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Resumo

Neste trabalho estudamos uma extensão do Modelo Padrão ao comparar dois modelos que explicam

a origem de indı́cios de violação de universalidade de sabor dos leptões para o decaimento b → sl+l−,

o momento anómalo do muão (g − 2) e o problema da matéria escura (ME). O decaimento do quark

b e a anomalı́a do muão (g − 2) são explicados através de diagramas com loops onde participam os

candidatos a ME. Para além dos campos do Modelo Padrão, os modelos têm um campo fermiónico sem

cor, um campo escalar sem cor e um com cor. Num dos modelos, o fermião é um dubleto de SU(2)L

e os escalares são singletos de SU(2)L enquanto no outro modelo o fermião é um singleto de SU(2)L

e os escalares são dubletos de SU(2)L. Após estudarmos a fenomenologia de sabor e matéria escura

dos modelos, fazemos um scan de forma a encontrar o espaço de parâmetros dos modelos que explica

os três fenómenos de nova fı́sica simultaneamente. Concluı́mos que ambos os modelos conseguem

explicar não só todos os problemas mencionados anteriormente mas também outros problemas de

sabor e ME. Contudo, existem diferenças cruciais na forma como as restrições na ME afetam os dois

modelos, resultando numa diferença considerável nos valores permitidos para a massa de ME.

Palavras-chave: modelo de nova fı́sica; decaimento do quark b; matéria es-

cura; momento anómalo do muão;
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Abstract

In this work we study an extension of the Standard Model by comparing two models which explain

the origin of the experimental hints of lepton flavor universality violation in b → sl+l− decays, the long-

standing muon (g − 2) anomaly and the dark matter (DM) problem. The b decays and the muon (g − 2)

anomalies are explained by additional one-loop diagrams with DM candidates. Besides the Standard

Model fields, the models have a colourless fermion field, a colourless scalar field and a coloured scalar

field. In one model the fermion is an SU(2)L doublet and the scalars are SU(2)L singlets, while in the

other the fermion is an SU(2)L singlet and the scalars are SU(2)L doublets. After studying the dark

matter and flavour physics phenomenology of the models, we perform a parameter scan and search for

the parameter space of the models which explains all three new physics phenomena simultaneously.

We conclude that both models can explain all previously mentioned issues simultaneously while also

satisfying other flavour and DM constraints. However, there are crucial differences between how the DM

constraints affect the two models, leading to a noticeable difference in the allowed DM mass.

Keywords: new physics model, b quark decay, dark matter, anomalous

moment of the muon;
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Chapter 1

Background Concepts

1.1 Standard Model

The Standard Model of particle physics (SM) is currently the most accepted theory used to describe

the strong, weak and electromagnetic interactions between elementary particles. It started being devel-

oped in the 1960s [1] and throughout the years has shown to be extremely successful in providing useful

predictions for experimental results, with the last big discovery being the Higgs particle in 2012 [2].

The SM is a gauge theory, meaning it is built by imposing a set of local continuous symmetries on the

fields. In this case, it obeys the gauge symmetry SU(3)c × SU(2)L × U(1)Y , where c, L and Y represent

the color, left-handed component of the field and the hypercharge, given by Y = Q − T3 where Q is

the electric charge of the particle and T3 is the third component of the isospin. One can separate the

fermionic fields in left and right-handed components:

 =  L +  R;  L =
1− ‚5

2
 ;  R =

1 + ‚5
2

 : (1.1)

The symmetry SU(2)L is implemented such that the left and right-handed fields live in two different

representations: left-handed fields are organized in an SU(2)L doublet while right-handed fields lie in

an SU(2)L singlet. The fields which compose the SM are organized in three families of leptons, three

families of quarks and one Higgs family:

QL =

0@UL
DL

1A =

8<:
0@uL
dL

1A ;
0@cL
sL

1A ;
0@tL
bL

1A9=;
Y=+1=6

; UR = {uR; cR; tR}Y=+2=3 ; DR = {dR; sR; bR}Y=−1=3 ;

LL =

8<:
0@eL
eL

1A ;
0@—L
—L

1A ;
0@fiL
fiL

1A9=;
Y=−1=2

; LR = {eR; —R; fiR}Y=0 ;

Φ =

0@ffi+
ffi0

1A :

(1.2)
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In order to verify gauge invariance, it is necessary to introduce new gauge vector fields

SU(3)c → G—a ; a = (1; :::; 8) SU(2)L → W—
b ; b = (1; 2; 3) U(1)Y → B— (1.3)

and promote the derivatives of fields to the correspondent covariant derivatives. For the colourless

doublet fermion and the Higgs doublet, the derivative is as follows

@— L → D— L =

 
@— − ig ′Y B— − i

gfiiW
i
—

2

!
 L ; (1.4)

while for the coloured doublet fermion we get

@—qL → D—qL =

 
@— − ig ′Y B— − i

gfiiW
i
—

2
− i

gsG
a
—–

a

2

!
qL ; (1.5)

where fii ; i = (1; 2; 3) are the Pauli matrices and –a; a = (1; :::; 8) are the Gell-mann matrices. For the

colourless and coloured singlets, we obtain respectively:

@—lR → D—lR = (@— − ig ′Y B—) lR @—uR → D—uR =

„
@— − ig ′Y B— − i

gsG
a
—–

a

2

«
uR : (1.6)

The full SM Lagrangean is given by

LSM = Lgauge + Lf + LH + LY : (1.7)

The first term corresponds to the gauge sector

Lgauge = −1

4

`
B—B

— +W a
—W

—a + Ga—G
—a
´
; (1.8)

with

B— = @—B − @B— ; W a
— = @—W

a
 − @W

a
— + g›abcW b

—W
c
 ; Ga— = @—G

a
 − @G

a
— + gs f

abcGb—G
c
 ;

(1.9)

where ›abc and f abc are the structure constants for the SU(2) and SU(3) groups, respectively [3]. The

second term describes the fermionic terms

Lf = −i Q̄L‚—D—QL − i ŪR‚
—D—UR − i D̄R‚

—D—DR − i L̄L‚
—D—LL − i C̄R‚

—D—LR ; (1.10)

where  ̄ =  †‚0 and — = (0; 1; 2; 3). The third term corresponds to the scalar potential

LH = (D—ffi)†D—ffi− —2|ffi|2 − –|ffi|4 ; (1.11)

where ffi is the Higgs scalar field and —2, – are real parameters. From this potential, the Higgs field
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undergoes a spontaneous symmetry breaking (SSB)

SU(3)c × SU(2)L × U(1)Y → SU(3)c × U(1)EM : (1.12)

For —2 < 0 and – > 0, the Higgs field is able to acquire a non-zero vacuum expectation value (vev) that

changes the minimum in the potential v

@LHiggs
@|ffi|2

˛̨̨̨
˛
’=0

= 0 ⇔ —2 + –v2 = 0 → v =

r
−—2

–
; (1.13)

where v ≈ 246GeV and
˙
ffi†ffi
¸
0
= v=2. We can now expand the scalar fields around its minimum.

ffi = ⟨ffi⟩0 + ’ =
1√
2

0@0

v

1A+

0@ G+

1√
2
(G0 + h)

1A : (1.14)

According to the Goldstone theorem, a massless scalar arises for each generator of a continuous global

symmetry that is not a symmetry of the vacuum. Therefore, the theory gains three massless bosons G±,

G0. These three bosons are then absorbed in the Higgs mechanism [4] as the longitudinal components

of the Z, W± bosons for them to become massive. Moreover, we obtain a massive scalar, the Higgs

boson with mass mH = −2—2. Finally, the fourth term is responsible for generating the masses of the

SM fermions

LY = −Q̄LffiY uUR − Q̄LffiY
dDR − L̄LffiY

lLR + h:c: ; (1.15)

where ffi = ifi2ffi
∗ and Y —, Y d , Y l are 3 × 3 complex matrices in flavour space. After SSB, we perform a

basis change on the fermionic fields

l̄L = ULL L̄L l̄R = ULR L̄R ūL = UuL ŪL d̄L = UDLD̄L ūR = UUR ŪR d̄R = UDRD̄R ; (1.16)

where l̄L, l̄R, ūL, d̄L, ūR, d̄R define the mass eigenbasis. The mass eigenstates of the fermions are

therefore given by

MU = diag(mu; mc ; mt) =
v√
2
U†
LL
Y uUUR ;

MD = diag(md ; ms ; mb) =
v√
2
U†
DL
Y dUDR ;

ML = diag(me ; m—; mfi ) =
v√
2
U†
LL
Y lULR ;

(1.17)

and finally one can use the matrices UUL and UDL to write the Cabibbo-Kobayashi-Maskawa matrix

(CKM) as

VCKM = U†
UL
UDL =

0BBB@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1CCCA ; (1.18)

which contains all information regarding the strength of the flavour-changing weak interaction. In 2020,

3



the absolute values of these parameters were given by [5]0BBB@
|Vud | |Vus | |Vub|

|Vcd | |Vcs | |Vcb|

|Vtd | |Vts | |Vtb|

1CCCA =

0BBB@
0:97370± 0:00014 0:2245± 0:0008 0:00382± 0:00024

0:221± 0:004 0:987± 0:011 0:0410± 0:0014

0:0080± 0:0003 0:0388± 0:0011 1:013± 0:030

1CCCA : (1.19)

1.2 Dark Matter

1.2.1 Historical context

One of the biggest mysteries in physics over the last century is Dark Matter: the universe behaves

in a way that the visible matter we are able to observe is only a small fraction of the total matter present

in the universe. There is a fraction of the matter in the universe that does not emit light and which

interactions are unknown. It is therefore referred to as Dark Matter. Despite many efforts from the

scientific community to discover its properties, no model to describe it has ever been proven to be

correct and its nature remains a mystery.

