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Abstract—Autonomous driving relies on various complex sys-
tems to perform essential tasks in the automated driving scenario.
A key task for environment perception is camera-based object
detection. Recent advances in the field of computer vision have
made the use of deep convolutional neural networks the state-of-
the-art for object detection tasks. For safety-critical systems, such
as autonomous driving, it is essential to measure how reliable the
estimated output detections are. Accurate quantification of the
uncertainty associated with each detection can provide safer and
more reliable autonomous driving. In this work, we research
novel approaches to characterize uncertainty in deep learning
detection methods, as well as explore improvements to the
current state-of-the-art methods. We propose the first Test-Time
Augmentation (TTA) method for estimating aleatoric uncertainty
in object detection. For this purpose, we develop a novel TTA
pipeline and show that it is capable of outperforming the
current state-of-the-art methods, Monte Carlo (MC) Dropout and
Output Redundancy, in the quality of predicted distributions and
estimated uncertainty for both the classification and regression
task. Studies are carried out to investigate the use of a bounding
box selection criterion and two different Intersection-over-Union
(IOU) thresholds for each task (classification and regression). We
show that improvements in performance in the MC Dropout and
Output Redundancy methods can be obtained by applying an
optimal bounding box selection criterion and two different IOU
thresholds for each separate task. The lower IOU thresholds, used
in the clustering step, are shown to generate the best results for
the regression task, while the higher IOU thresholds produce the
best results for the classification task.

Index Terms—Uncertainty Quantification, Object Detection,
Test-Time Augmentation, Autonomous Driving

I. INTRODUCTION

Autonomous driving relies on various complex systems to
perform essential tasks in the automated driving scenario. A
key task for autonomous driving systems is camera-based
object detection, which allows the detection of road users,
such as vehicles and pedestrians, essential for a safe driving
environment.

Object detection in camera-based inputs is the task of
predicting both the position and type of multiple objects in
a given image. For the past few years, advances in the field
of computer vision have made the use of deep convolutional
neural networks the state-of-the-art for the object detection
task, with algorithms such as SSD [1], YOLO [2] and R-CNN
[3].

A neural network object detector produces multiple bound-
ing box predictions, each combined with a classification score.

The shape and position of the bounding box are represented
by four predicted coordinate values. For the category of an
object, classification scores (with values ranging from 0 to 1)
are produced for each different category. As multiple bounding
boxes are predicted for each object, an algorithm known
as Non-Maximum Supression (NMS) [4] is usually used to
remove redundant detections.

The classification score for each predicted bounding box is
often mistakenly treated as a confidence probability, when it
is actually just a normalized network output. Gal in [5] noted
that networks tend to yield overconfident predictions to falsely
detected objects. Not only that, the classification scores are
used as detection scores without considering the localization
uncertainty. Current state-of-the-art object detectors have no
measure of how certain they are in their predictions [6].

It is not sufficient to rely on the classification score alone.
For safety-critical systems, such as autonomous driving, an
accurate quantification of the uncertainty associated with each
detection can provide safer and more reliable autonomous
driving.

Gal in [7] defined two types of uncertainty in deep learning:
aleatoric and epistemic. Epistemic, or model uncertainty, con-
cerns the uncertainty related to the model itself, and aleatoric,
or data uncertainty, is associated with intrinsic randomness
present in the data.

Object detectors that can measure the associated uncertainty
for each detection are known in the literature as Probabilistic
Object Detectors. Several works have been developed in the
field of Uncertainty Quantification (UQ) in object detection.
We refer the reader to the work by Feng et al. [8], where a
review of such detectors was performed.

Following the need for probabilistic object detectors for
safer and more reliable autonomous driving, the main goal
of this work is to research novel approaches to characterize
uncertainty in deep learning detection methods. The improve-
ment of current state-of-the-art methods in this field is also
another objective, and these studies should hopefully lead to
better decision making in the automotive automation industry.

This dissertation offers the following contributions:

• We propose the first TTA method for the estimation of
aleatoric uncertainty in object detection. For this purpose,
a novel TTA pipeline was developed.

• We evaluate how different color augmentations impact
the quality of the estimated uncertainty and predictive
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distributions with the TTA, in the domain of autonomous
driving.

• We explore the use of two different IOU thresholds for
each task (classification and regression) and its effects
on the quality of the estimated uncertainties and distribu-
tions.

• We study the effect that different bounding box selection
criteria (which define what boxes are used for uncertainty
estimation) have on the quality of the estimated uncer-
tainty and predictive distributions.

II. THEORETICAL BACKGROUND

A. Practical Methods for Uncertainty Estimation

Following the literature review of probabilistic object de-
tectors in [8], the different methods used for the task of un-
certainty estimation in object detection are: Direct Modeling,
MC Dropout, Output Redundancy and Deep Ensembles. As
only the MC Dropout and Output Redundancy are used in
this dissertation, solely an explanation for those methods is
provided.

