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Resumo

O Método de Filme Imerso desenvolvido por Jeff D. Eldredge constitui um método de fronteira im-

ersa de primeira ordem, que permite a imposição de diferentes valores de condição de fronteira de cada

lado da interface, viabilizando a resolução de problemas para os quais métodos anteriores originam re-

sultados incorretos. Neste trabalho, diversas estratégias unidimensionais e bidimensionais de melhoria

de precisão são deduzidas para o Método de Filme Imerso, considerando campos não suaves através

da interface imersa, aplicado à resolução da equação de Poisson numa formulação de volume finito. O

procedimento de melhoria consiste em substituir a segunda equação original, baseada numa operação

de interpolação com recurso a funções delta discretas, por uma equação alternativa.

No caso unidimensional, são deduzidas estratégias que realizam uma interpolação polinomial dos

subcampos para a interface e estratégias que expressam a descontinuidade na derivada normal, ambas

utilizando métodos diretos e ambas conduzindo a segunda ordem de precisão na região supérflua. No

caso bidimensional, são deduzidas estratégias assentes em métodos diretos e de mı́nimos quadrados,

que expressam a descontinuidade na derivada normal através da interface. Em algumas implementações

bidimensionais, foram obtidos decaimentos supérfluos muito próximos da segunda ordem.

Numa segunda fase, os valores do campo numérico na região de transição são substituı́dos por

estimativas calculadas a partir da região supérflua e, nalgumas versões, usando também informação

armazenada nos pontos sólidos. Este passo final permite recuperar o aspeto descontı́nuo da interface

e propagar os decaimentos supérfluos para todo o domı́nio computacional.

Palavras-chave: Método de Fronteira Imersa, Método de Filme Imerso, Função Delta Dis-

creta, Método de Volume Finito, Dinâmica de Fluidos Computacional.
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Abstract

The Immersed Layers Method developed by Jeff D. Eldredge constitutes a first-order immersed

boundary method that allows the imposition of different boundary condition values on each side of the

interface, enabling the solving of problems for which previous methods originate incorrect results. In

this work, one derives several one-dimensional and two-dimensional accuracy improvement strategies

to the Immersed Layers Method, considering non-smooth fields across the interface, when solving the

Poisson equation in a finite volume framework. The improvement procedure consists of replacing the

original second equation, relying on interpolation with discrete delta functions, by an alternative one.

In the one-dimensional case, one derives strategies that perform a polynomial interpolation of the

subfields to the interface and strategies expressing the normal derivative jump, with both relying on

direct methods and leading to second-order accuracy in the superfluous region. In the two-dimensional

case, one derives strategies relying on direct and least squares interpolation methods, to express the

normal derivative jump across the interface. For some two-dimensional implementations, superfluous

decays very close to second-order were obtained.

In a second stage, the numerical field values in the transition region are replaced by estimates

computed from the superfluous field and, in some versions, using the information stored in the solid

points as well. This final step allows the recovering of interface sharpness and the propagation of the

superfluous decays to the entire domain.

Keywords: Immersed Boundary Method, Immersed Layers Method, Discrete Delta Function,

Finite Volume Method, Computational Fluid Dynamics.
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Chapter 1

Introduction

1.1 Motivation

In nature, most processes can be modelled by a set of mathematical relations, that usually take the

form of partial differential equations. However, for complex problems, its analytical solution is usually not

possible to express or too difficult to obtain. Therefore, numerical methods constitute a powerful tool to

compute approximate solutions to the set of equations describing a given phenomenon. Fluid dynamics,

for example, covers physical problems that tend to be ruled by highly complex equations, like the Navier-

Stokes equations. As such, the discipline of Computational Fluid Dynamics (CFD) arose, to deal with

the numerical solving of fluid flows, assuming extreme importance in several engineering domains, like

the aerospace sector. From the simulation of a laminar flow over a flat plate, to the simulation of a

three-dimensional turbulent flow around an entire aircraft, CFD methods constitute a remarkable help to

design, optimise and test aerospace vehicles and components, before going to wind tunnels.

When numerically solving a CFD problem, the domain is subdivided into a given number of cells, for

which the system of equations ruling the phenomenon is solved. In that regard, the operators appearing

in the equations are locally discretised under a given order of accuracy, leading to a simpler approximate

version of the original system of equations. For example, the derivatives in the centroid of a given cell

are expressed in terms of field values of some of its nearest neighbours, according to an expression with

known accuracy. To reduce the numerical error, one may refine the mesh, or use formulations of higher

accuracy. The mesh refinement makes the distance between centroids to decrease and, therefore,

leads to a lower and lower relevance of the high-order terms that are neglected in the discretisation.

The use of formulations with higher accuracy consists in keeping more high-order contributions in the

discretisation of operators, keeping them closer and closer to their analytical definition. Given the fact

that the computational power is always limited, the finest mesh refinements to perform the numerical

simulations will also be associated with maximum admissible computational times and memory. Thus,

formulations with high-order accuracy may be a promising alternative to achieve better numerical results.

This Thesis aims to derive one-dimensional (1D) and two-dimensional (2D) accuracy improvement

strategies to the Immersed Layers (IL) method developed by Eldredge [1], applied to a Poisson problem.
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1.2 Background

The most common CFD problems consist of fluid flows passing around solid bodies and, in conven-

tional approaches, the mesh is generated in such a way that it conforms to the solid body. However,

when dealing with problems in which the solid presents a prescribed motion or problems in which it

is allowed to deform due to the forces exerted by the fluid, the solid-fluid interface must be constantly

updated. Thus, a remeshing process needs to be performed at the beginning of each time step, in order

to generate a new mesh that conforms the new interface, which presents a high computational cost.

In article [2], Peskin introduced the Immersed Boundary Method (IBM), to study flow patterns around

heart valves, modelled as elastic massless moving boundaries, immersed inside the computational do-

main, exerting forces in the fluid. To model the effect of the interface, a singular forcing term arises in the

equations, that consists of an integral over the immersed boundary relying on the Dirac delta function.

To numerically deal with this term, the Dirac delta function is substituted by a discrete analogue, the

interface is discretised into a finite number of points and the integral over the interface is converted into

a summation over those points. With this, information stored in the immersed points is regularised onto

the grid. Moreover, to impose the boundary conditions at the interface, the velocity field must be interpo-

lated from the grid to the solid points and this operation is performed using a discrete delta function as

well. After that, Peskin performed a numerical analysis of blood flow in the heart, [3], and Peskin and Lai

applied the IBM to simulate the flow past a cylinder, in [4]. Later on, the detailed mathematical structure

of the IBM was provided by Peskin in [5].

After the works of Peskin, several methods arose in which the mesh also does not need to conform

to the body. As such, nowadays, the expression Immersed Boundary (IB) methods encompasses all

those methods in which the interface is immersed into the grid, as stated by Mittal and Iccarino in article

[6]. There, the authors divide IB methods into two main categories: continuous forcing and discrete

forcing methods. In the continuous forcing methods, a forcing term is added to the equations ruling

the flow in the entire domain, prior to the discretisation. On the other hand, in the discrete forcing

methods, the ruling equations are discretised without considering any additional forcing term and, then,

only the discretised equations of cells near the IB receive forcing terms, to ensure the fulfilment of the

boundary conditions on the immersed surface. The original IBM of Peskin [2] belongs to the first family.

Sotiropoulos and Yang [7] also summarise several IB methods, organising them into two main families:

diffused interface methods and sharp interface methods. Once more, the original IBM of Peskin belongs

to the first family, in which the distribution of singular forces to the grid via discrete delta functions

prevents obtaining sharp variations, being said to smear the interface, [7].

Given that the equations to be discretised in the continuous forcing methods are the same for all

the cells and no additional adaptations are needed, these methods are usually simpler to implement.

However, as explained in [6], continuous forcing methods suffer from lower accuracy near the immersed

boundary, since they are unable to represent sharp interfaces. The substitution of the Dirac delta function

by a discrete analogue, that constitutes a continuous distribution mimicking the singularity, is always

responsible for smearing the interface of non-smooth fields (that is, fields with a discontinuity in value
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and/or a discontinuity in normal derivative across the interface). As an example, Peskin and Griffith

[8] implement an IB method with discrete delta functions and report second-order accuracy as long as

the solution is smooth. In [5], Peskin states that methods lying on the use of discrete delta functions

to perform interpolation operations will present global first-order accuracy for non-smooth fields across

the interface. To obtain second-order accuracy, Peskin refers to the Immersed Interface Method (IIM)

derived by Leveque and Li in [9]. However, this method does not belong to the continuous forcing family,

since it only computes corrective terms for the discretised equations ruling cells in neighbourhood of the

interface. To achieve second-order, the expression of the truncation error that is originated by using the

usual schemes in points near the interface is determined (via polynomial expansions for each interface

side and knowing the jump conditions in value and normal first derivative) and corrective terms are

computed so that undesirable terms cancel out. This method is able to lead to sharp interfaces. In later

works, this method was extended to deal with the Navier-Stokes equations, as presented in [10] by Xu

and Wang, solving an incompressible viscous flow with second-order spatial and temporal accuracy near

the boundaries. Another second-order accurate implementation of the IIM to solve the incompressible

Navier-Stokes equation is found in [11], by Li and Lai. Recently, Balam and Zapata [12] derived a fourth-

order IIM formulation with compact schemes capable of solving two-dimensional Poisson problems.

When compared to continuous forcing methods, discrete forcing methods are more complex to im-

plement, since a forcing term must be derived for each cell near the interface after the discretisation,

but they are able to represent sharp interfaces. Moreover, contrary to what happens with continuous

forcing, these methods are not limited to first-order accuracy in case of non-smooth fields, [6], with their

performance depending on the accuracy of the methods used to compute the forcing terms.

Taira and Colonius [13] derived an Immersed Boundary Projection Method (IBPM) consisting of a

general framework to deal with rigid bodies subjected to a prescribed motion. This method does not

distinguish the interior from the exterior side of the interface, setting a given motion constraint at the

interface that is valid for both sides. This causes the IBPM to be unable to distinguish between forces

exerted at the interface by the exterior fluid subdomain from forces exerted by the interior solid subdo-

main. According to Eldredge [1], when dealing with deformable bodies, it is not possible to equal the

force exclusively exerted by the fluid to the one arising from the elastic equations that rule the defor-

mation, since integrals along the surface consist of a mix of contributions from both sides. Moreover,

Eldredge [1] shows that problems also arise when considering a rigid body rotation, since the interior

velocity field does not correspond to the true one of a rigid body rotating. As such, when taking inte-

grals over the interface to compute the force and the moment exerted by the fluid, the incorrect force

component coming from the interior subdomain originates incorrect results.

To tackle the problems that the IBPM is not able to solve, Eldredge [1] derived a more general

formulation, the Immersed Layers Method, in which the interior and exterior subfields are distinguished,

enabling the specification of different constraints on each side of the interface. The IL method belongs to

the continuous forcing family, using discrete delta functions to regularise forcing terms onto the grid. The

original IL formulation is presented in this work, for the Poisson equation. When deriving the IL Poisson

equation, the discontinuity in normal derivative across the interface emerges in the expression, being
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treated as an unknown variable. Eldredge [1] closes the system of equations by imposing the field value

at the interface, via an interpolation operation using discrete delta functions. As predicted by Peskin

[5], this method presents first-order accuracy when the field is non-smooth across the interface. The

constraints imposed by the IL method at both sides of the interface are field values, that is, Dirichlet type

boundary conditions. Methods imposing Neumann type boundary conditions at an immersed interface

also exist, as the Immersed Boundary Double Layer Method, recently developed by Leathers [14].

In [5], Peskin emphasises the role of discrete delta functions used to perform interpolations of non-

smooth fields in the reversal to first-order accuracy. As such, in this work, the second equation used

by Eldredge [1] is discarded and replaced by another one not relying on discrete delta functions, to find

out if some accuracy improvement is achieved. As one will see, since discrete delta functions continue

to be used in the Poisson equation (performing regularisation operations), first-order decays continue

to be obtained in the entire domain, but significant accuracy improvements are achieved away from the

interface, that is, in the region over which the discrete delta functions are not acting directly.

1.3 Objectives

Given the first-order accuracy of the IL method, this work aims to achieve second-order accuracy in

one- and two-dimensional problems. To reach this main objective, several minor ones were set:

• Implementation of the IL method in its original formulation, in a finite differences (FD) framework,

in order to replicate the first-order decay that was reported by Eldredge in article [1];

• Derive, implement and test a finite volume (FV) approach to the IL method, both in one and two

dimensions, comparing its results with the ones arising from finite differences;

• Derive, implement and test alternative second equations to close the system originated by the ap-

pearance of an unknown in the IL Poisson equation, in one and two dimensions, pursuing second-

order accuracy away from the interface, even when dealing with non-smooth fields;

• Derive, implement and test one- and two-dimensional corrective procedures, to be executed in

the end of the numerical simulation, that are able to recover interface sharpness and propagate

second-order decays to the points near the interface and, consequently, to the entire domain.
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1.4 Present Contributions

The first objective, about the finite differences implementation of the IL method, constitutes a repli-

cation of the formulation derived by Eldredge [1]. All the other objectives are contributions of this work.

Regarding the finite volume approach, the equations coming from the original IL formulation are

integrated, simplified via the divergence theorem and discretised. In what concerns the one- and two-

dimensional improvement strategies, alternative additional equations are derived, making use of poly-

nomial expansions around each solid point, to express field values or normal first derivatives in terms of

its grid and/or solid neighbours. The polynomial coefficients are computed with direct methods or Least

Squares (LS) formulations. In the corrective procedures, only direct methods are applied.

1.5 Thesis Outline

This Thesis is subdivided into seven chapters. The first one, which this outline concludes, concerns

an introduction to the dissertation, starting with a brief motivation on the use of numerical methods to

simulate physical problems, namely in Fluid Dynamics. After that, some background on IB methods is

provided, the objectives of this work are enumerated and the present contributions are pointed out.

The second chapter aims to provide the reader a sufficient theoretical background concerning the

IL method, developed by Eldredge in article [1], when applied to Poisson problems. In that regard, the

main derivations of the method are presented, in the original finite differences formulation. Moreover, an

alternative finite volume formulation is also presented, constituting a contribution of the present work.

In the third chapter, several one-dimensional strategies to increase the accuracy of the IL Method are

derived. This improvement is achieved by means of considering two additional equations to close the

system, that are different from the one considered in article [1]. Furthermore, a final corrective step is

suggested, in order to recover the interface sharpness and to propagate second-order accuracy to the

cells near the interface and, therefore, ensuring second order in the entire domain.

In the fourth chapter, the one-dimensional improvements strategies are compared with the original

formulation and among themselves, so that the best procedure can be determined. Then, the several

corrective strategies are compared and the one leading to the lowest error is identified.

In the fifth chapter, taking into account the one-dimensional results, the additional equation that pre-

sented the best results is generalised for two-dimensional problems, using several possible strategies,

namely a Direct Method (DM), a weighted Least Squares Method (LSM) and a method faithfully repli-

cating the one-dimensional reasoning. A two-dimensional final corrective procedure is also derived.

The sixth chapter presents the numerical results of the two-dimensional improvement strategies, by

determining which one leads to the best accuracy and lowest error. A comparison between the final

corrective procedures that were derived to be applied in two-dimensional problems is performed.

In the seventh chapter, the main conclusions of this work are highlighted and some future work tasks

are suggested, in order to improve the current results even further, specially in two dimensions.
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Chapter 2

Immersed Layers Method

In this chapter, the Immersed Layers Method developed by Eldredge in article [1] is presented, aiming

to provide the reader a theoretical background concerning its original formulation. The presentation

provided in this chapter intends to be concise and self-sufficient, emphasising the particular case of

the Poisson equation. Naturally, the reading of article [1] is always encouraged, as a wider number of

applications is explored there (the convection-diffusion equation and the incompressible Navier-Stokes

equations) and a whole appendix on generalised functions and discretised operators is provided.

Firstly, in subchapter 2.1, the description of a general immersed boundary problem is presented,

with a brief geometrical insight. In subchapter 2.2, an indicator function is defined for all the domain,

in order to readily distinguish the solid and fluid subdomains from each other. In subchapter 2.3, some

generalised functions are reminded, namely the Heaviside function and the Dirac delta function, along

with some relevant properties. In subchapter 2.4, the concept of masked variable is introduced, by

making use of generalised functions applied to the previously defined indicator function.

In subchapter 2.5, the Poisson equation of a masked variable is derived, by computing first the gra-

dient and then the Laplacian of a variable written in the masked form. In subchapter 2.6, the numerical

implementation of the derived Poisson equation is discussed. Since one of the terms arising in the

masked Poisson equation will be treated as an unknown, this subchapter begins by closing the system

with an additional equation. Then, two discretisation strategies are presented: a finite differences ap-

proach, similar to what was performed in article [1], and an alternative finite volume one, that constitutes

a contribution of the present work. Each discretisation strategy will lead to a different grid layout, a

different treatment of the system of equations and, thus, to different operators needing discretisation.

2.1 Problem Description

The domain of immersed boundary methods addresses physical problems in which at least two me-

dia with different properties coexist separated by an interface. Despite the possibility of considering

geometries with huge complexity, with several solid bodies and even several fluids, the simplest and

most studied example consists of one solid body immersed within a single fluid. For the sake of sim-
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plicity and easier numerical treatment in the further up deduced improvement strategies, this is the

problem addressed throughout this work. In general, one may consider problems in one, two, or three

dimensions, that is, the computational domain Ω is such that Ω ⊂ Rλ with λ = 1, 2, 3. In figure 2.1, the

illustration of a two-dimensional immersed boundary problem is provided.

Figure 2.1: Illustration of a general two-dimensional problem (λ = 2).

As illustrated in figure 2.1, the computational domain Ω is assumed to be composed of an interior

subdomain Ω− corresponding to the solid and an exterior subdomain Ω+ corresponding to the fluid, both

separated by a smooth interface Γ. The exterior unit normal of the solid surface, n, is also represented.

For a general multidimensional space Rλ, the position vector x of any point inside the computational

domain is given by x =
∑λ

i=1 xiei, with ei being the unit vector along direction i. Throughout this work,

the position vector components x1, x2, x3 will be identified as x, y, z, respectively.

2.2 Indicator Function

The first step to be taken consists of identifying the solid and the fluid regions, or, in other words, the

interior and the exterior subdomains, respectively. For that, an indicator (or level set) function χ(x) ∈ R is

defined for all the domain, assuming negative values in the solid, positive values within the fluid and being

null when taken at the interface Γ. In this work, the indicator function was defined by making use of a

properly signed minimum Euclidean distance to the interface Γ, as presented in equation 2.1. For a given

point x ∈ Ω, one defines xmin
sp (x) as a point at the interface surface for which the distance between x and

the interface reaches the minimum value, that is, xmin
sp (x) = {xsp ∈ Γ : ||x− xmin

sp || = min ||x− xsp||}.

χ(x) =

||x− xmin
sp (x)|| , x ∈ Ω+

−||x− xmin
sp (x)|| , x ∈ Ω−

(2.1)

Defining the indicator function this way, it is essential to notice that its gradient is normal to the

interface, points out of the solid and has a unitary magnitude. That is, when taken at the interface, the

gradient of the indicator function corresponds to the exterior unit normal of the solid surface, ∇χ|Γ = n.
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2.3 Generalised Functions

The relations arising from the Immersed Layers Method use two important generalised functions: the

Heaviside function and the Dirac delta function. As one will see later on, the first one is responsible for

the identification of each subdomain, whereas the second plays an important role in the terms arising

to model the influence of the interface. Both functions act over real objects and, in the context of the

Immersed Layers Method, both appear applied to the indicator function, χ(x) ∈ R. For the sake of

compactness, the dependency of the indicator function on the position will be dropped most of the

times. The Heaviside function, H(χ), is defined in equation 2.2. Notice that H(χ) = 1−H(−χ).

H(χ) =


1 , χ > 0

1/2 , χ = 0

0 , χ < 0

(2.2)

On the other hand, the definition of the Dirac delta function, δ(χ), is provided in equation 2.3. Notice

that this function is singular, with an infinite value at one point of the real line. Moreover, δ(χ) = δ(−χ).

Recall that the integral of the Dirac delta function along the real line in unitary, that is,
´
R δ(χ)dχ = 1.

The derivation of this last property concerning the integral over R may be consulted in appendix A.2.

δ(χ) =

+∞ , χ = 0

0 , χ ̸= 0

(2.3)

It is also possible to define a multidimensional version of the Dirac delta function, acting on vector

objects. Thinking in a vector belonging to a general multidimensional space of dimension λ, that is x ∈

Rλ with λ = {1, 2, 3}, one defines the multidimensional Dirac delta function as the multiplication between

the one-dimensional Dirac delta applied to each dimension, as stated in equation 2.4. By definition, the

multidimensional Dirac delta inherits the property of unitary integral over Rλ, that is,
´
Rλ δ(x)dx = 1.

δ(x) =

λ∏
i=1

δ(xi) (2.4)

This multidimensional version allows the derivation of important relations converting surface integrals

over the interface Γ into volume integrals over the entire space Rλ and vice-versa. By making use of

manipulations of this kind, it is possible to reach two important results, whose derivation is presented

in appendix A.2, closely following the deductions presented in article [1]. Consider that the interface Γ

is parameterised by surface coordinate(s) ζ, so that interface points are given in Rλ by x = X(ζ). The

first important derived relation concerns the so-called immersion of interface information into the multi-

dimensional space. Consider a given function F (ζ), exclusively defined at the interface. The immersion

of F into the multidimensional space Rλ, denoted by F (ζ)δ
(
χ(x)

)
, is given by equation 2.5.
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F (ζ)δ
(
χ(x)

)
=

ˆ
Γ

F (ζ)δ
(
x−X(ζ)

)
dS(ζ) (2.5)

The second important relation concerns the so-called restriction of a field defined in the multidimen-

sional space to the interface. Consider a given function g(x), defined in the multidimensional space. The

restriction of g to the interface Γ, with notation g(x)δT
(
χ(x)

)
as in article [1], is given by equation 2.6.

g(x)δT
(
χ(x)

)
≡ g

(
X(ζ)

)
=

ˆ
Rλ

g(x)δ
(
X(ζ)− x

)
dx (2.6)

As suggested by figure 2.1, the interface Γ is completely located inside the computational domain

Ω ⊂ Rλ. Therefore, since the Dirac delta function is null when it is not evaluated at the interface,

the integrals over Rλ may interchange with integrals over Ω. As one will see further up, since it is

impossible to numerically deal with singularities, the Dirac delta function will be converted into a discrete

delta function, acting in a small known vicinity of the interface. Thus, to keep the interchangeability of

integrals over Rλ and over Ω valid, one simply needs to define the computational domain in such way

that the interface keeps a sufficient distance from its boundaries.

As a final remark, note that, according to the definitions of the Heaviside and Dirac delta functions

in equations 2.2 and 2.3, these functions may be related by ∂H
∂χ (χ) = δ(χ). So, the gradient of the

Heaviside function, ∇H(±χ), may be expressed in terms of the Dirac delta function, as in equation 2.7.

∇H(±χ) = ±∂H
∂χ

∇χ = ±δ(χ)∇χ = ±δ(χ)∇χ|Γ = ±δ(χ)n (2.7)

2.4 Concept of Masked Variable

Having already defined an indicator function and reminded some important generalised functions,

the identification of the interior and exterior subdomains is readily performed by applying the Heaviside

function to the indicator. Recalling the definition provided in equation 2.2, it is straightforward to conclude

that H(χ) is unitary in the fluid region and null in the solid, whereas H(−χ) is unitary in the solid region

and null in the fluid. At the interface, both H(χ) and H(−χ) are equal to 1/2.

In theory, the interior and exterior subfields may behave completely differently, with values and deriva-

tives being different from each other in the vicinity of the interface. For this reason, it is pertinent to define

a masked variable, ϕ̄, that assumes one subfield or the other, according to the subdomain in which it is

evaluated. The definition, relying on the use of Heaviside functions, is provided in equation 2.8.

ϕ̄ = ϕ+H(χ) + ϕ−H(−χ) (2.8)

Given the definition of masked variable, for each subdomain one has x ∈ Ω± ⇒ ϕ̄(x) = ϕ±(x). On

the other hand, at the interface, the expression leads to x ∈ Γ ⇒ ϕ̄(x) = 1
2 [ϕ

+(x) + ϕ−(x)]. Note that,

by working with this masked variable, one is able to treat problems for the entire domain at once, without

the need of caring about each subdomain independently.
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2.5 Poisson Equation of a Masked Variable

Assuming that the field ϕ̄ is piecewise twice-differentiable in each subdomain, one is able to derive

the Poisson equation of a masked variable. In that regard, before reaching the Laplacian, one will

firstly focus on deducing the gradient expression of a masked variable. Making use of relation 2.7, the

application of the chain derivation rule leads to the gradient expression of equation 2.9.