The first time DM was detected was in 1933 [6], where the values for the velocities of the galaxies in

the Coma cluster were observed to be much larger than the ones that would be associated to the known

matter: these would be fast enough to escape the gravitational pull of the cluster and set free from the

orbit. In 1936, the same behaviour was observed on the Virgo cluster by Smith. In 1939, Babcock

used an optical spectroscopy method to obtain the velocity of rotation of the Andromeda galaxy and

found that, far away from the center, its value was also much higher than what was expected from

the mass of the visible galaxy. In the 1970s, the concept of dark matter became widely accepted.

Stronger evidences of its existence came from the rotation of the Andromeda (1970) and other large

galaxies (1974), indicating a pattern. However, this behaviour did not change the spatial distribution

of the structures. In 1973, Ostriker & Peebles [7] showed that galactic disks on their own would not

be stable structures and suggested that these would have to be surrounded by dark spherical halos, a

property common to all galaxies.

1.2.2 The nature of dark matter

From the beginning, many DM candidates were taken into consideration. First, it was believed that

its nature would be baryonic (three-quark particles), with DM structures being ionized gases (1972),

low mass stars (1975) and collapsed objects (1975). However, through the study of cosmic microwave

background radiation (CMBR), the baryon density in the universe can be obtained and has a value of

Ωbar ≈ 0:045 which is a small fraction of the dark matter abundance ΩDM ≈ 0:3 and thus its nature

cannot be just baryonic: non-baryonic dark matter must also exist.

Cowsik & McClelland [8] suggested in 1973 the first non baryonic candidate for the role of DM, the

neutrino. Since most matter in the universe is dark, it would be expected for DM to influence greatly

the formation of large structures like galaxies and galaxy clusters. However if the DM particles were to

be relativistic (called hot dark matter), like a neutrino, it would be a very hard challenge to explain the

4



formation of these structures: at the time of matter-radiation equality in the early universe, the formation

of low scale structures would not be possible. Instead, galaxy-cluster concentrations of structures would

collapse first while smaller structures such as individual galaxies would form subsequently. However,

observations of galaxies at high redshift allow us to discard this scenario and conclude that smaller scale

structures were formed first and the larger structures were formed later. The formation of structures can

however be explained by non-baryonic non-relativistic matter, with particle velocity v ≪ c, called Cold

Dark Matter(CDM). This was first considered by Primack (1982) [9], Peebles (1982) [10] and Blumenthal

(1984) [11] and to this day, it is still believed that the CDM models are the most likely to be correct.

Another strong evidence of the existence of DM comes from Cosmic Microwave Background (CMB)

observation, which suggest that the energy density in the universe has a value of

ȷ0 ≈
3H2

0

8ıGN
≈ 10−29g · cm−3 ; (1.20)

where H0 ≈ 70 km s−1 Mpc−1 is the Hubble constant and GN = 6:67 × 10−11 N m kg−2 is the Newton

gravitational constant. This energy density value can only be explained through the existance of DM, with

a contribution of 70% dark energy, 26% dark matter and 4% luminous (or ordinary) matter. From CMB

data, by observing the distribution of galaxies on large scales (LSS) and by studying the contribution of

ordinary ordinary matter and DM, through Big Bang Nucleosynthesis (BBN), one can obtain the amount

of DM in the universe

ΩDM =
ȷDM;0
ȷ0

≈ 0:26 ; (1.21)

where the 0 subscript represents the density value evaluated today.

The most popular mechanism considered to explain the amount of DM present in the universe is

called the Freeze-Out mechanism: In the early universe, DM was assumed to be in thermal equilibrium

with the remaining matter (with the DM conversion to ordinary being at an equal rate as the SM matter

conversion into DM). However, as the universe expanded and its temperature decreased, the cross sec-

tion of the process of DM annihilation to ordinary matter decreased and therefore the thermal equilibrium

could no longer be maintained, leading the DM relic density to stabilize at the value in equation 1.21.

1.2.3 Known properties

Nowadays, there are some already known properties of a DM particle [12]: its lifetime must be longer

than the current age of the universe, it also does not interact electromagnetically in order to not emit

photons (otherwise it would have already been detected) and therefore it must be neutral. Moreover, for

DM collisional effects to be considered, the mean free path of a DM particle –DM must be larger than a

typical size of a cluster of galaxies ≈ 1 Mpc, which has a density of ȷcl ≈ 1 GeV cm−3. Therefore, one

must verify

–DM =
1

ffȷcl=m
> 1 → ff=m ≈ 1barn=GeV ; (1.22)

which is of the order of a strong interaction. This suggests that the DM may not be colisionless and

self interactions may be allowed. Also, it can interact with other SM particles as long as no photons
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are emitted in the process. Good DM candidates are massive particles that only interact via weak

interactions and gravitational force, called WIMPS. Its abundance must also verify the currently observed

DM density in the universe ΩDM ≈ 0:26, which is achieved by some WIMP models. Many experiments

have been developed in order to probe DM particle models, with the more advanced searches being on

WIMP models. Some experiments include searches for signals from elastic scattering of DM particles

off nucleons (direct detection), DM annihilation or decay processes (indirect detection) and production

of DM particles at colliders with additional detectable SM particles. WIMP models are the most popular

family among the theories used to explain DM. In these models, the DM candidate cannot interact using

the strong or electromagnetic force, otherwise it would be visible. Moreover, the mass range is of the

order O(GeV ) − O(TeV ) and therefore can be classified as CDM. Another widely considered family

of models are the Massive Astrophysical Compact Halo Objects (MACHOs), which consist of large

astrophysical objects which do not emit much light and whose non-baryonic constituent particles are

heavier than WIMPs. These structures can be detected through a method called gravitational lensing:

when a halo passes in front of a background star, its gravitational field distorts the light emitted from

the star and amplifies its brightness, allowing us to detect the halo. However, studies that used this

technique [13] found a large number of MACHOs with masses around 0:5 times the Sun’s mass in the

Milky way and concluded that these structures only provide an explanation to 20% of the DM mass, with

the missing portion still remaining a mystery.

The current abundance of the DM particle remaining from the beginning of the universe, that is, the

Big Bang is called the DM relic density. To compute this quantity, we assume that the relic density is

determined by a freeze-out mechanism: in the early universe, due to very high temperatures, the cross

section of the creation and annihilation DM process was a lot larger and therefore DM and SM particles

were in thermal equilibrium, with production and annihilation of DM happening at an equal rate and

the DM density being at a higher value. However, as the universe expanded and grew colder, the cross

section of the DM production process decreased and consequently the abundance of DM in the universe

also decreased, stabilizing in the fixed value we know today, given by [14]:

ΩDM = 0:1199± 0:0022 : (1.23)

1.2.4 DM direct detection

DM direct detection (DD) experiments are the ones attempting to detect DM particle signals directly

by observing its interactions with ordinary matter. It is certainly known from cosmology and astrophysical

observations mentioned before that DM interacts through the gravitational force with ordinary matter.

Regarding other forces, the scientific community is still unsure of DM interacts with baryonic matter and

therefore a large number of theoretical possibilities are available. The DM DD experiments must take

into account how much DM is present in the experimental apparatus, how it will interact with ordinary

matter (and of course how we can distinguish the DM signals from other interactions between ordinary

matter) and how can we detect it in the laboratory.