1) Output Redundancy: Output Redundancy was devel-
oped by Le et al. in [9] to model aleatoric uncertainty
without sampling by iterating all detection proposals. This
technique replaces the NMS post-processing step with spatial
clustering of redundant output detections, with IOU as an
affinity measure between detections. IOU measures the overlap
between two two-dimensional boxes. Then, by computing
the sample mean and variance among the members of each
cluster, category and bounding box uncertainty estimates can
be generated that describe each output detection.

2) Monte Carlo Dropout: The MC Dropout is a sampling-
based method that uses dropout layers to model epistemic
uncertainty. It was developed by Gal and Ghahramani in [5]
for UQ in image classification and regression tasks. Miller et
al. extended this method for the object detection task for the
first time in [10].

Dropout is a technique that randomly deactivates neurons
in a layer. By retaining dropout layers while testing, multiple
forward passes can be performed to generate different output
predictions by stochastically deactivating neurons for each
forward-pass. The variance of the predictions can be used
to estimate epistemic uncertainty. In the literature, it has
been used for the object detection task by Miller et al. in
several works [10]–[12] to estimate epistemic uncertainty,
as well as jointly used with the direct modeling method in
[13], [14] to estimate both aleatoric and epistemic uncertainty
simultaneously.

B. Test-Time Augmentation

The aforementioned methods are those used so far in the
literature for UQ in object detection. However, different UQ
methods have also been used in deep learning for other tasks
[15]. One of these methods is TTA, which was previously
used to quantify aleatoric uncertainty in image segmentation
[16] and image classification [17], mainly in the biomedical
domain.

The TTA method is an application of data augmentation
to the test dataset. Multiple augmented versions of each

image are created, and predictions are performed for each
version, creating an ensemble of those predictions. Tipically,
the method is used to improve predictive results. However, by
measuring how diverse the predictions for a given image are,
aleatoric uncertainty estimations can be performed [16], [17].

For the object detection task, TTA has been used in practical
applications to improve mAP and recall metrics [18]. By
providing augmented versions of each image, the detector has
a better chance of correctly identifying an object and, thus,
improving performance.

However, TTA has not yet been applied to UQ for object
detection in the literature. One of the main contributions of this
dissertation is the use of TTA for the first time to estimate
aleatoric uncertainty in object detection. Studies will also
be performed to evaluate how different color transformations
impact the quality of the estimated uncertainty in the domain
of autonomous driving.

C. Clustering Techniques and Affinity Measures

For Output Redundancy [9] and sampling-based methods
(Deep Ensembles [12] and MC Dropout [10]–[14]), cluster-
ing of redundant detections is the established technique for
uncertainty estimation in object detection.

Miller et al. [11] evaluated various clustering techniques
and affinity measures. They found that a Basic Sequential
Algorithmic Scheme (BSAS) with IOU and Same Label as
affinity measures produced the highest uncertainty quality. As
in [12], this technique will be treated as the current established
merging strategy for the remainder of this dissertation.

Using IOU as a spatial affinity measure, a minimum IOU
score must be met between detections for them to be clustered
together. Although experiments with various IOU minimum
thresholds were performed in [11], no works in the literature
have explored the use of two different IOU minimum thresh-
olds for each separate task (regression and classification). In
this dissertation, we will use two different IOU minimum
thresholds for each task and explore its impact on the quality
of the estimated uncertainties.

D. Bounding Box Selection Criteria

After each forward-pass in sampling-based methods, from
the total output predictions, only some are kept. The kept
predictions from each run are accumulated and used to es-
timate the uncertainty. For the remainder of this dissertation,
the technique or rule that decides which predictions are kept
after each run is called a bounding box selection criterion.

The current established technique uses NMS as a criterion
[10]–[12]. After each forward-pass, NMS is performed, and
only the resulting predictions from NMS are accumulated and
used for uncertainty estimation.

However, all output predictions from a single forward-pass
can be used for uncertainty estimation [9]. We believe that
limiting the number of output predictions by using NMS as a
bounding box selection criterion can result in missing valuable
information to estimate uncertainty. As no other works have
been developed regarding the usage of different bounding box
selection criteria, in this dissertation we propose to study the
effect that different criteria can have on the quality of the
estimated uncertainty.
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E. Evaluation of Predictive Distributions and Uncertainty

Feng et al. in [8] remark that there is little agreement on how
to evaluate probabilistic object detectors in the literature. There
are a range of different metrics used for each method, the
most used being Mean Average Precision (mAP), Probability-
based Detection Quality (PDQ) and Minimum Uncertainty
Error (MUE).