∇ϕ̄ = ∇ϕ+H(χ) + ϕ+∇H(χ) +∇ϕ−H(−χ) + ϕ−∇H(−χ)

⇔ ∇ϕ̄ =

(
∇ϕ+H(χ) +∇ϕ−H(−χ)

)
+ ϕ+∇H(χ) + ϕ−∇H(−χ)

⇔ ∇ϕ̄ = ∇ϕ+ (ϕ+ − ϕ−)δ(χ)n (2.9)

Note that the first term in equation 2.9 corresponds to the masked gradient, taking into account the

gradients of each subfield independently. The second term accounts for the influence of the discontinuity

in value between subfields, ensuring that the gradient readjusts to the correct value when the interface

is crossed. By applying the divergence operator to equation 2.9, one obtains the Laplacian expression,

presented in equation 2.10. This relation corresponds to the Poisson equation of a masked variable.

∇2ϕ̄ = ∇ ·
[(

∇ϕ+H(χ) +∇ϕ−H(−χ)
)
+ (ϕ+ − ϕ−)δ(χ)n

]
⇔ ∇2ϕ̄ = ∇2ϕ+H(χ) +∇ϕ+ · ∇H(χ) +∇2ϕ−H(−χ) +∇ϕ− · ∇H(−χ) +∇ ·

(
(ϕ+ − ϕ−)δ(χ)n

)
⇔ ∇2ϕ̄ = ∇2ϕ+ (∇ϕ+ −∇ϕ−) · δ(χ)n+∇ ·

(
(ϕ+ − ϕ−)δ(χ)n

)
(2.10)

The first term in equation 2.10 is the masked Laplacian, a known quantity. However, the adjustment

across the interface is now ensured not only by a term relying on the discontinuity in value, but also by a

term relying on the discontinuity in normal derivative across the interface. In article [1], Eldredge names

these terms as the double- and single-layer potentials, respectively. The double-layer potential strength

corresponds to (ϕ+ − ϕ−), whereas the single-layer potential strength is given by (∇ϕ+ −∇ϕ−) · n.

Usually, when dealing with a single well-behaved field, its Poisson equation simply corresponds to

writing that the Laplacian of the unknown variable is equal to a given known source term. Note that,

in equation 2.10, this is what happens when one considers the interior or the exterior subfields alone.

Indeed, away from the interface, the Dirac delta function makes the additional terms disappear, whereas

the Heaviside function makes the masked Laplacian to assume the correct source term inside each

subdomain. Far from the interface, general relation 2.10 degenerates into x ∈ Ω± ⇒ ∇2ϕ̄ = ∇2ϕ±.

Notice how complicated it would be to independently handle the Poisson problems that occur inside

each subdomain. In an immersed boundary context, the interface does not correspond to cell faces, and

the imposition of boundary conditions there would be extremely complex to perform. On the other hand,

the Poisson equation 2.10 allows to work with a single problem, expressed in terms of a global masked

variable ϕ̄, being the interface treatment automatically performed by the two additional terms that arise.
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2.6 Implementation Strategy of the Masked Poisson Equation

2.6.1 Closing the System of Equations

In the numerical implementation of the Poisson equation 2.10, the interface Γ is discretised into a

given number of solid points, whose position and exterior normal to the surface are known. In this work,

the solid points are assumed to be equally spaced, placed at a distance δs from each other. Therefore,

for each solid point, it is possible to evaluate the exterior and interior subfield values, ϕ+sp and ϕ−sp, as

well as the exterior and interior subfield gradients, ∇ϕ+sp and ∇ϕ−sp, respectively.

The original formulation of the Immersed Layers Method, in article [1], assumes that only the values

of each subfield are known at the interface. Thus, the double-layer potential strength at each solid

point, (ϕ+sp − ϕ−sp), is a known quantity, whereas the single-layer potential strength should be treated as

an unknown during the implementation, σ ≡ (∇ϕ+sp − ∇ϕ−sp) · n. Treating σ as an unknown translates

to adding one extra unknown for each solid point. Consequently, one needs to express, as well, one

additional equation for each solid point, in order to close the system of equations.

The original formulation of the method closes the system by stating that, when restricted to a given

solid point, the masked field must recover the interface value, given by the average of the exterior and

interior subfield values at that same solid point. The restriction operation is performed by making use of

Dirac delta functions. As such, the original formulation of the Immersed Layers Method, when applied to

a Poisson problem with unknown single-layer potential strength, closes the system with equation 2.11.

ϕ̄ δT (χ) =
1

2
(ϕ+sp + ϕ−sp) (2.11)

In the upcoming chapters, the use of this relation to close the system of equations will be questioned

and new expressions will be derived in search of numerical results with greater accuracy, for both the

one-dimensional and the two-dimensional cases.

2.6.2 Domain Discretisation

In order to numerically solve the system of equations arising from the Poisson equation 2.10 together

with equation 2.11, the computational domain needs to be discretised into a finite number of cells.

Throughout this work, the computational domain Ω was considered to have a length L along each

direction of Rλ, being subdivided into a Cartesian grid with n square cells along each direction.

Given these assumptions, there are two main ways to discretise the computational domain: under

a finite differences reasoning or under a finite volume reasoning. These two possible strategies are

illustrated in figure 2.2, for a two-dimensional general problem. In the finite differences approach, there

are cell centroids coinciding with the domain boundaries. On the other hand, in the finite volume ap-

proach, the boundary of the domain coincides with cell faces. This difference will translate into distinct

procedures to implement the Dirichlet boundary conditions at the computational domain boundary, ∂Ω.
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(a) Finite differences approach. (b) Finite volume approach.

Figure 2.2: Finite differences and finite volume approaches used to discretise the computational domain.

For a general domain Ω ⊂ Rλ, the total number of cells is given by nλ. The characteristic length of

each cell, or grid size h, is given by h = L/(n− 1) in finite differences and by h = L/n in finite volume.

2.6.3 Treatment of the System of Equations

Each domain discretisation strategy is associated with a different treatment of the equations describ-

ing the Poisson problem. The finite differences strategy is the one followed in article [1]. In that regard,

the relations derived for the finite volume implementation constitute a contribution of the present work.

The general finite volume equations are derived and then particularised into second-order accuracy.

Finite Differences

By establishing the single-layer potential strength as an unknown in the Poisson equation and by

setting the second equation 2.11, relying on the restriction of the global field to the interface, one arrives

to the final system to be numerically solved, as presented in equations 2.12.


∇2ϕ̄− σδ(χ) = ∇2ϕ+∇ ·

(
(ϕ+sp − ϕ−sp)δ(χ)n

)
ϕ̄ δT (χ) = 1

2 (ϕ
+
sp + ϕ−sp)

(2.12)

This system may be displayed in the matrix form of equation 2.13, in which the square matrix gathers

the operations being performed to the unknowns: Laplacian ∇2, immersion δ(χ) and restriction δT (χ).

 ∇2 δ(χ)

δT (χ) 0

 ϕ̄

−σ

 =

∇2ϕ+∇ ·
(
(ϕ+sp − ϕ−sp)δ(χ)n

)
1
2 (ϕ

+
sp + ϕ−sp)

 (2.13)

Under the finite differences approach, the discretisation will be directly applied on these equations,

without any previous treatment. The operators appearing in the square matrix, as well as the immersion

and the divergence operator showing up in the right-hand side vector, will need to be discretised.
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Finite Volume

Under a finite volume approach, the system of equations 2.12 should be integrated over each cell of

the computational domain. Consider that any square cell is characterised by a volume V , enclosed by a

surface S = ∂V . Integrating equation 2.10 in volume and applying the divergence theorem (recalled in

appendix B.1), one arrives to the Poisson equation 2.14, written in a finite volume approach for the most

general three-dimensional case. The vector n stands for the exterior unit normal of surface S. Notice

that the last volume integral cannot be transformed into a surface integral according to the divergence

theorem, since the vector field at which the divergence is applied is not continuously differentiable.

˚
V

∇2ϕ̄ dV =

˚
V

[
∇2ϕ+ σδ(χ) +∇ ·

(
(ϕ+sp − ϕ−sp)δ(χ)n

)]
dV

⇔
‹

∂V

∇ϕ̄ · n dS −
˚

V

σδ(χ) dV =

˚
V

∇2ϕdV +

˚
V

∇ ·
(
(ϕ+sp − ϕ−sp)δ(χ)n

)
dV (2.14)

Concerning additional equation 2.11, the finite volume procedure will simply result in equation 2.15.

˚
V

ϕ̄ δT (χ) dV =

˚
V

1

2
(ϕ+sp + ϕ−sp) dV (2.15)

Notice that equations 2.14 and 2.15 constitute the starting point for a general finite volume imple-

mentation of a masked Poisson problem. In this work, since one is pursuing second-order results, the

equations will be subjected to an additional treatment, wherein all the integrals are approximated with

second-order accuracy. This step gives rise to the system of equations 2.16. The subscript C stands for

cell centroid, whereas subscript f stands for cell face. More specifically, in the one-dimensional case,

the sum over f particularises in east and west faces (e and w, respectively). In the two-dimensional

case, the sum over f particularises in east, west, north and south faces (e, w, n and s, respectively).


∑

f

[
(∇ϕ̄)f · nf

]
− σδ(χC)h

λ =
(
∇2ϕ

)
C
hλ +∇ ·

[
(ϕ+sp − ϕ−sp)δ(χC)n

]
hλ

ϕ̄ δT (χC)h
λ = 1

2 (ϕ
+
sp + ϕ−sp)h

λ

(2.16)

Under this finite volume approach, in which the integrals were treated with second-order accuracy,

system of equations 2.16 is the starting point to proceed with the discretisation of operators. Contrary to

what happened in finite differences, the Laplacian is not present in the left side of the first equation and

a gradient operator, ∇, arises. The immersion, restriction and divergence operators are still present.

2.6.4 Operators Discretisation

In this section, the operators arising in the systems of equations obtained following a finite differences

or finite volume approach are discretised with second-order accuracy. First, the Dirac delta function is

converted into a discrete delta function. Then, the immersion and restriction operators are discretised.

The discretisation follows with the Laplacian, the gradient and finally the divergence. The discretisation

of all these operators is presented for both one- and two-dimensional scenarios. In the end of this

section, a comment on the numerical implementation of the Heaviside function is made.

14



The objective of the discretisation process is to express systems 2.12 and 2.14 in the matrix form of

equation 2.17, where discretised operators acting on unknowns are represented by matrices MA, MB,

MC, MD and operators appearing in the right-hand side are contained in vectors va and vb, alongside

with constant source terms. In this work, this system is solved by inverting the global M matrix.[MA]N×N [MB]N×p

[MC]p×N [MD]p×p

{ϕ̄}N×1

{σ}p×1

 =

{va}N×1

{vb}p×1

 ⇔ M

ϕ̄

σ

 = v (2.17)

Matrices MA and MB, together with right-hand side vector va, gather the Poisson equation for all

the N cells of the computational domain. On the other hand, MC and MD, together with right-hand side

vector vb, gather the additional equation written for all the p solid points, in order to close the system.

For cells in the boundary of the computational domain, the Poisson equation will be adapted to

incorporate a Dirichlet boundary condition. The adaptation depends on whether the strategy under use

is a finite differences or finite volume approach. Given equation 2.11, both approaches have MD = 0.

Dirac Delta Function

The multidimensional Dirac delta function, previously defined in equation 2.4, presents a singular

behaviour. Since it is impossible to numerically deal with infinite values, the Dirac delta function, δ(x),

needs to be discretised, giving rise to a so-called discrete delta function, δh(x). The discrete delta

function is finite and not identically null in a small vicinity of x = 0, being equal to zero elsewhere. Note

that centring a Dirac (or discrete) delta function in any point x0 ∈ Rλ is achieved by writing δ(x − x0).

The discrete delta function is constructed by means of a product of real functions φ(r), with r ∈ R being

a non-dimensional quantity (a ratio of distance values), as presented in equation 2.18.

δh(x) =
1

hλ

λ∏
i=1

φ(ri) , ri =
xi
h

(2.18)

Naturally, for the properties of the Dirac delta function to remain valid in its discrete version, function

φ(r) should obey to a given number of rules, summarised in appendix A.3. Even so, there are several

degrees of freedom that need to be set when deriving a function φ(r). One important degree of freedom

is the size of the vicinity wherein function φ(r) is not identically null, known as the support width, w.

Saying that a function φ(r) has a support width w is equivalent to say that it is not identically null in the

interval −w < r < w. Since ri = xi/h along each direction i, a support width w translates into a not

identically null region of characteristic dimension wh for the discrete delta function (an interval, circle or

sphere, depending on weather it is one-, two- or three-dimensional, respectively).

Throughout this work, four discrete delta functions were considered: δ∗3 , δ2002, δ2103, δ4206, with the

first being the one used by Eldredge in article [1]. The indices of these discrete delta functions have to

do with the procedure followed in their deduction and with the values that were assumed for the degrees

of freedom. These explanations are provided in appendix A.3, as well as the extensive expressions of

their corresponding φ(r) functions. As an example, figure 2.3 represents the discrete delta function δ∗3 ,

both in one and two dimensions. The representation of all the others may be found in appendix A.3.
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(a) One-dimensional version of δ∗3 . (b) Two-dimensional version of δ∗3 .

Figure 2.3: Representation of discrete delta function δ∗3 , in one and two dimensions, taking h = 1.

Immersion and Restriction Operators

The immersion and restriction operations appear in both finite differences and finite volume strate-

gies. In that regard, their discretisation is applicable for both approaches. Taking into account equation

2.5, the immersion operation δ(χ) is simply discretised by approximating the respective integral with

second-order accuracy, as desired in this work. This approximation is performed in equation 2.19, for

a general function F (ζ) exclusively defined at the interface Γ, with ζ being the surface coordinate(s) on

the interface. Recall that the interface is assumed to be discretised into p equally-spaced solid points, at

a distance δs from each other. Moreover, interface points are described by x = X(ζ). Throughout this

work, the symbol O2∼ will be used to represent approximations with second-order accuracy.

F (ζ)δ
(
χ(x)

)
=

ˆ
Γ

F (ζ)δ
(
x−X(ζ)

)
dS(ζ)

O2∼
p∑

k=1

F
(
ζk

)
δ
(
x−X(ζk)

)
δsk (2.19)

Equation 2.19 was kept general, allowing different surface elements around each solid point δsk. On

the other hand, reminding equation 2.6, the restriction operation δT (χ) of a general function g(x) defined

in Rλ to a given solid point X(ζ) is approximated with second-order accuracy in equation 2.20.

g(x)δT
(
χ(x)

)
≡ g(X(ζ)) =

ˆ
Rλ

g(x)δ
(
X(ζ)− x

)
dx

O2∼
N∑
i=1

g
(
xi

)
δ
(
xi −X(ζ)

)
hλ (2.20)

Recovering system 2.17, it is clear that the immersion operation will be included in matrix MB,

whereas the restriction operation will be included in matrix MC. In the finite differences approach, the

function defined at the interface that is being immersed into the computational domain is the normal

derivative jump at each solid point, σ. Applying the result of equation 2.19, one arrives to equation 2.21.

−MBσ =


σδ(χ(x1))

σδ(χ(x2))
...

σδ(χ(xN ))

 =


δ(x1 −X(ζ1)) δ(x1 −X(ζ2)) . . . δ(x1 −X(ζp))

δ(x2 −X(ζ1)) δ(x2 −X(ζ2)) . . . δ(x2 −X(ζp))
...

...
. . .

...

δ(xN −X(ζ1)) δ(xN −X(ζ2)) . . . δ(xN −X(ζp))




σ1δs1

σ2δs2
...

σpδsp

 (2.21)
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Equation 2.21 reveals the existence of an important matrix with dimensionsN×p relating all the com-

putational points with all the solid points, to perform the immersion operation. Keeping the nomenclature

of Eldredge in article [1], this matrix is called the regularisation matrix, Reg. Using the element-by-

element multiplication, ◦, one obtains equation 2.22. Continuing consistent with bold lower case letters

to represent vectors and bold capital letters to represent matrices, the arising vector of surface elements

around each solid point is represented by {δs}p×1, whereas the matrix is represented by [∆S]N×p.

−MBσ =
[
Reg

]
N×p




δs1

δs2
...

δsp

 ◦


σ1

σ2
...

σp



 =


[
Reg

]
N×p

◦


δs1 δs2 . . . δsp

δs1 δs2 . . . δsp
...

...
. . .

...

δs1 δs2 . . . δsp


N×p




σ1

σ2
...

σp

 (2.22)

Notice that performing the immersion operation may be interpreted as multiplying the regularisation

matrix on the left of a vector corresponding to an element-by-element multiplication between vector δs

and the vector with the values one is aiming to immerse. In order to construct the discrete system of

equations for the finite differences approach, one may compactly write that MB = −(Reg ◦∆S).

Concerning the restriction operation of field ϕ̄ to the interface, when performing this operation at once

for all the solid points, under the finite differences approach, one obtains equation 2.23.

MCϕ̄ =


ϕ̄
(
X(ζ1)

)
ϕ̄
(
X(ζ2)

)
...

ϕ̄
(
X(ζp)

)

 = hλ


δ(x1 −X(ζ1)) δ(x2 −X(ζ1)) . . . δ(xN −X(ζ1))

δ(x1 −X(ζ2)) δ(x2 −X(ζ2)) . . . δ(xN −X(ζ2))
...

. . .
...

δ(x1 −X(ζp)) δ(x2 −X(ζp)) . . . δ(xN −X(ζp))




ϕ̄1

ϕ̄2
...

ϕ̄N

 (2.23)

In equation 2.23, a matrix containing delta functions relating all the solid points with all the com-

putational points arises. Note that this matrix is the transpose of the regularisation matrix. Therefore,

performing the restriction operation corresponds to multiply hλ and the transpose of the regularisation

matrix in the left of the vector containing the computational field that one is aiming to restrict. Thus, the

so-called interpolation matrix that performs the restriction operation, here represented by Int, is simply

given by Int = hλRegT . In finite differences, one has the relation MC = Int.

Concerning the finite volume implementation strategy, by analysis of the system of equations 2.16,

one has the following expressions: MB = −hλ(Reg ◦∆S) and MC = hλInt.

Laplacian Operator

The Laplacian operator, appearing only in the finite differences strategy, is equal to the sum of all par-

tial second derivatives. As such, when discretised with second-order accuracy at a given computational

cell with centroid C, the one-dimensional Laplacian is approximated according to equation 2.24. When

one is dealing with a two-dimensional problem, the Laplacian is approximated according to equation

2.25. Subscripts E,W,N, S stand for the centroids of the east, west, north and south neighbouring cells.

Notice that all the second derivatives are approximated using second-order central schemes.
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(
∇2ϕ̄

)1D
C

=
∂2ϕ̄

∂x2

∣∣∣∣
C

O2∼ ϕ̄E + ϕ̄W − 2ϕ̄C
h2

(2.24)

(
∇2ϕ̄

)2D
C

=
∂2ϕ̄

∂x2

∣∣∣∣
C

+
∂2ϕ̄

∂y2

∣∣∣∣
C

O2∼ ϕ̄E + ϕ̄W + ϕ̄N + ϕ̄S − 4ϕ̄C
h2

(2.25)

In finite differences, these expressions are used to fill matrix MA. Naturally, these equations only

apply to interior cells, that is, cells that have neighbours in all directions of the λ-dimensional space.

In the finite differences strategy, the centroid of non-interior cells coincides with the boundary of the

computational domain. Therefore, the Poisson equation for these kind of cells is simply set as ϕ̄C = ϕ̄BC ,

with ϕ̄BC being the known field value at that location of the domain boundary. This corresponds to

impose a Dirichlet boundary condition. The lines of MA describing these kind of cells receive exclusively

a unitary value in the diagonal element and vector va receives ϕ̄BC . Note that the corresponding line of

matrix MB should be already null, since the computational domain is supposed to be sufficiently large,

so that the interface influence is not felt at the domain boundaries.

Gradient Operator

The gradient operator only appears in the finite volume implementation, being evaluated at cell faces.

Remind that the gradient is a vector whose component along direction i is equal to the partial first

derivative along that direction. Its definition is presented in equation 2.26 for a λ-dimensional space.

∇ϕ̄ =

λ∑
i=1

∂ϕ̄

∂xi
ei (2.26)

Notice, as well, that the gradient operator in the finite volume approach always appears in a dot

product with the face external unit normal. So, the relevant quantity to discretise at each cell face is(
∇ϕ̄

)
f
·nf , that corresponds to a directional first derivative. Since the grid is Cartesian with face normal

vectors aligned with one of the axes, this directional derivative ends up corresponding to a derivative

along one of the coordinate axes. By computing the directional derivative with second-order accuracy

using a central scheme, one arrives to equation 2.27, valid for both the one- and two-dimensional cases.

The only difference is that, in the one-dimensional case, both indices f and F will be simultaneously

particularised into east and west; whereas, in the two-dimensional case, north and south will also arise.

(
∇ϕ̄

)
f
· nf =

∂ϕ̄

∂nf

∣∣∣∣
f

O2∼ ϕ̄F − ϕ̄C
h

(2.27)

In finite volume, applying equation 2.27 to all the faces of each cell and summing up all the terms

leads to the coefficients that will incorporate matrix MA. Equation 2.27 is only applicable to interior cells.

Contrary to what happens in the finite differences strategy, the centroid of non-interior cells does

not coincide with the domain boundary. So, in a finite volume approach, the known field values at the

domain boundary have to be imposed on cell faces. This was achieved using a non-centred second-

order scheme to express the directional derivatives for which expression 2.27 is not applicable.
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As an example, consider a cell located at the easternmost boundary of the domain. The evaluation

of term
(
∇ϕ̄

)
e
· ne needs to be adapted, as there is no cell centroid to the east, E, to apply expression

2.27. In that regard, the second-order non-centred scheme of equation 2.28 is used, depending on the

centroid of the western neighbour, the cell centroid of the non-interior cell under study and the value

on its east face (in which the boundary condition can be substituted ϕ̄e = ϕ̄BC). This non-centred

formula relies on three points and, as such, it is second-order accurate to compute a first derivative. The

deduction of expression 2.28 and respective order of accuracy is performed in appendix B.2. Since the

term ( 83 )
ϕ̄BC

h is known, it moves to the right side of the discretised equation, being included in vector va.

(
∇ϕ̄

)
e
· ne =

∂ϕ̄

∂ne

∣∣∣∣
e

O2∼ (1/3)ϕ̄W + (−3)ϕ̄C + (8/3)ϕ̄e
h

(2.28)

For all non-interior cells, a similar procedure is followed, approximating the directional derivative for

which equation 2.27 does not stand by an expression like 2.28. The expressions for the other faces

appearing in the one- and/or two-dimensional problems are presented in equations 2.29, 2.30, 2.31.

(
∇ϕ̄

)
w
· nw =

∂ϕ̄

∂nw

∣∣∣∣
w

O2∼ (1/3)ϕ̄E + (−3)ϕ̄C + (8/3)ϕ̄w
h

(2.29)

(
∇ϕ̄

)
n
· nn =

∂ϕ̄

∂nn

∣∣∣∣
n

O2∼ (1/3)ϕ̄S + (−3)ϕ̄C + (8/3)ϕ̄n
h

(2.30)

(
∇ϕ̄

)
s
· ns =

∂ϕ̄

∂ns

∣∣∣∣
s

O2∼ (1/3)ϕ̄N + (−3)ϕ̄C + (8/3)ϕ̄s
h

(2.31)

In two dimensions, when dealing with a non-interior cell located at a corner of the computational

domain, two non-centred schemes must be picked up from equations 2.28 to 2.31 and two additional

terms of the form ( 83 )
ϕ̄BC

h (that may be different from each other) migrate to the right-had side vector va.

Divergence Operator

The divergence operator appears in both finite differences and finite volume approaches, in the right-

hand side of the Poisson equation, applied to a term relying on an immersion operation. Since the

immersion operation was already treated, consider the vector on which the divergence acts as a general

vector u, defined in Rλ. The definition of the divergence operator is reminded in equation 2.32.

∇ · u =

λ∑
i=1

∂ui
∂xi

(2.32)

The second-order discretisation of the divergence operator is presented in equations 2.33 and 2.34,

for the one-dimensional and two-dimensional cases, respectively, using central schemes.

(
∇ · u

)1D
C

=
∂ux
∂x

∣∣∣∣
C

O2∼ (ux)E − (ux)W
2h

(2.33)

(
∇ · u

)2D
C

=
∂ux
∂x

∣∣∣∣
C

+
∂uy
∂y

∣∣∣∣
C

O2∼ (ux)E − (ux)W
2h

+
(uy)N − (uy)S

2h
(2.34)
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Numerical Implementation of the Heaviside Function

When the Heaviside function and the one-dimensional Dirac delta functions were introduced, it was

referred that both appeared applied to the indicator function. However, using equations 2.5 and 2.6, both

restriction δ(χ) and immersion δT (χ) were transformed into integrals depending on a multidimensional

Dirac delta function, that receives a position vector as argument. So, in fact, the indicator function is not

being used in the numerical implementation of neither the immersion nor the restriction operations.

For complicated geometries, like a solid body with a very irregular shape, the definition of an indicator

function may be a complex task. As such, if one was also able to compute the Heaviside function without

using the indicator function, it would remain a mathematical variable used to perform the deduction of

the method, whose numerical computation is, indeed, never needed.

As shown by Eldredge in article [1], it is possible to compute the Heaviside function fields, H(χ) and

H(−χ), for all the computational points, without the need of explicitly having the indicator function. That

procedure corresponds to solving equation 2.35 for H(−χ), and then computing H(χ) = 1 − H(−χ).

Equation 2.35 was simply obtained by taking the divergence of equation 2.7.