Over the last few decades, many experiments were developed with the goal of observing these DM
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signals. In this work we will focus on WIMP DD experiments, where the considered process is the

scattering of DM with ordinary matter, where the latter may be in the form of a nucleon. At first sight,

Figure 1.1: Diagram of DM scattering with ordinary matter and annihilation to ordi-
nary matter.

this would look like a fairly simple experiment to assemble. However, the challenge here is that the

properties of DM particles are unknown and thus it is hard to constrain the parameter space of the DM

model (with the most relevant being its mass) and predict the interaction signals to be observed. Let us

consider a DD WIMP scattering experiment: The DM distribution in our galaxy can be described in a

structure called a DM Halo [15], which consists on a spherical region containing gravitationally bounded

matter. The DM obeys a Maxwell-Boltzmann distribution [16]

f (v) =
1√
2ıff

exp

(
−
˛̨
v2
˛̨

2ff2

)
; (1.24)

where v is the velocity of the WIMP particles and ff is the velocity dispersion. We can roughly define the

local velocity vc as the velocity of our galaxy and the dispersion given by

ff =

r
3

2
vc ; (1.25)

with vc = 2:2× 105 m s−1. If we are considering a scattering experiment, we are assuming that besides

the gravitational interactions, DM also interacts with ordinary matter through other types of forces such

as weak interactions. Considering the collision between the DM particle and a heavy nucleon at rest,

if we consider a WIMP ffl with a mass of 100GeV , its kinetic energy is given by K = 1
2mfflv

2
c ≈ 27 keV .

Since a heavy nucleon binding energy is of the order 6− 8 keV, there is not enough energy for nucleon

fission to happen and we may assume that the collision is elastic. As a consequence, the WIMP will

transfer some energy to the nucleon and it is our goal to observe it (and distinguish it from eventual

collisions between the nucleon and other SM particles). Following [16], the maximum transfered energy

from the collision from a WIMP with velocity v is given by the expression

EmaxR = 2
—2v2

mN
; (1.26)
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where mN is the nucleon mass and

— =
mNmffl
mN +mffl

; (1.27)

is the reduced mass of the system. Now if we consider an experiment where the target of the WIMPs is

the nucleon of an atom, the differential event rate is given by [11]

dR

dER
=

R0

E0r
exp

ȷ
−ER
E0
r

ff
; (1.28)

where R is the rate of the scattering events, ER is the energy transfered to the nucleon, E0 is the most

probable recoil energy (according to the Maxwell-Boltzmann distribution) and r =
4mfflmN

(mffl+mN)2
. R0 is the

total event rate, given by the expression

Z +∞

0

dR

dER
= R0 ; (1.29)

and finally, the mean recoil energy is

⟨ER⟩ = E0r =

„
1

2
mfflv

2
c

«
r : (1.30)

The detection of this energy recoil in the nucleons is the basis of the DD experiments. However, while

attempting to observe this interaction, we must take into account unwanted nuclear and electric interac-

tions from other SM particles which may contaminate our data.

1.3 B Physics

A B meson is a particle which is composed of a bottom anti-quark b̄ and either an up quark u (B+),

a down quark d (B0), a strange quark s (B0
s ) or a charm quark c (B+

c ). The B meson is able to decay

via weak interactions to other particles. The quarks that undergo the weak interaction are not the strong

interaction mass eigenstates, but linear combinations of these states. A basis can be chosen such that

the up-quark (u, c and t) weak and mass eigenstates coincide, while for the down-quark (d , s and b)

states obey the following relation 0BBB@
d ′

s ′

b′

1CCCA = VCKM

0BBB@
d

s

b

1CCCA ; (1.31)

where d , s and b are the mass eigenstates, d ′, s ′ and b′ are the weakly interacting eigenstates and VCKM

is the CKM matrix 1.18:

The more relevant B meson processes are the following [17]: Diagrams a), b) correspond to the

decays with the largest decay rate. Moreover, the decay b) is also important since it allows us to measure

the CKM couplings Vcb and Vub. Decay f) is a loop diagram which is responsible for rare decays where

NP signals may reside, as we will discuss ahead.
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Figure 1.2: B meson possible decays.

1.4 Anomalous magnetic dipole moment

1.4.1 Magnetic moment

Before explaining our current NP problem, we first need to cover a basic concept in Physics: the

magnetic moment, which is a vector quantity m consisting of the magnetic strength and direction of an

object when subjected to a magnetic field. The torque fi acting on an object due to the external magnetic

field magnetic B can be written as:

fi = m ×B : (1.32)

The magnetic moment m is closely related to the angular momentum of a particle L through what is

called the gyromagnetic effect. The ratio between the magnetic moment and angular momentum is

given by the value ‚, called the gyromagnetic ratio:

m = ‚L : (1.33)

Let us look at the example of a single particle spinning around some axis: the angular momentum is

given by

L = r × p = —r × v ; (1.34)

where — is the mass of the particle, r is its distance to the axis and v is its velocity. We also define the

magnetic moment as

m =
1

2
er × v ; (1.35)

where q is the electric charge of the particle. Comparing both expressions, one concludes that the value

of ‚ is

‚ =
q

2—
: (1.36)

When we consider quantum effects, we must also take into account the intrinsic angular momentum of

a particle: its spin. If the particle is an electron, the gyromagnetic constant now has the value

‚e =
−e
2me

ge ; (1.37)
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where e is the absolute value of the electron electric charge, me is the electron mass and ge is a quantity

called the g-factor which must describe the intrinsic magnetic moment of the particle and the configura-

tion.

1.4.2 Anomalous magnetic moment

For the electron, one can use the Dirac equation to predict that this quantity has an absolute value

of 2. However, this value is different from the result obtained experimentally

|ge | = 2:0023193043625635± 0:000000000000017 : (1.38)

The reason is that above leading order, more complex processes such as virtual lines and loop diagrams

add an ”anomalous” contribution to the particle magnetic moment. The difference between these two

quantities is the anomalous magnetic moment denoted by a:

a =
g − 2

2
: (1.39)

For the electron, the calculation of the anomalous moment in lowest order gives us a value of [3]

a1e =
¸

2ı
≈ 0:0011614 (1.40)

and currently this value has been calculated up until fifth order O(¸5):

a5e = 0:001159652181643(764) : (1.41)

This result agrees with the experimental result [18] up to the tenth figure:

aexpe = 0:00115965218073(28) : (1.42)

For the muon, the scenario is more complicated, since we must consider contributions from more pro-

cesses. The Standard Model prediction for the anomalous moment of the muon is given by

aSM— = aQED— + aEW— + aHadron— = 0:00116591804(51) ; (1.43)

where aQED— refers to loop contributions from photons and leptons, aEW— takes into account the Z, W and

H bosons and aHadron— represents the hadron loops. However the experimental value obtained at BNL is

aexp— = 0:0011659209(6) ; (1.44)

which represents a significative difference. In April 2021 FermiLab published a new result for the anoma-

lous magnetic moment of aexp— = 0:00116592040(54) which deviates 4:2ff from the Standard model pre-

diction [19].
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1.5 Effective field theories

Some very useful methods used in Physics, and more specifically in particle flavour physics to de-

scribe weak processes are Effective field theories (EFT). These techniques consist on approximations

that focus on the specific degrees of freedom needed to explain a physical phenomenon at a given scale

(it could be a distance or energy value per example) while neglecting others degrees of freedom at dif-

ferent scales. In particle physics, while studying a process, it is common to use an energy scale in order

to sort out the different regimes where we can apply these theories: if we are performing an experiment

at an energy scale E, we do not need to know exactly what happens at a scale Λ ≫ E. Instead, we

can simply characterize the theory using a set of effective parameters needed to explain the physical

observables, which values can be obtained experimentally [20], together with a set of operators built by

using objects of the original theory.