This dissertation will follow the work developed in [6], also
using Negative Log Likelihood (NLL) for the evaluation of
predictive distributions, as the well as Minimum Uncertainty
Error (MUE) to assess the quality of the estimated uncertainty.
The Mean Average Precision (mAP) metric will also be
computed since it is the standard evaluation metric in object
detection.

III. METHODOLOGY

In this section, we firstly present an overview of the original
TTA method pipeline, followed by the proposed modifications
that result in a novel TTA pipeline to quantify uncertainty
in object detection, as well as an explanation regarding how
predictive distributions are estimated.

A. Original Test-Time Augmentation Pipeline

In Figure 1, the original TTA pipeline is represented.

Final Detections

Accumulated  
Predictions

YES

NOTotal number of 
runs reached?

Image Augmentation

Object Detection

Accumulate 
Predictions

Non-Maximum
Suppression

Original Image

Increase Augmentation
Factor

Fig. 1. Original TTA Pipeline

The first step in the pipeline is the image augmentation. The
chosen augmentations used in this dissertation are contrast,
gamma, brightness, and Gaussian blur.

In the second step, after the augmentation has been per-
formed, the resulting augmented image will be provided as an

input to the object detector, which will output predictions that
describe possible objects in the image.

The third step in the pipeline is to accumulate all the
predictions. Then, if the total number of runs has not yet been
reached, the augmentation factor is increased, and the first
three steps are performed again, resulting in more accumulated
predictions.

When the total number of runs is reached, a group of
accumulated predictions is formed from all of the runs. The
final step is to perform the NMS algorithm on the accumulated
predictions, which will remove redundant predictions and
output the final object detections of the image.

B. Image Augmentations

There are different ways of performing augmentations in
images, mainly with positional or color transformations. These
should be chosen carefully to preserve the quality and domain
of the dataset used.

In this dissertation, only color augmentations were per-
formed, in which the values of the pixels in each image were
modified.

For each augmentation, the range of parameter variation
was chosen by visualizing the different transformations in the
images from the used dataset and choosing the values that
would not distort the image to a point where it was no longer
realistic.

1) Constrast Augmentation: Increasing the contrast of an
image will cause the brighter regions to become brighter and
the dark regions of the image to become darker. Decreasing
contrast will result in a smaller difference between the bright
and dark regions of an image.

2) Gamma Augmentation: The gamma correction directly
impacts the shadows in an image. With lower gamma factors,
shadows become brighter, which can be beneficial to better
define the contours of objects in an image. Higher gamma
factors cause shadows to become darker.

3) Brightness Augmentation: Altering the brightness of
an image will modify all pixels equally. When brightness is
increased, both the dark and bright areas become brighter. Vice
versa, decreasing the brightness will cause both bright and dark
areas to become darker.

4) Gaussian Blur: A Gaussian blur will introduce a blur
to the original image. In an autonomous driving setting, the
occurrence of motion blur in images is very common due to
car motion. This phenomenon is characterized by having a
larger incidence of blur in the direction of the car’s movement
than in other directions. Although Gaussian blur is not able to
completely reproduce motion blur, this augmentation will be
used to provide a closer representation of images where blur
is present.

C. Test-Time Augmentation Pipeline for Uncertainty Quantifi-
cation in Object Detection

In this section, an overview of the modifications performed
on the original TTA method is given. We extend the original
pipeline of TTA to quantify aleatoric uncertainty for the first
time in object detection.
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In Figure 2, the novel pipeline can be visualized. By
measuring how diverse the predictions are for a given image,
aleatoric uncertainty estimations can be performed, as seen in
[16], [17]. The extended steps added to the original pipeline
are largely based on the established merging strategy technique
developed by Miller et al. [11].

Final Clusters

Accumulated  
Predictions

YES

NOTotal number of 
runs reached?

Image Augmentation

Object Detection

Bounding Box Selection
Criterion

Accumulate Selected
Predictions

Cluster Centers

Non-Maximum
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Original Image

Increase Augmentation
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Fig. 2. Novel TTA Pipeline for UQ

The first two steps of the novel pipeline remain the same as
those of the original pipeline. First, an image augmentation is
performed. In the second step, the resulting augmented image
will be sent as an input to the object detector, which will
output predictions that describe possible objects in the image.

The third step is the first major difference between these
two pipelines, where a bounding box selection criterion step
is performed on the output predictions. The criteria used in this
dissertation will be based on the maximum classification score
obtained for a prediction. For example, with a bounding box
selection criterion of 0.01, only predictions with a maximum
classification score of at least 0.01 are kept.

The remaining predictions from the bounding box selec-
tion criterion step are accumulated. Then, as in the original

pipeline, if the total number of runs has not yet been reached,
the augmentation factor is increased, and the first four steps
are performed again, resulting in more accumulated selected
predictions.

