positive and negative Bessel functions orders.
end for

e ← −k2 ⊗ I ⊗ I + I ⊗ k21 ⊗ I + I ⊗ I ⊗ k23
ebool ← True where e ∈ [0;+∞] False elsewhere. . ebool := used for the k21 + k23 ≥ k2 condition.
k22 ← −k2 ⊗ I ⊗ I + I ⊗ k21 ⊗ I + I ⊗ I ⊗ k23 where ebool ==True, 0 elsewhere.
{∆kup;∆kdown} ← {minimum(k ⊗ I ⊗ I + I ⊗ I ⊗ k3; I ⊗ k1 ⊗ I +

p
k22 );maximum(|k ⊗ I ⊗ I − I ⊗ I ⊗

k3|; |
p
k22 − I ⊗ k1 ⊗ I|)} . ∆kup;∆kdown := limits of integration of equation 4.9. . The maximum and

minimum functions are element-wise.
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(a) For orders 0 through 5. (b) For orders 0 through 30. (c) For orders 0 through 100.

Figure 4.20:
P

‘ ‘ ·
R D

Jl(
eEL·∆k·—
mef f !2

L
)
E
—
d∆k as a function of EL, in black.

R D
Jl(

eEL·∆k·—
mef f !2

L
)
E
—
d∆k for select

orders of the Bessel function in different colors.

Algorithm 3 Continuation of algorithm 2. Here the time iteration is performed, within the finite-differences
framework, to find the non-equilibrium distribution function, at each time step.

for i in [0,1,...,length(t1)] do

for j in orders do
Bav [j ]← 1=2 ·

R
J2j (e · EL[i ]=(mef f · w2

L) · ⊗—)d— . Jl is a Bessel function of order ‘ and first kind.
end for
f (k)← spline(f (k))
for j in [0,1,...,orders] do
{f∆k [j ]; f −∆k [j ]; fk} ← {f (a[j ]); f (a−[j ]); f (k ⊗ I)}
{Fei ;F−

ei } ← {f∆k(1− fk)− fk(1− f∆k); f
−
∆k(1− fk)− fk(1− f

−
∆k)}

end for
Bav ← Bav ⊗ I
Bav [0] = 1=2 · Bav [0] . The zeroth order is counted in both the positive and negative order terms of

the sum over ‘.
»2 ← »2ei · e2mef f =(ı2~2"0) ·

R
f (k)dk

{Mei ;M
−
ei} ← {mef f e4=(~3 · 2ı"20Ω) · (1=k) ⊗ (∆k=(∆k2 + »2)2) where pbool == True. Else 0.,

mef f e
4=(~3 · 2ı"20Ω) · (1=k)⊗ (∆k=(∆k2 + »2)2) where p−bool==True. Else 0.}

‹fei ←
P

‘=[0;1;:::;orders]

R
(Mei · F · Bav +M−

ei · F− · Bav )dk3

{f ; f1; f2; f3} ← {f (k ⊗ I ⊗ I); f (I ⊗ k1 ⊗ k3); f (
p
k22 ); f (I ⊗ I ⊗ k3)}

Fee ← f3f1(1− f )(1− f2)− f f2(1− f3)(1− f1)
»2 ← »2ee · e2mef f =(ı2~2"0) ·

R
f (k)dk

Mee ← mef f e
4=(2(2~ı)3"20»3) · (1=k)⊗ k1 ⊗ k3 where ebool ==True, else 0.

I ← arctan(∆kup) + ∆kup»=(∆k
2
up + »2 ⊗ I)−

`
arctan(∆kdown) + ∆kdown»=(∆k

2
down + »2 ⊗ I)

´
‹fee ←

RR
Mee · I · Feedk3dk1

M[k]← Tr ("t ; f ) . Tr form equation 4.1.
f (k)← f (k) + (‹fei + ‹fee) · dt1

end for

for k in len(t2) do
k ← k + len(t1)
Repeat previous ”for” cycle but without electron ion calculations.

end for

Return M

Finally, algorithm 3 is the continuation of algorithm 2, in which the tensors defined in the former are used
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to calculate the collision integral for each time-step over a total of 500 fs. The packages used to perform

the computational task were again NumPy and SciPy. The spline function, refers to a cubic spline with the

InterpolatedUnivariateSpline tool of SciPy the integrals were performed with Simpson’s rule by SciPy ’s simps

package.