When considering extensions of the SM, it is possible to account for new particles and their interac-

tions using an EFT method, with the most popular one being the SMEFT. This model obeys the same

local gauge symmetry SU(3)c × SU(2)L × U(1)Y and its Lagrangean is built like the SM’s, with its terms

formed by gauge invariant products of the fields. However, while the SM Lagrangean terms are up to

dimension 4, in the SMEFT one can consider terms with larger dimensions and the Lagrangean can be

written in terms of an expansion of the SM Lagrangean 1.7

LSMEFT = LSM +
1

Λ

X
i

c
(5)
i O(d=5)

i +
1

Λ2

X
i

c
(6)
i O(d=6)

i +
1

Λ3

X
i

c
(7)
i O(d=7)

i + ::: ; (1.45)

where OD
i are the additional gauge invariant operators of dimension D, built from objects of the original

theory, and c i are parameters obtained experimentally that must account for the physical observables,

called Wilson coefficients. Finally, Λ is the suppressing energy scale we consider: by taking a sufficiently

large Λ (or working with a sufficiently low energy in the experiment), one can neglect the higher dimen-

sion contributions and only consider the operators necessary to describe the interactions we need. In

this way one can think of the SM as a low energy limit of the more complete theory SMEFT.
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Chapter 2

Introduction

Although the SM is currently the best theory to describe particle physics, it still leaves some aspects

of the universe to be explained (such as neutrino masses, baryon asymmetry in the universe, among

other problems), leading us to believe that the theory is in fact incomplete and needs to incorporate

new physics to account for all these observations. A recent hint of NP is the observed anomaly in the

semileptonic decay rate of the B meson, which suggests a violation of lepton flavour universality: The

measurement of the ratios of the branching fractions

R(K(∗)) =
B(B → K(∗)—+—−)

B(B → K(∗)e+e−)
(2.1)

was obtained by the LHCb Collaboration [21–23] with values

R(K) = 0:846+0:060+0:016
−0:054−0:014; q2 ∈ [1; 1; 6]GeV 2 (2.2)

and

R(K(∗)) =

8><>:0:660+0:110
−0:070 ± 0:024; q2 ∈ [0:045; 1:1]GeV 2

0:685+0:113
−0:069 ± 0:047 q2 ∈ [1:1; 6]GeV 2

; (2.3)

where q2 is the dilepton mass squared in the process. However, the Standard model predictions [24, 25]

are

R(K) = 1:0004(8); q2 ∈ [1; 1; 6]GeV 2 (2.4)

and:

R(K(∗)) =

8><>:0:920± 0:007; q2 ∈ [0:045; 1:1]GeV 2

0:996± 0:002 q2 ∈ [1:1; 6]GeV 2

: (2.5)

Moreover, the Belle collaboration also measured these quantities with larger error bars than the LHCb

results [26, 27]. One should note that these experimental results are clean probes of NP: the discrep-

ancies in the values R(K(∗)) cannot be due to unconsidered QCD effects since the hadronic terms in

the expression cancel out [24]. Additionally, the measurements of other observables in B meson decays

also support the existence of anomalies. These include differential branching ratios [28–30] and angular
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distributions in the decays B → ffi—+—− and B → K(∗)—+—− [31–38] which also deviate from the SM

predictions. All of these observables are ultimately related to the b → s—+—− transition. Many proposals

have been introduced in order to solve these discrepancies, with the most popular solutions being to

introduce a boson Z′ [39–43], a leptoquark [44–50] (see [51] for a review) or new exotic particles which

generate one-loop penguin and box diagrams [52–56].

There are also other important hints of new physics like the long-standing low energy flavour anomaly

involving the measurement of the anomalous magnetic moment of the muon (g − 2)— [57, 58]. The most

recent prediction of this quantity in the SM [59] has a 4:2ff discrepancy from the experimental measure-

ment [60, 61]. If we define ∆a— as the experimental difference between the experimental measurement

value aexp— and the SM prediction aSM— , we obtain

∆a— = aexp— − aSM— ≈ (251± 59)× 10−11 ; (2.6)

where the error results from a combination of the theoretical and experimental uncertainties. It is ex-

pected in the future that results from J-PARC [62] and Fermilab [63] will be able to reduce this experi-

mental uncertainty.

The goal of this work is to solve the problems mentioned above while simultaneously providing an

origin for a DM candidate. The DM problem has already been investigated in models [64] which also

address the B meson decay anomalies such as [65–79] for Z′ models, [80–87] for leptoquark models,

and [88–93] for models with one-loop solutions. In a previous work [14] a model was proposed by

extending the work [91] which added three new fields to the SM: an SU(3)c coloured scalar which is

also an SU(2)L singlet, Φ3, one SU(2)L singlet colourless scalar, Φ2, and one SU(2)L doublet vectorlike

fermion, ffl, with 0;±1 electric charge. In this work we will discuss a new model where instead the

scalars are SU(2)L doublets and the fermion is an SU(2)L singlet. We wish to understand what is the

role played by the group representations in providing a simultaneous solution to the three problems.

While the Yukawa Lagrangian has a similar structure, the scalar potential is different in the two cases.

More importantly, in this new model the scalars will couple to gauge bosons giving rise to the possibility

of a change in DM related observables.
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Chapter 3

The Model

In the previous work [14], a model was considered where three new fields were added to the SM:

• A colourless scalar ffi2;

• A coloured scalar ffi3;

• A vectorlike fermion ffl which may have a charge 0 or ±1.

In that work (model 5), the scalars were SU(2)L singlets while the fermion was an SU(2)L doublet. Our

goal is to compare it to the scenario where scalars are SU(2)L doublets and the fermion is an SU(2)L

singlet: this model will be called model 3. The complete set of quantum numbers is shown in Table 3.1

for models 3 and 5.

SU(3)c SU(2)L U(1)Y

fflR 1 1 −1
ffi2 1 2 1=2
ffi3 3 2 7=6

SU(3)c SU(2)L U(1)Y

ffl 1 2 −1=2
ffi2 1 1 0
ffi3 3 1 2=3

Table 3.1: Charge assignment of the new fields for model 3 (left) and model 5 (right).

where all fields are odd under a Z2 symmetry, meaning that the allowed terms in the potential are formed

by field combinations where each field may only appear an even number of times (and the allowed terms

have at most mass dimension 4). The Yukawa Lagrangean 3.1 connects the dark sector with the SM

one and is necessary to explain the B anomalies via one-loop diagrams. The charge of the new particles

is defined by the interaction

LNPint = yQi Q̄Liffi3fflR + yLi L̄Liffi2ffl+ h:c: ; (3.1)

where yQi and yLi are constants, QLi and LLi are the SM left-handed doublets for quarks and leptons

and fflR is the right-handed component of the new fermion. Therefore, for model 3 we have

• A fermion singlet fflR with charge −1;

• A coloured scalar doublet ffi3, with ffiT3 =
h
ffi
+5=3
q ffi

+2=3
q

i
, where ffi+5=3

3 and ffi+2=3
3 are complex scalar

fields with electric charge +5=3 and +2=3 respectively;
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• A colourless scalar doublet ffi2, with ffiT2 =
h
ffi+1
l

S+iA√
2

i
, where ffi+1

l is a complex scalar field with

charge +1 and we separated the lower component of the doublet in its real and imaginary parts S

and A, which are real scalar fields with no charge and opposite CP parities;

while for model 5 we obtain

• A fermion doublet ffl, with fflT = (ffl0; ffl−), where ffl0 and ffl− are complex fermionic fields with

electric charge 0 and −1 respectively;

• A coloured scalar singlet ffi+2=3
3 with electric charge +2=3;

• A colourless neutral scalar singlet ffi2, which can be separated in its real and imaginary part as

ffi2 = (S + iA)=
√
2.

The SM and DM sectors also interact via the scalar potential. In model 3, where the scalars are

SU(2)L doublets, the scalar potential is given by (with all parameters real)

V (H; ffil ; ffiq) =−m11|ffi1|2 +m22|ffi2|2 +m33|ffi3|2 + –1|ffi1|4 + –2|ffi2|4 − –3|ffi3;a|2|ffi3;b|2+

+ –12|ffi1|2|ffi2|2 + –13|ffi1|2|ffi3|2 + –23|ffi2|2|ffi3|2 + –5[(ffi
†
1ffi2)

2 + (ffi†2ffi1)
2]

+ –′12(ffi
†
1 · ffi2)(ffi

†
2 · ffi1) + –′13(ffi

†
1 · ffi3)(ffi

†
3 · ffi1) + –′23(ffi

†
2 · ffi3)(ffi

†
3 · ffi2)p

+ y13(ffi
†
3 · fi2 · ffi1)(ffi

†
1 · fi2 · ffi3) + y23(ffi

†
3 · fi2 · ffi2)(ffi

†
2 · fi2 · ffi3) ;

(3.2)

where ffi1 is the usual Higgs field in unitary gauge ffiT1 →
h
0 vH+h√

2

i
, with v being the vacuum expectation

value (vev) v ≈ 246 GeV and h the SM Higgs field. Furthermore, ff2 is the second Pauli matrix. Note

that usually the colour indices in ffi3 are omitted and a summation over colour is implied, except for the

term proportional to –3 where the colour indices may be different. One can notice that the potential 3.2

is equivalent to the Two-Higgs-Doublet model if we just consider ffi1 and ffi2 [94]. The remaining terms

include the possibilities invariant under all symmetries when ffi3 is present.