When the total number of runs is reached, a group of
accumulated predictions is formed from all of the runs. In the
next step, the NMS algorithm is performed on the accumulated
predictions, as in the original pipeline. Redundant predictions
are removed, and the final object detections for the image are
obtained.

The final step is the second major difference between
the original and novel pipelines. Using the final detections
as cluster centers, a clustering step is performed that will
associate each final detection with a group of predictions. This
clustering step is based on the established merging strategy
technique developed by Miller et al. [11], which uses a BSAS
with Same Label and IOU as affinity measures.

BSAS is a basic clustering algorithm that sequentially
groups detections that meet a minimum affinity threshold.
For each detection, if the affinity with any existing cluster
center meets the minimum requirement, the detection joins the
cluster. The Same Label affinity measure is a semantic affinity
measure that requires a detection to have the same predicted
class label as the cluster center. The IOU affinity measure is a
spatial affinity measure that compares the location and shape
between the detection and the cluster center.

Thus, in the last step of the novel pipeline, for each cluster
center, the IOU score is calculated with all the accumulated
predictions. Every prediction that predicts the same class label
as the cluster center and also meets a minimum defined IOU
threshold score with the cluster center joins the cluster. The
output of this step will be the final clusters of predictions for
every object present in the image.
D. Distribution Estimation

With the final clusters, we can estimate the predictive
distributions for each detected object and measure the aleatoric
uncertainty.

1) Categorical Distribution: Based on the work developed
by Kendall and Gal [7] and Miller et al. [10], a single
forward-pass generates a set of individual detections, each with
bounding box coordinates b and a classification score vector
s. Denoting these detections as Di = {si, bi} for a single
pass, performing multiple forward-passes creates a larger set
D = {D1, ..., Dn}. These detections will be paired in groups
of clusters and as per [7], [10], the vector class of probabilities
qi (for each final cluster) can be approximated by averaging
all classification score vectors si of the bounding boxes that
belong to that cluster.

qi ≈ si =
1

n

n∑
j=1

sj (1)

Given an image I and the set of detections D, the previous
equation gives us an approximation of the probability of the
class label yi for a detected object in image I given all
predicted detections in D, which is described as a Categorical
distribution parameterized by qi, with k different classes:

p(yi|I,D) ∼ Cat(k, qi) (2)
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For each detected object, the uncertainty in the classi-
fication task can be measured by computing the entropy
H(qi) =

∑k
i=1 −qi·log(qi). If a detection has high uncertainty

associated to it, it is expected that the classification scores
for each class are more evenly distributed in terms of mass
probability (which causes a higher value of entropy) as well
as a lower maximum score.

2) Multivariate Gaussian Distribution: Following the
same work [7], [10], as in Section III-D1, the distribution
over the bounding box coordinates can also be approximated
by computing a covariance matrix Σ and averaging over the
bounding box vectors bi of all grouped detections in every
single cluster:

bi =
1

n

n∑
j=1

bj , Σ =
1

n

n∑
j=1

(bj − bi)(bj − bi)
T (3)

Therefore, given an image I and the set of detections D, an
approximation of the ground truth target coordinates z for a
detected object in the image I given all predicted detections
in D is described as a multivariate Gaussian distribution,
parameterized with bi and Σ:

p(z|I,D) ∼ N (bi,Σ) (4)

For each detected object, the uncertainty in localization
can be measured by computing the entropy H(N (bi,Σ)) =
1

2
ln det(2πeΣ). The uncertainty is then correlated with the

amount of variability, in terms of location, of the predicted
coordinates of the bounding boxes present in each final cluster
around an object. If all boxes are situated very similarly in the
same locations, a low value of uncertainty will be measured,
while if each box location varies greatly for a single object, a
high value of uncertainty will be attributed to that detection.

IV. EXPERIMENTAL SET-UP

In this dissertation, four different experiments were per-
formed, which are detailed in Section IV-B. To implement the
proposed studies, a dataset with images from the autonomous
driving domain and a deep object detector had to be chosen.
For the object detector, the YOLOv5 architecture [19] was
chosen, and for the dataset, the Berkeley Deep Drive (BDD)
[20], a diverse driving dataset for heterogeneous multitask
learning.

The algorithms were developed using the Python program-
ming language and mainly the Pytorch framework. The code
developed in this work was built on top of the existing
code for the YOLOv5 detector [19]. Furthermore, the main
inspiration for code development came from the work of Ali
Harakeh [21], especially the state-of-the-art implementation
of methods such as Output Redundancy, MC Dropout, and
the evaluation metrics. The fully developed code for the
experiments performed in this dissertation is presented in [22].
The experiments were performed with an NVIDIA GeForce
RTX 2070 SUPER GPU, provided by ISR - Instituto de
Sistemas e Robótica.