∇2H(−χ) = −∇ · (δ(χ)n) (2.35)

Notice that the discretisation of the Laplacian, divergence and immersion operators was already

treated. As such, equation 2.35 is simply solved with second-order accuracy by applying those discreti-

sation results and imposing null Dirichlet boundary conditions at the computational domain boundary.

Thus, one has two alternatives to set the Heaviside function: by explicitly computing the indicator χ

and applying the Heaviside function definition of equation 2.2; or by solving system of equations 2.35.

The first procedure presents a second-order error arising from the discretisation of operators, whereas

the second is exact when χ is exactly defined. However, in complex geometries for which the interface

is irregular, the computation of χ may have to be iterative (in order to find point xsp in equation 2.1) and

that process will also present an associated error. In this work, the Heaviside function fields, H(χ) and

H(−χ), are computed as suggested by Eldredge [1], applying equation 2.35.
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Chapter 3

1D Improvement Strategies

The first improvement strategies to be derived, implemented and tested were designed for the one-

dimensional case, due to its inherent simplicity when compared to higher-dimensional scenarios. Only

after the one-dimensional tests had been successfully completed, one advanced to two dimensions.

This chapter starts by geometrically describing the one-dimensional problem, in subchapter 3.1.

Then, two alternative equations to close the system coming from the Immersed Layers Method are

presented. In subchapter 3.2, an equation to express the normal derivative jump across the interface

is derived, being presented two different strategies. In subchapter 3.3, an equation that imposes field

values at the interface is studied, with two distinct strategies being given as well. Finally, in subchapter

3.4, a correction method to be run in the end of the execution is presented, that replaces the values near

the interface, affected by the discrete delta functions, being provided three correction subvariants.

3.1 Problem Description

The one-dimensional problem considered in this work consists of a solid body surrounded by fluid

from both sides, as presented in figure 3.1. The computational domain Ω = {x ∈ R : −L
2 ≤ x ≤ L

2 } is

divided into n identical cells, with the body occupying the region xsp1
≤ x ≤ xsp2

. Figure 3.1 presents

the domain discretisation in a finite volume strategy, with domain boundaries coinciding with cell faces.

Figure 3.1: One-dimensional problem in hands, approached by a finite volume reasoning.

As suggested, depending on the number of cells in which the computational domain is divided, the

location of the solid-fluid interfaces (fixed for a given geometry) may fall in a cell centroid, in a cell face

or, in general, in an arbitrary location within the cell they pass through. So, in fact, one is dealing with an

immersed boundary problem, wherein solid boundaries do not coincide, in general, with cell faces.
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3.2 Equation for the Normal Derivative Jump

The first one-dimensional strategy that was tested consists in closing the system of equations by

means of a finite differences equation to express the normal derivative jump across the interface or, in

other words, the strength of the single-layer potential, σ. Contrary to what happens with the strength

of the double-layer potential (assumed to be known), the single-layer potential strength is treated as an

unknown. As such, it is immediate to think about an additional equation expressing this quantity.

In the one-dimensional case, the expression for the normal derivative jump simplifies to the difference

between the derivative in the right and the derivative in the left of the solid point, as presented in equation

3.1. Now, the challenge lies in traducing these derivatives in terms of neighbouring grid points.

σ = (∇ϕ+sp −∇ϕ−sp) · n =
∂ϕ̄

∂x

∣∣∣∣r
sp

− ∂ϕ̄

∂x

∣∣∣∣l
sp

(3.1)

For discontinuous fields across the interface, the use of discrete delta functions in the first equation of

the system, that comes from the Immersed Layers Method, implies that the numerical solution will always

present a smeared interface. Thus, the grid points in the vicinity of the interface that are contained inside

the support width of the discrete delta function are not representative of the slope tendency coming from

each subdomain. As such, these points should not be used when traducing the derivatives in equation

3.1 into finite differences. The smearing phenomenon is qualitatively illustrated in figure 3.2, in which it

is visible a numerical field (in orange) unable to present the expected sharp interface (in yellow). The

region affected by the smearing appears in shades of grey, taking a support width w = 2 as an example.

Figure 3.2: Illustration of the smearing phenomenon near the interface. The expected behaviour appears
in yellow and the smeared one in orange. The affected region appears in shades of grey (w = 2).

A simple way to overcome this problem, when traducing equation 3.1 into finite differences, is to

select grid points that are not contained in the support width of the discrete delta function, that is, grid

points from out of the region in shades of grey appearing in figure 3.2. So, besides the information com-

ing from the solid point, the additional equation with which one will close the system should only invoke

grid points from the so-called superfluous region, S. In this work, the superfluous region is considered

to encompass both the fluid and solid subregions that are not affected by the discrete delta functions,
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S+ and S− respectively, as expressed in equation 3.2. The transition region, in which the smearing

phenomenon takes place, is the complement set of the superfluous region, T = Ω \ S. Consequently,

the domain corresponds to the union of sets Ω = S ∪ T.

S = S+ ∪ S− , with

S− = {x ∈ R : xsp1
+ w

2 h ≤ x ≤ xsp2
− w

2 h}

S+ = {x ∈ R : −L
2 ≤ x ≤ xsp1

− w
2 h ∨ xsp2

+ w
2 h ≤ x ≤ L

2 }
(3.2)

In sections 3.2.1 and 3.2.2, equation 3.1 for the normal derivative jump is traduced into finite differ-

ences by making use of one and two superfluous points from each subdomain, respectively.

3.2.1 Using One Superfluous Point from Each Subdomain

The simplest way to discretise equation 3.1 consists of using unilateral first-order finite differences

to express each derivative. Defining the grid point immediately before the interface that is out of the

support width by xb, and the point immediately after the interface that is out of the support width by xa,

one reaches the expressions presented in equation 3.3. The terms ϕlsp and ϕrsp stand respectively for

the values of the left and right subfields at the solid point, that are known. Note that the left/right notation

is used to allow the derivation of a general expression applicable for both solid points, since the use of

superscripts + or − depends on whether the solid point performs a fluid-solid or solid-fluid transition.

σ =
ϕ̄a − ϕrsp
xa − xsp

−
ϕlsp − ϕ̄b

xsp − xb
(3.3)

Concerning the problem in hands, with a solid body surrounded by a fluid on both sides, the first

solid point performs a fluid-solid transition, whereas the second performs a solid-fluid one. Thus, the

expressions for the normal derivative jump at the two solid points are given in equations 3.4. In each

expression, superscripts l and r were simply particularised in the respective subdomains, + or −.

σ1 =
ϕ̄a1

− ϕ−sp1

xa1
− xsp1

−
ϕ+sp1

− ϕ̄b1
xsp1

− xb1
, σ2 =

ϕ̄a2
− ϕ+sp2

xa2
− xsp2

−
ϕ−sp2

− ϕ̄b2
xsp2

− xb2
(3.4)

However, continuing with the general form presented initially in equation 3.3, one may write it now

as shown in equation 3.5, wherein (for the sake of compactness) the coefficients multiplying ϕ̄a, ϕ̄b, ϕlsp,

and ϕrsp were hidden in variables ca, cb, clsp, and crsp, respectively. As unknowns, one has ϕ̄a, ϕ̄b and σ.

σ = caϕ̄a + cbϕ̄b + crspϕ
r
sp + clspϕ

l
sp (3.5)

Putting, as usual, unknown variables in the left-hand side of the equality, one reaches equation 3.6,

where it is immediate to identify that coefficients ca and cb will incorporate matrix MC, coefficient d = −1

will incorporate matrix MD and that the right-hand side vector vb will receive the terms concerning the

information about the solid point for which the single-layer potential strength is being computed.

caϕ̄a + cbϕ̄b + dσ = −(crspϕ
r
sp + clspϕ

l
sp) (3.6)
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3.2.2 Using Two Superfluous Points from Each Subdomain

In this strategy, despite the solid point information, two superfluous points from each subdomain are

used to express σ. Besides ϕ̄b and ϕ̄a, the points respectively before and after themselves, ϕ̄bb and ϕ̄aa,

are used. As such, a polynomial expansion as in equation 3.7 is performed for each side of the interface.

In all the polynomial expansions performed throughout this work, the coefficients are represented by C.

ϕ
r(x) = Cr

0 + Cr
1(x− xsp) + Cr

2(x− xsp)
2

ϕl(x) = Cl
0 + Cl

1(x− xsp) + Cl
2(x− xsp)

2

(3.7)

As an example, consider the polynomial development to the right. Equation 3.8 presents the relation

between the coefficients Cr
0 , Cr

1 and Cr
2 and the values ϕ̄a, ϕ̄aa and ϕrsp, in a matrix form.


1 0 0

1 (xa − xsp) (xa − xsp)
2

1 (xaa − xsp) (xaa − xsp)
2



Cr

0

Cr
1

Cr
2

 =


ϕrsp

ϕ̄a

ϕ̄aa

 (3.8)

By inverting the square matrix in equation 3.8, the polynomial expansion coefficients Cr
0 , Cr

1 and Cr
2

may be expressed in terms of the values ϕ̄a, ϕ̄aa and ϕrsp. This result is presented in equation 3.9, where

the entries of the inverse matrix were generally designated (mij).
Cr

0

Cr
1

Cr
2

 =


mr

11 mr
12 mr

13

mr
21 mr

22 mr
23

mr
31 mr

32 mr
33



ϕrsp

ϕ̄a

ϕ̄aa

 (3.9)

Performing an identical development to the left-hand side of the interface, one is able to express the

normal derivative jump as function of ϕ̄bb, ϕ̄b, ϕ̄a, ϕ̄aa, ϕlsp and ϕrsp, as presented in equation 3.10.

σ = Cr
1 − Cl

1 = (mr
21ϕ

r
sp +mr

22ϕ̄a +mr
23ϕ̄aa)− (ml

21ϕ
l
sp +ml

22ϕ̄b +ml
23ϕ̄bb) (3.10)

Rearranging equation 3.10 to the usual form, one arrives to equation 3.11, in which (for the sake

of consistency) the previous notation with c and d coefficients was recovered. These coefficients are

determined by comparison between equations 3.10 and 3.11, for example ca = mr
22 and cb = −ml

22.

This arranged form allows an immediate filling of matrices MC, MD and right-hand side vector vb.

caϕ̄a + cbϕ̄b + caaϕ̄aa + cbbϕ̄bb + dσ = −(crspϕ
r
sp + clspϕ

l
sp) (3.11)

3.3 Equation Imposing the Interface Value

Another way to close the system of equations consists of imposing the field value at the interface,

following the same reasoning that was tried in the original Immersed Layers Method. However, instead of

using a discrete delta function to perform the interpolation, one uses polynomial interpolation. Moreover,
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one separately states that the exterior subfield restricted to a certain solid point must give ϕ+sp, and the

interior subfield restricted to that same solid point must give ϕ−sp. The value of each subfield, when

evaluated at the solid point location, is only expressed in terms of superfluous grid points, to overcome

the smearing effect. This strategy leads to the additional equation 3.12, where the linear combination of

the superfluous grid points is represented by a general set of γ coefficients. The computation of these

coefficients depends on the number of superfluous grid points considered in the linear combination.

1

2

[(
γbϕ̄b + γbbϕ̄bb + · · ·

)
+

(
γaϕ̄a + γaaϕ̄aa + · · ·

)]
=

1

2
(ϕlsp + ϕrsp) (3.12)

In sections 3.3.1 and 3.3.2, the linear combinations in γ that appear in equation 3.12 are performed

by considering two and three superfluous points from each subdomain, respectively.

3.3.1 Using Two Superfluous Points from Each Subdomain

In this strategy, the restriction of the each subfield to a solid point is done by using two superfluous

points from each side of the interface. That is, linear polynomial expansions of equations 3.13 are made.

ϕ
r(x) = Cr

0 + Cr
1(x− xsp)

ϕl(x) = Cl
0 + Cl

1(x− xsp)

(3.13)

Considering as an example the right-hand side derivation, the coefficients are expressed in terms of

ϕ̄a and ϕ̄aa as presented in equation 3.14. Similarly, the left-hand side derivation will use ϕ̄b and ϕ̄bb.1 (xa − xsp)

1 (xaa − xsp)

Cr
0

Cr
1

 =

 ϕ̄a

ϕ̄aa

 (3.14)

Inverting the square matrix in equation 3.14 and denoting its entries by (mi,j), equation 3.15 results.

Cr
0

Cr
1

 =

mr
11 mr

12

mr
21 mr

22

 ϕ̄a

ϕ̄aa

 (3.15)

Knowing the coefficients, one is able to express the interface value of each subfield in terms of su-

perfluous points. Note that the value of each polynomial, when evaluated at the solid point, corresponds

only to the first coefficient, that is ϕl(xsp) = Cl
0 and ϕr(xsp) = Cr

0 . Thus, one arrives to equation 3.16.

1

2

[
(ml

11ϕ̄b +ml
12ϕ̄bb) + (mr

11ϕ̄a +mr
12ϕ̄aa)

]
=

1

2
(ϕlsp + ϕrsp) (3.16)

Finally, recovering the c coefficients notation, one arrives to equation 3.17, wherein the coefficients

going to matrix MC are immediate to identify by comparison with equation 3.16, as well as the right-hand

side term going to vector vb. Matrix MD receives no coefficients, since the unknown σ is not present.

cbϕ̄b + cbbϕ̄bb + caϕ̄a + caaϕ̄aa =
1

2
(ϕlsp + ϕrsp) (3.17)
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3.3.2 Using Three Superfluous Points from Each Subdomain

In this strategy, three superfluous points are used to express the value of each subfield at the inter-

face. Thus, the implementation constitutes a generalisation of the previously presented one. Now, the

polynomial expansion for each side of the solid points encompasses three terms, as in equations 3.18.

ϕ
r(x) = Cr

0 + Cr
1(x− xsp) + Cr

2(x− xsp)
2

ϕl(x) = Cl
0 + Cl

1(x− xsp) + Cl
2(x− xsp)

2

(3.18)

The reasoning is similar to the case with two superfluous points, with the difference that now one has

an additional coefficient; so, the matrices have one additional row and one additional column. Besides

using ϕ̄a and ϕ̄aa, the right-hand side development also uses ϕ̄aaa (grid point after ϕ̄aa). The left-hand

side uses ϕ̄b, ϕ̄bb and also ϕ̄bbb (grid point before ϕ̄bb). The right side case in exemplified in 3.19.
1 (xa − xsp) (xa − xsp)

2

1 (xaa − xsp) (xaa − xsp)
2

1 (xaaa − xsp) (xaaa − xsp)
2



Cr

0

Cr
1

Cr
2

 =


ϕ̄a

ϕ̄aa

ϕ̄aaa

 (3.19)

Denoting, as usual, the entries of the inverse of the square matrix in equation 3.19 by general (mi,j)

values, the coefficients of the right-hand side polynomial expansion are given by equation 3.20.
Cr

0

Cr
1

Cr
2

 =


mr

11 mr
12 mr

13

mr
21 mr

22 mr
23

mr
31 mr

32 mr
33




ϕ̄a

ϕ̄aa

ϕ̄aaa

 (3.20)

By performing an identical treatment to the left-hand side and evaluating each polynomial in the

solid point they refer to, one arrives to equation 3.21. Note that, despite the additional coefficients, one

continues to have ϕr(xsp) = Cr
0 and ϕl(xsp) = Cl

0, since the polynomial is being expressed in terms of

local coordinates. So, when the polynomial is evaluated at xsp, the higher-order terms vanish.

1

2

[
(ml

11ϕ̄b +ml
12ϕ̄bb +ml

12ϕ̄bbb) + (mr
11ϕ̄a +mr

12ϕ̄aa +mr
13ϕ̄aaa)

]
=

1

2
(ϕlsp + ϕrsp) (3.21)

In c coefficients notation, the final expression of this strategy has the appearance of equation 3.22.

cbϕ̄b + cbbϕ̄bb + cbbbϕ̄bbb + caϕ̄a + caaϕ̄aa + caaaϕ̄aaa =
1

2
(ϕlsp + ϕrsp) (3.22)

3.4 Smearing Correction

As previously seen in figure 3.2, the transition region is characterised by a locally smeared numerical

solution. However, in the superfluous region, the solution is expected to present a proper behaviour, as

the superfluous grid points do not directly feel the effect of the discrete delta functions. Therefore, it is

plausible to implement a final corrective step, in which the values of the numerical solution inside the
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transition region are discarded and replaced by estimates that take into account the superfluous region

results, allowing to recover a sharp interface in the end of the numerical simulation.

As one will see in chapter 4 concerning one-dimensional results, the error decay is different when

studying the superfluous region alone or the entire domain, since it includes the transition region affected

by the discrete delta functions. Thus, this final correction of transition values allows, as well, to propagate

a satisfactory superfluous decay to the transition region and, consequently, to the entire domain.

Three strategies were tested to correct the one-dimensional results: using one superfluous point

together with the solid point (C1S); using two superfluous points (C2); and using two superfluous points

together with the solid point (C2S). All these correction strategies are illustrated in figure 3.3.

(a) Correction C1S. (b) Correction C2. (c) Correction C2S.

Figure 3.3: Illustration of the three one-dimensional correction strategies implemented (w = 2).

For simplicity, in figure 3.3 only the left correction is drawn. The numerical values in the superfluous

region are presented in orange. On the other hand, the numerical value inside the transition region

(affected by smearing) is represented in red. The expected value inside the transition region appears

represented in yellow and the values at the solid point appear represented in blue. The values implied

in each correction strategy appear surrounded by a black circle. For example, strategy C1S (figure 3.3a)

discards the red transition value and obtains the yellow expected one, by means of the solid point in blue

and the closer superfluous point in orange. Figures 3.3b and 3.3c are interpreted in a similar way.

3.4.1 Using One Superfluous Point from Each Subdomain and the Solid Point

A simple way to correct values inside the transition region consists of using the closest superfluous

point and the solid point information (strategy C1S in figure 3.3a). This correction consists of a linear

interpolation between those values, being the corrected value in yellow approximated by equation 3.23.

ϕ̄new1 =

(
xsp − x1
xsp − xb

)
ϕ̄b +

(
x1 − xb
xsp − xb

)
ϕlsp (3.23)

Keep in mind that figure 3.3 is a particular case, with only one point at each side of the interface

needing correction. However, consider a general support width w ∈ N covering K grid points, k of which

falling in the first half of the transition region, as shown in figure 3.4. Note that, depending of the relative

location of the interface and on w being even or odd, one may have K = 2k− 1, K = 2k, or K = 2k+1.
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Figure 3.4: General first half of the transition region, with k points needing correction.

The procedure applied to derive equation 3.23 remains valid to correct all the points inside the first

half of the transition region, being only important the relative distances between the point needing cor-

rection, the solid point ϕlsp, and the superfluous point ϕ̄b. When correcting the points of the second half

of the transition region, the reasoning is similar, but now the superfluous point to be considered is ϕ̄a and

the interest solid point value is ϕrsp. If, by chance, a grid point coincides exactly with the interface, the

mean between the left and right correction is assumed. The global expression to correct all the smeared

values ϕ̄q (with q ∈ {1; ...;K}) around a given solid point located at xsp is summarised in equation 3.24.

ϕ̄newq =


(xsp−xq

xsp−xb

)
ϕ̄b +

( xq−xb

xsp−xb

)
ϕlsp ⇐ xq < xsp( xq−xsp

xa−xsp

)
ϕ̄a +

( xa−xq

xa−xsp

)
ϕrsp ⇐ xq > xsp

1
2 (ϕ

l
sp + ϕrsp) ⇐ xq = xsp

(3.24)

3.4.2 Using Two Superfluous Points from Each Subdomain

Another way to correct transition values consists of pure extrapolation from the superfluous region

without using the solid point information (strategy C2). Considering the example of figure 3.3b, the new

value in yellow is simply approximated by linear extrapolation from the two points in orange, according

to equation 3.25. The spacing between all the points involved is a known multiple of the grid size and,

as such, obtaining expression 3.25 from the equation of a straight line is straightforward.

ϕ̄new1 = 2ϕ̄b − ϕ̄bb (3.25)

Now, consider the general case of figure 3.4, with k points needing correction inside the first half of

the transition region. By performing simple linear extrapolations from the two superfluous points to all

the k points, one arrives to the expressions presented in the set of equations 3.26.

ϕ̄new1 = 2ϕ̄b − ϕ̄bb , ϕ̄new2 = 3ϕ̄b − 2ϕ̄bb , ( · · · ) , ϕ̄newk = (k + 1)ϕ̄b − kϕ̄bb (3.26)

Similarly, the values lying on the right half of the transition region are corrected by an extrapolation

using the right-hand side superfluous region, that is, ϕ̄a and ϕ̄aa. Again, if a grid point exactly coin-

cides with the interface, its corrected value is taken as the mean between both left and right correction

formulas. The expressions to be applied to each smeared point are summarised in equation 3.27.
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ϕ̄newq =


ϕ̄new,l
q = (q + 1)ϕ̄b − qϕ̄bb ⇐ xq < xsp

ϕ̄new,r
q =

[
(K − q + 1) + 1

]
ϕ̄a − (K − q + 1)ϕ̄aa ⇐ xq > xsp

1
2 (ϕ̄

new,l
q + ϕ̄new,r

q ) ⇐ xq = xsp

(3.27)

3.4.3 Using Two Superfluous Points from Each Subdomain and the Solid Point

The third strategy uses two superfluous points together with the solid point information. The previous

strategies, C1S and C2, relied on information from two points and were equivalent to consider linear

polynomials to perform the respective interpolation or extrapolation. However, current strategy C2S is

based on information coming from three points, which translates into the use of quadratic polynomials.

Thus, one should write one polynomial for each side of the interface, as presented in equation 3.28.

ϕ
l(x) = Cl

0 + Cl
1x+ Cl

2x
2

ϕr(x) = Cr
0 + Cr

1x+ Cr
2x

2

(3.28)

Coefficients Cl
0, C

l
1, C

l
2 are determined using ϕ̄b, ϕ̄bb, ϕlsp, and coefficients Cr

0 , C
r
1 , C

r
2 are determined

by making use of ϕ̄a, ϕ̄aa, ϕrsp. The procedure is exemplified in equation 3.29 for the left-hand side.


1 0 0

1 xb x2b

1 xbb x2bb



Cl

0

Cl
1

Cl
2

 =


ϕlsp

ϕ̄b

ϕ̄bb

 (3.29)

Inverting the square matrix in equation 3.29 and denoting its entries by (mij), one is able to express

the coefficients in terms of the field values as it is shown in equation 3.30.
Cl

0

Cl
1

Cl
2

 =


ml

11 ml
12 ml

13

ml
21 ml

22 ml
23

ml
31 ml

32 ml
33



ϕlsp

ϕ̄b

ϕ̄bb

 (3.30)

Proceeding in the same way to the right-hand side, coefficients Cr
0 , C

r
1 , C

r
2 are discovered, as well.

Therefore, for the transition region of figure 3.4 with a general number of K points needing correction,

the new value for a given point xq is simply obtained by applying equation 3.31.

ϕ̄newq =


ϕl(xq) ⇐ xq < xsp

ϕr(xq) ⇐ xq > xsp

1
2 (ϕ

l(xq) + ϕr(xq)) ⇐ xq = xsp

(3.31)

Note that this last strategy, by using three points to estimate a function value, is a third-order method.

However, this correction step will not lead to third-order transition values, since it will act over second-

order superfluous results. So, transition corrected values are limited to second-order accuracy as well.
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Chapter 4

1D Results

In this chapter, the one-dimensional implementation of the Immersed Layers Method is performed,

being compared the original formulation of chapter 2 and the several one-dimensional improvement

strategies that were proposed in chapter 3. The one-dimensional results of the original formulation are

presented for both finite differences and finite volume approaches. The finite differences test allows to

confirm whether the numerical implementation is in line with the results presented by Eldredge in article

[1], serving also as a mean to find out if the derived finite volume approach is behaving properly. Once

this confirmation is done, all the results concerning the improvement strategies proceed using the finite

volume approach in the masked Poisson equation.

In subchapter 4.1, general considerations are made, concerning the geometry and the presentation

of the analytical functions that will be considered. Moreover, the error field is defined, alongside with

relevant scalar error quantities, whose decay will be evaluated. In subchapter 4.2, the IL method is

presented in its original formulation, with the system being closed with equation 2.11. In subchapter

4.3, the strategy of subchapter 3.2 is tested, concerning an additional equation expressing the normal

derivative jump. In subchapter 4.4, one studies the strategy of subchapter 3.3, concerning an additional

equation imposing the field value at the interface. In subchapter 4.5, all the 1D methods are compared.

Finally, in subchapter 4.6 the 1D corrective procedures derived in subchapter 3.4 are tested, recovering

interface sharpness and propagating superfluous decays to the transition region.

4.1 General Considerations

Firstly, the geometrical parameters left general in chapter 2 should be given numeric values. Recall-

ing figure 3.1, the length of the computational domain was set as L = 2 and the solid points were placed

at xsp1
= −0.5 = −xsp2

. Secondly, one must define analytical functions to perform the numerical tests,

so that the source terms lying on the right-hand side vectors are computed and one knows exactly what

solution should be expected to arise. In order to be valid, the derived improvement strategies must be

able to deal with the most general field behaviours near the interface. So, the focus should be a worst

case scenario function, with discontinuous value and discontinuous derivatives across the interface.
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Consider four one-dimensional functions, named as F1, F2, F3 and F4. Let functions F1 and F2 be

continuous through the interface, with F1 presenting a continuous first derivative across the interface,

while F2 does not. Let F3 and F4 be discontinuous in value across the interface, with F3 presenting a

continuous first derivative, whereas F4 presents discontinuous derivatives across the interface. This last

function will be the focus of the numerical tests performed in this chapter. The analytical expressions

considered for all these functions are summarised in table 4.1 and their graphs are shown in figure 4.1.