The SM-Higgs-Doublet acquires a vev and we obtain a minimization condition of m2
11 = v2–1 and

thus the scalar potential has 15 free parameters. We chose as the free input parameters of the potential

the masses of the scalar fields and the quartic parameters –2, –3, –12, –13, –23, –′23, y13 and y23 are fixed

by the W mass. Therefore, the following parameters were fixed

–1 =
m2
h

2v2
m22 =

2m2
ffil
− v2–12

2
m2

33 =
2m

ffi
+5=3
l

− v2y13 − v2–13

2
; (3.3)

–5 =
m2
S −m2

A

2v2
–′12 =

m2
S +m2

A − 2m2
ffil

v2
–′13 =

2m
ffi
+2=3
q

− 2m
ffi
+5=3
q

+ v2y13

v2
; (3.4)

where mS, mA, mffil are the masses of the colourless scalars S, A and ffil and m
ffi
+5=3
q

, m
ffi
+2=3
q

are the

masses of the coloured scalars ffi+5=3
q , ffi+2=3

q . Model 5 could have a fermionic candidate for DM. However,

as discussed in [14], the direct detection constraints exclude this possibility due to tree-level Z mediation

in DM-Nucleon scattering processes. The only way to avoid this limit is to push the fermion mass to be
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of order O(TeV ). This would in turn make the loop contributions to b → s—+—− and ∆a— negligible and

the flavour anomalies would remain unsolved. Therefore, the fermionic DM possibility is discarded in this

case. In model 3, the fermion is charged and cannot be a DM candidate. Therefore, the DM candidate

can only be one of the neutral components of ffi2, either S or A, similarly to what was done on the

previous work [14]. Since the two DM candidates are identical in terms of DM and flavor phenomenology,

we may assume that MS < MA so that S comprises the whole DM density. This condition implies that

–12m11=–1 < 0.

Moreover, the Dirac mass of the fermion ffl is given by the Lagrangean term mfflfflLfflR + h:c: and the

Yukawa interaction 3.1 can be rewritten as

L = ydi (ūLjVj iffl
−ffi+5=3

q + d̄Liffl
−ffi+2=3

q ) + yLi

„
̄Liffl

−ffi+l +
eLi√
2
ffl−(S + iA)

«
+ h:c: ; (3.5)

where ydi are the coupling constants for the quarks in their mass eigenstates and V is the Cabibbo-

Kobayashi-Maskawa (CKM) matrix. For simplicity, we only take yb, ys and y— to be non-zero.

Finally, since we introduced new particles to the SM, for model 3 we must also introduce the elec-

troweak oblique parameters S, T and U [95, 96], which are able to quantify deviations from the SM due

to corrections on the two-point functions using electroweak data [97]. Therefore, one can write for the

total two point function

Πab(q
2) = Π

SM
ab (q2) + ‹Πab(q

2) ; (3.6)

where a; b can be one of the gauge bosons ‚, Z and W±, q2 is the external squared momentum and

‹Πab is the new physics contributions. In model 5, the contributions for these parameters is zero because

both fields are SU(2)L singlets and the two components in the doublet fermion ffl have the same mass,

leading to a vanishing to the electroweak oblique parameters at one-loop level. In this work we only

considered the limits on the parameter T. The fermion ffl has a vanishing contribution to T (because the

fermion vacuum polarization diagram at one-loop is zero in the limit where the momentum goes to zero,

similarly to what happens in QED). Therefore, the only contributions for the T parameter come from the

scalar fields. Following [98], we considered a general expression for the parameter T with an arbitrary

number of scalar doublets with hypercharge ±1=2 and scalar singlets. In model 3, if we just consider ffi1

and ffi2, this corresponds to a 2HDM with a dark doublet [94] where the NP contribution is given by [98]:

T =
g2

64ı2M2
W¸

[F (M2
ffil ;M

2
S) + F (M2

ffil ;M
2
A)− F (M2

S;M
2
A)] ; (3.7)

where mW is the mass of the W± gauge boson, ¸ is the fine structure constant and g is the SU(2)L

coupling constant. The function F (A;B) is given by

F (A;B) =

8><>:
A+B
2 − AB

A−B log A
B

; A ̸= B

0 ; A = B

: (3.8)

Similarly for ffi3, one can prove that the T parameter is proportional to F ((m
ffi
+5=3
q

)2; (m
ffi
+2=3
q

)2) and thus
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vanishes, since the masses of these scalars are set to be equal. Note that the assumption of tree-level

equality for the masses of the coloured scalars in Model 3 would be spoiled by the radiative corrections.

In this case, the dominant contribution comes from the one-loop effect of the SM-like Higgs, which is of

the order (–′13v)
2=(4ı)2. However, by fixing the coloured scalar masses to be around 1500 GeV, the mass

difference from these corrections are always smaller than the tree-level mass by at least two orders of

magnitude and thus the effects can be neglected. Therefore, the T parameter contribution only comes

from the expression (3.7), with the limit being used T = 0:03 ± 0:12, which will be applied at the end of

the scan.
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Chapter 4

Phenomenology

4.1 Flavour phenomenology

In this section we discuss the flavour constraints of the model. We must verify that not only we solve

the discrepancies observed experimentally but also make sure that the observables in agreement with

the SM predictions are not modified. Since the phenomenology is identical for both models, that is, both

model 3 and model 5 have the same NP contributions to the relevant flavour observables, then we can

use the same constraints and analytic expressions as in [14] for both models.

4.1.1 Anomalous moment of the muon (g − 2)—

We start by analysing the anomalous magnetic moment of the muon. In model 3, the leading order

(LO) NP contribution comes from one-loop diagrams containing the fermion ffl and the scalars S or A

and we can write [99]

∆a— =
m2
—|y—|

2

16ı2m2
ffl

[F̃7(xS) + F̃7(xA)] ; (4.1)

with

F̃7(x) =
1− 6x + 3x2 + 2x3 − 6x2log(x)

12(1− x)4
(4.2)

and xS(A) = m2
S(A)=m

2
ffl.

4.1.2 B → K∗—+—− decay

The effects of the loop transition b → s—+—− illustrated in figure 4:1 can be described using an

effective field theory. For that, we generate an effective Hamiltonian for this new interaction given by

[100, 101]

Hef f = −4GF√
2
VtbV

∗
ts(C

NP
9 O9 + CNP10 O10) ; (4.3)

19



where Vtb and V ∗
ts are CKM matrix elements, CNP9 and CNP10 are the Wilson coefficients and O9, O10 are

the following operators:

O9 =
¸

4ı
[s̄‚PLb][—̄‚—] O10 =

¸

4ı
[s̄‚PLb][—̄‚‚5—] : (4.4)

The main contribution to these operators comes from the box diagram in figure 4.1 and the respective

Wilson coefficients are given by [14, 99]

Figure 4.1: One-loop Feynman diagram to solve the R(K(∗)) anomalies.

Cbox9 = −Cbox10 = N ysy
∗
b |y—|

2

64ı¸m2
ffl

[F (xffiq ; xS) + F (xffiq ; xA)] (4.5)

with N−1 =
4GF VtbV

∗
ts√

2
, xffiq ;S;A =

m2
ffiq;S;A

m2
ffl

and

F (x; y) =
1

(1− x)(1− y)
+

x2lnx

(1− x)2(x − y)
+

y2lny

(1− y)2(y − x)
: (4.6)

Considering the most recent experimental results, the best fitted values of the Wilson coefficients are

CNP9 = −CNP10 = [−0:59;−0:30] [102], with a 2ff confidence level and therefore in our scan we will

consider the points in the parameter space that generate values of CNP9 within the 2ff range of its central

value.

4.1.3 Bs − B̄s mixing

Another relevant constraint associated to the b → s transition comes from the Bs − B̄s mixing, which

consists on the phenomena where the Bs meson oscillates between its particle and antiparticle. Here,

the only contribution arises from the effective operator

HBB̄
ef f = CBB̄(s̄¸‚

—PLb¸)(s̄˛‚
—PLb˛) ; (4.7)

where ¸ and ˛ denote the coloured indices. The NP contribution to the Wilson coefficient is given by

[99]

CNP
BB̄

=
(ysy

∗
b )

2

128ı2m2
ffl

F (xffiq ; xffiq ) ; (4.8)

with

F (x; x) =
1− x2 + 2xlnx

(1− x)3
: (4.9)
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The constraint is set on the mass difference ∆Ms of the two states Bs and B̄s . We can represent this

constraint in terms of the ratio of the experimental and SM values for the mass difference, defining the

quantity [103]:

R∆Ms
=

∆Mexp
s

∆MSM
s

− 1 = −0:09± 0:08 at 1ff C:L: : (4.10)

One can thus write Rexp∆Ms
in terms of the NP and SM Wilson coefficients [103, 104]:

R∆Ms
=

˛̨̨̨
˛1 + 0:8CNP

BB̄
(—H)

CSM
BB̄

(—b)

˛̨̨̨
˛− 1 ; (4.11)

with CNP
BB̄

(—H) being the NP Wilson coefficient at —H = 1TeV and CSM
BB̄

(—b) ≈ 7:2 × 10−11GeV −2 the

corresponding SM value at the scale —b [105].