A. Object Detector and Dataset

The smaller version YOLOv5s was chosen. The object
detector used for this dissertation was pre-trained with the
COCO dataset [23] and therefore can localize and classify
80 different classes. The original BDD dataset identifies 10
different category classes.

Following the work developed in [8], [21], the only cate-
gories used are the following seven: car, person, bus, truck,
motorcycle, bicycle and rider. Of the 80 different classes that
the pre-trained YOLOv5s can classify, only 6 correspond to
the classes in the BDD dataset, where the missing class is
rider. To solve this issue, we decided to consider the rider
class equal to a person ground truth label.

B. Experiments

Some parameters are fixed and equal to all experiments. The
object detector chosen to perform the inference on the images
is YOLOv5s and the chosen images are the test set taken from
the BDD dataset. The number of runs performed in the TTA
method is also always fixed at 10.

For Experiments 1 and 2, only the gamma augmentation is
performed, with gamma factors in the interval [0.4; 2] in steps

of
2− 0.4

10− 1
= 0.178.

1) Experiment 1 - Bounding Box Selection Criteria and
IOU Thresholds: In Experiment 1 we propose to study the
effect that different bounding box selection criteria can have
on the quality of the estimated uncertainty and predictive
distributions. Additionally, for each criterion, we propose an
investigation of different IOU thresholds in the clustering step.

The chosen bounding box selection criteria will be based on
the maximum confidence score obtained for a detection and
will be compared to the established technique NMS [10]–[12].
The different criteria chosen to investigate are as follows.

• NMS - Perform NMS on the detections of each particular
run and only accumulate those remaining

• Detections with maximum Confidence Score > 0.1
• Detections with maximum Confidence Score > 0.01
• Detections with maximum Confidence Score > 0.001
• Detections with maximum Confidence Score > 0.0001

The IOU threshold used in the clustering step will also
be investigated. Therefore, for each bounding box selection
criterion, a range of different IOU thresholds will be utilized.

To have a general understanding of its impact, the val-
ues chosen to be studied for the IOU threshold are:
[0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95].

2) Experiment 2 - Two Different IOU Thresholds for
Regression and Classification: For Experiment 2, we propose
the use of two different IOU thresholds for classification and
regression to explore its impact on the quality of the estimated
uncertainties. Therefore, for the same object, two different
groups of bounding boxes are used to estimate the uncertainty
for each task. We hope to find an optimal combination of IOU
thresholds that maximizes performance.

The intervals of IOUs chosen for each task were as follows:
• Regression task: [0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65].
• Classification task: [0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1].
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For this experiment, the bounding box selection criterion is
fixed at 0.01.

3) Experiment 3 - Different Augmentations for UQ in
TTA: In Experiment 3 we propose to evaluate how different
color transformations impact the quality of the predicted
distributions and the quality of the measured uncertainty for
the domain of autonomous driving.

The bounding box selection criterion will be fixed at 0.01
as in Experiment 2 and now a combination of IOUs will be
chosen and fixed for the classification and regression task. The
actual values to be used will be those that show improvements
in performance in Experiment 2.

Four different augmentations will be tested, each with an
interval of possible augmentation factors that are incremented
in each run.

The augmentations performed were as follows:
• Gamma: [0.4; 2]
• Contrast: [0.3; 2]
• Brightness: [0.3; 2]
• Gaussian blur: [0.1; 3]
After evaluating the results for each augmentation, a second

study will be performed. We propose to investigate whether the
combination of different augmentations can further improve
the performance obtained.

From the initial four augmentations, we will choose the
three best performing ones to combine. These three augmen-
tations will be combined in pairs, producing three possible
combinations. As 10 runs are performed, one augmentation
will be used for 5 runs, while the other augmentation will be
used for the remaining runs. As each augmentation is only
used 5 times, the augmentation factor interval will now be
split into 5 uniform portions, instead of the previous 10.

4) Experiment 4 - Comparative Study of UQ Methods:
In Experiment 4 we propose to investigate the performance
(in both classification and regression tasks) of the novel TTA
method, in comparison to the state-of-the-art methods (MC
Dropout and Output Redundancy) and the baseline determin-
istic YOLOv5 object detector. A second objective is to study
possible improvements to the aforementioned state-of-the-art
methods by modifying some of their parameters with more
optimal ones that were obtained with the discoveries from the
previous experiments.

The TTA method will utilize the best performing parameters
found in Experiments 1,2 and 3. These parameters include a
bounding box selection criterion from Experiment 1, a combi-
nation of two IOU thresholds for each task from Experiment
2 and the augmentations from Experiment 3.

This experiment will be divided into two sections. In the
first section, the best TTA method will be compared with
the baseline and state-of-the-art methods, using the established
state-of-the-art parameters in the literature.