Table 4.1: Expression of each analytical subfield considered in functions F1, F2, F3, F4.

Function F1 Function F2 Function F3 Function F4

ϕ−(x) cos (2π|x|) + 1 cos
(
πx

)
cos

(
2π|x|

)
+ 2 ex

ϕ+(x) 0 0 0 0

(a) Function F1. (b) Function F2.

(c) Function F3. (d) Function F4.

Figure 4.1: Graphical representation of all the four one-dimensional functions considered.

Once an analytical expression is used to compute the source terms and the simulation generates

a numerical solution, one is able to compute the error field, ε, taken as the difference between the

numerical solution field, ϕ̄, and the analytical field, ϕ̄a, according to equation 4.1. Recall that all these

entities are vectors with dimensions N × 1, with N = n in the one-dimensional case.

ε = ϕ̄− ϕ̄a (4.1)
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To study an error field and to make comparisons between error fields arising from different implemen-

tations, three main scalar quantities are defined: the mean (also known as the L1 norm), the L2 norm

and the maximum value (also known as the L∞ norm), whose definitions are provided in equations 4.2a,

4.2b and 4.2c, respectively. These formulas may be used to compute the error quantities in a particular

domain region. For example, consider the superfluous region containing NSup cells, characterised by a

NSup × 1 error vector. The mean value of the error in the superfluous region is computed with equation

4.2a, using εSup instead of the global vector ε and using NSup instead of N .

∥ε∥1 = ε =
1

N

N∑
i=1

|εi| (4.2a)

∥ε∥2 =

√√√√ 1

N

N∑
i=1

|εi|2 (4.2b)

∥ε∥∞ = εmax = max |εi| (4.2c)

When a scalar error quantity is said to be asymptotically decaying, its plot as function of the grid size

corresponds to a straight line, when represented in a system of logarithmic axes. The order of decay,

ρ, is given by the slope of that straight line in the logarithmic graph. Considering two points within the

asymptotic region, (h1, ε1) and (h2, ε2), the order of decay is computed according to equation 4.3.

ρ =
log (ε2)− log (ε1)

log (h2)− log (h1)
(4.3)

In the one-dimensional case, due to its inherent geometrical simplicity, it is important to make sure

that the numerical tests address general relative locations of the solid points to its closest neighbouring

cell centroids, so that no particular case is being unconsciously targeted. As such, in this chapter, the

decays were evaluated by setting a parameter µ = {0, 1, 2, 3} and then running the code for consecutive

numbers of cells in the set n ∈ {100 + µ; 200 + µ; 400 + µ; 800 + µ; 1600 + µ}. The lower number of cells

was defined taking into account that the error should already be presenting its asymptotic behaviour.

The order of decay is computed by using the points corresponding to the two most refined grids.

Given the location of the solid points, in finite volume, when the parameter µ is equal to {0, 1, 2, 3}, the

distance between the first solid point and its immediately previous grid point is given as a percentage of

the grid size by {50%; 75%; 0%; 25%} respectively, whereas the distance between the second solid point

and its immediately previous grid point is {50%; 25%; 0%; 75%}. In finite differences, when µ is equal to

{0, 1, 2, 3}, the same relative distances are {75%; 0%; 25%; 50%} and {25%; 0%; 75%; 50%} respectively.

When the relative distance is 0% (solid point coinciding with a centroid) or 50% (in the middle of two

centroids), the results obtained with some discrete delta functions are considerably better. However,

those locations are just particular cases and should not be taken as representative, since in immersed

boundary methods the interface is assumed to fall anywhere relative to the grid. So, finite volume results

should only be considered representative for µ ∈ {1, 3} and finite differences ones for µ ∈ {0, 2}. In this

chapter, finite volume results are presented for µ = 1 and finite differences ones for µ = 0.
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4.2 Original Formulation

In this subchapter, the Immersed Layers Method is tested under a one-dimensional implementation,

both in finite differences and finite volume. In the finite differences approach one considers the system of

equations 2.12, whereas in the finite volume approach one considers system 2.16. In both systems, the

one-dimensional discretisation of all the operators is taken and λ = 1. Starting with the finite differences

implementation, the numerical solution and the error field when considering function F1 are displayed in

figure 4.2, using δ∗3 and n = 100. The decays obtained for all the error quantities are shown in table 4.2.

(a) Numerical field. (b) Error field.

Figure 4.2: Results for function F1 under a finite differences approach, using δ∗3 and n = 100 cells.

Table 4.2: Error decay for function F1, in the original IL formulation, using finite differences (µ = 0).

δh ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

δ∗3 1.9965 1.9971 1.9892 1.9938 1.9925 1.9817 1.9953 1.9932 1.9892
δ2002 1.9963 1.9979 1.9992 1.9983 1.9992 1.9992 1.9971 1.9956 1.9956
δ2103 1.9968 1.9975 1.9968 1.9971 1.9958 1.9894 2.0007 1.9975 1.9968
δ4206 2.0121 2.0018 2.0006 2.0228 2.0110 2.0006 2.0064 2.0015 2.0016

From figure 4.2, one concludes that the absolute values of the error field near the interface are

comparable to the ones observed inside the solid body, due to the fact that function F1 is well behaved

across the interface (continuous both in value and first derivative). Furthermore, according to table 4.2,

the moment properties assumed during the derivation of the discrete delta functions are able to arise.

As explained in appendix A.3, discrete delta functions δ∗3 , δ2002 and δ2103 were derived considering a

moment order m = 2, whereas δ4206 presents a moment order m = 4. Thus, the good behaviour of the

field across the interface allows δ∗3 , δ2002 and δ2103 to originate second-order decays in all the regions.

However, δ4206 is incapable of manifesting its fourth-order potential, since all the operators appearing in

the system of equations were discretised with second-order accuracy only.

When considering function F2 under finite differences, the numerical solution and error field are

illustrated in figure 4.3 using δ∗3 and n = 100. The decays of all the error quantities appear in table 4.3.
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(a) Numerical field. (b) Error field.

Figure 4.3: Results for function F2 under a finite differences approach, using δ∗3 and n = 100 cells.

Table 4.3: Error decay for function F2, in the original IL formulation, using finite differences (µ = 0).

δh ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

δ∗3 0.9977 0.9985 1.0022 0.9943 0.9963 1.0021 0.9973 0.9970 1.0022
δ2002 0.9974 0.9981 1.0013 0.9950 0.9962 1.0012 0.9987 0.9987 1.0013
δ2103 0.9978 0.9987 1.0024 0.9958 0.9975 1.0024 1.0004 1.0002 1.0024
δ4206 0.9999 1.0013 1.0014 0.9902 0.9928 1.0011 0.9955 0.9957 1.0014

Once more, according to figure 4.3, the absolute values of the error field near the interface present

a similar order of magnitude compared to the ones inside the solid body. So, the discontinuity in first

derivative did not lead, in this case, to significant error peaks near the interface. However, according to

the results of table 4.3, despite function F2 being continuous, the existence of a discontinuity in the first

derivative across the interface was enough to prevent the properties of the discrete delta functions to

manifest. All the error quantities presented a first-order decay in all the domain regions.

The numerical solution and error field for function F3, under finite differences, are presented in figure

4.4, using δ∗3 and n = 100 cells. The decays are shown in table 4.4, with “N.D.” standing for “No Decay”.

(a) Numerical field. (b) Error field.

Figure 4.4: Results for function F3 under a finite differences approach, using δ∗3 and n = 100 cells.
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Table 4.4: Error decay for function F3, in the original IL formulation, using finite differences (µ = 0).

δh ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

δ∗3 1.0177 0.4990 N.D. 1.9938 1.9925 1.9817 N.D. N.D. N.D.
δ2002 1.0160 0.4990 N.D. 1.9983 1.9992 1.9992 N.D. N.D. N.D.
δ2103 1.0189 0.4990 N.D. 1.9971 1.9958 1.9894 N.D. N.D. N.D.
δ4206 1.0074 0.4990 N.D. 2.0228 2.0110 2.0006 N.D. N.D. N.D.

As one observes in figure 4.4, the introduction of a discontinuity in value across the interface led to

significant error peaks in the transition region. Moreover, according to table 4.4, all the error quantities

do not decay in the transition region. However, the continuity in derivative across the interface appears

to be enough to hold a second-order decay in the superfluous region. Notice that, as one refines the

grid, the discrete delta function always continues to act over its fixed characteristic length, wh, set at the

time of its deduction. Thus, the transition region becomes thinner and thinner, but it will always look the

same if one zooms in, performing a smeared transition between the left and the right values of the given

discontinuity. This phenomenon, illustrated in figure 4.5, may be pointed as the main reason why the

use of discrete delta functions is unable (by its own) to present an overall accuracy higher than first for

discontinuous fields. As table 4.4 shows, the non-decay in the transition region makes the global mean

error to present first-order accuracy. The L2 norm reverts from a second-order superfluous decay to a

global half-order behaviour. As a remark, article [15] reports decays of the L2 norm half order below

the ones verified for the mean error. Although the context is different (that article concerns a Stokes

flow), it shows that half-order penalties in the L2 norm decay are not an unprecedented phenomenon in

immersed boundary formulations using discrete delta functions, when dealing with discontinuous fields.

(a) n = 100 (b) n = 400 (c) n = 1600

Figure 4.5: Transition region around the first solid point, |x− xsp1
| ≤ (w2 )h, using δ∗3 for different grids.

The numerical solution and error field obtained with function F4 under finite differences, considering

δ∗3 and n = 100 cells, are presented in figure 4.6. Table 4.5 displays the orders of decay that were

observed for all the discrete delta functions in all the regions.
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(a) Numerical field. (b) Error field.

Figure 4.6: Results for function F4 under a finite differences approach, using δ∗3 and n = 100 cells.

Table 4.5: Error decay for function F4, in the original IL formulation, using finite differences (µ = 0).

δh ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

δ∗3 0.9933 0.4988 N.D. 0.9900 0.9909 0.9925 N.D. N.D. N.D.
δ2002 0.9963 0.4984 N.D. 0.9945 0.9953 0.9961 N.D. N.D. N.D.
δ2103 0.9941 0.4990 N.D. 0.9934 0.9941 0.9930 N.D. N.D. N.D.
δ4206 0.9919 0.4988 N.D. 0.9808 0.9846 0.9861 N.D. N.D. N.D.

As in the previous case, due to the discontinuity in value, the error presents significant peaks near

the interface and the error quantities do not decay in the transition region. Here the derivative across

the interface is discontinuous as well, leading to first-order accuracy in the superfluous region. When

the entire domain is considered, the mean error decays with first-order accuracy, whereas the L2 norm

presents a half-order decay. In article [1], Eldredge reported a first-order decay of the L2 norm in the

superfluous region for a two-dimensional field with discontinuity in value and normal derivative across

the interface, when using δ∗3 in a finite differences approach. Note that it is exactly what one obtained

in the cell of table 4.5 that is highlighted in blue. Even though the problem there is two-dimensional and

here it is one-dimensional, one can say that the results seem to be in line with expectations. Further up

in this work, in chapter 6, the exact same two-dimensional problem will be addressed.

The results of the one-dimensional finite volume implementation of the Immersed Layers Method in

its original formulation are presented in tables 4.6 to 4.9, being identical to the finite differences ones.

So, the derived finite volume approach behaves as expected. The first-order superfluous decay of the

L2 norm was again observed for function F4, in line with article [1]. This value is highlighted in table 4.9.

Table 4.6: Error decay for function F1, in the original IL formulation, using finite volume (µ = 1).

δh ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

δ∗3 2.0028 2.0037 2.0001. 1.9944 1.9945 1.9996 1.9997 2.0000 2.0001
δ2002 1.9999 2.0002 2.0003 1.9994 2.0006 2.0003 1.9986 1.9986 1.9993
δ2103 2.0026 2.0041 2.0002 1.9932 1.9928 1.9999 2.0000 2.0001 2.0002
δ4206 2.0000 2.0006 2.0003 2.0005 2.0021 2.0003 1.9953 1.9952 1.9983

37



Table 4.7: Error decay for function F2, in the original IL formulation, using finite volume (µ = 1).

δh ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

δ∗3 0.9993 0.9996 1.0011 0.9976 0.9984 1.0011 0.9987 0.9985 1.0011
δ2002 0.9992 0.9993 1.0007 0.9979 0.9984 1.0006 0.9993 0.9993 1.0007
δ2103 0.9993 0.9996 1.0012 0.9974 0.9990 1.0012 1.0002 1.0001 1.0012
δ4206 1.0004 1.0010 1.0007 0.9957 0.9968 1.0007 0.9978 0.9979 1.0007

Table 4.8: Error decay for function F3, in the original IL formulation, using finite volume (µ = 1).

δh ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

δ∗3 0.9188 0.50001 N.D. 1.9945 1.9944 1.9996 N.D. N.D. N.D.
δ2002 1.0006 0.5000 N.D. 1.9994 2.0006 2.0002 N.D. N.D. N.D.
δ2103 1.0016 0.5001 N.D. 1.9932 1.9938 1.9999 N.D. N.D. N.D.
δ4206 1.0056 0.5000 N.D. 2.0005 2.0002 2.0002 N.D. N.D. N.D.

Table 4.9: Error decay for function F4, in the original IL formulation, using finite volume (µ = 1).

δh ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

δ∗3 0.9974 0.4998 N.D. 0.9952 0.9956 0.9957 N.D. N.D. N.D.
δ2002 0.9990 0.4997 N.D. 0.9976 0.9979 0.9976 N.D. N.D. N.D.
δ2103 0.9978 0.4999 N.D. 0.9968 0.9971 0.9958 N.D. N.D. N.D.
δ4206 0.9967 0.4999 N.D. 0.9919 0.9926 0.9929 N.D. N.D. N.D.

4.3 Equation for the Normal Derivative Jump

In this subchapter, the improvement strategy concerning the additional equation expressing the nor-

mal derivative jump (shortly referred to as the σ-equation) is tested. From now on, all the results will

concern function F4, since it is the most general function and the one with the worst results in the original

formulation. Moreover, all the results will be obtained using the Poisson equation in a finite volume im-

plementation, that is, using the first equation appearing in system 2.16. The second equation of system

2.16 will be discarded and the new equations of subchapter 3.2 will now be used. The decays obtained

using the additional equation for the normal derivative jump with one superfluous point from each sub-

domain, derived in section 3.2.1, are presented in table 4.10. The decays considering the use of two

superfluous points from each subdomain, derived in section 3.2.2, are shown in table 4.11.

Table 4.10: Error decay for function F4, using the σ-equation with one superfluous point (µ = 1).

δh ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

δ∗3 1.0003 0.5003 N.D. 1.9964 1.9964 1.9892 N.D. N.D. N.D.
δ2002 1.0012 0.5000 N.D. 1.9979 1.9981 1.9937 N.D. N.D. N.D.
δ2103 1.0031 0.5004 N.D. 1.9972 1.9973 1.9929 N.D. N.D. N.D.
δ4206 1.0059 0.5002 N.D. 1.9951 1.9952 1.9945 N.D. N.D. N.D.
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Table 4.11: Error decay for function F4, using the σ-equation with two superfluous points (µ = 1).

δh ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

δ∗3 1.0003 0.5003 N.D. 1.9938 1.9937 2.0092 N.D. N.D. N.D.
δ2002 1.0001 0.5000 N.D. 1.9967 1.9969 2.0053 N.D. N.D. N.D.
δ2103 1.0004 0.5004 N.D. 1.9948 1.9949 2.0106 N.D. N.D. N.D.
δ4206 1.0000 0.5002 N.D. 2.2334 2.1124 2.0915 N.D. N.D. N.D.

When comparing the results presented in tables 4.10 and 4.11 with the ones in table 4.9, one con-

cludes that the alternative equation, both considering one or two superfluous points, is able to achieve

second-order decays in the superfluous region for all the error parameters. However, as expected for

a discontinuous function (recall the phenomenon of figure 4.5), the numerical solution continues not

decaying in the transition region. Consequently, the global decays continue looking like in table 4.9.

Note that the version using one superfluous point used unilateral first-order schemes to compute

the first derivative at each side of the interface. However, second-order accuracy is still obtained in

the superfluous region. This phenomenon is reported by Leveque and Li in article [9], concerning the

derivation of the Immersed Interface Method. According to them, having a first-order error exclusively

in a set of lower dimension does not prevent obtaining global second-order accuracy. In other words, a

first-order error in a set of lower dimension does not contaminate a second-order error existing around

that set. As previously referred, this method computes correction terms near the interface, so that

undesirable terms in the truncation error vanish. Indeed, in the immediate vicinity of the interface, they

only ensure that the truncation error is first-order and it did not prevent global second-order accuracy.

Similarly, here, the equation for σ expresses the normal derivative jump for the solid points discretising

the interface, that constitutes a lower dimension set. Notice that the normal derivative jump, σ, is a

quantity only defined at the interface. So, following the reasoning of Leveque and Li [9], a first-order

error exclusively at the interface would not be able to contaminate a second-order superfluous decay.

Besides evaluating the orders of decay, it is important to study the value of the error quantities, in

order to compare the effect of the discrete delta function. As such, figure 4.7 shows the decay graphs of

the superfluous error parameters with one superfluous point, whose data was presented in table 4.10.

In figure 4.8, the same graphs are displayed for the case of considering two superfluous points.

As figure 4.7 suggests, the discrete delta function that leads to the lowest errors is δ2002, with almost

one order of magnitude difference in the L2 norm and in the mean error, when compared to the worst

one, δ4206. The discrete delta functions δ2103 and δ∗3 present similar results, between the previous ones.

In the strategy with two superfluous points, figure 4.8 shows that δ2103 and δ∗3 continue behaving similarly,

but now they are the worst. The best discrete delta function is δ4206, with more than one order of

magnitude advantage from the worst ones and around one order of magnitude advantage from δ2002.

Comparing both graphs for the most refined mesh, one observes that the best discrete delta function

leads to error parameters around 10−6 in the strategy with one superfluous point, whereas the best

discrete delta function in the case of two superfluous points achieves errors around 10−8. As such,

despite the same order of decay, the use of two superfluous points presents numerical advantage.
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Figure 4.7: Superfluous decay using the σ-equation with one superfluous point.

Figure 4.8: Superfluous decay using the σ-equation with two superfluous points.

4.4 Equation Imposing the Interface Value

In this subchapter, the improvement strategy concerning the additional equation expressing the field

value at the interface (shortly named as the ϕ̄-equation) is tested. Again, the results are presented for

function F4, using the Poisson equation under a finite volume formulation. The decays obtained for the

strategy derived in section 3.3.1, with two superfluous points, are presented in table 4.12. The decays

for the version with three superfluous points, derived in section 3.3.2, are shown in table 4.13.

Similarly to what happened with the additional equation expressing the normal derivative jump, this

alternative additional equation with extrapolation of the subfields to the interface is able to achieve

second-order results in the superfluous region for all discrete delta functions. Note that, as one will
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Table 4.12: Error decay for function F4, with µ = 1, using the ϕ̄-equation with two superfluous points.

δh ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

δ∗3 1.0042 0.5002 N.D. 1.9961 1.9964 1.9944 N.D. N.D. N.D.
δ2002 1.0019 0.5000 N.D. 1.9981 1.9979 1.9967 N.D. N.D. N.D.
δ2103 1.0041 0.5003 N.D. 1.9968 1.9964 1.9944 N.D. N.D. N.D.
δ4206 1.0071 0.5001 N.D. 1.9944 1.9940 1.9919 N.D. N.D. N.D.

Table 4.13: Error decay for function F4, with µ = 1, using the ϕ̄-equation with three superfluous points.

δh ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

δ∗3 1.0003 0.5003 N.D. 2.0052 2.0098 2.0444 N.D. N.D. N.D.
δ2002 1.0001 0.5000 N.D. 2.0036 2.0063 2.0287 N.D. N.D. N.D.
δ2103 1.0004 0.5004 N.D. 2.0046 2.0082 2.0385 N.D. N.D. N.D.
δ4206 1.0000 0.5002 N.D. 2.6421 2.6208 2.6091 N.D. N.D. N.D.

see, the slightly higher than second-order results for δ4206 in table 4.13 are due to the fact that the

asymptotic region has not yet been reached and the decay is yet adjusting towards second-order. Once

more, the errors in the transition region do not decay, as it was already verified in the original formulation

with function F4. Globally, the mean error decays with first-order and the L2 norm presents the already

detected half-order behaviour for discontinuous fields. In order to compare the effect of the discrete delta

functions, the superfluous decays of both strategies are presented in figures 4.9 and 4.10.

Figure 4.9: Superfluous decay using the ϕ̄-equation with two superfluous points.

As observed in figure 4.9, the discrete delta function that leads to the best results when using two

superfluous points is δ2002, whereas the highest error values are obtained when δ4206 is used. The

discrete delta functions δ2103 and δ∗3 behave similarly, in between. These results from figure 4.9 are

very similar to the ones in figure 4.7. In figure 4.9, concerning the use of three superfluous points, one
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Figure 4.10: Superfluous decay using the ϕ̄-equation with three superfluous points.

concludes that the slightly higher than second-order decays from for δ4206 are explained by the fact that

the numerical solution is yet adjusting towards the asymptotic region, contrary to what is verified for the

other discrete delta functions, that are already there. For the coarsest mesh, δ2002 presents a lower error,

but it is immediately overtaken by δ4206. As such, for the most refined grids, these results are similar to

the ones in figure 4.8, with δ2103 and δ∗3 being the worst discrete delta functions and δ4206 being the best.

4.5 Comparison between 1D Methods

Analysing figures 4.7 to 4.10, one may compare the results for a given discrete delta function, in order

to determine what is the strategy that leads to the lowest superfluous error. To facilitate the analysis,

figure 4.11 displays all the decays concerning δ2002 together, collapsing the data presented in figures 4.7

to 4.10. The value in parentheses appearing in the legend refers to the number of superfluous points.

Figure 4.11: Gathering of all the superfluous decays with σ-equation and ϕ̄-equation strategies for δ2002.
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As figure 4.11 indicates, the strategy corresponding to the σ-equation using two superfluous points

presents the lowest L2 and mean error values, being the second best in terms of maximum error for the

most refined grids and the best for the most coarse ones. The graphs concerning the other discrete delta

functions, available in appendix C.1, reveal identical results for δ∗3 and δ2103. In the case of discrete delta

function δ4206, the strategy corresponding to the σ-equation using two superfluous points is always the

best. Therefore, ordering all the strategies from the worst to the best, that is, from the one with highest

errors to the one with the lowest ones, overall one has: ϕ̄-equation (2), σ-equation (1), ϕ̄-equation (3),

σ-equation (2). As such, from all the derived one-dimensional improvement strategies in chapter 3,

one concludes that the σ-equation strategy with two superfluous points is the one presenting the best

numerical results. Moreover, recalling figure 4.8, the discrete delta function that led to the lowest error

values when conjugated with this strategy was δ4206.

As already shown, all these alternative strategies present second-order accuracy in the superfluous

region and the original formulation (both in finite differences and finite volume) is only first-order accurate.

Therefore, all the alternative strategies are better than the original one-dimensional formulation.

4.6 Smearing Correction

In this subchapter, the three one-dimensional smearing corrective procedures presented in subchap-

ter 3.4 are implemented and compared. The main objective is to find out if they are able to propagate the

second-order decays achieved in the superfluous region to the transition region and, consequently, to

the entire domain. To test the corrective procedures, one considers, as an example, the σ-equation with

two superfluous points, since it was the strategy with the best numerical results. The decays obtained

using corrective procedures C1S, C2 and C2S are presented in tables 4.14, 4.15 and 4.16, respectively.

Table 4.14: Error decay for function F4, with µ = 1, using strategy σ-equation (2), with correction C1S.

δh ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

δ∗3 2.0120 2.0639 1.9963 1.9938 1.9937 2.0092 1.9986 1.9975 1.9963
δ2002 2.0007 2.0066 1.9983 1.9967 1.9969 2.0053 1.9993 1.9989 1.9983
δ2103 2.0109 2.0513 1.9963 1.9948 1.9949 2.0106 1.9987 1.9974 1.9963
δ4206 2.6650 2.4952 1.9960 2.2334 2.1124 2.0915 2.0001 1.9965 1.9960

Table 4.15: Error decay for function F4, with µ = 1, using strategy σ-equation (2), with correction C2.

δh ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

δ∗3 2.0794 2.3695 1.9972 1.9938 1.9937 2.0092 1.9990 1.9979 1.9972
δ2002 2.0410 2.2648 1.9983 1.9967 1.9969 2.0053 1.9994 1.9987 1.9983
δ2103 2.0693 2.3421 1.9972 1.9948 1.9949 2.0106 1.9989 1.9979 1.9972
δ4206 2.8649 2.4970 1.9961 2.2334 2.1124 2.0915 1.9996 1.9971 1.9961
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Table 4.16: Error decay for function F4, with µ = 1, using strategy σ-equation (2), with correction C2S.