4.3.3 Analysis of solutions

Having described the algorithm used to solve equation 2.9 without the phonon term, we will now discuss

the solutions. Figure 4.21 displays f (k; t) at three different time steps of the Boltzmann equation model

solved for F = 3900 J/m2, »ee = »ie = 1 and mef f = m0
e . In figure 4.21a, the initial effect of the laser

irradiation becomes clear, when observing the step-like structure of f (k; t): electrons below the Fermi energy

are removed and added 1.55 eV or multiples of that above their initial energy. This only happens near the

Fermi edge because Pauli blocking prevents electrons from jumping to occupied spaces. Roughly 10 fs after the

first snapshot, and before most of the pulse energy has been deposited in the sample, the difference between

f (k; t) and a Fermi-Dirac function is negligible, as is shown in figure 4.21b. This is due to the e-e collisions

that quickly thermalize the distribution.

(a) Simulation for t = 39 fs. (b) Simulation for t = 52 fs. (c) Simulation for t = 60 fs.

Figure 4.21: Analytical solution of equation 2.9, without the phonon term, at different time steps, for F = 3900
J/m2, »ee = »ie = 1 and mef f = m0

e . Here, as in the TTM section, laser intensity peaks at 100fs. The light
blue line corresponds to a fit of a Fermi Dirac function to the obtained non-equilibrium f (k; t).

To further understand how the model functions, the results of different simulations with all but one of the

free parameters kept constant were performed. Figure 4.22 displays three different model runs (the same time

step for the three), all performed for F = 3900 J/m2, »ee = 1 and mef f = m0
e but with increasing vales of

»ie from left to right. It is clear that, exposed to the same laser fluence, an increase in »ie decreases the total

amount of energy density deposited in the sample.

Remembering that » is the inverse of the screening radius of the Coulomb potential, in this specific case the

Coulomb potential intermediating the e-i collisions necessary for IB absorption, we can explain this decrease.

For higher »ie the potential is more shielded and becomes more localized, reducing the e-i collisions. As a

result, photons are absorbed less often, resulting in reduced energy density and a longer decay length of the

electric field inside the material. The latter point suggests »ie controls the skin depth.

Moving on to the effects of »ee , figure 4.23 displays the solutions to the 3 different runs of the Boltzmann

model, at 100 fs, but for increasing »ee and all other parameters constant. Here, all three cases show a
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(a) Simulation for »ie = 1. (b) Simulation for »ie = 2:5. (c) Simulation for »ie = 5.

Figure 4.22: Analytical solution of equation 2.9, without the phonon term, at 100 fs, for 3 different simulations
run with F = 3900 J/m2, »ee = 1, mef f = m0

e and different »ie . Here, as in the TTM section, laser intensity
peaks at 100fs. The light blue line corresponds to a fit of a Fermi Dirac function to the obtained non-
equilibrium f (k; t).

similar Te when fitted to a Fermi Dirac. On the other hand, as »ee increases the step-like structure of the

distribution becomes more pronounced. This is the imprint the laser itself leaves on the electronic distribution

when being absorbed, since it can only move electrons by 1.55 eV (energy of a single photon) or multiples

of that, and is a clear sign of slower thermalization of the electron gas with itself. The physical reasoning

for this increased thermalization time for higher »ee is similar to before: a more localized scattering potential

between the electrons, resulting from an increase in inverse screening length, leads to less e-e collisions which

are responsible for thermalization of f (k; t) to an equilibrium Fermi-Dirac, and to a longer relaxation time.

(a) Simulation for »ee = 1. (b) Simulation for »ee = 2:5. (c) Simulation for »ee = 5.

Figure 4.23: Analytical solution of equation 2.9, without the phonon term, at 100fs, for 3 different simulations
run with F = 3900 J/m2, »ie = 1, mef f = m0

e and different »ee . Here, as in the TTM section, laser
intensity peaks at 100fs. The light blue line corresponds to a fit of a Fermi Dirac function to the obtained
non-equilibrium f (k; t).