4.2 Dark Matter phenomenology

In this section we discuss the constraints arising from DM physics, taking into account DM relic

density observations, constraints from DM direct detection and collider searches. The particle S is the

chosen DM candidate. However, choosing A would lead to identical results since both particles have

identical quantum numbers. Since S is a DM candidate, it must be able to reproduce the current DM

relic abundance ΩDMh
2 = 0:1199 ± 0:0022 [106]. We assume that the DM relic density is originated by

a freeze-out mechanism and thus the number density of S nS can be obtained through the Boltzmann

equation
dnS
dt

+ 3HnS = −⟨ffv⟩ (n2S − n2Seq ) ; (4.12)

where nSeq is the number density of S at equilibrium, H is the Hubble parameter and ⟨ffv⟩ is the thermally

averaged DM annihilation cross section times its relative velocity. The Boltzmann equation (4.12) can

be solved numerically using the software MICROMEGAS [107] which takes into account all possible DM

annihilation and co-annihilation channels. The freeze-in mechanism, which is also a well-known alterna-

tive mechanism that explains DM abundance cannot be used in this case since our model requires very

weak couplings between the DM particle and the visible sector O(10−10 − 10−12) [108].

An interesting aspect of model 3 is that, since the scalar fields are doublets, they can couple to

the gauge bosons, unlike model 5 where the scalar fields are singlets. This will drastically change

the distribution of the DM relic abundance. For model 3, the relevant annihilation and co-annihilation

processes are present in figure 4.2 and 4.3 while for model 5 the processes are described by figures 4.4

and 4.5
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Figure 4.2: Diagrams for DM Annihilation in model 3; SM represents all SM massive
particles.

Figure 4.3: Diagrams for DM Co-annihilation in model 3; f1, f2 represent all possible
SM final states of the s diagram.

Figure 4.4: Diagrams for DM Annihilation in model 5.

Figure 4.5: Diagrams for DM Co-annihilation in model 5; f1, f2 represent all possible
SM final states of the s diagram.
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Besides the relic density constraint, we must take into account DM direct detection (DD) results which

may also place several constraints on the parameter space of model 3. Currently, the best experimental

upper bounds on the DM direct detection cross section for a mass above 6 GeV are provided by the

PandaX-4T [109] and the XENON1T [110] experiments. More recently, the LuxZeplin (LZ) experiment

has also released their bounds on the spin independent cross section [111, 112]. We will show the three

limits in our plots which will allow to understand the effect of future DD bounds. In model 3, the dominant

DM DD channel is a tree-level t-channel with a Higgs-like mediation corresponding to the scattering

process SN → SN (with N representing a nucleon), which has a cross section

ff(SN → SN) =
(–12 + –′12 + 2–5)

2

4ı

f 2Nm
2
N—

2
SN

m2
Sm

4
h

; (4.13)

where fN ≈ 0:3 is an effective Higgs-nucleon coupling, mN is the nucleon mass and —SN is the DM-

nucleon reduced mass [113–116].

Another source of constraints to the model is the result of collider searches on DM at LHC, in partic-

ular the constraint of a SM-Higgs boson decaying into an S pair. For this decay, which is allowed when

mS < mh=2, the width is given by

Γ(h → SS) =
(–12 + –′12 + 2–5)

2v2

32ımh

s
1− 4m2

S

m2
h

(4.14)

and currently has an upper bound of 0:11 [5]. These are the DM searches constraints considered in this

study. As we will see, the DM DD limit gives rise to a much stricter limit than the Higgs invisible width.

Finally, we discuss DM indirect detection bounds [117]. It was shown in Ref. [118] that, for the model

parameter space of interest, the strongest upper bound for DM indirect searches is provided by the

Fermi-LAT observations of gamma-ray signal in the dwarf spheroidal galaxies of the Milky Way [119].

However, the annihilation of scalar DM pairs in both models is dominated by the SM Higgs-mediated

processes via the Higgs portal coupling (since the annihilation into —+—− through the t=u-channel ffl-

exchange is d-wave suppressed). Thus, most DM indirect detection experiments only provide additional

constraints on the Higgs portal coupling –hS, which is also directly constrained by the DM direct detection

experiments. By scanning the parameter space for model 5 in Ref. [14], we have found that the DM direct

searches like XENON1T, PandaX-4T and the latest LZ always give much more stringent upper bound

on the Higgs portal coupling than the present DM indirect searches, so that we have not shown the

Fermi-LAT upper bounds in our work. Moreover, since the Yukawa coupling of the DM scalar with the

muon is quite large (y— ≥ 1), it is generically expected in Refs. [120, 121] that the two-to-three process

SS → ——‚ and the loop-induced one SS → ‚‚ should be visible by observing the sharp spectral features

in the gamma-ray sky by Fermi-LAT [122] and HESS [123]. As shown in Figs. 11 and 12 of Ref. [121],

except for the narrow regions near the Higgs resonance where the Higgs portal coupling dominates

the DM freeze-out and around mS ∼ 200GeV where the constraint becomes weaker, most benchmark

parameters in model 5 would be well constrained since the correct DM relic abundance requires large

Yukawa coupling y— to increase the cross section of SS → —+—−. These gamma-ray spectral constraints
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also apply to model 3 where the S co-annihilation by the ffl-exchange channel to —+—− during freeze-out

also exists. However, in view of the large astrophysical and systematic uncertainties when looking for

these DM indirect detection constraints, we do not use them in our numerical scanning of the models

parameter space.
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Chapter 5

Results

5.1 Initial scan setup

In this section, we discuss the results obtained for model 3 by performing a multi parameter scan

taking into account the flavour and DM constraints mentioned before, in order to obtain the allowed

parameter space for the model. The relevant parameters for Model 3 are

yb; ys ; y—; mffl; mffi+5=3
q

; m
ffi
+2=3
q

; mS; mA; mffil ; –hS; –2 ;

with –hS = –12 + –′12 + 2–5 being the Higgs portal coupling. It would be expected that the quartic

parameters –23, –′23 and y23 were also relevant, since they have an impact in the DM abundance through

co-annihilation channels involving the coloured scalar fields. However, since there is a huge difference

between the DM mass and masses of the coloured scalars [14], the contribution of these processes to

the relic density will be very small. The values chosen for these parameters were –23 = –′23 = y23 = 10−3.

The parameters –3, –13 and y13 are irrelevant for the discussion since they have no contribution for the

DM and flavour physics.

The results are divided in two scans: In scan I (figures 5.1 and 5.2) our goal was to get a feel for the

allowed parameter space of model 3 by varying its input parameters, while in scan II we fine-tuned the

parameters taking into account the results from scan I in order to find points that satisfy all previously

mentioned constraints. Therefore, the results from scan II are our final results. It is necessary to explain

the meaning of each color of the points present in our figures: all points in the parameter space explain

the B meson data within a 2ff confidence interval. The blue points furthermore explain the DM relic

density value, the green points also satisfy XENON1T DM DD and collider searches constraints and the

red points additionally satisfy the muon (g − 2) data within 3ff (that is, all constraints simultaneously).