δh ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

δ∗3 1.9917 1.9923 2.0092 1.9938 1.9937 2.0092 2.0000 2.0025 2.0113
δ2002 1.9952 1.9969 2.0053 1.9967 1.9969 2.0053 2.0008 2.0038 2.0070
δ2103 2.0693 2.3421 1.9972 1.9948 1.9949 2.0106 1.9989 1.9979 1.9972
δ4206 2.2320 2.1118 2.0915 2.2334 2.1124 2.0915 2.9865 2.9867 2.9854

As concluded from tables 4.14 to 4.16, all the derived one-dimensional corrective procedures are

able to propagate second-order superfluous decays to the entire computational domain. Notice that

the superfluous decays are identical to the ones of table 4.11, since the corrective procedures only

act on transition values. As previously referred, contrary to what happens with the other discrete delta

functions, the superfluous values concerning δ4206 are still adjusting towards the asymptotic behaviour

and, consequently, the corrective procedures are acting over a superfluous field that is yet characterised

by a decay of order higher than second. As such, some entries of tables 4.14 to 4.16 concerning the

transition region and the entire domain for δ4206 display higher than second-order values as well.

In order to compare the corrective procedures between themselves, one should fix the discrete delta

function and focus on the error parameters that each procedure originates. As an example, consider the

decays obtained with δ4206 for all the corrective procedures, shown in figure 4.12, in which C0 stands for

not using any correction. The graphs for the other discrete delta functions are available in appendix C.2.

Figure 4.12: Gathering of all the global decays using different corrective procedures, for δ4206.

According to figure 4.12, the corrective procedure C2S, using the solid point and two superfluous

points, is the one leading to the lowest error in the corrected transition region. As explained in section

3.4.3, although all the corrective procedures act on the same superfluous field, strategy C2S propagates

the superfluous values to the transition region with a formulation that is third-order accurate, whereas

strategies C1S and C2 perform that propagation with a second-order accurate formulation. However,
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despite the smallest error due to the third-order propagation, the second-order nature of the superfluous

region field will never allow higher orders of accuracy to manifest in the transition region (and conse-

quently in the entire domain), unless the superfluous decay is not yet stabilised. Indeed, this is what is

happening when combining corrective strategy C2S with discrete delta function δ4206, whose superfluous

results were still adjusting towards second-order (recall the graph presented in figure 4.8).

As a final remark, besides C1S and C2 being both second-order accurate corrective procedures, C2

reveals to be worst for all the error parameters. This result can be explained by the fact that, while proce-

dure C2 uses two superfluous points whose values arose from the numerical simulation, procedure C1S

uses one superfluous point together with one solid point whose analytical value is known. The graphs

available in appendix C.2 for the other discrete delta functions lead to the same qualitative conclusion,

with C2 being the procedure with the highest errors and C2S presenting the lowest ones.

In figure 4.13, the recovery of a sharp interface is exemplified around solid point xsp1
, considering the

use of σ-equation strategy with two superfluous points and discrete delta function δ4206. The transition

region is indicated by vertical dark dashed lines and the location of the interface appears as a vertical red

dashed line. Since function F4 is a discontinuous field, the discrete delta function leads to a smeared

interface, as represented in figure 4.13a. Once one of the derived corrective procedures is applied,

the interface sharpness is recovered. To obtain figure 4.13b, procedure C2S was used as an example.

Notice that the superfluous values remain untouched and only transition points are corrected.

(a) Smeared interface before correction. (b) Sharp interface after correction C2S.

Figure 4.13: Interface before and after correction, with strategy σ-equation (2), δ4206 and n = 201. The

numerical solutions are represented in orange and the analytical function appears represented in blue.
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Chapter 5

2D Improvement Strategies

In this chapter, several improvement strategies are presented concerning a two-dimensional problem.

In chapter 3, two lines of thought were followed to close the system of equations: deducing an expression

to the normal derivative jump across the interface, or deducing an equation to impose the value at the

interface. As seen in chapter 4 concerning the one-dimensional results, the addition of an equation to

model the normal derivative jump revealed to be more precise in the one-dimensional tests, achieving

similar orders of decay, but presenting a lower error. Thus, taking into account the one-dimensional

results, the two-dimensional improvement strategy followed in this work focused on deriving additional

equations to express σ, instead of equations aiming to impose the field value at the interface.

This chapter begins with a geometrical description of a two-dimensional problem, in subchapter 5.1.

Then, several strategies to express the single-layer potential strength are derived. In subchapter 5.2,

a direct method is deduced. In subchapter 5.3, a least squares strategy is employed, with two pos-

sible approaches to deal with the solid point in the least squares polynomial. In subchapter 5.4, a

two-dimensional method faithfully based in the one-dimensional line of thought is derived. Finally, in

subchapter 5.5, two-dimensional corrective procedures are presented, to replace the numerical transi-

tion values (affected by the smearing phenomenon) by new estimates based on the superfluous results.

5.1 Problem Description

In two dimensions, one considers a square domain Ω = {(x, y) ∈ R2 : x ∈ [−L
2 ;

L
2 ] ∧ y ∈ [−L

2 ;
L
2 ]},

for a given length L ∈ R. The solid body constitutes an interior subdomain Ω−, surrounded by a fluid

exterior subdomain Ω+. The solid-fluid interface Γ is discretised into p solid points spaced by a distance

δs, measured along the surface. A general two-dimensional problem is illustrated in figure 5.1.

The coordinate system (x, y) is characterised by the x-axis pointing to the right and the y-axis point-

ing upwards. Since the proposed improvement strategy relies on deriving expressions to the normal

derivative jump at each solid point, it is useful to work in local coordinate systems, in which the normal

direction is readily available. In that regard, a local coordinate system (η, ξ) is represented in figure 5.1.

The η-axis is tangent to the interface and advances counterclockwise, whereas the ξ-axis is normal to
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the interface and points according to the exterior unit normal.

Figure 5.1: Illustration of the local coordinate system centred in a given solid point (xsp, ysp) ∈ Γ.

The transformation of coordinates from the global referential (x, y) to the local referential centred in

a given solid point (xsp, ysp) ∈ Γ is performed according to equations 5.1. These expressions and this

nomenclature are similar to what is presented in the formulation of the IIM, by Leveque and Li [9]. The

angle θ depends on the solid point around which the local referential is considered, being measured

counterclockwise between the Cartesian x-axis and the normal ξ-axis, as exemplified in figure 5.1.

ξ = (x− xsp) cos (θ) + (y − ysp) sin (θ)

η = −(x− xsp) sin (θ) + (y − ysp) cos (θ)

(5.1)

The computational domain is discretised into a Cartesian grid with a total of N = n2 square cells,

leading to a grid size h = L/n in finite volume and h = L/(n − 1) in finite differences. Notice that

the domain discretisation presented in figure 5.1 corresponds to a finite volume reasoning, with domain

boundaries coinciding with cell faces. In order to determine the number p of equally spaced solid points,

the relative distance between them was targeted as δs/h = 1. However, most likely, this exact value will

be impossible to reconcile with the assumption of equally spaced solid points. In two dimensions, given

the perimeter of the interface, P , the number of solid points was computed by applying relation 5.2 with

the target ratio (δs/h)target = 1. In general, the fraction in equation 5.2 is not a natural number. As such,

the floor operation was applied, causing the true relative distance to be different from the target one.

p =

⌊
P(

δs
h

)
target

h

⌋
=

⌊
P

h

⌋
(5.2)

The true relative distance between solid points, (δs/h)real, may be computed with the number of

solid points that resulted from equation 5.2, by simply applying the expression of equation 5.3. The

more refined the grid, the lower will be the error between the real relative distance and the target one.

(
δs

h

)
real

=
(P/p)

h
(5.3)

48



5.2 Direct Method

The Direct Method (DM) strategy reconstructs a local polynomial around each solid point, that is

later used to express the jump in normal derivative across the interface, σ. Once the number of terms

desired to incorporate the polynomial is set, an equal number of neighbouring points is used to perform

the reconstruction. Thus, the reconstruction of the polynomial is made directly, meaning that the number

of unknown coefficients in the polynomial expansion, nC , is equal to the number of sample points used

to compute them, ns. The polynomial expansion, expressed in local coordinates with a general number

of nC terms is presented in equation 5.4, where variables mη,mξ ∈ N stand for the exponents in the last

considered term to which η and ξ are raised. Notice that one needs to perform a polynomial expansion

for each side of the interface, + and −, to obtain the normal derivative coming from each subdomain.

ϕ±(η, ξ) = C±
0 + C±

1 η + C±
2 ξ + C±

3 ηξ + ...+ C±
nc−1η

mηξmξ (5.4)

Having nC coefficients in the polynomial expansion, one selects ns = nC points available in the

domain (grid points or solid points) to compute them. Expressing polynomial 5.4 for each of the sample

points, one reaches the systems of equations 5.5 (one for each subdomain, + and −).


1 0 0 . . . 0

1 η±1 ξ±1 . . . (η±1 )
mη (ξ±1 )mξ

...
...

...
. . .

...

1 η±nC−1 ξ±nC−1 . . . (η±nC−1)
mη (ξ±nC−1)

mξ


nC×nC


C±

0

C±
1

...

C±
nC−1


nC×1

=


ϕ±0

ϕ±1
...

ϕ±nC−1


nC×1

(5.5)

As indicated by the first line of the square matrix, the first point included in the process (to both +

and − expansions) is the solid point in which the local coordinate system is centred, ϕ±0 . Designating

the entries of the inverse of the square matrix appearing in equation 5.5 by (mi,j), one is able to express

each coefficient in terms of the sample values ϕ±0 , ..., ϕ
±
nC−1, according to equation 5.6.

C±
i =

nC∑
j=1

m±
(i+1),jϕ

±
j−1 , i = 0, 1, ..., nC − 1 (5.6)

Having the polynomial expansion coefficients properly expressed in terms of grid and/or solid points,

the computation of the normal derivative jump is readily performed, as presented in equation 5.7. Keep

in mind that the coordinates of the solid point under treatment are (η0, ξ0) = (0, 0).

σ = (∇ϕ+sp −∇ϕ−sp) · n =
∂ϕ+

∂ξ

∣∣∣∣
(0,0)

− ∂ϕ−

∂ξ

∣∣∣∣
(0,0)

= C+
2 − C−

2 (5.7)

To proceed with the derivation of the additional equation for σ, further assumptions concerning the

sample values ϕ±1 , ..., ϕ
±
nC−1 must be made. As known from numerical methods based on polynomial in-

terpolation, to compute a first derivative with second-order accuracy along a given direction, one needs,

in the most general scenario, three points along that direction (so that a quadratic polynomial may be
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constructed). Thus, to compute both the normal and the tangential first derivatives with second-order

accuracy, one needs to have a 3× 3 block of points, with three normal levels and three tangential levels

represented. Considering a general order of accuracy ρ in the computation of the first derivative, table

5.1 summarises the (ρ+ 1)2 required terms. For example, in order to achieve first-order accuracy in the

computation of the first derivative, one needs the four polynomial terms in yellow, implying the use of a

2 × 2 block of points. For second-order accuracy in the computation of the first derivative, the orange

terms should be included as well, implying the use of a 3×3 block. For third-order accuracy, the inclusion

of the red terms leads to a 4× 4 block, and so on.

Table 5.1: Terms to achieve an order of accuracy ρ in the first derivative, with a direct method.
1 ξ ξ2 ξ3 . . . ξρ

η ηξ ηξ2 ηξ3 . . . ηξρ

η2 η2ξ η2ξ2 η2ξ3 . . . η2ξρ

η3 η3ξ η3ξ2 η3ξ3 . . . η3ξρ

...
...

...
...

. . .
...

ηρ ηρξ ηρξ2 ηρξ3 . . . ηρξρ

In this work, points ϕ±0 were set as the solid point under study, points ϕ±1 as the previous solid

point, and points ϕ±2 as the next one. This choice already defines the first normal level with three

tangential levels represented in it. The second and third normal levels were defined as being composed

by the closest three points belonging to the first and second layers of superfluous points, respectively.

A superfluous point is said to belong to the first superfluous layer if its distance to the interface, dΓ, is

such that w
2 h ≤ dΓ < (w2 + 1)h. Points in the second superfluous layer verify (w2 + 1)h ≤ dΓ < (w2 + 2)h.

The layout of two 3 × 3 block stencils is exemplified in figure 5.2, for the exterior subdomain. As in the

one-dimensional case, any point from the transition region should be invoked to integrate the blocks.

(a) Example 1. (b) Example 2.

Figure 5.2: Exterior blocks used in the Direct Method. The solid points appear in blue, the orange points
come from the first superfluous layer and yellow points come from the second superfluous layer.

Notice that, as figure 5.2 suggests, the stencils do not exactly look like 3×3 blocks. This is inevitable,

since the solid points are characterised by the tangential and normal directions, but the superfluous

points obey to the Cartesian layout. In figure 5.2a, one sees three well defined normal levels and a small

misalignment between the tangential position of corresponding points in different normal levels. In figure
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5.2b, however, there is a notorious misalignment concerning both tangential and normal levels.

As one already defined that ϕ±0 , ϕ±1 , ϕ±2 are solid points, the expression for the normal derivative

jump takes the form presented in equation 5.8. In the particular case of a 3 × 3 block, one has nC = 9

points, of which
√
nC = 3 are solid point values composing the first normal level. Since the solid point

values are known, those terms are put in the right-hand side, whereas unknown quantities are kept on

the left. This way, the filling of matrices MC, MD and right-hand side vector vb becomes immediate.

nC∑
j=

√
nC+1

m+
3,jϕ

+
j−1 −

nC∑
j=

√
nC+1

m−
3,jϕ

−
j−1 + (−1)σ = −

(√
nC∑

j=1

m+
3,jϕ

+
j−1 −

√
nC∑

j=1

m−
3,jϕ

−
j−1

)
(5.8)

5.3 Least Squares Method

As displayed in figure 5.2, a possible drawback of the Direct Method may arise due to the geometrical

imperfection inherently observed in the stencil blocks. In that regard, a Least Squares Method was also

implemented, in which the nC unknown polynomial coefficients are computed by using a sample of ns

points, with ns > nC . Therefore, with this strategy, one may have a cloud of sample points encompassing

the region that would be occupied by a hypothetical 3× 3 perfect block.

Since ns > nC , computing the coefficients from the set of sample points is an overdetermined prob-

lem, with more equations than unknowns, and the nC coefficients are unable to exactly match the ns

restrictions. In other words, the computed coefficients are a compromise solution between all the con-

straints, and will always lead to a so-called fitting error. That is, when substituting the obtained coeffi-

cients in the polynomial, one will not recover exactly the sample values, but approximations.

One advantage of the least squares formulation consists in the need of a lower number of terms in

the polynomial expansion when compared with a direct method, to achieve the same order of accuracy.

This conclusion may be taken from the work of Diogo [16]. The needed terms to achieve a given order

of accuracy ρ in the computation of the first derivative with a least squares formulation are summarised

in table 5.2. This table constitutes an adaptation of a similar one in article [16], due to nomenclature

differences and since there the objective is the computation of function values instead of first derivatives.

Table 5.2: Terms to achieve an accuracy ρ in the first derivative with least squares, adapted from [16].
1 ξ ξ2 ξ3 . . . ξρ

η ηξ ηξ2 ηξ3 . . . ηξρ

η2 η2ξ η2ξ2 η2ξ3 . . . η2ξρ

η3 η3ξ η3ξ2 η3ξ3 . . . η3ξρ

...
...

...
...

. . .
...

ηρ ηρξ ηρξ2 ηρξ3 . . . ηρξρ

For example, to present first-order accuracy in the computation of a first derivative, a least squares

formulation only needs to work with polynomials relying on the terms in yellow. To achieve second-order

accuracy in the first derivative, the formulation should also include the orange terms, and so on.
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As such, from table 5.2, one concludes that a given order of accuracy ρ is achieved by a least squares

polynomial containing nC = (ρ + 1)(ρ + 2)/2 terms. Since the least squares formulation constitutes, by

definition, an overdetermined problem, one needs to ensure that the sample of ns points selected in the

implementation is such that ns > nC , being their selection discussed in section 5.3.3. All this information

concerning the Least Squares Method is summarised in table 5.3, side by side with the Direct Method.

Table 5.3: Comparison between the Direct Method and the Least Squares Method.

Order of Accuracy in Direct Method Least Squares Method

the First Derivative (ρ) nC = (ρ+ 1)2 ns nC = (ρ+1)(ρ+2)
2 ns

1 4 4 3 > 3

2 9 9 6 > 6

3 16 16 10 > 10

As referred, given the overdetermination, the coefficients arising from a least squares formulation

are unable to exactly match the ns constraints. Particularly, if the solid point itself is used in the sample,

its value in the least squares polynomial will also be associated to a fitting error. In order to find out if

this is problematic, one derives two different strategies. In section 5.3.1, one proceeds working with the

polynomial of equation 5.4, without any special treatment concerning the fitting error. In section 5.3.2, a

second strategy is derived, by imposing the solid point value directly on the least squares polynomial.

5.3.1 Strategy with No Polynomial Imposition of the Solid Point Value

In this strategy, the polynomial of equation 5.4 is taken as the starting point, containing the nC terms

arising from table 5.2 (for second-order accuracy, one has the yellow and the orange ones). Given a

sample of ns > nC points, the relation between polynomial coefficients and sample values is expressed,

in local coordinates, according to equation 5.9. Notice that, in general, the number of sample points

used in the interior subdomain, n−s , does not need to match the corresponding exterior number, n+s .


1 0 0 . . . 0

1 η±1 ξ±1 . . . (η±1 )
mη (ξ±1 )mξ

...
...

...
. . .

...

1 η±
n±
s −1

ξ±
n±
s −1

. . . (η±
n±
s −1

)mη (ξ±
n±
s −1

)mξ


n±
s ×nc


C±

0

C±
1

...

C±
nc−1

 =


ϕ±0

ϕ±1
...

ϕ±
n±
s −1

 (5.9)

For the sake of compactness, one will name the rectangular matrix in equation 5.9 as D (as its entries

rely on normal and tangential distance values between sample points and the solid point under study),

the coefficients vector by c, and the vector of sample points by ϕsa. So, one has Dc = ϕsa.

Since the computation of the coefficients from the set of sample points constitutes an overdetermined

problem, when substituted into equation 5.9, the coefficients will lead to a given right-hand side ϕLS
sa ,

different from ϕsa. In other words, the computed coefficients are a compromise solution, corresponding

to the minimisation of a given residual function. Usually, the residual function incorporates a diagonal
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weight function matrix WLS, assigning different weights to each sample point. The least squares residual

function is given by rTWLSr, with r being the residual vector r = ϕsa − ϕLS
sa , as derived in the work of

Diogo [16]. Thus, the least squares problem corresponds to perform the minimisation of equation 5.10.

min (rTWLSr) = min
[
(ϕsa − ϕLS

sa )TWLS(ϕsa − ϕLS
sa )

]
(5.10)

Following the work of Vasconcelos [17], the weights appearing in the diagonal of the weight function

matrix are given by equation 5.11, in which the shape factor κ is taken as the classical value κ = 2. Note

that not considering weights is equivalent to assume an identity weight function matrix, (I)ns×ns .

(wLS)i,i =
1

(
√
(ηi − η0)2 + (ξi − ξ0)2)κ

= (η2i + ξ2i )
−κ/2 (5.11)

The computation of the coefficients according to the a least squares procedure is presented in the

deduction of equation 5.12 , being introduced a pseudoinverse matrix PI = (DTWLSD)−1(DTWLS).

(DTWLS)Dc = (DTWLS)ϕsa

⇔ c = (DTWLSD)−1(DTWLS)ϕsa (5.12)

Therefore, from equation 5.12, each coefficient is expressed in terms of sample points as presented

in equation 5.13, by means of the entries of the pseudoinverse matrix (PI)nC×ns , here named as (pi,j).

C±
i =

n±
s∑

j=1

p±i+1,jϕ
±
j−1 (5.13)

Having the coefficients computed, one is now able to express the normal derivative jump, following

the expression of equation 5.7, that remains valid here. This step is performed in equation 5.14.

σ =

n+
s∑

j=1

p+3,jϕ
+
j−1 −

n−
s∑

j=1

p−3,jϕ
−
j−1 (5.14)

The values of the solid points included in the sample are known. Besides ϕ±0 being the solid point

under study, if for example ϕ±1 and ϕ±2 are defined to be the previous and next solid points respectively,

the final equation to be incorporated in the system will look like equation 5.15.

n+
s∑

j=4

p+3,jϕ
+
j−1 −

n−
s∑

j=4

p−3,jϕ
−
j−1 + (−1)σ = −

( 3∑
j=1

p+3,jϕ
+
j−1 −

3∑
j=1

p−3,jϕ
−
j−1

)
(5.15)

Note that one could use a different number of solid points besides the one under study, or even none.

What is important is to ensure that one has enough normal and tangential levels represented inside the

cloud of sample points. The selection of the sample cloud is discussed in section 5.3.3. To obtain the

final equation, one simply needs to put the terms lying on solid point values in the right-hand side, while

leaving the single-layer potential strength and the superfluous points in the left-hand side as unknowns.
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5.3.2 Strategy with Polynomial Imposition of the Solid Point Value

In order to find out if the existence of a fitting error in the value predicted by the least squares

polynomial to the solid point under study is problematic, an alternative strategy is here derived. Notice

that the first equation in the matrix system of equation 5.9 states that ϕ±(0, 0) = C±
0 = ϕ±0 , that is a

known quantity. Instead of letting this constraint enter the least squares formulation (that will not be able

to respect it exactly due to the overdetermination), one may simply reduce the system of equations by

passing C±
0 to the right-hand side of each equation. This step, that is presented in the system 5.16,

corresponds to work with a polynomial of relative values, ϕ±(η, ξ)− ϕ±0 . When comparing with equation

5.9, the new rectangular matrix in equation 5.16 has one less column and one less line.


η±1 ξ±1 . . . (η±1 )

mη (ξ±1 )mξ

...
...

. . .
...

η±
n±
s −1

ξ±
n±
s −1

. . . (η±
n±
s −1

)mη (ξ±
n±
s −1

)mξ


(n±

s −1)×(nC−1)


C±

1

...

C±
nC−1

 =


ϕ±1 − ϕ±0

...

ϕ±
n±
s −1

− ϕ±0

 (5.16)

Naming again the rectangular matrix in equation 5.16 as D, the coefficients vector by c, and the

vector of sample points by ϕsa, the deduction is almost identical to the one derived in the previous

section. Minor differences arise in the coefficients numbering, due to the removal of coefficients C±
0

from the rectangular matrices, and the sample values are now relative to the imposed solid point value.

As such, in this second strategy, the expression for each coefficient is presented in equation 5.17.

C±
i =

n±
s −1∑
j=1

p±i,j
(
ϕ±j − ϕ±0

)
(5.17)

The computation of the normal derivative jump in this second strategy continues to follow the general

expression provided in equation 5.7. However, when applying that equation, the previously referred

minor adjustments will lead to a slightly different expression for σ, as presented in equation 5.18.

σ =

n+
s −1∑
j=1

p+2,j
(
ϕ+j − ϕ+0

)
−

n−
s −1∑
j=1

p−2,j
(
ϕ−j − ϕ−0

)
(5.18)

Consider the same example that was explored for the first strategy without imposition. If one consid-

ers ϕ±1 to be the previous solid points and ϕ±2 to be the next solid points, the final rearranged equation

that is added to the system in this second strategy is presented in 5.19.

n+
s −1∑
j=3

p+2,jϕ
+
j −

n−
s −1∑
j=3

p−2,jϕ
−
j + (−1)σ =−

( 2∑
j=1

p+2,j
(
ϕ+j − ϕ+0

)
−

2∑
j=1

p−2,j
(
ϕ−j − ϕ−0

))
+

+

( n+
s −1∑
j=3

p+2,jϕ
+
0 −

n−
s −1∑
j=3

p−2,jϕ
−
0

)
(5.19)
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5.3.3 Selection of the Sample Points

In this section, the selection of sample points to be used in the least squares procedure is addressed.

Given the existence of the transition region, from which no grid point should be used, the cloud enclosing

the sample points should be further elongated in the normal direction. As such, instead of a circular

cloud, a natural choice is to define an elliptical cloud from which the sample points will be selected.

The semiaxes of the elliptical cloud are named as sη and sξ along the tangential and normal directions,

respectively. Figure 5.3 exemplifies an elliptical cloud with semiaxes sη = 2h and sξ = (w2 + 3)h.

Figure 5.3: Elliptical cloud with semiaxes sη = 2h and sξ = (w2 + 3)h, for w = 2.

The equation describing an ellipse expressed in local coordinates (η, ξ) with semiaxes sη and sξ

along the tangential and normal directions, respectively, is presented in equation 5.20.

(
η

sη

)2

+

(
ξ

sξ

)2

= 1 (5.20)

The elliptical cloud of figure 5.3 encompasses three solid points (the one for which the σ equation

is being derived and its previous and next solid points), as well as ten superfluous points from each

subdomain. So, in this example, the sample of points to be used in the least squares local polynomial

expansion ϕ+(η, ξ) would be composed of the ten superfluous points located in subdomain Ω+, together

with the exterior subfield information at the three solid points (with the central one being imposed, or not,

depending on the followed strategy). The sample to be used in the local polynomial expansion ϕ−(η, ξ)

would contain the ten superfluous points located in subdomain Ω− and the interior subfield information

at the three solid points. Summarising, each sample would contain a total of ns = 13 points in this

example. In general, the interior and exterior samples may present a different number of points.

