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Abstract

Although the use of second-order numerical schemes remains widespread due to their convergence
robustness and implementation ease, high-order schemes have emerged as promising alternatives due
to their increased numerical accuracy and computational efficiency. However, one of the recurring
arguments against the adoption of high-order schemes is that, even though they are more efficient than
second-order schemes when executed serially, they perform poorly in parallel computing. The present
work compared the parallel performance of second-, fourth-, sixth-, and eighth-order face least-squares
(FLS) schemes, which had been previously developed for two-dimensional, unstructured grids under the
finite-volume framework. The FLS algorithm was extended to three dimensions, and a corresponding
code with parallel computing capabilities was developed. The parallel performance of the second-
through eighth-order schemes was studied for a three-dimensional convection-diffusion problem using
regular Cartesian grids, at the Oblivion supercomputer. The obtained results showed good scalability
across all schemes, with the eighth-order scheme performing equivalently to the second-order one. Their
memory and runtime efficiency were also analyzed for parallel execution, with the high-order schemes
presenting an overwhelming advantage.

Keywords: High-order schemes, Parallel scalability, High-performance computing, Finite volume
method, Convection-diffusion equation

1. Introduction
The development of fluid mechanics has histor-

ically followed a two-pronged approach based on
theoretical derivation and experimental observation
[1]. The development of computers in the twentieth
century, however, birthed a “third approach” – com-
putational fluid dynamics (CFD). The development
of CFD accompanied and was aided by the growth
in computing power over the twentieth century. The
more recent shift to multi-core processors and mas-
sively parallel clusters in high-performance comput-
ing (HPC) has led to the corresponding need for
methods and algorithms to take advantage of such
resources. The National Aeronautics and Space Ad-
ministration (NASA), in a 2014 report on the vision
for state-of-the-art CFD in 2030, identified the “ef-
fective utilization of HPC” as one of five key strate-
gic areas, with “robust CFD code scalability” listed
as a major technology gap [2]. The authors pointed
out that, at the time, most codes ran efficiently on
at most ∼1000 cores, which represented only ∼0.1%
capacity for the then-largest supercomputers.

Currently, most commercial solvers continue to
use second-order accurate numerical schemes, be-
cause of their robustness in obtaining a converged
solution and ease of implementation on any grid
type. However, these schemes require very fine
grid resolutions for accurate results, which may lead
to prohibitively large computational problems in
terms of memory requirement. A promising alter-
native arises in high-order schemes (usually defined
as third-order and higher), since these can achieve
the same error tolerance by using a coarser grid.
This benefit has been shown for several grid types,
including structured [3], curvilinear or deformed [4],
and unstructured [5]. Additionally, Ekaterinaris [6]
shows, through a simple rationale, that the use of
high-order methods is also advantageous in terms
of solver runtime, barring a drastic increase of the
operation count for the linear solver.

High-order finite-volume (FV) methods have as
one of its precursors the 1990 work by Barth and
Frederickson [7], with quadratic reconstructions
(third-order) on unstructured grids for the Euler
equations. Since then, efforts led to the implemen-
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tation of fourth-order schemes by Ollivier-Gooch
et al. [8, 9, 10] and sixth-order schemes by Clain
et al. [11, 12, 13]. For an extensive background on
high-order FV schemes, refer to the comprehensive
review articles on structured grids by Ekaterinaris
[6] and on unstructured grids by Wang [14].

One of the general criticisms towards high-order
FV schemes is that they lack robustness for flow re-
gions of high gradient or discontinuities, being sus-
ceptible to spurious oscillations and thus possibly
failing to converge [6]. There have been several
methods developed to deal with these oscillations
while preserving high-order accuracy, with a major
family of these being the essentially non-oscillatory
(ENO) schemes [15] and its variants – weighted
ENO (WENO) [16, 17], central ENO (CENO) [18],
and targeted ENO (TENO) [19]. Cueto-Felgueroso
et al. [20, 21] provided an alternative by imple-
menting the moving least-squares technique to FV
schemes. This technique provides “shape functions”
to the grid by means of least-squares reconstruc-
tions, which uses a weight function related to the
distance between the reference face and the cell
sample.