Therefore, for both the MC Dropout and Output Redun-
dancy, the clustering algorithm used will be a BSAS with
Same Label and IOU = 0.95 as affinity measures [11]. The
MC dropout will use NMS as the bounding box selection
criterion, and the Output Redundancy, as it only performs one
run, will use all 15120 bounding boxes, without a bounding
box selection criterion [9].

To provide a fairer comparison, the MC dropout will also
perform 10 runs of inference for each image, just as the TTA.
Following the work of Feng et al. in [8], a dropout rate of
0.1 was inserted before the final convolutional layer of the
YOLOv5 architecture.

For the second section of the experiment, changes to the
parameters of the MC Dropout and Output Redundancy will
be performed, taking into account the optimal results already
incorporated into the TTA method. These modifications could
occur in the bounding box selection criterion used as well as
different IOU thresholds for each task.

C. Evaluation

1) True Positives (TP), False Positives (FP) and False
Negatives (FN): In this dissertation, we use the rules from
the PASCAL VOC challenge [24], adding only an extra
requirement for the considered TP detections, to account for
the autonomous driving domain.

A detection is considered a TP if its IOU score with the
ground truth target is greater than 0.5 and, at the same time,
if its predicted class corresponds to the ground truth target
class.

A detection is considered a FP if it does not meet the
minimum required threshold 0.5 of IOU with any ground
truth target, or if it meets the minimum IOU threshold but
the predicted class is different from the ground truth target
label.

If multiple detections meet the requirements of a TP with
the same ground truth (IOU greater than 0.5 and the correct
class), only the detection with the highest confidence score will
be considered as the TP. Any other detection is considered a
FP if it does not meet the requirements of being a TP with
any other ground truth.

FN are all ground truth target boxes that did not have any
detection correctly attributed to them as TP.

2) Metrics for Evaluation: The metrics used for the evalua-
tion in this work are based on the work in [6]. Three evaluation
metrics are used to quantify the performance of the methods.
For performance in the detection task, we use mAP [23]. The
maximum mAP achievable by a detector is 100%. The MUE
[11] is used to determine the ability to distinguish between TP
and FP detections using the detector’s estimated uncertainty.
The lowest MUE achievable by a detector is 0. Finally, the
NLL is used to evaluate the estimated predictive distributions
for both classification and regression tasks for TP detections.
The best results for NLL by a detector occur when NLL is
equal to 0.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experiment 1 - Bounding Box Selection Criteria and IOU
Thresholds

1) Results for Experiment 1 - Negative Log Likelihood:
The results obtained in Experiment 1 for NLL in the regression
task are shown in Figures 3 and 4.

As the IOU threshold values increase, the quality of the
predicted distributions worsens. Higher IOUs will restrict the
number of bounding boxes attributed to each final cluster,
gathering only those with similar localization, which in turn
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Fig. 3. Results for Experiment 1 - NLL Regression Task vs. IOU for different
bounding box selection criteria
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Fig. 4. Results for Experiment 1 - NLL Regression Task vs. IOU (zoomed
in) for different bounding box selection criteria

can result in missing valuable information for the accurate
estimation of the distributions.

Regarding the different bounding box selection criteria,
NMS performs the worst, even when lower IOUs are used.
One possible explanation is that this technique filters out too
many bounding boxes, only leaving the most accurate ones.
However, for the other criteria, similar results were obtained,
with only an exception for the 0.1 criterion, which performs
slightly worse in comparison to the 0.01, 0.001 and 0.0001
criteria.

In Figure 5, the NLL results in the classification task for
Experiment 1 are shown. For the classification task, almost the
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Fig. 5. Results for Experiment 1 - NLL Classification Task vs. IOU for
Different Bounding Box Selection Criteria

inverse of what was previously discussed for the regression
task is observed. With higher IOU values, better results are
obtained for each criterion, and the stricter the criterion used,
the higher the quality of the estimated distributions. There
is also an evident bias caused by broader criteria and lower
quality detections, which can be mitigated by higher values of
IOU. This is evident from the fact that for lower IOU values,
where a large number of bounding boxes are clustered for each
object, the quality of the predicted distributions worsens.

One possible extrapolation from these results is that the
fewer the number of bounding boxes used to compute the mean

of the classification scores, the better the final predictions.
In a broader view of the results obtained for the NLL in

Experiment 1, taking into account both the regression and
classification tasks, one could argue for the use of different
bounding box selection criteria for each task, with NMS or
0.1 for the classification task and 0.0001, 0.001 or 0.01 in the
regression task.

Furthermore, lower IOUs are preferred for the regression
task, while higher IOUs are preferred for the classification
task.

2) Results for Experiment 1 - Minimum Uncertainty
Error: The results for the MUE in both the regression and
classification tasks are shown in Figure 6 and Figure 7,
respectively.