As a final remark, despite the lower number of terms in the least squares formulation when compared

to the direct approach, the elliptical cloud should be representative of a sufficient number of normal and

tangential levels, so that the desired order of accuracy is indeed achieved. In this work, this concern will

be accomplished by ensuring that the elliptical cloud encompasses the direct method stencil.
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5.4 1D-Inspired Method

In this strategy, the objective is to replicate as faithfully as possible the one-dimensional procedure,

whose results achieved second-order accuracy. As such, this method will be named as 1D-Inspired

Method (1DIM). The unknown σ is computed by expressing the normal first derivatives of each interface

side by means of points strategically placed along the normal direction. Since in general the computation

of a first derivative with second-order accuracy needs three points, two points along the normal direction

are considered in each side of the interface, besides the solid point, as illustrated in figure 5.4. Since

the desired locations are not available in the grid, the desired points (in blue) will need to be constructed

using neighbouring grid points (in orange). Figure 5.4 exemplifies with 2×2 blocks of superfluous points.

Figure 5.4: Illustration of a 1D-inspired stencil, exemplifying with 2× 2 superfluous blocks.

The first step consists of determining the location of points ϕ+1 , ϕ+2 , ϕ−1 , ϕ−2 along the normal direction.

Since these points will invoke a neighbouring block of grid points, the main concern should be that any

point inside of the block has its centroid inside the transition region affected by smearing (represented

in grey). In other words, all the points invoked to contribute should be superfluous points.

Consider that the position of ϕ+1 is known. If the square block presents an odd number of cells along

each side, the closest grid point to ϕ+1 is found, defining the central point of the block. If the block has

an even number of cells along each side, the four closest points surrounding ϕ+1 are identified and the

square is defined. To compute the minimum distance at which point ϕ+1 should be from the solid point,

one must consider the worst case scenarios of figure 5.5, for 2× 2, 3× 3 and 4× 4 superfluous blocks.

(a) 2× 2 Block. (b) 3× 3 Block. (c) 4× 4 Block.

Figure 5.5: Superfluous blocks used to determine the minimum distance of point ϕ+1 from the solid point.
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If ϕ+1 is equidistant from several grid points, it becomes indifferent and equally valid to choose be-

tween several distinct stencils. Since the determination of the closest points is implemented iteratively,

the choice may be left to the program execution order. Consider, for example, figure 5.5b. From all the

four equidistant grid neighbours of ϕ+1 , the block arising from the choice of the southwest one is drawn,

simply to compute a worst case scenario distance at which ϕ+1 should be located from the solid point.

The choice of any of its four equidistant closest neighbours is equally valid during the execution. The

minimum distances arising from the worst case scenarios of figure 5.5 are presented in equations 5.21,

being the expressions easily generalised to any k × k superfluous block of grid points, with k ∈ N.

Block 2× 2: ξ+1 = ||x+
1 − xsp|| ≥

(
w
2 + 2

√
2
2

)
h

Block 3× 3: ξ+1 = ||x+
1 − xsp|| ≥

(
w
2 + 3

√
2
2

)
h

Block 4× 4: ξ+1 = ||x+
1 − xsp|| ≥

(
w
2 + 4

√
2
2

)
h

...

Block k × k: ξ+1 = ||x+
1 − xsp|| ≥

(
w
2 + k

√
2
2

)
h

(5.21)

According to the desired block dimensions and the respective criterion in equations 5.21, the location

of point ϕ+1 along the normal axis, ξ+1 , may be set. The location of point ϕ+2 is considered to be ξ+2 = 2ξ+1 ,

so that point ϕ+1 is equidistant from ϕ+sp and ϕ+2 . The normal positions of the interior points, ϕ−1 and ϕ−2 ,

are simply taken as the symmetric of the exterior ones, that is, ξ−1 = −ξ+1 and ξ−2 = −ξ+2 .

Having the position of the points along the normal direction already defined, one is able to derive the

expression for the single-layer potential strength by using them. In that regard, one begins by writing the

polynomial expansions of equation 5.22, one for each side of the interface, with general C coefficients.

ϕ±(ξ) = C±
0 + C±

1 ξ + C±
2 ξ

2 (5.22)

The polynomial coefficients of equation 5.22 are computed, for each side, using the solid point value

and the two points along the normal direction that one just defined, as presented in equation 5.23.
1 0 0

1 ξ±1 (ξ±1 )2

1 ξ±2 (ξ±2 )2



C±

0

C±
1

C±
2

 =


ϕ±sp

ϕ±1

ϕ±2

 (5.23)

Inverting the square matrix in equation 5.23 and naming its entries as (mij), equation 5.24 arises.


C±

0

C±
1

C±
2

 =


m±

11 m±
12 m±

13

m±
21 m±

22 m±
23

m±
31 m±

32 m±
33



ϕ±sp

ϕ±1

ϕ±2

 (5.24)

Having the polynomial coefficients computed, the single-layer potential strength is expressed in terms

of the normal stencil (solid point values ϕ±sp together with ϕ+1 , ϕ+2 , ϕ−1 , ϕ−2 ), as presented in equation 5.25.
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σ =
∂ϕ+

∂ξ

∣∣∣∣
ξ=0

− ∂ϕ−

∂ξ

∣∣∣∣
ξ=0

= C+
1 − C−

1

⇒ σ =
(
m+

21ϕ
+
sp +m+

22ϕ
+
1 +m+

23ϕ
+
2

)
−
(
m−

21ϕ
−
sp +m−

22ϕ
−
1 +m−

23ϕ
−
2

)
(5.25)

At this point, the challenge lies in expressing ϕ+1 , ϕ+2 , ϕ−1 , ϕ−2 in terms of neighbouring superfluous

grid points. As an example, one illustrates the procedure for a 2×2 superfluous block. To express points

ϕ+1 , ϕ+2 , ϕ−1 , ϕ−2 as a linear combination of the grid points inside their respective block, one considers a

Cartesian local coordinate system (x∗, y∗), with origin at the geometric centre of the superfluous block,

as displayed in figure 5.6. Axis x∗ and y∗ are aligned with x and y, respectively.

(a) 2× 2 Block. (b) 3× 3 Block. (c) 4× 4 Block.

Figure 5.6: Cartesian local coordinate system (x∗, y∗), with origin at the geometric centre of the blocks.

First, a polynomial expressed in local coordinates (x∗, y∗) is constructed, with the same number of

coefficients as the number of points that compose the superfluous block. Equation 5.26 applies for

the case concerning a 2 × 2 superfluous block of grid points. To avoid confusion with the coefficients

concerning the polynomial expansion along the normal direction, here a star superscript (∗) is used.

ϕ̄(x∗, y∗) = C∗
0 + C∗

1x
∗ + C∗

2y
∗ + C∗

3x
∗y∗ (5.26)

Taking into account the numbering strategy of figure 5.6a, one arrives to equation 5.27. Note that,

once the desired block dimension is defined in the beginning of the simulation, all the superfluous blocks

will be identical. As such, the square matrix in equation 5.27, containing the local distances of all the

points in a superfluous block, is a constant throughout the execution and it is only inverted once.
1 h/2 h/2 (h/2)2

1 −h/2 h/2 −(h/2)2

1 −h/2 −h/2 (h/2)2

1 h/2 −h/2 −(h/2)2




C∗

0

C∗
1

C∗
2

C∗
3

 =


ϕ̄0

ϕ̄1

ϕ̄2

ϕ̄3

 (5.27)

Inverting the square matrix in equation 5.27 and naming its entries as (m∗
ij), one is able to compute

the polynomial coefficients C∗ as a linear combination of the superfluous points that compose the block.
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The expression for the coefficients in the 2× 2 superfluous block is presented in equation 5.28.

C∗
i =

4∑
j=1

m∗
i+1,j ϕ̄j−1 , i = 0, 1, 2, 3 (5.28)

Having the C∗ coefficients expressed, the local polynomial is constructed as performed in equation

5.29, wherein an auxiliary variable γ∗j (x
∗, y∗) = m∗

1,j +m∗
2,jx

∗ +m∗
3,jy

∗ +m∗
4,jx

∗y∗ is introduced.

ϕ̄(x∗, y∗) =

( 4∑
j=1

m∗
1,j ϕ̄j−1

)
+

( 4∑
j=1

m∗
2,j ϕ̄j−1

)
x∗ +

( 4∑
j=1

m∗
3,j ϕ̄j−1

)
y∗ +

( 4∑
j=1

m∗
4,j ϕ̄j−1

)
x∗y∗

⇔ ϕ̄(x∗, y∗) =

4∑
j=1

(
m∗

1,j +m∗
2,jx

∗ +m∗
3,jy

∗ +m∗
4,jx

∗y∗
)
ϕ̄j−1

⇔ ϕ̄(x∗, y∗) =

4∑
j=1

γ∗j ϕ̄j−1 (5.29)

For example, to express point ϕ+1 as a linear combination of the points of the corresponding super-

fluous block, one only needs to substitute its local coordinates (x∗, y∗) in equation 5.29 and take into

account that the superfluous values ϕ̄j−1 are numbered according to figure 5.6a.

Applying equation 5.29 to all four points along the normal direction with their respective superfluous

blocks, one is finally able to express the normal derivative jump, as written in equation 5.30.

σ = m+
21ϕ

+
sp +m+

22

( 4∑
j=1

γ∗j ϕ̄j−1

)
1+

+m+
23

( 4∑
j=1

γ∗j ϕ̄j−1

)
2+

+

+ (−m−
21)ϕ

−
sp + (m−

22)

( 4∑
j=1

γ∗j ϕ̄j−1

)
1−

+ (m−
23)

( 4∑
j=1

γ∗j ϕ̄j−1

)
2−

(5.30)

Rearranging equation 5.30, one arrives to equation 5.31, wherein the unknown superfluous points

and normal derivative jump were put in the left-hand side, whereas the information concerning the solid

point was put in the right. With this, filling matrices MC, MD and vector vb is straightforward.

m+
22

( 4∑
j=1

γ∗j ϕ̄j−1

)
1+

+m+
23

( 4∑
j=1

γ∗j ϕ̄j−1

)
2+

+ (m−
22)

( 4∑
j=1

γ∗j ϕ̄j−1

)
1−

+

+ (m−
23)

( 4∑
j=1

γ∗j ϕ̄j−1

)
2−

+ (−1)σ = −
(
m+

21ϕ
+
sp −m−

21ϕ
−
sp

)
(5.31)

5.5 Smearing Correction

In this subchapter, two distinct strategies are presented to perform the smearing correction in the

transition region. The first one, presented in section 5.5.1, corresponds to the two-dimensional generali-

sation of the correction strategy implemented in the one-dimensional case that obtained the best results.

The second one, presented in section 5.5.2, consists of correcting the values inside the transition region

by using independent corrections along the each Cartesian direction.
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5.5.1 Correction with a Direct Method

In this correction procedure, the best one-dimensional approach, that made use of the solid point

and two superfluous points, is generalised. The one-dimensional implementation consisted of gen-

erating a quadratic polynomial with those three points, using a direct method. As such, the natural

two-dimensional generalisation of that correction procedure is to consider a direct method acting on a

3× 3 block of points, with one of the normal levels corresponding to three solid points.

Notice that using a 3× 3 block of points is exactly the same that is being used to compute the normal

derivative jump, if the direct method is employed. Since in the corrective step one is dealing with function

values and not first derivatives, performing the correction with a direct method involving a 3 × 3 block

constitutes indeed a third-order accurate method. However, as it was referred in the end of section

3.4.3 concerning the one-dimensional case, this third-order accuracy should never lead to third-order

accurate transition corrected values, since it is expected to act over second-order superfluous results.

The important is to ensure that the corrective step is performed with, at least, second-order accuracy.

As seen in the one-dimensional results, the third-order correction revealed to lead to a lower absolute

error in the transition region, but the global decay continued to occur with second-order accuracy.

In the end of the execution, for each point inside the transition region, one determines its closest solid

point, around which a polynomial expansion is performed, so that a new field value is computed for the

transition point. The polynomial used in this strategy is similar to the one in equation 5.4, taking nC = 9

and selecting the first nine terms from table 5.1, that is, the yellow and orange terms. The polynomials

used in this strategy (one for each interface side, + and −) are written in equation 5.32.

ϕ±(η, ξ) = C±
0 + C±

1 η + C±
2 ξ + C±

3 ηξ + C±
4 η

2 + C±
5 η

2ξ + C±
6 ξ

2 + C±
7 ηξ

2 + C±
8 η

2ξ2 (5.32)

The sample of points to compose the 3×3 block is selected in the same way that in the direct method,

as illustrated in figure 5.2, being the sample points named as ϕ±0 , ϕ±1 , ..., ϕ±8 . Expressing the value of

polynomial 5.32 at each of the sample points, one reaches equation 5.33. Once more, for both sides of

the interface, ϕ±0 were conventioned to be solid point values of the central solid point, whereas ϕ±1 and

ϕ±2 correspond to the previous and next solid point values, respectively.


1 0 0 0 . . . 0

1 η±1 ξ±1 η±1 ξ
±
1 . . . (η±1 )

2(ξ±1 )2

...
...

...
...

. . .
...

1 η±8 ξ±8 η±8 ξ
±
8 . . . (η±8 )

2(ξ±8 )2




C±

0

C±
1

...

C±
8

 =


ϕ±0

ϕ±1
...

ϕ±8

 (5.33)

Inverting the square matrix in equation 5.33, one arrives to the values of constants C±
i . Notice that

the corrective step is performed after the execution, when the values of ϕ±3 , ϕ±1 , ..., ϕ±8 are already

determined. Therefore, constants C±
i are completely computed and they are given a numeric value. As

such, the polynomial of equation 5.32 is totally defined and the correction of the transition point is simply

performed by substituting its local coordinates (η, ξ) in the polynomial expression.
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5.5.2 Correction along Each Cartesian Direction

In this procedure, the correction of points in the transition region is made by using simple extrapola-

tions along each Cartesian direction, as exemplified in figure 5.7, in the case of the exterior subdomain.

For each point inside the transition region, the closest superfluous points along x and along y belong-

ing to the same subdomain are identified. If the superfluous point identified along x is closer than the

one along y (case in blue), the correction is computed with a simple extrapolation along x using two

superfluous points. If the superfluous point identified along y is the closest one (case in orange), the

correction is computed with a similar extrapolation along y. If both the closest x and y points are located

at the same distance from the transition point (case in green), both extrapolations are computed and the

correction value is assumed to be their average. If a transition point occurs to fall exactly at the interface,

this procedure is performed for both subdomains and the final correction value is taken as their mean.

Figure 5.7: Illustration of the Cartesian correction along each direction, for the exterior subdomain.

Considering the blue case, the second superfluous point to be used in the extrapolation is considered

to be the one immediately in the right, that is, the second closest point along x. Similarly, in the orange

case, the second point that is invoked in the extrapolation is the second closest along y, that corresponds

in this case to the one immediately above. In the green case, an identical reasoning is applied to identify

the second points entering the extrapolation along x and the extrapolation along y.

Notice that all the points are aligned, the distance between the two superfluous points is equal to the

grid size and the distance between the transition point and the closest superfluous point is a multiple

of the grid size. As such, the extrapolation formula will always present the same structure. Naming

the closest and second closest superfluous points along a given direction as ϕ̄sup1 and ϕ̄sup2 and naming

the number of grid size units separating the transition point and the closest superfluous points by ν,

equations 5.34 arise. These expressions are identical to the general formula in equation 3.26.

ϕ̄newx = (νx + 1)ϕ̄sup1x
− νxϕ̄

sup
2x

(5.34a)

ϕ̄newy = (νy + 1)ϕ̄sup1y
− νyϕ̄

sup
2y

(5.34b)

Summarising, the blue correction is performed using equation 5.34a, the orange correction uses

equation 5.34b and the green correction applies both equations taking the average of their results.
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Chapter 6

2D Results

In this chapter, firstly, one presents the results concerning the original two-dimensional formulation

of the IL Method, under finite differences and finite volume. With this, one aims to replicate the finite

differences results presented by Eldredge in article [1], as well as validate the behaviour of the derived

finite volume approach. Then, the numerical results obtained by applying the two-dimensional improve-

ment strategies deduced in chapter 5 are presented. Once more, all the additional second equations

that were derived are used together with the masked Poisson equation in a finite volume framework.

In subchapter 6.1, general considerations are made concerning the geometry, error quantities to be

tracked and the discontinuous function with discontinuous normal derivative that will be used to perform

the numerical tests. In subchapter 6.2, the original formulation of the IL Method is studied, under both

finite differences and finite volume frameworks. In subchapter 6.3, the Direct Method derived in sub-

chapter 5.2 is implemented. In subchapter 6.4, the Least Squares Method presented in subchapter 5.3

is studied, imposing or not the value of the solid point. Then, in subchapter 6.5, the 1D-Inspired Method

derived in subchapter 5.4 is implemented. In subchapter 6.6, the best 2D strategies are compared.

Finally, in subchapter 6.7, the 2D corrective procedures are applied, in order to determine whether they

are able to recover interface sharpness and to propagate superfluous decays to the transition region.

6.1 General Considerations

In order to study a two-dimensional problem, the geometry must be set. The square computational

domain was considered to have a side length L = 2. The solid body was particularised into a circle

centred at the origin of the Cartesian referential, with radius R = 0.5. This geometry is similar to the one

considered in article [1], so that the numerical results may be compared. As such, the transition region,

T, over which the discrete delta functions act, is defined according to equation 6.1.

T = {x ∈ Ω : R− w

2
h < ∥x∥ < R+

w

2
h} (6.1)

The superfluous region, that is out of the direct influence of the discrete delta functions is given by

the union of the interior and exterior subregions defined in equation 6.2, that is S = S−∪S+ respectively.
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S− = {x ∈ Ω : ∥x∥ ≤ R− w
2 h}

S+ = {x ∈ Ω : ∥x∥ ≥ R+ w
2 h}

(6.2)

The discontinuous function with discontinuous normal derivative across the interface that will be

studied throughout this chapter is also the same as in article [1]. This two-dimensional function will be

shortly referred to as function F5. Its analytical expression is provided in equation 6.3 and its graphical

representation is displayed in figure 6.1. As a remark, notice that this function presents a null masked

Laplacian, ∇2ϕ, since both interior and exterior Laplacian terms are zero, ∇2ϕ+ = 0 = ∇2ϕ−. Therefore,

there is no concern about computing the masked Laplacian term during the execution, that would need

to invoke the computation of the Heaviside functions as well, keeping the right-hand side va simpler.

ϕ̄(x) =

e
x cos (y) , x ∈ Ω−

0 , x ∈ Ω+

(6.3)

Figure 6.1: Graphical representation of function F5, used throughout this chapter.

The error field continues to be defined as in equation 4.1, with all the variables being now vectors

N × 1 with N = n2. Similarly, the definitions of the error norms in equations 4.2a, 4.2b and 4.2c still

hold, with N properly computed. The expression for the order of decay, in equation 4.3, continues valid.

Notice that, in this two-dimensional problem with a circular body, there is no need to care about

the representativeness of the numbers of cells that are used to evaluate the decays, since the p solid

points along the circular surface will fall anywhere relative to the grid. However, this also prevents

choosing cells where the interface falls in the same relative position to evaluate the decay, as one did

in the one-dimensional case. As such, when computing the order of decay, one may be catching some

unmeaningful oscillatory behaviour and not the straight line trend around which it occurs (as one will

see, this occurs in the maximum superfluous error decay of some strategies). To ensure that the straight

line trend is caught, one must choose points in the decay graph sufficiently distant from each other. For

that reason, the decays computed throughout this chapter use the least and the most refined grids of the

set N ∈ {502; 1002; 2002}. The grid in between is used to check if there is indeed a straight line trend.
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6.2 Original Formulation

In this subchapter, the original formulation of the Immersed Layers Method is implemented, first in

finite differences and then in finite volume. Starting with the finite differences framework, the numerical

solution and the error field obtained for function F5 are exemplified in figure 6.2, when considering

N = 1002 cells and using the discrete delta function δ∗3 . The decays verified for all the discrete delta

functions, for all the error parameters in each region, are presented in table 6.1.

(a) Numerical field. (b) Error field.

Figure 6.2: Results for function F5 under a finite differences approach, using δ∗3 and N = 1002 cells.

Table 6.1: Error decay for function F5, in the original IL formulation, using finite differences.

δh ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

δ∗3 0.9452 0.4769 N.D. 0.9128 0.9257 0.9209 N.D. N.D. N.D.
δ2002 0.9859 0.4903 N.D. 0.9925 0.9721 0.3453 N.D. N.D. N.D.
δ2103 0.9998 0.4774 N.D. 1.1460 1.0648 0.2919 N.D. N.D. N.D.
δ4206 0.9905 0.4899 N.D. 1.0446 1.0173 0.7524 N.D. N.D. N.D.

As figure 6.2 shows, the numerical interface is now smeared instead of sharp, as it was already

expected to occur. The error field presents significant peaks near the interface, as already occurred in

the one-dimensional results. As table 6.1 shows, similarly to what Eldredge [1] presented, one obtained

first-order accuracy in the superfluous decay of the L2 error norm, when using δ∗3 . Note that Eldredge

only analyses the region corresponding to what one defined as S+, that is, the region of the exterior

subdomain that is not directly affected by the discrete delta function, since the focus is the computation

of the fluid field. However, to keep the transition region T isolated, in this work one always studies the

decays in T and in S = Ω \ T. Since S− has the same nature of S+, being out of the direct effect of the

discrete delta functions, the decays in S− , in S+ and in S = S− ∪S+ were naturally found to be identical.

Concerning the global error parameters, the results are identical to the one-dimensional ones ob-

tained with a discontinuous function with discontinuous normal derivative: the mean error decays with

first-order accuracy, the L2 norm decays with half order and the maximum error does not decay. In the

transition region, a non-decay is also detected. However, in the superfluous region some differences
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arise concerning the maximum error decay, with δ4206 presenting a slightly lower than first-order decay

(0.7524) but with δ2002 and δ2103 presenting a significant penalisation (0.3453 and 0.2919, respectively).

The discrete delta function δ∗3 preserves the first-order decay in the superfluous maximum error in 2D.

The numerical solution and error field obtained using a finite volume framework is displayed in figure

6.3, considering N = 1002 cells and the discrete delta function δ∗3 . The decays resulting from the use of

all the discrete delta functions, for all the error parameters in each region, are presented in table 6.2.

(a) Numerical field. (b) Error field.

Figure 6.3: Results for function F5 under a finite volume approach, using δ∗3 and N = 1002 cells.

Table 6.2: Error decay for function F5, in the original IL formulation, using finite volume.

δh ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

δ∗3 0.9841 0.5254 N.D. 0.9345 0.9338 0.8581 N.D. N.D. N.D.
δ2002 0.9683 0.5212 N.D. 0.9350 0.9112 0.1647 N.D. N.D. N.D.
δ2103 0.9862 0.5256 N.D. 0.9592 0.9452 0.3645 N.D. N.D. N.D.
δ4206 0.9844 0.5159 N.D. 0.9434 0.9317 0.5081 N.D. N.D. N.D.

The finite volume numerical solution and error field are visually identical to the ones obtained in finite

differences. Concerning table 6.2, the decays in the entire domain and in the transition region are similar

to the ones of table 6.1. However, the penalisation verified in the superfluous maximum decay is higher

for δ2002 and δ4206 (with decays 0.1647 and 0.5081, respectively). The penalisation verified in δ2103 is

less accentuated than it was in the finite differences framework, but the decay value is still one of the

lowest (0.3645). Discrete delta function δ∗3 presents a slight penalisation as well, but not comparable to

the other ones (0.8581). Indeed, this severe penalisation in the maximum superfluous decay of δ2002

and δ2103 is already a symptom of the bad behaviour that these discrete delta functions will display in all

the upcoming improvements strategies. The results presented in tables 6.1 and 6.2 reveal that, in the

original two-dimensional formulation, discrete delta function δ∗3 is preferable to others.

When comparing the error values obtained with δ∗3 , one concludes that there is no significant differ-

ence between the finite differences version (IL-FD) and the finite volume (IL-FV) one. To prove it, figure

6.4 presents the superfluous decay graphs obtained with δ∗3 for both frameworks, where it is visible that

they are practically superimposed. Considering the intermediate grid, for example, the mean value and

the L2 norm of the superfluous error differ about 1% and the maximum superfluous error differs 5%.
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Figure 6.4: Superfluous comparison between the IL-FD and the IL-FV for discrete delta function δ∗3 .

Therefore, from now on, when comparing the superfluous decays of a new derived strategy with the

original method, only one of these formulations needs to be represented, since the other one is identical.