2. The Numerical Method
Consider the convection-diffusion equation – a

general conservation equation present in fields such
as fluid flow and heat transfer [1] – given by

∇ · ( #»v φ)︸ ︷︷ ︸
convection

− ∇ · (Γ∇φ)︸ ︷︷ ︸
diffusion

= Q︸︷︷︸
source

. (1)

Following the discretization procedure according to
the FV framework [22], the first step in this method
is to integrate (1) over a control volume (CV):∫

CV

(
∇ · ( #»v φ) − ∇ · (Γ∇φ)

)
dV =

∫
CV

Q dV .

(2)
By applying the Divergence Theorem on the previ-
ous equation, one is able to transform the volume
integrals of the convective and diffusive terms into
surface integrals over the surface of the CV – i.e.
the control surface CS – resulting in∫

CS

(
#»v φ − Γ∇φ

)
· d

#»

S =
∫

CV

Q dV , (3)

where the term d
#»

S represents the area normal of
the surface, defined as positive outwards. Defining
F(I) as the set of all faces of cell I, one then obtains∑

f∈F(I)

∫ (
#»v φ − Γ∇φ

)
· d

#»

Sf =
∫

CV

Q dV . (4)

The source term integration may be calculated us-
ing cubature rules for numerical integration:∫

CV

Q dV ≃ V
∑

g∈G(I)
wGg

Q( #»xg) , (5)

where G(I) is the set of cubature points associated
with cell I, #»xg is a vector representing the spatial
position of cubature point g, and wGg

is the weight
of corresponding to the cubature point g according
to the chosen cubature rule. Similarly, the surface
integrals of the convective and diffusive terms in (4)
can also be calculated using cubature rules,∫ (

#»v φ − Γ∇φ

)
· d

#»

Sf ≃∑
g∈G(f)

wGg

(
#»v φ( #»xg) − Γ∇φ( #»xg)

)
· #»

Sf , (6)

where G(f) is the set of cubature points associated
with face f . As such, combining (5) and (6) into
(4) yields the semi-discretized convection-diffusion
equation∑

f∈F(I)

∑
g∈G(f)

wGg

(
#»v φ( #»xg) − Γ∇φ( #»xg)

)
· #»

Sf

= V
∑
g∈G

wGg Q( #»xg) . (7)

For the face least-squares (FLS) schemes used in
the current work, the terms φ( #»xg) and ∇φ( #»xg) –
evaluated at the cubature point g – are approxi-
mated using a polynomial centered on face f . Let
this regression polynomial be of the following form:

φ( #»xg) = κ0+κx(xg−xf )+κy(yg−yf )+κz(zg−zf )
+ κxx(xg − xf )2 + κyy(yg − yf )2 + κzz(zg − zf )2

+ κxy(xg − xf )(yg − yf ) + κxz(xg − xf )(zg − zf )
+ κyz(yg − yf )(zg − zf ) + . . . (8)

In vector form, one may represent this approxima-
tion by the product between a coefficient vector κf

and a vector df ( #»xg) of the terms representing the
distance between #»xg and #»xf ,

φ( #»xg) = df ( #»xg)κf . (9)

However, this still leaves the coefficient vector κf

as unknown. Now, consider a neighboring cell near
the same face f . Using (9), the value of φ at this
cell’s centroid #»xnb may be written as

φ( #»xnb) = df ( #»xnb)κf . (10)

Therefore, grouping several these neighboring cells
into a stencil s(f) and combining their individual
expressions for φ yields the following matrix-vector
equation

φs(f) = Ds(f) κf . (11)

where φs(f) contains φc, c∈s(f) and Ds(f) is a ma-
trix created by concatenating vectors df ( #»xc), c ∈
s(f). In an expanded matrix form, the previous
equation is given by (12).
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φc1

φc2
...

φcN

 =


1 xc1 −xf yc1 −yf zc1 −zf (xc1 −xf )2 (xc1 −xf )(yc1 −yf ) · · ·
1 xc2 −xf yc2 −yf zc2 −zf (xc2 −xf )2 (xc2 −xf )(yc2 −yf ) · · ·
...

...
...

...
...

...
. . .

1 xcN
−xf ycN

−yf zcN
−zf (xcN

−xf )2 (xcN
−xf )(ycN

−yf ) · · ·




κ0
κx

κy

...