Before analysing the results, we need to discuss some simplifications made and the allowed values

considered for the parameter scan: following the reasoning of [14], in the flavour phenomenology expres-

sions of the B meson decay and Bs − B̄s mixing, the coupling constants ys and yb appear exclusively in

the combination ysy∗b and thus we assume they are real and proportional to each other, with ys = −yb=4.
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The minus sign appears because the product must be negative in order to solve the measurements of

R(K). Moreover we set |yb| ≤ 1 for both scans, 0 ≤ y— ≤ 4ı (scan I) and 1 ≤ y— ≤ 4ı (scan II), where

the condition 1 ≤ y— appears for optimization purposes. We also fix the masses of the coloured scalars

at 1:5 TeV, similarly to model 5, and force all other dark sector particles to be heavier than the DM can-

didate S by at least 10 GeV (and at most 1 TeV) in both scans, considering 5 GeV≤ MS ≤ 1 TeV (scan

I) which is the average WIMP mass range, and 5 GeV≤ MS ≤ 100 GeV (scan II), where the upper limit

mS ≤ 100 GeV appears to optimize the scan, since for reasons we will explain ahead mS is restricted

to be below 80 GeV to satisfy the DM constraints. For the masses of the remaining scalars, we take

15 GeV≤ mA; mffil ≤ 2 TeV (scan I). In scan II however, we consider constraints from the precision data

and LEP experiments of the W and Z boson widths. Additionally, for the decays W± → Sffi±l ; Affi
±
l and

Z → SA; ffi+l ffi
−
l to be kinematically forbidden, the following relations must be verified

mS +mffil > mW mA +mffil > mW mS +mA > mZ 2mffil > MmZ : (5.1)

Moreover, the process e+e− → ffi+l ffi
−
l also sets the limit mffil > 70 GeV [124]. We also exclude the

region where simultaneously mS < 80 GeV, mA < 100 GeV and mA − mS > 8 GeV, since they would

allow a visible di-jet or di-lepton signal [125]. Thus we have 100 GeV≤ mA ≤ 1:1 TeV and 70 GeV≤

mffil ≤ 1:1 TeV in scan II. It turned out that the conditions 5.1 did not need to be imposed since they

are automatically satisfied by the points which satisfy all constraints (red points). We also imposed

mA ≥ 100 GeV since in scan I we concluded that mS ≤ 80 GeV (and mA − mS > 8 GeV is immediately

satisfied by design). Furthermore, the masses mS, mA and mffil should be such that –′12 and –5 are

smaller than the perturbative limit 4ı (in both scans). For the vectorlike fermion ffl, we set the lower limit

101:2 GeV≤ mffl ≤ 2 TeV (scan I) and 101:2 GeV≤ mffl ≤ 1:1 TeV (scan II), where the lower limit comes

from LEP searches for unstable heavy vectorlike charged leptons [126]. More recent constraints from

the LHC exist for vectorlike leptons, but they do not apply to our model since those searches assume

that the vectorlike leptons couple to tau leptons [127], or have very small amounts of missing transverse

energy, =ET , in the final states [128]. Regarding the Higgs portal coupling, we impose |–hS| ≤ 1 (scan I),

which is achieved by setting 10−5 ≤ –12 ≤ 0:5 and rejecting points where –5 < −0:2 and |–′12| ≥ 0:1. As

for scan II, we used 10−7 ≤ |–hS| ≤ 10−2, and –12; |–5|; |–′12| ≤ 4ı. Unlike in model 5 where the Higgs

portal coupling is a completely free parameter, here it depends on the masses of S and ffil and thus

needs to be fine-tuned in order to be very small (this will be discussed in more detail ahead). Finally, we

consider –2, whose only contribution is to the DM relic density through the channels SS → AA; ffi+l ffi
−
l .

We take –2 = 10−5 in order to suppress the channel contribution to the relic abundance. Although we

did not vary the value –2 in any of the scans, we checked that we can have points satisfying the Planck

observations for much larger values of –2. A summary of the values used for each parameter in scans I

and II is shown in Tables 5.1 and 5.2, respectively:

26



yb ys y— mffl(GeV ) m
ffi
+5=3
q

; m
ffi
+2=3
q

(GeV )

[−1; 1] −yb=4 1; 4ı [101:2; 1100] 1500

mS(GeV ) mA(GeV ) mffil (GeV ) –12 –2
[5; 1000] [15; 2000] [15; 2000] [10−5; 0:5] 10−5

Table 5.1: Input values for model 3 scan I. Additionally, we impose |–hS| ≤ 1, which
is achieved by considering –5 < −0:2 and |–′12| ≥ 0:1.

yb ys y— mffl(GeV ) m
ffi
+5=3
q

; m
ffi
+2=3
q

(GeV )

[−1; 1] −yb=4 1; 4ı [101:2; 1100] 1500

mS(GeV ) mA(GeV ) mffil (GeV ) –12 –2
[5; 100] [100; 1100] [70; 1100] ≤ 4ı 10−5

Table 5.2: Input values for model 3 scan II. Additionally, we impose 10−7 ≤ |–hS| ≤
10−2, which is achieved by considering –5; |–′12| ≤ 4ı.

5.2 Model parameter space

In both models it was possible to find a region of the parameter space which satisfies all constraints.

However, this region is different for both models, with the main difference being related to the DM relic

density as a function of its mass, as it can be observed in figure 5.1:

Figure 5.1: Scan I - DM relic density as a function of the DM mass for model 3
(left) and model 5 (right). The cyan points satisfy the B meson anomalies within a
2ff confidence value. The red line represents the observed DM relic density. For
model 3, we also take |–4| ≤ 0:2, |–7| ≤ 0:1 and |–10| ≤ 0:5. For model 5, the
parameter values are the ones used in [14].

We immediately identify the same lower peak on both figures, around 60 GeV, which corresponds to the

region of SM Higgs resonance mS ≈ mh=2. In model 3, the DM mass has an upper limit of 80 GeV,

while for model 5 no limit is observed. This result can be easily explained since the scalar fields in

model 3 and model 5 have different SU(2)L representations: in model 5 the scalar fields are singlets
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while in model 3 they are doublets and allowed to couple to gauge bosons. Therefore, in model 3 the

DM annihilation processes SS → W+W− and SS → ZZ are allowed, which does not happen in model

5. Thus in model 3 the DM relic density is smaller than the value given by the Planck observation when

mS ≥ mW , similarly to what was observed for the i2HDM [129]. Another distinction between the models

comes from the Higgs portal coupling: while in model 5 the –hS parameter can be as small as desired,

in model 3 one has the relation

–hS = –12 + –′12 + 2–5 = –12 + 2
(M2

S −M2
ffil
)

v2
: (5.2)

Therefore, to have small values of –hS (of O(10−2)), which is a constraint required by the experimental

upper bounds of the LZ, PandaX-4T and XENON1T experiment, the difference between the masses of

S and ffil must be small or else we must verify that –12 is very close to −2(m2
S −m2

ffil
)=v2. This condition

is shown in figure 5.2:

Figure 5.2: Scan I - Higgs portal coupling |–HSS| as a function of the DM mass
for model 3 (left) and model 5 (right). The solid black, brown and orange lines
represent an experimental upper bound provided by the XENON1T, PANDAX-4T
and LZ experiments respectively. The values used for the parameters in the models
are the same as in figure 5:1.

As opposed to what we see in model 5, all points in model 3 are excluded due to DM DD and

Higgs decay constraints. Since mS varies between [5; 1000] GeV and the minimum mass difference

between S and other new particle is 10 GeV, then the quantity
˛̨̨
2 (m2

S −m2
ffil
)=v2

˛̨̨
can only be as small

as ≈ 0:0066 and therefore the condition –hS ≤ 10−2 is extremely unlikely to occur without forcing –12 ≈

−2 (m2
S −m2

ffil
)=v2 or mS −mffil to be smaller. We chose to keep –hS small since the other option would

make the co-annihilation processes more efficient and affect the DM relic density. The main results for

model 3 are present in figures 5.3, 5.4 and 5.5 (scan II):
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Figure 5.3: Scan II - Model 3 parameter space for (|yb|;Mffl)(left) and (y—; mffl)(right)
considering the parameter values 1 ≤ y— ≤ 4ı, 10−7 ≤ |–HSS| ≤ 10−2 and
|–4|; |–7|; |–10| ≤ 4ı.

Figure 5.4: Scan II - Model 3 parameter space for (y—; |yb|)(left) and (mA; mS)(right).

Figure 5.5: Scan II - Model 3 parameter space for (|–HSS|; mS)(left) and
(mffil ; mS)(right). The solid black, brown and orange lines represent an experimental
upper bound provided by the XENON1T, PANDAX-4T and LZ experiments respec-
tively.
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We see that the obtained results for the Yukawa couplings are similar to the ones in model 5, which

was already expected since the flavour physics in both models is the same and the DM constraint do not

have a big impact in the parameter space of these values. We obtained |y—| > 1:3 and 0:11 ≤ |yb| ≤ 0:65

when all constraints are satisfied. We also note that, as we already saw in figure 5.1, the DM relic

density limits the allowed value for the DM mass at mS < 80 GeV. By further taking into account the

(g − 2) constraint, we obtain 42 GeV< mS < 76 GeV, whereas in model 5 the allowed mass range was

30 GeV< mS < 350 GeV. This is a significant change in the allowed parameter space of the models: in

model 3 the DM mass is limited in a very narrow range, while for model 5 the range is much wider. For

the remaining parameters, we can observe in figure 5.4 that MA < 1076 GeV. In figure 5.5, we present

the bounds from the XENON1T, PandaX-4T and LZ and conclude that mffil < 621 GeV. The lower limit

on mffil was already expected since it is necessary to keep –12 < 4ı.