6.3 Direct Method

In this subchapter, the results concerning the implementation of the Direct Method derived in sub-

chapter 5.2 are presented. Since one is pursuing second-order accuracy in the computation of the first

derivatives, the natural choice would be to use a 3× 3 block of points, as explained during the derivation

of the method. However, since in the one-dimensional results the use of a first-order unilateral deriva-

tive expression did not prevent obtaining second-order superfluous results, one will test a 3 × 2 block

of points as well. The first normal layer is composed of the solid point under study, the previous and

the next one, whereas the second normal layer corresponds to the three closest points belonging to the

first superfluous layer (recall figure 5.2). The results concerning the decay of the several error quantities

for the Direct Method are presented in table 6.3. For the sake of compactness, the version using 3 × 2

blocks is coded as DM-32, whereas the version using 3× 3 blocks is coded as DM-33.

Table 6.3: Decays for function F5, with the Direct Method for 3× 2 and 3× 3 blocks.

ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

DM-32

δ∗3 1.0195 0.5145 N.D. 1.8625 1.8154 0.9521 N.D. N.D. N.D.
δ2002 0.9502 0.5197 N.D. 0.3482 0.4517 N.D. N.D. N.D. N.D.
δ2103 1.0000 0.5172 N.D. 0.6462 0.6484 N.D. N.D. N.D. N.D.
δ4206 1.0176 0.5165 N.D. 1.7519 1.5627 0.7658 N.D. N.D. N.D.

DM-33

δ∗3 1.0134 0.5149 N.D. 1.8348 1.6889 0.3650 N.D. N.D. N.D.
δ2002 0.9585 0.5190 N.D. 0.4156 0.4793 N.D. N.D. N.D. N.D.
δ2103 1.0416 0.5178 N.D. 1.6121 0.9798 N.D. N.D. N.D. N.D.
δ4206 1.0055 0.5170 N.D. 1.1392 0.9834 0.2984 N.D. N.D. N.D.
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Globally, table 6.3 shows that all the discrete delta functions present a first-order decay of the mean

error and a half-order decay of the L2 norm. Transition error quantities do not decay.

Consider now the superfluous decays of δ∗3 and δ4206. Function δ∗3 presents the best superfluous

results (highlighted in green), occurring for the 3 × 2 block of points. Indeed, the superfluous results

of this discrete delta function correspond to a first-order decay of the maximum error (similarly to what

occurred in the original IL formulation), but decays of order around 1.8 for the mean value and L2 norm

of the superfluous error. So, the results highlighted in green for δ∗3 using 3 × 2 blocks present clear

advantage, in terms of order of decay, when compared to the original IL formulation. Concerning δ4206,

advantage is also found when compared to the original formulation, with the maximum superfluous error

presenting a similar decay, but the superfluous mean value and L2 norm decaying above 1.5.

In the original IL formulation, delta functions δ2002 and δ2103 presented a very low decay in the maxi-

mum superfluous error. Now, in the Direct Method, these functions lead to a non-decay of that parameter,

as shown in table 6.3. Remind that one is looking for good superfluous decays, to lately extend them

to the transition region. Until now, the 2D results always revealed a poor performance of discrete delta

functions δ2002 and δ2103. Indeed, the non-decay of the maximum superfluous error (or a decay of just a

few decimals) was also found to occur for these two discrete delta functions in the upcoming methods.

So, henceforward, discrete delta functions δ2002 and δ2103 are dropped from the 2D analysis.

Excluding the problematic delta functions δ2002 and δ2103, one should note that δ∗3 and δ4206 present

worst results for 3× 3 blocks than for 3× 2 blocks. As explained in subchapter 5.2, the polynomial terms

used in the Direct Method are computed by selecting the same number of sample points, whose geo-

metrical layout must be related with the terms selected to incorporate the polynomial, in order to achieve

a given order of accuracy. On the other hand, the first normal level (corresponding to the solid points)

obeys to the interface orientation, whereas the other normal levels (coming from the superfluous region)

are disposed according to the Cartesian coordinate system. As such, it is not possible to obtain perfect

3 × 2 or 3 × 3 blocks of points. Since the objective is to compute a normal derivative, that is a quan-

tity along one of the axis of the local coordinate system, the solid points present an adequate layout,

faithfully translating three distinct and equally spaced tangential levels. Moreover, note that the informa-

tion coming from solid sample points is analytical, whereas the computation of the superfluous sample

points comes from the numerical solving process. With all this said, given that 3×2 blocks are subjected

to a stronger influence of their solid points, one may identify two reasons why their results are better:

strongly dependence on points that present an adequate layout (the solid points); and less exposure to

field values arising from the numerical process, relying more strongly on analytical information.

Besides comparing the orders of decay of the several error quantities with the original IL formula-

tion, it is also important to analyse their value. The comparison between the original IL formulation

implemented under a FV framework is compared with the DM with 3× 2 blocks in figure 6.5, using δ∗3 .

As presented in figure 6.5, the best results achieved with the Direct Method, using 3 × 2 blocks and

δ∗3 , not only present better orders of decay than the original IL formulation (recall tables 6.2 and 6.3), but

also a smaller error. For the most refined mesh, the mean value and L2 norm of the superfluous error

are around two orders of magnitude lower. The difference in the maximum superfluous error is around
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Figure 6.5: Superfluous comparison between IL-FV and method DM-32, for δ∗3 .

one order of magnitude. So, method DM-32 is better than the original formulation (IL-FD and IL-FV).

Again, using a first-order accurate computation of the normal derivative jump did not revert the su-

perfluous results to first-order accuracy, in line with what Leveque and Li [9] state, regarding the inability

of first-order decays in a set of lower dimension to contaminate second-order decays. However, an exact

second-order accuracy of 2.0 was not achieved in this 2D implementation, what can be explained by the

use of discrete delta functions to perform the regularisation operation in the masked Poisson equation.

In article [18], a very recent work by Cola et al., a simple Poisson problem was studied, with just one

singularity in the domain. In that problem, no interpolation operation relying on discrete delta functions

was present and a discrete delta function was only used to regularise the only singularity appearing in

the domain. In 1D, they were able to achieve second-order decays for some discrete delta functions.

However, in 2D, despite the huge simplicity of the problem (just one singularity and not an interface

covered of them), the results reverted to first-order accuracy for all the discrete delta functions, what

they referred to as “a problem that has been known in literature for decades”. As such, although the

additional second equation one adds to the IL method may be theoretically strong enough to lead to

second-order accuracy, one cannot forget the well-known and reported problems caused by the use of

discrete delta functions in 2D regularisations. So, given this problem “known for decades”, any two-

dimensional accuracy improvement over first-order should be interpreted as a very positive result.

6.4 Least Squares Method

In this section, the Least Squares Method, derived in subchapter 5.3, is implemented and studied,

as an alternative to the Direct Method. Similarly to what was verified in the original IL formulation and

in the Direct Method, the error quantities obtained with the Least Squares Method do not decay in the

transition region, nor the global maximum error. Moreover, the global mean error always decays with

first-order accuracy and the global L2 norm displays a half-order decay. As in the other methods, only
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superfluous decays varied with the parameters to be set. Thus, only superfluous decays are presented.

Notice that the LSM has several degrees of freedom to define. First, one must decide the number

of solid points to be used in the formulation. Here, two implementations are considered: using the solid

point under study alone (LSM1), or using it together with the previous and next one (LSM3). After that,

one may impose the value at the solid point under study directly on the least squares polynomial or not;

then, one must decide whether to use weights or not; finally, one must set the elliptical cloud dimensions.

Besides all these parameters, one also has the number of coefficients used in the LS polynomial.

In section 6.4.1, three terms are used in the LS polynomial (the yellow ones from table 5.2), whereas

in section 6.4.2 six terms are included (the yellow and orange ones from table 5.2). Keep in mind that

the exclusive use of the yellow terms corresponds theoretically to compute the first derivatives with first-

order accuracy. However, the 1D results proved numerically that the statement made by Leveque and Li

[9] indeed verifies (first-order exclusively occurring in a set of lower dimension is not able to contaminate

a second-order decay). Moreover, the results for the Direct Method also showed that a reversion to

first-order does not occur (being 3× 2 blocks even better than the formal second-order formulation with

a 3× 3 blocks, in terms of order of decay). That is the reason why one tests the yellow terms alone.

6.4.1 Using Three Polynomial Terms

The superfluous decays concerning the implementation considering the solid point under study alone

(LSM1) are presented in table 6.4, whereas the ones obtained when also using its previous and next

neighbours (LSM3) are shown in table 6.5. The cases wherein the assignment of weights was turned

off are identified with W0, whereas cases using weights are identified with W1. When the imposition of

the solid point under study was turned off the results appear identified with I0, or with I1 if the imposition

was used. Several elliptical clouds with semiaxes sη = Zh and sξ = (w2 + Z)h were considered, Z ∈ N.

Table 6.4: Superfluous decays using method LSM1 with three terms, for sη = Zh, sξ = (w2 + Z)h.

Z = 3 Z = 4 Z = 5

ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Sup ∥ε∥Sup
2 εSup

max

I0
W0

δ∗3 1.6617 1.6412 1.4702 1.4462 1.4229 1.3282 1.2126 1.1919 1.1136
δ4206 1.5295 1.4860 1.0238 1.3741 1.3460 1.0293 1.1768 1.1522 0.9353

W1
δ∗3 1.6905 1.6689 1.4167 1.4889 1.4629 1.3517 1.2387 1.2141 1.1153

δ4206 1.5729 1.5168 1.0057 1.4440 1.4115 1.0420 1.2466 1.2211 0.9857

I1
W0

δ∗3 1.8360 1.8103 1.18514 1.8023 1.7780 1.2926 1.7845 1.7638 1.4094
δ4206 1.6464 1.5528 0.9002 1.6339 1.5596 0.9627 1.6286 1.5658 1.0207

W1
δ∗3 1.8644 1.8338 1.1193 1.8439 1.8161 1.1969 1.8359 1.8123 1.2852

δ4206 1.6662 1.5553 0.8633 1.6640 1.5700 0.9112 1.6651 1.5834 0.9608

According to tables 6.4 and 6.5, the difference between assigning weights or not is reduced, being

the decays with the use of weights slightly higher for the mean and the L2 norm of the superfluous error,

but slightly lower when considering the maximum superfluous error. On the other hand, the polynomial

imposition of the solid point under study appears to have a more significant impact, being the results
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Table 6.5: Superfluous decays using method LSM3 with three terms, for sη = Zh, sξ = (w2 + Z)h.

Z = 3 Z = 4 Z = 5

ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Sup ∥ε∥Sup
2 εSup

max

I0
W0

δ∗3 1.7588 1.7380 1.3476 1.6200 1.5976 1.4842 1.4736 1.4515 1.3690
δ4206 1.6012 1.5365 0.9770 1.5168 1.4774 1.0382 1.4050 1.3744 1.0351

W1
δ∗3 1.8550 1.8283 1.1698 1.8213 1.7969 1.2612 1.7994 1.7781 1.3637

δ4206 1.6737 1.5710 0.8932 1.6663 1.5798 0.9398 1.5847 1.6570 0.9956

I1
W0

δ∗3 1.8367 1.8110 1.1856 1.8024 1.7781 1.2930 1.7846 1.7639 1.4094
δ4206 1.6474 1.5541 0.9016 1.6345 1.5601 0.9628 1.6288 1.5660 1.0209

W1
δ∗3 1.8680 1.8376 1.1217 1.8455 1.8180 1.2005 1.8378 1.8139 1.2859

δ4206 1.6750 1.5641 0.8708 1.6731 1.5777 0.9148 1.6710 1.5893 0.9664

with imposition better for the mean and the L2 norm of the superfluous error, but slightly lower when

considering the maximum superfluous error. As such, the maximum superfluous error appears to behave

oppositely from the mean and the L2 norm, concerning the effect of the use of weights and imposition.

Regarding the increase in the elliptical cloud dimensions, most decays were found to reduce, though in

table 6.5 some exceptions are verified for the superfluous maximum error.

The results achieving the highest decays in each table appear highlighted in green. Like in the Direct

Method, the best results occur for discrete delta function δ∗3 , with the highest mean and L2 superfluous

decays occurring for I1 and W1 in the method LSM3, considering an elliptical cloud characterised by

Z = 3. Although the maximum superfluous decay is lower in this case than when using δ∗3 , I0 and W0,

it is still higher than first-order, existing still an advantage compared to the original formulation. Note

that the values highlighted in green are very similar to the ones obtained in the best Direct Method

case, with a slight advantage for these ones obtained with LSM3 using δ∗3 , I1, W1 and an elliptical cloud

characterised by Z = 3. Notice that some other interesting results arise. Instead of looking for the

highest decays with the single concern that the superfluous maximum error is still higher than first-order,

if one was looking for a more homogeneous decay of all the error parameters, several cases would arise

as a good compromise with all the quantities decaying with order around 1.5 (like the cases highlighted

in grey). The numerical results appear to show that higher orders in the superfluous mean and L2 norm

are achieved at the expense of diminishing the decay obtained in the superfluous maximum error.

The comparison between the error arising from the original formulation of the IL method and the

best results occurring for LSM3 with I1 and W1 and using δ∗3 is presented in figure 6.6. For the sake

of compactness in the legend of figures, the case with the best results in this least squares method

that uses three polynomial coefficients (the yellow coefficients of table 5.2) is coded as LSM-Y, standing

for method LSM3 with I1, W1 and considering an elliptical cloud characterised by Z = 3. Later on, a

comparison between the best results of all the two-dimensional strategies will be provided.

As figure 6.6 suggests, not only the orders of decay observed for method LSM-Y are higher than

the ones verified for the original IL method (recall tables 6.2 and 6.5), but also the error values are

indeed lower. As an example, for the most refined mesh, the mean value and the L2 norm of the

superfluous error are almost two orders of magnitude lower when using strategy LSM-Y. The difference
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Figure 6.6: Superfluous comparison between IL-FV and method LSM-Y, for δ∗3 .

in the maximum superfluous error is around one order of magnitude. Thus, the differences are significant

and one can state that method LSM-Y is better than the original formulation (IL-FD and IL-FV).

6.4.2 Using Six Polynomial Terms

In this section, the six terms theoretically needed to achieve second-order results are used (the ones

in yellow and the ones in orange from table 5.2). The superfluous decays concerning the implementation

with the solid point alone are presented in table 6.6, whereas the ones obtained when also using its

previous and next neighbours are shown in table 6.7. The nomenclature used to identify the use of

weights and imposition is similar to what was explained in the previous section.

Table 6.6: Superfluous decays using method LSM1 with six terms, for sη = Zh, sξ = (w2 + Z)h.

Z = 3 Z = 4 Z = 5

ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Sup ∥ε∥Sup
2 εSup

max

I0
W0

δ∗3 1.8682 1.7327 0.3949 1.9019 1.7637 0.4213 1.8389 1.7622 0.4694
δ4206 1.4927 1.1311 0.4275 1.6838 1.1696 0.4592 1.6621 1.1913 0.4605

W1
δ∗3 1.8431 1.7076 0.3940 1.8958 1.7552 0.4077 1.6978 1.6853 0.4457

δ4206 1.4715 1.1267 0.4317 1.6463 1.1582 0.4540 1.6377 1.1763 0.4415

I1
W0

δ∗3 1.8497 1.7142 0.3977 1.8849 1.7503 0.4125 1.9088 1.7772 0.4317
δ4206 1.5047 1.1311 0.4324 1.6766 1.1572 0.4589 1.6978 1.1679 0.4631

W1
δ∗3 1.8074 1.6732 0.4024 1.8510 1.7159 0.4103 1.8786 1.7458 0.4215

δ4206 1.4777 1.1268 0.4365 1.6413 1.1502 0.4597 1.6608 1.1565 0.4617

According to tables 6.6 and 6.7, the strategy using six terms in the least squares polynomial reveals

different behaviours from the one with three terms. For example, the superfluous mean and L2 norm

decays appear to decrease when weights are used. Regarding the imposition, it is not that easy to set a

general rule that is always (or almost always) valid, since there would be a lot of exceptions. Overall, one

also finds the highest mean and L2 norm decays for the largest elliptical clouds, contrary to what was
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Table 6.7: Superfluous decays using method LSM3 with six terms, for sη = Zh, sξ = (w2 + Z)h.

Z = 3 Z = 4 Z = 5

ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Sup ∥ε∥Sup
2 εSup

max

I0
W0

δ∗3 1.8610 1.7289 0.4089 1.9024 1.7701 0.4240 1.9294 1.8006 0.4564
δ4206 1.4817 1.1400 0.4389 1.6783 1.1677 0.4639 1.6834 1.1833 0.4657

W1
δ∗3 1.8085 1.6811 0.4218 1.8581 1.7286 0.4223 1.8868 1.7594 0.4329

δ4206 1.4615 1.1439 0.4500 1.6403 1.1597 0.4672 1.6579 1.1644 0.4654

I1
W0

δ∗3 1.8500 1.7159 0.4024 1.8849 1.7507 0.4129 1.9090 1.7778 0.4324
δ4206 1.4812 1.1336 0.4357 1.6785 1.1575 0.4596 1.6975 1.1682 0.4631

W1
δ∗3 1.8063 1.6795 0.4243 1.8534 1.7223 0.4182 1.8796 1.7492 0.4257

δ4206 1.4579 1.1449 0.4510 1.6402 1.1585 0.4665 1.6597 1.1602 0.4632

verified using three polynomial terms. The best results from each table are again highlighted in green.

Although the highest mean and L2 norm decay values are higher in this strategy with six polynomial

terms, the maximum superfluous error is not able display first-order accuracy. Since the objective of this

work is to improve the original IL method, strategies in which some relevant error parameter performs

worse must not be regarded. More precisely, one must not admit lower than first-order decays of the

maximum superfluous error. Indeed, notice that none of the simulations with six terms led to maximum

superfluous decays higher then half order. As such, the results from the strategy using only three

polynomial terms should be considered better than the ones arising from the use of six terms.

Even so, one represents in figure 6.7 the comparison between the original IL method in finite volume

and the best strategy with six terms, that is, LSM3 with W0 and I0, considering elliptical clouds with

Z = 5 and using δ∗3 . For compactness, method LSM3 with W0, I0 and Z = 5 is coded as LSM-O, as it is

the best method with six terms (using the orange terms together with the yellow ones).

Figure 6.7: Superfluous comparison between IL-FV and method LSM-O, for δ∗3 .

As shown in figure 6.7, all the superfluous error quantities verified with strategy LSM-O using δ∗3 are

lower than the ones verified in the original formulation. For the finest mesh, the mean value and L2
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norm of the superfluous error present two orders of magnitude of advantage, whereas the maximum

superfluous error presents one order of magnitude of advantage. However, despite the oscillation, the

maximum superfluous error decays with less than first-order, what does not constitute an improvement

to the original formulation. As finest grids are considered, if these decay values continue holding, the

original formulation is expected to eventually surpass method LSM-O. Therefore, strategy LSM-Y must

be considered the best one coming from the implementation of the least squares formulation.

6.5 1D-Inspired Method

In this subchapter, the 1D-Inspired Method derived in subchapter 5.4, intended to replicate as faith-

fully as possible the one-dimensional reasoning, is studied. During the derivation of this method, two

parameters were let free: the location of the first points along the normal direction and the dimension of

the superfluous blocks. Given the restrictions of equation 5.21, one considered distances ξ+1 = (w2 +1.5)h

for 2× 2 blocks, ξ+1 = (w2 + 2.5)h for 3× 3 blocks and ξ+1 = (w2 + 3.0)h for 4× 4 superfluous blocks.

The decays obtained in the superfluous region are presented in table 6.8. Given the geometry of the

problem, the use of 4 × 4 blocks cannot be combined with δ4206 in the grid with N = 502 cells, since

the most exterior block would not be fully contained in the computational domain. So, exceptionally, the

decays of those three entries of table 6.8 were computed considering N ∈ {752; 1002; 2002}.

Table 6.8: Superfluous decays using the 1D-Inspired Method, considering Z × Z superfluous blocks.

Z = 2 Z = 3 Z = 4

ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Sup ∥ε∥Sup
2 εSup

max

δ∗3 1.9407 1.8079 0.4490 1.9861 1.8702 0.5407 2.0107 1.9010 0.5891
δ4206 1.7698 1.2110 0.4791 1.8072 1.2638 0.5117 1.7982 1.1292 0.4644

As presented in table 6.8, the discrete delta function δ∗3 is the one presenting the best results, reach-

ing a true second-order decay for the superfluous mean error (2.0107) and a very close to second-order

decay of the superfluous L2 norm (1.9010), for 4× 4 superfluous blocks. However, the superfluous max-

imum error presents a decay that is lower than first-order (0.5891), what is worse than the original IL

formulation. Notice that the results improve with the increase of the dimension of the superfluous block

from 2× 2 to 3× 3, but practically stabilise from 3× 3 to 4× 4.

Besides comparing the orders of decay of this best result of this strategy with the original IL formu-

lation, one must compare the error values, as presented in figure 6.8, using δ∗3 . For compactness, code

1DIM-4 stands for the use of a 1DIM with 4× 4 blocks.

Again, the improved method presents an advantage of around two orders of magnitude for the mean

value and L2 norm of the superfluous error and one order of magnitude for the maximum value. However,

once more, given the higher decay of the maximum superfluous error in the original formulation, this

advantage of one order magnitude will decrease (and eventually vanish) as one considers finest and

finest grids.
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Figure 6.8: Superfluous comparison between IL-FV and method 1DIM for 4× 4 blocks and δ∗3 .

6.6 Comparison between 2D Methods

In order to come up with the best two-dimensional strategy for the alternative equation to be used

with the masked Poisson equation, one must compare all the results together. In that regard, figure 6.9

presents the superimposition of the results obtained for all the best implementations of each strategy

(DM-32, LSM-Y, LSM-O, 1DIM-4) as well as the original IL formulation represented by the version IL-FV.

Figure 6.9: Comparison between the original IL formulation and the best methods, with δ∗3 .

As figure 6.9 shows, the strategy with lowest mean value and L2 norm of the superfluous error is

LSM-O, followed by 1DIM-4, DM-32, LSM-Y and finally the original formulation. The same order is true

for the maximum superfluous error except for the most refined mesh, from which the order between the

four alternative strategies inverts. This inversion is due to the fact that LSM-Y is the strategy with the

highest decay of the maximum superfluous error, being expected to surpass the others. The superfluous
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decays of all these strategies are gathered in table 6.9 for easier comparison. Although the graphs of

versions IL-FV and IL-FD are practically superimposed, table 6.9 recovers the decays of IL-FD.

Table 6.9: Superfluous comparison between the original IL formulation and the best methods, with δ∗3 .

Strategy ε̄Sup ∥ε∥Sup
2 εSup

max

IL-FD 0.9128 0.9257 0.9209
IL-FV 0.9345 0.9338 0.8581
DM-32 1.8625 1.8154 0.9521
LSM-Y 1.8680 1.8376 1.1217
LSM-O 1.9294 1.8006 0.4564
1DIM-4 2.0107 1.9010 0.5891

The highest superfluous decays (the closest ones to second order) appear to be achieved at the

expense of letting the maximum superfluous error to decay in a poor way, as occurs for methods 1DIM-4

and LSM-O. On the other hand, strategy LSM-Y is able to keep a good decay of this error quantity, while

performing close to second-order accuracy in the mean value and L2 norm (with values higher than 1.8).

In table 6.9, the decays concerning the original formulation (IL-FD) used by Eldredge in article [1] are

highlighted in blue. Strategies LSM-O and 1DIM-4 lead to the highest superfluous decays of the mean

value and L2 norm of the superfluous error, but present a decay of the maximum superfluous error that

is lower than the original IL-FD method. So, focusing exclusively in the orders of decay computed for

these meshes, strategies LSM-O and 1DIM-4 are disregarded. Strategies DM-32 and LSM-Y present

first-order decay of the maximum superfluous error (similarly to IL-FD), but are able to achieve an order

around 1.8 for the mean value and L2 norm of the superfluous error, much higher than the original

formulation. So, both DM-32 and LSM-Y reveal to be better than IL-FD, with strategy LSM-Y performing

slightly better than DM-32. With this said, focusing exclusively in the orders of decay computed for these

meshes, LSM-Y is elected as the strategy leading to the best superfluous decays.

Although the order of decay that the error quantities experience is an important parameter to track,

the main goal in any simulation is to reach a numerical solution that presents the lowest error possible.

Therefore, taking into account figure 6.9, if one intends to work exclusively in this range of refinements,

LSM-O would result as a natural choice, despite its low order of decay in the maximum superfluous error.

6.7 Smearing Correction

In this subchapter, the two-dimensional smearing corrective procedures derived in subchapter 5.5

are implemented and compared. The main objective is to find out if they are able to propagate the

achieved superfluous decays to the transition region and, consequently, to the entire domain. To test

the corrective procedures, one considers, as an example, the least squares strategy LSM-Y, using δ∗3 ,

since it was the two-dimensional strategy presenting the best superfluous decays overall. The decays

obtained for all the error quantities in all the domain regions are shown in table 6.10. For the sake of

compactness, the polynomial strategy derived in subchapter 5.5.1 appears in the tables and legends

coded as C-Poly, whereas the Cartesian strategy derived in subchapter 5.5.2 is coded as C-Cart.
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Table 6.10: Comparison between the two-dimensional correction strategies for method LSM-Y with δ∗3 .