 (12)

This allows one to pose the issue of determining
cf as a weighted least-squares problem expressed as
the minimization of a residual function, as given by

r
(
φ′

s(f)

)
=

(
φs(f) − φ′

s(f)

)T

Ws(f)

(
φs(f) − φ′

s(f)

)
. (13)

In this expression, φ and φ′ are, respectively, the
original data set of the generated stencil s(f) and
the corresponding obtained solution. Furthermore,
Ws(f) is a diagonal matrix containing the weights
assigned to each cell in the stencil. The inclusion
of weights gives a greater accuracy to the method
by allowing cells closer to the target face f to be
given a greater influence on the value of κf . The
current work will only consider the face-neighboring
stencil algorithm developed by Diogo [23] and use
the recommended value of wc = | #»xc − #»xf |−6, c ∈
s(f).

Multiplying both sides of (11) by DT
f Ws(f) and

then performing some algebraic manipulation, one
obtains an equation for the coefficient vector κf

κf = Ps(f)φs(f) , (14)

Ps(f) ≡
(

DT
s(f)Ws(f)Ds(f)

)−1
DT

s(f)Ws(f) (15)

where Ps(f) is the pseudo-inverse matrix.
Then, substituting the obtained expression for κf

into (9) allows for φ( #»xg) to be calculated from the
corresponding stencil values, as shown in (16). Sim-
ilarly, ∇φ( #»xg) can be calculated from (17). In the
particular case of regular Cartesian grids, the val-
ues in coefficient vector df ( #»xg) depend only on cu-
bature point g, since the distribution of cubature
points will be the same for any face; as such, the
subscript f has been omitted. Additionally, many
of these terms in dg will be null; therefore, only
a small portion of the matrix multiplication dgPf

needs to be computed. Unfortunately, the compu-
tation of Ps(f) itself is expensive, due to the need
to compute an inverse matrix.

φ( #»xg) = df ( #»xg)Ps(f)φs(f) (16)
∇φ( #»xg) = ∇df ( #»xg)Ps(f)φs(f) (17)

Substituting these two expressions into (7) leads
to the final equation (18) used in the method, which

will be used to create the linear system Aφs(f) = b.

∑
f∈F(I)

∑
g∈G(f)

wGg

[(
#»

Sf · #»v
)

df ( #»xg)Ps(f)

− Γ
(

#»

Sf · ∇
)

df ( #»xg)Ps(f)

]
φs(f)

= V
∑

g∈G(I)
wGg Q( #»xg) (18)

3. Verification of Numerical Schemes
To verify the implementation of the FLS schemes,

the author performed a series of tests to mea-
sure each method’s accuracy and convergence order.
The analytical functions used are given by

φ2D( #»x/3π) = sin x sin y , (19)
φ3D( #»x/3π) = sin x sin y sin z . (20)

These functions were chosen because they allow for
the simultaneous verification of several terms, since
they have both zero and non-zero boundary values
and produce a non-zero source term when inserted
into the convection-diffusion equation.

Since the purpose of these tests was to verify the
novel implementation in C using PETSc – and not
the FLS method itself – the only boundary condi-
tions considered were the Dirichlet type. Note that
Diogo [23] verified that the FLS method also works
correctly for Neumann- and Robin-type boundary
conditions. The error norms and convergence or-
ders were calculated for all FLS schemes in several
grid sizes and also for a second-order central differ-
ences (CD2) scheme as a classical reference. Hence-
forth, the notation used to identify an n-order FLS
method will be FLSn.

The error norms ∥ε∥1 for each case are plotted
as functions of the cell’s reference length Lref ≡
(NC)1/ND , where NC is the number of cells in the
mesh and ND is the number of spatial dimensions.

3.1. Two-Dimensional Case
In order to obtain more relevant value for the

finer grid sizes, the test was run in 128-bit quadru-
ple precision. This allowed for a delayed appear-
ance of round-off errors, albeit with a much higher
computational cost; such decision presented an ac-
ceptable trade-off since the test’s objective was to
confirm numerical accuracy and not computational
performance. The resulting system of equations
was solved with the BiCGSTAB solver precondi-
tioned using block-Jacobi. The evolutions of the
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Figure 1. Error norm ∥ε∥1 for 2D FLS schemes
and CD2, using the analytical solution (19).

error norm with respect to the reference length Lref
for the two-dimensional case is plotted in Figure 1.