Finally, the electronic mass parameter effects on the simulations can be deduced from figure 4.24, where

all parameters were kept steady except for an increasing mef f from left to right. The time step chosen for all

figures was 40 fs, before broad thermalization so the differences in laser-absorption-driven changes in f (k; t)

could be studied. From the figure, we can see that the step-like structures become wider with increasing

mef f . This effect is tied to the quasi-free dispersion relation "(k) = ~2k2=(2mef f ). Higher mass implies

that a smaller increase in energy is required to achieve a bigger wave vector. As such, the 1.55 eV of energy

deposited goes further, in terms of wave vector, than before. Furthermore, after the laser has deposited all

its energy in the three simulation runs of figure 4.24, Tmax
e is smaller for bigger effective masses. Physically,

heavier electrons can accept more energy without changing their temperature as much as lighter ones. In this

79



way, the mef f controls the heat capacity of the electron gas and, consequently, the Te of any sub-zone.

(a) Simulation for mef f = m0
e . (b) Simulation for mef f = 2:5 ·m0

e . (c) Simulation for mef f = 5m0
e .

Figure 4.24: Analytical solution of equation 2.9, without the phonon term, at 100fs, for 3 different simulations
run with F = 3900 J/m2, »ie = »ee = 1, and different ef f . Here, as in the TTM section, laser intensity peaks
at 50 fs. The light blue line corresponds to a fit of a Fermi Dirac function to the obtained non-equilibrium
f (k; t).

4.3.4 MCMC searches

Two different types of MCMC searches were deployed taking advantage of the described physical forward

model. The first one was a search for the joint posterior distribution of the three different sub-zones of the

150 —J family of data series. In this search, all the zones share the relevant physical parameters and only the

incident fluence changes from one to the next. In the second search, a different MCMC was run for each of

the sub-zones. Here the posterior being sampled in each MCMC is related to the data of that sub-zone only.

The physical parameters are free to float from one zone to the next, according to the ensemble evolution of

their own MCMC. The searches themselves were initialized and run using the techniques described in section

4.2.

Joint search

Figure 4.25 displays the 2D correlation and marginalized posterior distributions of the Boltzmann model free

parameters. They were obtained from an MCMC search of the joint posterior distribution of all the sub-

zones of the data family with 150 —J. From the marginalized posteriors, we can extract the central estimates

and 1ff error bar of or free parameters, as was done before, resulting in »ie = 1:03+0:05
−0:05, »ee = 1:25+0:47

−0:24,

mef f = 1:61+0:29
−0:38 and "t = −7:02+1:67

−1:44. The two screening parameters »ie and »ee are close to 1, the result

expected for a quasi-free electron gas. The e-i screening coefficient has a very small relative error but, even

so, is compatible with »ie = 1. The effective mass estimate is above one, which is not unexpected given the

strongly peaked d-orbitals at the beginning of the Ti continuum and near the Fermi energy (figure 2.3).

Looking more closely at the 2-dimensional correlations of the posterior distribution, only a strong direct

correlation between the effective mass and "t stands out. The correlation can be explained along similar lines

to the ones used in section 4.2. All else being equal, a lower "t - corresponding to the HHG pulse exciting

electrons to further away from the Fermi energy -, requires a higher equivalent Te to get the same amount

of transmission drop. One of the ways of obtaining a higher equivalent Te , for the same absorbed fluence, is

80



to reduce the effective electronic mass thus reducing heat capacity. Interestingly, no similar correlation can

be said to exist between the kie parameter and "t , as one might expect. From an algorithmic perspective, it

remains unclear why this is the case since both parameters affect the equivalent Te . The best hypothesis we

can put forward is that the »ie parameter affects the different sub-zones differently, thus while one zone might

be getting optimized with changes to »ie some other will fall out of agreement dramatically.

Figure 4.25: 2D correlations and marginalized poste-
rior distributions of the free parameters of a physi-
cal forward model based on the Boltzmann equation
2.9, without the phonon term. Estimated via MCMC
search, with an ensemble of 40 walkers, evolved for a
total of 15000 model evaluations. 10000 evaluations
discarded as burn-in. Family of 150 —J data series
utilized. The darker line on the 2D correlation is the
1ff band.
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Figure 4.26: 50 model runs with parameters sampled
independently from the ensemble generated by the
MCMC search, for a physical forward model of the
Boltzmann equation 2.9, without the phonon term,
plotted on top of the experimental data. In log scale
with the laser fluence peaking at 100 fs.