Afterwards, we applied the oblique T parameter to the allowed parameter space and obtained the

following results, within a 2ff confidence value for the T parameter experimental bound:

Figure 5.6: Model 3 parameter space for (|yb|;Mffl)(left) and (y—;Mffl)(right) after
applying the T parameter limit.

Figure 5.7: Model 3 parameter space for (y—; |yb|)(left) and (MA;MS)(right) after
applying the T parameter limit.
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Figure 5.8: Model 3 parameter space for (–HSS;MS)(left) and (Mffil ;MS)(right) after
applying the T parameter limit.

We observe two major changes: the maximum allowed mass for A goes from 1076 GeV to 877 GeV,

and for heavier masses (mffil > 200 GeV and mA > 300 GeV), the vast majority of the allowed parameter

space is now excluded. This is shown on figure 5.9, where now all points satisfy all previously mentioned

constraints:

Figure 5.9: Model 3 parameter space for (Mffil , MA) before applying the oblique
parameter T limit(left) and after(right); The points presented here satisfy all con-
straints. The point color scheme on the right image describes different values for
the T parameter.

As one can see on the right image in figure 5.9, the effects of the T parameter is to select regions

close to the limit mffil ≈ mA, since this leads to T ≈ 0. This is particularly true for large mass values

mffil > 200 GeV. However, one can make the approximation T ∝ (mffil − mA)=(mffil − mS) [130] and

thus significant mass splits can still be observed for small values of mffil , where mffil ≈ mS. For larger

values of Mffil , the only way to keep T in its experimental bound is to have MA ≈ Mffil , which excludes a

significant part of the parameter space in this region. Although only the T parameter was considered,

the S parameter is not expected to affect greatly the model, since it only has a logarithmic dependence
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on the mass split [129, 130].

5.3 Limits on y—

In this section we discuss the constraints on the y— coupling constant. The results on the previous

sections (fig. 5.7) have shown the need for a sizeable Yukawa coupling (y— ≥ 1) of the dark-sector

particles with the left-handed muons in order to explain the new physics results. As a consequence,

both models could be further constrained by the measurement of muon-related observables sensitive to

the new physics. As examples, let us consider the following diagrams:

Figure 5.10: (Left) Diagram for the Z → —+—− decay with an amplitude ∝
|y—|2=(4ı)2; (Right) Diagram for neutrino trident production with an amplitude
∝ |y—|4=(4ı)2.

In the left case of 5.10, the Z2-odd particles would shift the Z-boson coupling to the left-handed

muons at one-loop level. This could potentially generate deviations in the decay width, the left-right po-

larization asymmetry and the forward-backward asymmetry of Z → —+—− at the Z-pole [5], which should

be confronted with the precise measurements of these observables at LEP [131], Tevatron [132], and

LHC [133–136]. Furthermore, similar one-loop diagrams would produce new corrections to theW -boson

coupling with the muon-related charged current, which could potentially be detected by measuring the

generalized Michel parameters [137, 138] in the radiative muon decay —− → e−‚—̄e [5] or the asso-

ciated tau decay fi− → —−‚fi ̄—, with the latter process measured already precisely by ALEPH [139],

CLEO [140], BABAR [141] and Belle [142]. Finally, both models would give rise to the new contributions

to the muon neutrino trident production —N → ——
+—−N [143, 144], which would be constrained by the

data from CHARM-II [145], CCFR [146] and NuTeV [147] (a representative diagram is shown in the right

plot of Figure 5.10). In the case Z → —+—− and in the muon/tau decays, the one-loop amplitudes are at

most proportional to |y—|2=(4ı)2) while in the case of neutrino trident production they are proportional to

|y—|4=(4ı)2. In the neutrino trident case the diagrams are of the order:

|y—|4

[4ımax (mffl; mA)]2
≤ |y—|4

(4ımffl)2
: (5.3)

Hence, although the amplitude is enhanced by the fourth power of the Yukawa interaction, it is also

suppressed by m2
ffl. As y— approaches 4ı, mffl tends to be closer to 1 TeV as can be seen in our fit 5.6.

Given the large error bars in the associated experiments in the neutrino trident production, the constraint
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on this one-loop correction should be rather weak and thus in most of the parameter space of interest,

the constraints from these —-related experiments are expected to be rather weak for both models.

Still, in order to understand how these constraints would affect the results if they were much larger

than expected, we present the plots that are modified when the perturbative bounds are changed. We

considered two scenarios besides the 4ı bound, the conservative scenario, where we take |y—| ≤
√
4ı

and the ultra-conservative scenario with |y—| ≤ 4
√
4ı. In figure 5.11 we present, for Model 3, the allowed

parameter space in the ((|yb|; y—) (left) and (mffl; y—) (right) planes. All points verify all the previously

imposed constraints with the red points having |y—| ≤ 4ı, yellow points with |y—| ≤
√
4ı and green points

|y—| ≤ 4
√
4ı. The remaining plots are left unchanged:

Figure 5.11: Model 3 parameter space in the ((|yb|; y—) (Left) and (mffl; y—) (Right).
All points verify all the previously imposed constraints with the red points having
|y—| ≤ 4ı, yellow points with |y—| ≤

√
4ı and green points |y—| ≤ 4

√
4ı.

The main conclusion here is that the range of yb and the ffl mass is reduced but even in the very

conservative scenario the model is still possible in a non-negligible slice of the parameter space.

5.4 Direct detection and the effect of future collider bounds

We finish this section by comparing the direct detection and collider bounds for future experiments.

Recalling that the two observables are proportional to the portal coupling –hS, then the DD constraints

act on the portal coupling as a function of the DM mass. In figure 5.12 we present the most recent DM

DD bounds together with the LHC measurement of the Higgs invisible width for the H → SS process:
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Figure 5.12: Comparison of the DM direct detection experiments using the mea-
surements of the Higgs invisible width with the portal coupling as a function of the
DM mass.

We observe that there is already more than one order of magnitude difference between the LZ

experiment and the LHC measurement. Therefore, it is not expected that future measurements of the

Higgs invisible width would be able to compete with direct detection experiments.
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Chapter 6

Conclusions

We studied a model which provides a solution to the SM problem of lepton universality flavour vi-

olation in the b → s—+—− decay brought up by the LHCb and Belle collaborations. Additionally, this

model also solves the muon (g − 2) anomaly and provides a DM candidate. In a previous work [14], a

similar model was studied which differs from the present work in the group representation of the new

dark sector scalar and fermion fields: in the previous model, the vector-like fermion ffl was an SU(2)L

doublet while the complex scalar fields ffil and ffiq were SU(2)L singlets, with ffiq being an SU(3)c triplet.

In this model, ffl is an SU(2)L singlet while ffil and ffiq are doublets.

We wanted to analyse how the different group representations affect the allowed parameter space

of the models. The Yukawa Lagrangean for both models is such that the vertices present in the loop

process which provides the NP results are identical, meaning that the contributions to the flavour observ-

ables and (g−2) are the same. However, there are two major differences related to the DM observables:

first, in order to explain the DM relic density value obtained by the Planck Collaboration, the DM mass

must be lower than 80 GeV for model 3, whereas in model 5, this restriction does not exist. This is due to

the fact that in Model 3, the DM scalar field can couple to the gauge bosons, which allows the annihilation

processes SS → W+W− and SS → ZZ to occur, leading to a small relic density contribution. Second,

there is a huge difference regarding the Higgs portal coupling. While in Model 5 this parameter is free,

in Model 3 it is constrained and written as –HSS = –12+2(M2
S−M2

ffil
)=v2. To obtain a small constant, one

must either choose –12 and 2(M2
S −M2

ffil
)=v2 to be simultaneously small or –12 ≈ −2(M2

S −M2
ffil
)=v2, with

the latter one being the most viable option and the portal coupling values allowed to vary between 10−7

and 10−2. The constraints coming from — related experiments are expected to be weak for both models

but could affect the parameter space for points close to the perturbative limit y— ≈ 4ı.

In conclusion, the DM constraints are the ones acting on the models in a dramatically different man-

ner. This difference is shown in the DM allowed mass range: while for model 5 the mass range was

30 GeV< mS < 350 GeV, here in model 3 the range is more restricted at 42 GeV< mS < 76 GeV.

Over the last year, two new bounds from the DM direct detection experiments PANDAX-4T and LZ

were released [111, 112]. Although by taking this into account the value of the portal coupling constant

decreased, there were no changes on the allowed DM mass range.
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The work developed on this thesis resulted in the writing of the scientific article [148].
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