In terms of convergence order, the results clearly
show that all FLS schemes exhibit their expected
asymptotic behavior. The only small exception to
this is FLS8 for error norms of ≲1E-15, when the
round-off error starts to dominate the global nu-
merical error and the scheme then loses its theo-
retical convergence order. In terms of numerical
accuracy, the obtained results agree with those ob-
tained by Diogo [23], save for fluctuations due to
a different choice of solver. Note also that the
FLS2 scheme presents a slightly larger error than its
CD2 counterpart, since the latter’s numerical error
contains additional contributions from the weighted
least-squares regression error. Overall, these results
demonstrate the correct implementation of the two-
dimensional FLS schemes.

3.2. Quadruple- vs. Double-Precision Results
The results shown above were obtained using

quadruple precision, which helps delay the contam-
ination from round-off errors [24]. Nonetheless, in
Figure 1 this limit is clearly identifiable by the FLS8
plateau around ∥ε∥ ∼ 10−15. If one were to use
double precision instead, this value would be even
higher. This is shown in Figure 2, which plots the
results obtained using quadruple and double preci-
sion for chosen FLS schemes alongside each other.
The use of quadruple precision leads to a signif-
icant improvement in the numerical accuracy for
finer meshes with NC ≳1002, which quickly become
dominated by round-off errors when using double
precision. Notice that the saturation values when
using double precision are consistent with the re-
sults obtained by Diogo [23] for both the FLS6 and
FLS8 schemes.

Figure 2. Influence of floating-point precision –
quadruple (solid) or double (dashed) – on ∥ε∥1.

3.3. Three-Dimensional Case
As with the previous case, the test was run in 128-

bit quadruple precision using BiCGSTAB solver
preconditioned with block-Jacobi. The error norm
∥ε∥1 for the three-dimensional case is plotted in Fig-
ure 3, with the corresponding convergence orders
annotated for each method.

Similarly to the 2D case, the 3D implementation
of all FLS schemes exhibit the expected asymptotic
behavior. Unlike the previous case, the results do
not enter a region where round-off error dominates.
This happens because the global error is not small
enough and the 3D problem is memory-limited –
i.e. using a finer grid would exceed the system’s
available memory capacity.

Figure 3. Error norm ∥ε∥1 for 3D FLS schemes
and CD2, using the analytical solution (20).
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Table 1. Preconditioner-solver combination for FLS2, serial runtime in seconds.

KSP
PC bjacobi

asm gamg

0 1 2 3 0 2 4 6

cg 4412 2625 2530 3279 2600 11 095 133 82 93
bicg 716 834 832 832 831 - - - -
bcgs 548 1063 737 733 739 71 66 73 97
ibcgs 451 563 561 555 567 - - - -
gmres 2778 4521 2861 3048 2984 61 58 66 85
fgmres 6076 4990 3700 3639 3037 62 73 82 95
tfqmr 5263 5571 4565 4852 4384 58 54 63 77

Table 2. Preconditioner-solver combination for FLS2, parallel runtime in seconds.

KSP
PC bjacobi asm gamg

0 1 2 3 0 2 4 6

cg 277 341 - - - 1700 13 - -
bicg 138 191 21 14 7 - - - -
bcgs 100 125 129 113 100 12 11 - -
ibcgs 110 133 89 110 121 - - - -
gmres - - 414 414 419 11 10 - -
fgmres 486 683 719 625 594 13 14 - -
tfqmr 107 140 - - - 12 11 - -

4. Selection of Preconditioner and Solver
This section describes the preliminary studies

done with the two-dimensional code to help choose
a preconditioner-solver combination for the full-
fledged studies on parallel performance (see Sec-
tion 5). Both versions of the code use the same
approach to solve the linear system resulting from
the discretization process. Using the PETSc frame-
work, the system is solved with an iterative lin-
ear solver, through the combination of a precondi-
tioner (PC) and a Krylov subspace iterative method
(KSP) [25]. Table 3 lists the full names and PETSc
acronyms of the preconditioners and solvers consid-
ered in this work.

The main goal of this preliminary study was to
reduce the myriad choices of preconditioner-solver
combinations available in the PETSc library into

Table 3. List of PETSc acronyms and full names
of preconditioners and solvers considered.