Figure 4.26 plots the forward model results from fifty model runs, using fifty sets of parameters, indepen-

dently chosen from the ensemble MCMC-generated ensemble, overlaying the obtained data series. Reasonable

agreement is found between both, in terms of the slope of the fall and of the level of stabilization of transmis-

sion. The most striking exceptions are in the earlier moments of the highest fluence data series. The way the

observable is calculated in the forward model (equation 4.1) does not allow for XUV transmission values other

than one, before energy deposition, making the model rigid at earlier time steps. Better agreement between

the slope of the model and acquired data might also be obtained if the value of "t was allowed to relax over

time, to somewhat include the shifts in energy of the DOS as Te increases (figure 2.3), that lead to energy

shifts between the core 3p state and a given part of the continuum.

The fact that strong agreement is found for free electron-like parameters is notable. As discussed in the

introduction, WDM is difficult to model due to the fact that it sits in a region where solid matter and plasma

physics methods collide. Here, the results from a first principles model, seem to indicate only a slight material

dependence of the model results (specifically in the effective mass). For the experimental conditions of our

sample, the electronic population behaves like a nearly-free, fast-thermalizing, electron gas. Both the closeness

of the shape of fall in transmission to that of the TTM-modeled one; and observing the Boltzmann model runs,
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with the parameters set to their central estimates, converging in tens of fs to a hot Fermi-Dirac distribution,

validate the TTM assumptions of instantaneous thermalization of the electron gas, with itself, for our time

resolution.

Figure 4.27 displays the estimate, performed as in section 4.2, of the electronic heat capacity as a function

of temperature. It has a shape congruent with a free-electron-like DOS (the blue line for Al), which was

expected due to the nearly free DOS assumption of the model. The absolute value of the extracted heat

capacity is, however, significantly lower than the theoretical predictions. Figure 4.28 is very similar to the

same data points plotted for the TTM, in all cases. This is due to the MCMC walkers being more likely to

sample regions of high agreement with the data. In this sense, only Te is truly predicted from the forward

model, while the minimal XUV transmission is bounded by the observed data. The disagreements between

the finite temperature DFT predictions are, as before, hypothesized as coming from the poor estimation of

the distance between the 3p and continuum states, of the DFT methods.
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Figure 4.27: Ce vs maximum Te , for each sub-zone
considered, calculated from equation 4.6. Central es-
timate and error bars obtain by sampling 50 model
runs, from MCMC search results for a physical for-
ward model of the Boltzmann equation 2.9. The light
green line is Lin’s result ([41]) for a cold Ti DOS and
the dark blue line refers to calculations with the same
formula but an Al (or FEG-like) DOS. The black dots
are the heat capacity estimates from a finite temper-
ature DFT simulation with a cold lattice.
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Figure 4.28: Minimum XUV transmission vs maximum
Te , for each sub-zone considered. Central estimate
and error bars obtain by sampling 50 model runs, from
MCMC search results for a physical forward model
of the Boltzmann equation 2.9. The black dots are
the optical response properties estimates from a finite
temperature DFT simulation with a cold lattice.

Both detailed collision terms we have been working with can be interpreted as providing relaxation times

as a function of wave vector. Going back to equation 2.7, we can re-write it, drawing inspiration from the

relaxation time approach, as:

Iout(k) = − fk
fiout ;k

+
1− fk
fiin ;k

, with
1

fiout;p
=

Z
k2;k3;k1

Wkk2;k1k3 fk (1− fk3) (1− fk1) ;
1

fiin;k
=

Z
k;k3;k1

Wk3k1;k2kfk3 fk1 (1− fk) :

(4.15)

To provide a single value for time step (or Te) and averaging procedure become necessary. In this case we
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consider all electrons and holes that could participate in the scattering, resulting in:

⟨fiout;k⟩ =
R
k fk · fiout;kR

k fk
and ⟨fiin;k⟩ =

R
k(1− fk) · fiin;kR

k(1− fk)
: (4.16)

A similar procedure can be followed for e-e collisions. Overall we obtain plots like figures 4.29 and 4.30.

Figure 4.29 is comparable to figure 1.4, although for a non-equilibrium situation with cold ions. It shows an

increasing collision frequency with increasing temperature. This behavior is also patent in figure 1.4. The

results shown here, however, point to a lower collision frequency, especially at lower energies, which might

result from the fact that no phonon collisions are being considered. At higher energies, these collisions lose

their relative importance and so we see ie behaving more like the results in figure 1.4. Figure 4.30 shows a

steep increase in e-e collisions with increasing energy, compatible with less restrictive Pauli blocking freeing

electrons to participate in scattering events, as the ensemble heats up. For Te upwards of 10 eV the collision

frequency is on the order of the plasma frequency, an encouraging result.