The results obtained continue to demonstrate a similar re-
mark previously given in the NLL section: the higher the IOU
threshold, the better the results for the estimated uncertainty
in the classification task, but the worse the results for the
regression task.

For the regression task, in Figure 6, the worst performances
occur with a bounding box selection criteria of 0.0001 and
0.001, while the other three have similar results. There is
an optimal IOU value threshold around the 0.15-0.25 IOU
mark, and adding more bounding boxes to the cluster (by
further lowering the IOU) can indeed worsen the distributions
created. One possible explanation for this is, for example, the
introduction of bounding boxes that belong to nearby objects.

For the classification task, in Figure 7, the results improve
with higher IOU values. The bounding box selection criteria
perform very similarly, except for the 0.1 criterion, which is
the worst of them, and NMS, which is the best of them.

B. Experiment 2 - Two Different IOU Thresholds for Regres-
sion and Classification

In this section, the IOU threshold used for the regression
task will be mentioned as IOUr and the IOU threshold used
for the classification task as IOUc.

1) Results for Experiment 2 - Negative Log Likelihood:
The results for the NLL in regression and classification tasks
are shown in Figures 8 and Figure 9, respectively.
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Fig. 6. Results for Experiment 1 - MUE Regression Task vs. IOU for different
bounding box selection criteria
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Fig. 7. Results for Experiment 1 - MUE Classification Task vs. IOU for
different bounding box selection criteria
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Fig. 8. Results for Experiment 2 - NLL Regression Task for different
combinations of IOUr and IOUc
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Fig. 9. Results for Experiment 2 - NLL Classification Task for different
combinations of IOUr and IOUc

For the classification task, a clear observation can be made:
NLL depends only on IOUc. Varying IOUr has no effect on
the final value of NLL.

For different IOUc values, the higher the threshold, the
better the results obtained. The best situation is to use a IOUc

value equal to 1, which is equivalent in practice to only using
the confidence scores of the best detection, the cluster center.

Analyzing now Figure 8 with the results of the regression
task, a different behavior is visible. For different thresholds
IOUc, improvements are obtained as the threshold IOUr

decreases. In a practical sense, as more detections are collected
for each object, the quality of the predicted distributions
increases.

The worst results in regression occurred when IOUc is
equal to 1. As the threshold IOUc drops, the results continue
to improve up to the threshold mark of 0.85. However, lower-
ing it more than that causes the opposite effect: thresholds of
0.80, 0.75 and 0.70 have increasingly worse results. Therefore,
the aggregation of an increasing number of bounding boxes to
calculate the categorical distribution can help the performance
in the regression task to some extent. With an IOUc threshold
lower than 0.85, the results of the regression task worsen.

2) Results for Experiment 2 - Minimum Uncertainty
Error: Regarding the quality of the measured uncertainty for

the classification task, shown in Figure 10, the uncertainty
error is only affected by the IOUc threshold, similarly to
the previous case. Any changes to the IOUr threshold have
no effect on the final results. Upon analysis of the effect of
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Fig. 10. Results for Experiment 2 - MUE Classification Task for different
combinations of IOUr and IOUc

varying the IOUc thresholds, no broad conclusion can be
reached. As the threshold goes down, indeed as before, the
results worsen until the 0.90 threshold is reached. However,
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TABLE I
RESULTS FOR EXPERIMENT 3 - COMBINATION OF AUGMENTATIONS

mAP (%) ↑ NLL Cls ↓ NLL Reg ↓ MUE Cls ↓ MUE Reg ↓
Gamma + Brightness 16.9 0.5576 23.1218 0.3575 0.4756
Gamma + Contrast 16.9 0.5520 25.2416 0.3605 0.4726

Contrast + Brightness 17 0.5493 26.1155 0.3537 0.4753

after that, there is a slight increase in performance with the
0.85 and 0.80 marks, a decrease with the 0.75 threshold, and at
the 0.70 mark there is a great improvement, where the second-
best performance is recorded.

Regardless of these fluctuations, a clear observation can be
made. The best result is obtained with an IOUc of 1, with a
clear performance gap when compared to the other thresholds
that perform rather similarly.

Now, referring to Figure 11 and the regression task, all
IOUc thresholds perform very similarly, although there is a
noticeable improvement in performance for the IOUc values
of 1 and 0.95.

For this task, however, inversely to the classification task,
the IOUr threshold has a great impact on the performance
obtained. There is an optimal threshold IOUr at 0.15. There-
fore, to obtain the best results for the MUE in the regression
task, the thresholds to be used are 0.15 for IOUr and 1 or
0.95 for IOUc.
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Fig. 11. Results for Experiment 2 - MUE Regression Task for different
combinations of IOUr and IOUc

C. Experiment 3 - Different Augmentations for UQ in TTA

Analyzing the results obtained for Experiment 3 in Table
II with regard to mAP, contrast and brightness performed the
best, followed by gamma augmentation, while Gaussian blur
provided the worst performance.