Correction ε̄ ∥ε∥2 εmax ε̄Sup ∥ε∥Sup
2 εSup

max ε̄Trans ∥ε∥Trans
2 εTrans

max

C-Poly 2.0787 2.0388 0.8219 1.8680 1.8376 1.1217 1.7809 1.6942 0.8219
C-Cart 2.1131 2.0986 1.3739 1.8680 1.8376 1.1217 1.7649 1.7248 1.3739

Notice that the superfluous decays in table 6.10 are identical to the ones in table 6.5 for the method

LSM-Y, since the corrective procedures only act in the transition region. In terms of the orders of decay

that were obtained by the correction in the transition region and in the entire domain, procedure C-Cart

led to slightly better results. However, as already identified, the maximum error in the superfluous region

presents some oscillations in the decay, contrary to what happens with the mean value and the L2

norm. As such, the corrective procedures are acting over a superfluous field that is not strictly stabilised.

Therefore, as it was already verified in the one-dimensional results (recall the last lines of tables 4.14 to

4.16), the decays obtained in the corrected transition region, and consequently in the entire domain, may

occur to be higher than the decays verified in the superfluous region from which they were computed.

Naturally this is just a numerical phenomenon due to the fact that the superfluous decays are not fully

stabilised, with the maximum error oscillating around the straight line tendency.

Since the orders of decay achieved by both corrections are similar and both are affected by the fact

that the maximum error in the superfluous region oscillates, one should compare the value of the global

error quantities, in order to assess if any of the procedures presents advantage over the other. Figure

6.10 presents the global decay graphs for strategy LSM-Y, when corrected with the polynomial and the

Cartesian procedures. The code C0 stands for the case when no correction is applied to the results.

Figure 6.10: Comparison between corrective procedures C-Poly and C-Cart, on strategy LSM-Y with δ∗3 .

As previously seen, without correction, the global decay of the mean error is first-order accurate,

the L2 norm decays with half order and the maximum error does not decay (lines represented in blue

in figure 6.10). On the other hand, as table 6.10 showed, both corrections lead to second-order global

decay of the mean error and the L2 norm and a decay around first-order for the maximum error in the
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entire domain. When comparing the value of the error quantities, the lines representing both corrections

are very close to each other, with correction C-Poly slightly better in the mean value and the L2 norm. As

an example, considering the central grid, the relative difference between both corrections is around 4%

in the mean error and around 10% in the L2 norm. However, notice that C-Cart displays slightly higher

decays than C-Poly for the mean value and the L2 norm. As such, it those decays continue to hold, the

results for C-Cart are expected to surpass C-Poly as one continues to refine. Regarding the maximum

error, finest grids would need to be analysed as well, in order to see whether C-Cart keeps the lowest

value or if both correction procedures keep oscillating and changing their relative position.

In order to exemplify the two-dimensional sharpness recovery, the numerical solution for strategy

LSM-Y is presented in figure 6.11, before and after corrective procedure C-Poly, using δ∗3 and N = 1002.

(a) Before correction. (b) After corrective procedure C-Poly.

Figure 6.11: Numerical result obtained by strategy LSM-Y before and after correction C-Poly, using δ∗3 .

As expected, the numerical field in figure 6.11a presents a smeared interface due to the effect of

the discrete delta functions in the vicinity of the interface, whereas its corrected version in figure 6.11b

displays the desired sharp interface. Figure 6.12 shows the error field before and after the correction.

(a) Before correction. (b) After corrective procedure C-Poly.

Figure 6.12: Error field obtained by strategy LSM-Y before and after correction C-Poly, using δ∗3 .

The results presented by correction C-Cart are identical, with no visual difference from the ones

obtained with correction C-Poly. As such, one may conclude that both two-dimensional corrective proce-

dures perform as expected, being able to recover interface sharpness and, as previously seen in table

6.10, to propagate superfluous decays to the transition region and, consequently, to the entire domain.
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Chapter 7

Conclusions

7.1 Achievements

In this work, several improvement strategies were derived, to increase the accuracy of the Immersed

Layers Method, when solving the Poisson equation. Given the treatment of the normal derivative jump as

unknown, Eldredge [1] closed the system by setting an additional equation relying on a field interpolation

performed using a discrete delta function. As such, during this dissertation, alternative equations to

close the system were derived, implemented and compared. Moreover, the additional equations were

combined with the masked Poisson equation under a finite volume framework, in alternative to what was

done in article [1] that used finite differences.

In the one-dimensional case, the derived strategies led to second-order decays in the superfluous

region. Depending on the number of points used in each strategy, some implementations revealed

lower error than others, but all of them were second-order accurate outside of the transition region. At

that point, having a superfluous field decaying with second-order, one derived several final corrective

procedures to apply in the numerical solution coming from the system of equations. These procedures

acted exclusively on transition values, that are inherently affected by the smearing when the field is

not smooth across the interface. All the one-dimensional procedures were able to recover the interface

sharpness and to propagate the superfluous decays to the transition region and, consequently, to the

entire domain. As such, the objective of obtaining second-order results with Immersed Layers in one-

dimensional problems was completely achieved for all the error quantities, in the entire domain.

In the two-dimensional case, several strategies were derived and tested, but only a few implementa-

tions led to more advantageous results when compared to the original Immersed Layers Method. When

dealing with non-smooth fields, the two-dimensional reversion to first-order accurate results when using

discrete delta functions is a problem “known in literature for decades”, as stated by Cola et al. in their re-

cent article [18]. As such, obtaining second-order decays of all the error quantities in a two-dimensional

problem is still an open question in the literature when using discrete delta functions. Nowadays, any

accuracy improvement over first-order should be seen as a very positive result. Although the second

equation using the discrete delta function to perform an interpolation operation was substituted, the regu-

larisation operations appearing in the masked Poisson equation continue to be present. Therefore, even
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when using second equations that are formally second-order accurate, the undesirable two-dimensional

effect of the discrete delta functions that is present in the first equation will inevitably lead to accuracy

penalties. Even so, in this work one was able to obtain second-order decays of the mean value and L2

norm of the superfluous error, as in the 1D-Inspired Method with 4 × 4 blocks. However, at the same

time, strong penalties affected the maximum superfluous error, that presented a decay of around half

order (worse than the first order verified in the original formulation and thus unacceptable).

Overall, the best two-dimensional decays in which any error quantity presented penalties, when

compared to the original method, was found to occur using method LSM-Y together with δ∗3 . In this

method, the mean value and L2 norm of the superfluous error decays with an order slightly higher

than 1.8, whereas the maximum superfluous error decays with order 1.1. Regarding the 2D corrective

procedures, two versions were successfully implemented, propagating the good superfluous results of

strategy LSM-Y to the transition region and, consequently, to the entire domain. Concerning the discrete

delta functions that were tested, all of them behaved well in the one-dimensional case, allowing global

second-order results for all the derived strategies. However, in two dimensions, the results obtained

using δ2002 and δ2103, the discrete delta functions with lowest support width, presented strong penalties

in the error decay values, even when used in the original formulation of the Immersed Layers Method.

Discrete delta functions δ4206 and δ∗3 performed much better, with δ∗3 presenting the best results.

7.2 Future Work

Although the one-dimensional problem was completely solved with second-order accuracy for all

error quantities in the entire domain, the two-dimensional results were not able to achieve that ideal level

of accuracy. Even with the superfluous mean value and L2 norm presenting second-order accuracy for

some cases, the decay of the superfluous maximum error revealed to be very difficult to improve. As

such, future work could still be developed, to improve the two-dimensional results even further.

As an example, a second equation relying on imposing the field value at the interface could be tried.

Recall that this strategy was not generalised to the two-dimensional case, since the one-dimensional

results showed that the equation expressing the normal derivative jump presented a lower error.

Moreover, several additional studies may be performed with the implemented methods. Giving some

examples, one could test the use of a different number of solid points, choose the superfluous points

to use in the Least Squares Method in a different way, increase the number of points used along the

normal direction in the 1D-Inspired Method or set a different location of the first point along the normal

direction. Besides this, new discrete delta functions may also be searched or even derived.

However, with the current methods, one could follow the line of thought constructed by Eldredge in

article [1] and replicate the improvements strategies derived here for the masked Poisson equation to

the masked convection-diffusion equation and, later on, to the masked Navier-Stokes equations.

In the long term, after the problem concerning second-order decay in two-dimensional problems is

mastered, higher-order accuracy could be pursued. However, taking into account the current state of art

for the accuracy of continuous forcing methods with non-smooth fields, this objective is highly ambitious.
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Appendix A

Generalised Functions

In this appendix, some properties of the generalised functions used in the Immersed Layers Method

are presented, closely following the deductions performed in article [1] describing the method. Appendix

A.1 concerns the Heaviside function, whereas appendix A.2 addresses the Dirac delta function. In

appendix A.2.1 the unitary integral of the Dirac delta function is proved. In appendix A.2.2, equations

2.5 and 2.6 concerning respectively the immersion and restriction operations are derived.

A.1 Heaviside Function

Consider a given real function f(x) with x ∈ R. Given the definition of Heaviside function in equation

2.2, the integral of f over a semi-infinite interval may be converted into an integral of infinite range,

according to equation A.1, since the Heaviside function will cancel out the integral in the interval that is

complementary to the original one. Relation A.1 will allow the derivation of some important properties

concerning the Dirac delta function, namely the proof of its unitary integral property.

ˆ x

−∞
f(y)dy =

ˆ +∞

−∞
H(x− y)f(y)dy (A.1)

A.2 Dirac Delta Function

A.2.1 Unitary Integral

Differentiating equation A.1 with respect to x, one arrives to equation A.2, that is valid for any real

function f(x) with x ∈ R. Notice that, by the chain rule, one may write ∂
∂x = ∂

∂(x−y)
∂(x−y)

∂x = ∂
∂(x−y) .

f(x) =

ˆ +∞

−∞

∂H(x− y)

∂x
f(y)dy =

ˆ +∞

−∞
δ(x− y)f(y)dy (A.2)

Particularising function f to be equal to 1, one proves that the integral of the Dirac delta function over

R is unitary, as presented in equation A.3. Since f is unitary (a constant) and the integration is being

performed over the entire real line, the integral becomes translation invariant.
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1 =

ˆ +∞

−∞
δ(x− y) · 1 dy ⇒

ˆ +∞

−∞
δ(y)dy = 1 (A.3)

Following the definition of the multidimensional Dirac delta function in equation 2.4, result A.3 implies

the same property in the multidimensional space, Rλ. Once more, the result is translation invariant, that

is, the integral remains unitary when the integrand has the form δ(x− x0), for any vector x0 ∈ Rλ.

ˆ
Rλ

δ(x)dx = 1 (A.4)

A.2.2 Immersion and Restriction Operations

Remembering that the interface Γ is considered to be parameterised by surface coordinate(s) ζ with

interface points being given by x = X(ζ), one may write equation A.5 for a general function f(x) defined

over the entire multidimensional space. This equation holds, since only values of f at the interface are

actually invoked in the integral over Rλ, due to the Dirac delta function.

ˆ
Γ

f(X(ζ))dS(ζ) =

ˆ
Rλ

f(x)δ(χ(x))dx (A.5)

As stated in article [1], equation A.6 may be written, being the validity of this relation proved by

integrating it over Rλ and using equations A.4 and A.5 to manipulate it until an equality is reached.

f(x)δ(χ(x)) =

ˆ
Γ

f(X(ζ))δ(x−X(ζ))dS(ζ) (A.6)

The demonstration procedure suggested in article [1] is presented in expressions A.7 to A.10. From

step A.7 to step A.8, one used equation A.5 on the left-hand side and changed the order of integration

in the right-hand side. From step A.8 to step A.9, the only term depending on x was isolated inside the

integral with respect to that variable. From step A.9 to step A.10, property A.4 was employed.

ˆ
Rλ

f(x)δ(χ(x))dx =

ˆ
Rλ

ˆ
Γ

f(X(ζ))δ(x−X(ζ)) dS(ζ) dx (A.7)

⇔
ˆ
Γ

f(X(ζ)) dS(ζ) =

ˆ
Γ

ˆ
Rλ

f(X(ζ))δ(x−X(ζ)) dx dS(ζ) (A.8)

⇔
ˆ
Γ

f(X(ζ)) dS(ζ) =

ˆ
Γ

f(X(ζ))

(ˆ
Rλ

δ(x−X(ζ)) dx

)
dS(ζ) (A.9)

⇔
ˆ
Γ

f(X(ζ)) dS(ζ) =

ˆ
Γ

f(X(ζ)) dS(ζ) (A.10)

The right-hand side of equation A.6 only uses function values at the interface f(X(ζ)). Moreover,

the presence of the Dirac delta function in the left side of the equation implies that only interface values

of f will actually be invoked too. Thus, relation A.6 holds, as well, for any function exclusively defined at

the interface, F (ζ). Replacing f(x) by F (ζ), one arrives to equation 2.5, that one was willing to derive.

On the other hand, the restriction operation of given function g(x) with values in the multidimensional

space Rλ simply arises from expressing property A.2 for the multidimensional case, as in equation A.11.
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ˆ
Rλ

g(x)δ(X(ζ)− x)dx = g(X(ζ)) (A.11)

Using the notation of article [1] to represent the restriction operation of the given function g(x) to the

interface, g(x)δT
(
χ(x)

)
, one arrives to equation 2.6, as one was willing to derive.

A.3 Discrete Delta Function

Since it is not possible to numerically deal with singularities, the Dirac delta function is converted

into a so-called discrete delta function. In a multidimensional space Rλ, a discrete delta function is

constructed multiplying real functions φ(r) with r ∈ R, as presented in equation 2.18. This function

φ(r) must verify several properties, so that the discrete delta function properly mimics the Dirac delta

function. According to article [19], usual functions φ(r) verify the following conditions:

• φ(r) is continuous ∀r ∈ R;

• φ has a compact support: φ(r) = 0 , |r| ≥ w
2 , with w being the support width;

• φ satisfies the sum of squares condition:
∑

l∈Z
[
φ(l − r)

]2
= K , ∀r ∈ R, for some K ∈ R;

• φ has a given moment order m, for some m ∈ N0;

Function φ is said to satisfy a given moment condition of order j if it verifies relation A.12.


∑

k∈Z φ(k − r) = 1 , if j = 0∑
k∈Z(k − r)jφ(k − r) = 0 , if j > 0

(A.12)

Function φ is said to have moment order m if it satisfies moment conditions up to order m− 1.

• φ has a given smoothing order s, for some s ∈ N0;

Function φ is said to have a given smoothing order s ≥ 1, if there is a function ψ(r) such that

relation A.13 holds. Otherwise, φ is said to have s = 0, if it has a compact support.

φ(r) =
1

2s

s∑
l=0

(
s!

l!(s− l)!

)
ψ(r − l) (A.13)

As suggested, several parameters should be set when deriving a discrete delta function, namely the

support width w, the moment order m and the smoothing order s. By imposing all these parameters,

constant K will be a result from imposing the sum of squares condition. An example of the derivation

of a discrete delta function may be found in article [5], wherein w, m and s are imposed, leading to the

arising of constant K from the imposition of the sum of squares condition. As such, the discretisation of

the Dirac delta function is not unique and multiple combinations of parameters may be set. However, as

mentioned in that same article, not all the combinations of parameters are possible.

Notice that, in several works, the last property concerning the smoothing order appears replaced

by a simpler formulation, namely in the article of Peskin, [5], setting a so-called even-odd condition, in
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which
∑

i even φ(r − i) =
∑

i odd φ(r − i) = 1
2 . Article [19] proves that imposing the even-odd condition

is equivalent to set a unitary smoothing order, s = 1. Thus, the formulation with a smoothing order s is

more general. Using the even-odd condition corresponds to be already setting this parameter as s = 1.

As demonstrated in article [19], the moment order is related with the accuracy of interpolation op-

erations performed with discrete delta functions, whereas the smoothing order is responsible for the

suppression of high frequency errors. Since, in article [19], the sum of squares condition was not ob-

served to have a relevant impact on the results, some discrete delta functions derived there do not verify

it. More information about the importance of the sum of squares condition may be found in [5].

Similarly to what is defined in article [19], a discrete delta function is said to be of class (m, s, τ, w) if

it is characterised by a moment order m, a smoothing order s and a support width w. The parameter τ

assumes 1 if the sum of squares condition is verified and assumes 0 otherwise. Under this classification,

that will be represented in subscript of each function, article [19] presents φ2002, φ2103, φ4206, among

many others. The expressions of these functions are presented in equations A.14, A.15 and A.16.

φ2002(r) =

1− |r| , |r| ≤ 1

0 , |r| > 1

(A.14)

φ2103(r) =


0.5 , |r| ≤ 0.5

3
4 − 1

2 |r| , 0.5 < |r| ≤ 1.5

0 , |r| > 1.5

(A.15)

φ4206(r) =



5
8 − 5

24 |r| −
1
4 |r|

2 + 1
12 |r|

3 , |r| ≤ 1

9
16 − 11

48 |r| −
1
8 |r|

2 + 1
24 |r|

3 , 1 < |r| ≤ 2

13
16 − 49

48 |r|+
3
8 |r|

2 − 1
24 |r|

3 , 2 < |r| ≤ 3

0 , |r| > 3

(A.16)

The discrete delta function used by Eldredge in article [1] is constructed by means of a given φ∗
3

function, that is derived in article [20]. This function results from applying a smoothing procedure (rep-

resented by the star symbol) to an initial function φ3. This function φ3 was obtained applying a different

procedure from the ones in article [19] and, as such, one should not describe this function under that

classification. Instead of setting m, s, w and imposing (or not) the sum of squares condition, from which

a constant K results (or not); in this case, a constant K was imposed together with values for m and for

w, setting no restriction for the smoothing order. The values considered to derive φ3 were K = 1
2 , m = 2

and w = 3. The expression of function φ3 is presented in equation A.17.

φ3(r) =


1
3

(
1 +

√
−3r2 + 1

)
, |r| ≤ 0.5

1
6

(
5− 3|r| −

√
−3(1− |r|)2 + 1

)
, 0.5 < |r| ≤ 1.5

0 , |r| > 1.5

(A.17)
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Finally, the authors of article [20] subjected function φ3 to the smoothing procedure of equation A.18,

from which its smoothed version φ∗
3 arose. The objective of this smoothing procedure is to obtain dis-

crete delta functions that lead to reduced non-physical oscillations when dealing with moving immersed

boundary problems. Notice that, since smoothed versions φ∗ are constructed by integrating the orig-

inal functions φ, they present one higher derivative being continuous through each two neighbouring

segments of the function. This property is what gives rise to the expression smoothed.

φ∗(r) =

ˆ r+0.5

r−0.5

φ(r′)dr′ (A.18)

The final expression of the smoothed function φ∗
3 is presented in equation A.19, from article [20].

φ∗
3(r) =


17
8 +

√
3π

108 + |r|
4 − r2

4 +
(1−2|r|)

√
−12r2+12|r|+1

16 −
√
3

12 arcsin
(√

3(2|r|−1)
2

)
,|r| ≤ 1

55
48 −

√
3π

108 − 13|r|
12 + r2

4 +
(2|r|−3)

√
−12r2+36|r|−23

48 +
√
3

36 arcsin
(√

3(2|r|−3)
2

)
,1 < |r| ≤ 2

0 ,|r| > 2

(A.19)

The graphics of all the discrete delta functions considered in this work (δ2002, δ2103, δ4206, δ∗3) are

provided in figures A.1, A.2, A.3 and A.4, respectively, implemented in one and two dimensions.

(a) One-dimensional version of δ2002. (b) Two-dimensional version of δ2002.

Figure A.1: Representation of discrete delta function δ2002, in one and two dimensions, taking h = 1.

(a) One-dimensional version of δ2103. (b) Two-dimensional version of δ2103.

Figure A.2: Representation of discrete delta function δ2103, in one and two dimensions, taking h = 1.
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(a) One-dimensional version of δ4206. (b) Two-dimensional version of δ4206.

Figure A.3: Representation of discrete delta function δ4206, in one and two dimensions, taking h = 1.

(a) One-dimensional version of δ∗3 . (b) Two-dimensional version of δ∗3 .

Figure A.4: Representation of discrete delta function δ∗3 , in one and two dimensions, taking h = 1.
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Appendix B

Calculus

In this appendix, the Gauss divergence theorem is reminded in B.1. In B.2 the second-order schemes

used in the directional derivative expressions for non-interior cells (equations 2.28 to 2.31) are derived.

B.1 Gauss Divergence Theorem

Consider a compact subset V ⊂ R3, with boundary S = ∂V , that is characterised by an outward

pointing unit normal n. For a continuously differentiable vector field u : V → R3, equation B.1 holds,

being known as the Gauss divergence theorem. This result may be found, for example, in book [21].

˚
V

∇ · u dV =

‹
S

u · n dS (B.1)

B.2 Face Directional Derivative in Non-Interior Cells

In this appendix, one derives the unusual formula presented in equation 2.28, concerning the compu-

tation of the directional derivative for the east face of the easternmost cell of the computational domain.

The problem layout along x is presented in figure B.1. Note that, even though only an x axis is repre-

sented, everything remains valid for the computation of ∂ϕ̄
∂x

∣∣
e

in two (and even three) dimensions.

Figure B.1: Layout, along x, of a in the easternmost boundary of the computational domain.

Performing a Taylor series expansion for values ϕ̄C and ϕ̄W around xe, one arrives to equations B.2.

ϕ̄C = ϕ̄e + (xC − xe)
∂ϕ̄
∂x

∣∣
e
+ (xC−xe)

2

2!
∂2ϕ̄
∂x2

∣∣
e
+ (xC−xe)

3

3!
∂3ϕ̄
∂x3

∣∣
e
+ ...

ϕ̄W = ϕ̄e + (xW − xe)
∂ϕ̄
∂x

∣∣
e
+ (xW−xe)

2

2!
∂2ϕ̄
∂x2

∣∣
e
+ (xW−xe)

3

3!
∂3ϕ̄
∂x3

∣∣
e
+ ...

(B.2)
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One is looking for coefficients α, β, γ ∈ R such that the derivative in position xe is approximated with

second-order accuracy by as expression invoking ϕ̄e, ϕ̄C and ϕ̄W , as generally written in equation B.3.

∂ϕ̄

∂x

∣∣∣∣
e

O2∼ αϕ̄W + βϕ̄C + γϕ̄e
h

(B.3)

By expanding the right-hand side of equation B.3 with the results from the Taylor series expansions

of B.2, expression B.4 results. The term O(h)2 is used to represent an infinite sum of terms, in which

the one with lower power of the grid size is h2. Notice that xC − xe = −h
2 and xW − xe = − 3h

2 .

αϕ̄W + βϕ̄C + γϕ̄e
h

=
ϕ̄e
h

(
α+ β + γ

)
−

(
3

2
α+

1

2
β

)
∂ϕ̄

∂x

∣∣∣∣
e

+
h

2!

(
9

4
α+

1

4
β

)
∂2ϕ̄

∂x2

∣∣∣∣
e

+O(h)2 (B.4)

Thus, for equation B.3 to hold, coefficients α, β, γ should verify the three conditions presented in

equation B.5. The term multiplying the derivative should be unitary and the others should cancel out.


α+ β + γ = 0

3
2α+ 1

2β = −1

9
4α+ 1

4β = 0

→


α = 1/3

β = −3

γ = 8/3

(B.5)

Having determined coefficients α, β and γ, one is able to substitute them in expression B.3. With

this, one arrives to equation 2.28, expressing the directional derivative in the east face of a cell located

at the easternmost boundary of the domain. Its second-order nature is proved by re-writing equation B.4

with the values of coefficients α, β and γ being substituted. This step is performed in equation B.6.

(1/3)ϕ̄W + (−3)ϕ̄C + (8/3)ϕ̄e
h

=
∂ϕ̄

∂x

∣∣∣∣
e

+O(h)2 (B.6)

Similar procedures allow the deduction of equations 2.29, 2.30 and 2.31, for the directional deriva-

tives in identical problems at the westernmost, northernmost and southernmost domain boundaries.

90



Appendix C

1D Results - Additional Data

In this appendix, some additional data concerning the one-dimensional results of chapter 4 is pre-

sented. The graphs that compare the σ-equation strategy and the ϕ̄-equation strategy are here displayed

for discrete delta functions δ2103, δ∗3 and δ4206, in appendix C.1. Moreover, the graphs that compare the

several corrective procedures, when applied to the σ-equation strategy using two superfluous points, are

here presented for discrete delta functions δ2002, δ2103 and δ∗3 , in appendix C.2.

C.1 Comparison between Strategies

In addition to figure 4.11 comparing the σ-equation strategies and ϕ̄-equation strategies for δ2002, the

equivalent graphs for δ2103, δ∗3 and δ4206 are presented in figures C.1, C.2 and C.3,respectively.

Figure C.1: Gathering of all the superfluous decays with σ-equation and ϕ̄-equation strategies for δ2103.
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Figure C.2: Gathering of all the superfluous decays with σ-equation and ϕ̄-equation strategies for δ∗3 .

Figure C.3: Gathering of all the superfluous decays with σ-equation and ϕ̄-equation strategies for δ4206.
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C.2 Comparison between Corrective Procedures

In addition to figure 4.12 comparing the several correction procedures for δ4206, the equivalent graphs

for δ2002, δ2103 and δ∗3 are presented in figures C.4, C.5 and C.6,respectively.

Figure C.4: Gathering of all the global decays using different corrective procedures, for δ2002.

Figure C.5: Gathering of all the global decays using different corrective procedures, for δ2103.
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Figure C.6: Gathering of all the global decays using different corrective procedures, for δ∗3 .
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