Figure 4.29: Average e-e collision rates calculated
from equation 4.16, as a function of Te , for 50 dif-
ferent model runs. Each continuous line corresponds
to results of a model run.

Figure 4.30: Average e-e collision rates calculated
from equation 4.16, as a function of Te , for 50 dif-
ferent model runs. Each continuous line corresponds
to the results of a model run.

The Γ and Θ parameter, discussed in 1.2.2, can also be calculated by resorting to the equivalent Te and

— form a Fermi-Dirac fit, performed for every configuration of f (k) the model goes through, and the formula

ne = ~2=mef f ·
R
D(k;mef f )f (k)kdk . These parameters will allow us to properly place the created non-

equilibrium plasma in the phase diagram of figure 1.3. Figure 4.31 shows the degeneracy parameter calculated

for the lowest and highest fluency sub-zones. The middle sub-zone was not plotted, since the calculations

become numerically unstable near — ∼ 0 and produce big error bars that distort the scale. As the blue line

also shows, close to Θ ∼ 1 there should be a transition from positive to negative chemical potential, indicating

a transition to a classical system as the plasma heats up and this is what is observed.

The plasma parameter Γ, calculated for maximal Te and corresponding densities, for each of the sub-zones

considered, is plotted in figure 4.32. As we move to higher fluence zones, Te increases and, with it, we see a

steep decrease in Γ- i.e closer to classical plasma behavior. For the highest fluence zone Γ ∼ 2 was achieved.
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This result is consistent with our physical expectations: an increase in Te increases electronic kinetic energy and

makes their behavior closer to that of free uncorrelated particles, even before the density parameter changes.
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Figure 4.31: Chemical potential —=kBTe as a function
of the degeneracy parameter calculated form equation
1.5, for the maximal Te of the sub-zone in question.
Central estimate and error bars obtain by sampling 50
model runs, from MCMC search results for a physical
forward model of the Boltzmann equation 2.9. The
blue line corresponds to the interpolating fit between
the two degeneracy regimes shown in figure 1.2.
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Figure 4.32: Plasma parameter Γ = d=l (section
1.2.2), as a function of maximal Te of the sub-zone
in question. Central estimate and error bars obtain by
sampling 50 model runs, from MCMC search results
for a physical forward model of the Boltzmann equa-
tion 2.9.

Finally, the ‹s can also be recovered from the model runs since we have access to simulated absorbed

energy density. The area over which a given energy density was absorbed is also known and corresponds to

the area of the respective sub-zone. The volume over which 68% of the total absorbed energy is deposited will

be this area multiplied by ‹s . Since the total absorbed energy is only dependent on the absorbed fluence and

the area of absorption, only ‹s remains unknown. To discover it, the absorbed energy density was calculated

for different ‹s until the experimental one was matched, for each of the fifty model runs sampled from the

MCMC-generated ensemble and each of the sub-zones. The results are present in figure 4.33. In [56], a skin

depth of ‹s = 27:2 nm was reported, in a multi-pulse ablation study, with an 800 nm 40 fs laser, in broad

agreement with our results.
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Figure 4.33: ‹s as a function of Te calculated by inversion of the absorbed energy calculation for each sub-zone.
Central estimate and error bars obtain by sampling 50 model runs, from MCMC search results for a a physical
forward model of the Boltzmann equation 2.9. The blue line corresponds to the interpolating fit between the
two degeneracy regimes shown in figure 1.2. The dark green line the [56] measurement.
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Separate searches

The search performed previously, over the data of the three sub-zones all at the same time, was expanded

here to three independent searches, with the free parameters no longer constrained to be the same for the

three different zones. The "t parameter was set to - 6 eV due to time constraints, with the aim of reducing

the dimensionality of our space of parameters and thus shortening the convergence time. Figure 4.34 shows

the different marginalized posteriors and 2D correlations resultant from these searches, with the color code for

incident fluency of the zone the same as in figure 4.35. The central estimations and 1ff error bars extracted

from these posteriors are present in table 4.4 and together tell an interesting tale.