The contrast augmentation also provided the best perfor-
mance for the predicted distributions in the classification task,
while brightness achieved the best predictive distributions for
the regression task and the best uncertainty estimation in
classification. For the uncertainty measured in the regression
task, gamma augmentation achieved the best performance,
with contrast and brightness only slightly behind with similar
results.

More experiments were performed that combined in pairs
the three best augmentations previously reported: gamma,

TABLE II
RESULTS FOR EXPERIMENT 3 - DIFFERENT AUGMENTATIONS

mAP (%) ↑ NLL Cls ↓ NLL Reg ↓ MUE Cls ↓ MUE Reg ↓
Gamma 16.7 0.5646 24.8237 0.3625 0.4730
Contrast 16.9 0.5555 30.0253 0.3644 0.4764

Brightness 16.9 0.5601 20.0892 0.3601 0.4761
Gaussian Blur 16.5 0.5628 22.1136 0.3631 0.4802

contrast, and brightness. The results for the combined aug-
mentations are shown in Table I.

The combination of augmentations with the greatest im-
provement was brightness and contrast, with improved mAP,
NLL, and MUE in classification. For the regression task
however, no noticeable improvements were achieved.

The improvements illustrate the fact that perhaps each of
these augmentations provides better detections in a specific
manner, and using them together can give the best out of both
augmentations.

D. Experiment 4 - Comparative Study of UQ Methods

In Table III, the results for the first section of Experiment 4
are shown. TTA performed better for all metrics in comparison
to the current state-of-the-art methods and baseline, with an
exception for the NLL in the classification task, where it
obtained only slightly worse results than the MC Dropout.

The most noticeable performance difference occurred in the
predicted distributions for the regression task, which can be
explained by the fact that MC Dropout and Output Redun-
dancy use 0.95 as the IOU threshold in the clustering step,
which was previously observed in Experiment 2 not to be the
optimal threshold to use for the regression task. Furthermore,
Output Redundancy does not apply a bounding box selection
criterion and MC Dropout uses NMS as a criterion, which was
shown in Experiment 1 to be the worst performing criterion
for estimating predictive distributions in the regression task.

In TableIV, results are shown for the modified state-of-
the-art methods with optimal parameters. As expected, per-
formance improved greatly, especially for the regression task,
since now an optimal value of IOUr of 0.15 was used, as
well as an optimal bounding box selection criterion. Still, TTA
performed best in terms of mAP, NLL in regression and MUE
in classification. With the improved MC Dropout, now the
best performance for the MUE in the regression was obtained,
again proving the relevance of using the correct criteria and
IOU threshold for each task.

The increase in mAP with the TTA in comparison to the
Output Redundancy and the Baseline can be explained by the
fact that by performing multiple augmentations and inferences
for each image, it is possible to visualize objects in a clearer
way that would not be possible with the original image, giving
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TABLE III
RESULTS FOR EXPERIMENT 4 - COMPARISON STUDY BETWEEN METHODS

mAP (%) ↑ NLL Cls ↓ NLL Reg ↓ MUE Cls ↓ MUE Reg ↓
Baseline (Deterministic) 16.2 - - - -

Output Redundancy 16.3 0.6771 8230.3852 0.3690 0.4889
Monte Carlo Dropout 14.5 0.5483 29697.7105 0.3543 0.4784

Test-Time Augmentation 17 0.5493 26.1155 0.3537 0.4753

TABLE IV
RESULTS FOR EXPERIMENT 4 - COMPARISON STUDY BETWEEN METHODS. *IOUr OF 0.15 AND IOUc OF 1; 0.01 CRITERION

mAP (%) ↑ NLL Cls ↓ NLL Reg ↓ MUE Cls ↓ MUE Reg ↓
Baseline (Deterministic) 16.2 - - - -

Output Redundancy* 16.3 0.5734 52.6753 0.3665 0.4780
Monte Carlo Dropout* 14.3 0.5413 34.2484 0.3620 0.4706

Test-Time Augmentation 17 0.5493 26.1155 0.3537 0.4753

the detector a better chance of correctly identifying an object
and thus improving the quality of the final detections.

VI. CONCLUSIONS

In this dissertation, we show that the TTA method can
become a very good option for UQ in object detection in the
domain of autonomous driving. Furthermore, already in use
state-of-the-art methods could have their performances greatly
improved by using two different IOU thresholds for each
task and incorporating a bounding box selection criterion. The
lower IOU thresholds are shown to generate the best results for
the regression task, while the higher IOU thresholds produce
the best results for the classification task.
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