Figure 4.34: 2D correlations and marginalized poste-
rior distributions of the free parameters of a physi-
cal forward model based on the Boltzmann equation
2.9, without the phonon term. Estimated via 3 differ-
ent MCMC searches, with an ensemble of 40 walkers,
evolved for a total of 15000 model evaluations and
20000 evaluations discarded as burn-in. Family of 150
—J data series utilized. The darker line on the 2D cor-
relation is the 1ff band.
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Figure 4.35: 50 model runs with parameters sampled
independently from the ensembles generated by the
MCMC searches, for a physical forward model of the
Boltzmann equation 2.9, without the phonon term,
plotted on top of the experimental data. In log scale
with the laser fluence peaking at 100 fs.

To some extent, in »ie and even more patently in »ee , the 150 —J innermost sub-zone seems to be the

one more significantly constraining the parameters to be close to free electron-like. This might be indicative

of a regime change, from the highest fluence sub-zone to the intermediate one, namely a move away from a

highly correlated electrons state - that creates the Ti-specific DOS, in the cold solid.

For »ie , the third zone sees a suppression of the expected inverse correlation between »ie and mef f in the

joint search. This correlation is expected since, all else being, equal both a reduction in mef f and »ie lead to

a higher equivalent Te being reached. As such they move inversely to one another to counteract this effect.

As for »ee , this highest fluence sub-zone is the only one with a peak marginalized posterior at a value close

to a free electron result. The other two zones show broad posteriors resulting in wide error bars that indicate

an insensitivity of the observable changes in this parameter.
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Zone »ei=»
0
ei »ee=»

0
ee mef f =m

0
ef f

150 —J, outer 1:39+1:22
−0:46 5:19+3:25

−2:81 1:30+0:61
−0:71

150 —J, middle 1:78+0:46
−0:31 5:94+2:70

−3:36 eV 0:82+0:42
−0:33

150 —J, inner 1:01+0:12
−0:07 1:62+1:28

−0:52 eV 1:74+0:14
−0:10

Table 4.4: Most likely value and 1ff errors of the 3 MCMC searches performed, one for
each sub-zone, for a physical forward model of the Boltzmann equation 2.9, without the
phonon term.

It is also noticeable that the mef f parameter does not decrease as the excitation level of the electrons

increases. This would be expected since, in the Ti DOS (figure 2.3) the electrons closest to the Fermi energy

are d band electrons, while the electrons closer to zero continuum energy (the last ones to get excited by

the pump laser) are s like. This discrepancy might be due to "t being fixed in these simulations, since these

would seem to suppress the strong correlations that exist between mef f and "t and tend to fix mef f to the

corresponding value of "t that was previously fixed.

Finally, 4.35 displays a similarly good agreement to the joint search. Probably, the addition of "t to the

search would produce an even better agreement, but that remains to be seen. The remainder of the graphs

shown in the previous section do not change substantially and neither do their interpretations.

4.3.5 Summary and Conclusions

• A Boltzmann equation considering detailed e-e and e-i-pt collision terms was analytically simplified

(momentum sums turned to integrals which were solved, not including electron-phonon and non-elastic

e-i collisions). After the computational solution was implemented, we performed a study of the different

effects of the screening parameters and the effective mass on the behavior of f (k);

• A joint and three other separate MCMC searches were performed for a physical forward model based on

the Boltzmann equation. This was done to simulate the absorption of the NIR pump by the Ti film on a

fundamental level and check if longer-lived non-equilibrium electrons, created by the absorption process,

contribute to the differences in slope between the TTM and the data;

• We can conclude that a nearly free electronic DOS adequately captures the broad effects observed in

the data. Overall the mef f was higher than one, which is expected for a d band metal;

• In the three separate searches, the highest fluence zone stands out as the one with the most peaked

marginalized posteriors and the one with »ie and »ee , the inverse screening radius, closer to the one

expected for a free electron gas. This has to do with the innermost zone achieving the highest Te

and, as such, being the one with the lowest e-e binding energy, relative to kinetic energy, i.e., the more

free-electron-like;

• The joint search for the three sub-zones indicates fast thermalization of the electrons (in a situation

close to figure 4.21), such that, for the experimental time resolution, non-equilibrium effects would not

affect the observable. The three separate searches did not provide better agreement despite significantly

more model freedom.
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Chapter 5

Conclusions and Perspectives

Throughout this thesis, we presented an experimental study of isochorically heated warm dense Ti, out of

equilibrium, probed with XUV in the bound-to-continuum region. The results are centered around two different

physical forward models used to simulate the electronic distribution, in time, of the Ti electronic population.

From this distribution, the experimental observable can be simulated, if we also know the distance in energy

between the 3p states and the electron continuum. As such, both physical models were used for the likelihood

function calculation, enabling MCMC searches, an algorithm aiming to independently sample the posterior

probability distribution. Two different types of searches were performed, for each of the models: searches of

the joint posterior distribution, concerning the data of several sub-zones in the same search; and independent

searches, for each sub-zone.

The first forward model deployed was a TTM. It assumes instantaneous e-e thermalization but was expected

to adequately model e-i energy exchange, if provided with the right coefficients. The MCMC searches of the

joint posterior distributions revealed poor agreement between the model and experimental data when the cold

Ti DOS was employed in the Lin-like calculations of Ce and Gei (equations 2.16 and 2.17, respectively). The

joint search results for a nearly free DOS, using the previously mentioned e-i coupling formula were more

congruent with the experimental data, possibly because of the added freedom coming from the parameter-

dependent DOS. They still reveal, however, some overestimation of the e-i energy exchange rate, for the lower

fluence sub-zones, and an underestimation of it, for higher fluence sub-zones. We obtained better agreement

between model results and data when the searches were run independently for each sub-zone. In this case,

Gei was considered a constant, for a given sub-zone, but allowed to vary between sub-zones, resulting in the

most data-driven estimation of how this parameter changes with Te , which behaves differently from theoretical

predictions.

The second forward model utilized seeked to describe the detailed absorption and e-e relaxation processes

and was based on solving the Boltzmann equation, with detailed collision integrals. Both joint and independent

MCMC searches revealed good agreement between the model results and the data and revealed nearly-free

screening coefficients of the electron gas. These results also appear to validate a TTM-like treatment of the

experimental data, for a 50 fs time resolution, since in our best-fit simulations e-e equilibrium was established
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in a few fs, after the laser excitation begins. Overall, we can conclude that e-e thermalization is quick, from

the Boltzmann model, which validates the TTM assumption of instantaneous electron-electron equilibration,

at our 50 fs time resolution. The independent MCMC searches of the Boltzamnn model also revealed the

highest fluence zones to be constraining the parameters to more free-electron-like.

Correlations between the modeling parameters were found in the TTM runs, which show that a constant

Gei can be an effective assumption, in a large range of parameters, if such constant is adjusted for the incident

pump intensity. A positive correlation was found between "t and ‹s=‹
0
s while negative correlations prevail

between ‹s=‹
0
s and both Gei=G

0
ei and mef f =m

0
ef f . Overall a free electron gas and TTM can describe the data

well. Values of Gei were shown to increase with temperatures in the domain we probed while remaining in the

range of previously published values.

In the future, both models would benefit from DFT Ti DOS calculations for elevated electronic and ionic

temperatures. The Boltzmann model could be expanded to include non-elastic e-i collisions and thus the e-i

energy exchange. Furthermore, different likelihood functions could be experimented with and Bayesian model

selection could be attempted. More robust and faster optimization processes could also be experimented with

[64]. On the experimental side, a measurement of "t is paramount for a reduction in the uncertainty over

simulated Te . Tighter control of the pump laser spatial profile and total energy would also contribute to results

better tagged for average fluence. To better study non-equilibrium e-e effects, a shorter pump pulse would be

required as well as an HHG spectrum centered closer to the Fermi energy.

5.1 Contributions

• Except for the raw data acquisition, all the data analysis and computational algorithms were done by

the corresponding author;

• Poster presentation for the 13th International Conference on High Energy Density Laboratory Astro-

physics, in Lisbon (HEDLA2022);

• Poster presentation at the Extreme Light Infrastructure (ELI) summer school (ELISS2022), in Szeged,

Hungary - where it won the award of best scientific poster presentation;

• Presentation on the Radiative Properties of Hot Dense Matter conference, at the Los Alamos National

Laboratory in Santa Fe, New Mexico.

.
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Appendix A

Figure A.1: Marginalized posterior distributions of MCMC searches performed for a
physical forward model of a TTM, with constant Gei and DOS as in equation 4.4.
Ensemble of 40 walkers. The darker line on the 2D correlation is the 1ff band.
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