PETSc Name

bjacobi Block-Jacobi
asm Additive Schwarz Method

gamg Geometric algebraic multigrid
cg Conjugate gradient

bicg Biconjugate gradient
bcgs Biconjugate gradient stabilized
ibcgs Improved biconjugate gradient stabilized
gmres Generalized minimal residual
fgmres Flexible generalized minimal residual
tfqmr Transpose-free quasi-minimal residual

a handful of promising candidates, selected mostly
based on solver runtime. Given the preliminary na-
ture of this study, it was performed in an in-house
Linux server at the Laboratório de Simulação em
Energia e Fluidos (LASEF) instead of at a proper
HPC system. As such, the resulting runtimes val-
ues should not to be taken as absolute, but instead
used as an order-of-magnitude estimates – which is
sufficient for the desired comparison. The server
– codenamed Hopper – consists of two 8-core Intel
Xeon E5-2650 processors running at 3 GHz.

The results of solver runtime (including precon-
ditioner setup time) for the FLS2 scheme are shown
in Table 1 (serial) and Table 2 (parallel, NP = 8),
where a dash indicates that either the combination
is invalid or the system did not converge. The en-
tries for the additive Schwarz method (ASM) and
geometric algebraic multigrid (GAMG) precondi-
tioners have divisions that represent the additional
parameters of overlap and threshold percentage, re-
spectively. As shown, the choice of GAMG precon-
ditioner considerably reduces the runtime by orders-
of-magnitude in relation to Block Jacobi and ASM.
However, this preconditioner resulted in a stable
method only for lower threshold values (≤ 0.02).
In relation to solvers, those which formed a valid
combination with the GAMG preconditioner ex-
hibit equivalent runtimes, with the exception of an
outlier for CG. It is also worth noting the excellent
values yielded by the combination of ASM-BiCG.

The previous results with FLS2 showed the
promising combinations to be ASM with BiCG and
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Table 4. Preconditioner-solver combinations for FLS8, runtime in seconds

asm

0 1 2 3
serial, bicg 10629 11867 10657 12233

parallel, bicg 2155 - - 1816

serial, gamg parallel, gamg

0 2 4 6 0 2 4 6

bcgs - 820 1337 - - 154 213 -
gmres - 770 1298 - - 165 210 -
fgmres - 961 1579 - - 180 283 -
tfqmr - 789 1290 - - 148 206 -

GAMG with any valid solver except CG. As such,
to determine if any of these good results were spe-
cific to the FLS2 case (e.g. due to the thin matrix
bandwidth), additional tests using the FLS8 scheme
were performed. The results are shown in Table 4,
where a dash indicates that the solution did not
converge. The ASM-BiCG combination performs
poorly in comparison to the GAMG combinations.
On the other hand, the GAMG threshold value of
zero is now unstable.

The previous results indicate that, for the given
problem, the best choice of preconditioner is GAMG
with a threshold value of 0.02. Since the solvers an-
alyzed in combination with GAMG yielded equiva-
lent results, the BiCGSTAB solver was chosen due
to its tradition among the CFD community.

5. Parallel Efficiency
The schemes’ parallel performance were deter-

mined using results from strong- and weak-scaling
tests. These two scalability measurements differ in
relation to the evolution of the problem size as the
number of processes increase. In strong scaling, the
problem size is kept fixed throughout the test; in
weak scaling, it is the workload (problem size per
process) that is kept fixed. While both metrics pro-
vide useful information, the weak-scaling tests bet-
ter simulate engineering situations where more re-
sources are allocated to larger problems.

The main issue encountered in executing these
tests was the fact that, for high-order methods, the
memory requirement is quite restrictive. This is not
a problem when running the code in parallel, since
this memory cost is distributed among several ma-
chines. However, when running in a single machine,
the available memory was sometimes insufficient for
the complete problem. This meant that a full scal-
ing test with high-order methods was only possible
for smaller problem sizes. As such, the chosen start-
ing mesh size for all schemes was N ref

C = 803, with
the mesh size evolution for weak-scaling tests listed
in Table 5.

These tests were performed at the Oblivion su-
percomputer, which is the newest center of the
Rede Nacional de Computação Avançada – the Por-
tuguese HPC network [26]. Managed by Univer-
sidade de Évora, this supercomputer consists of

58 nodes, each with two sockets containing 18-core
Intel Xeon Gold 6154 processors running at 3 GHz,
connected via Infiniband EDR. This entails a peak
theoretical performance of ∼240 Tflop/s.

The results of selected strong and weak-scaling
tests using N ref

C = 803 are shown in Figure 4 as
plots of solver runtime (SRT), with the correspond-
ing efficiency listed and the dashed lines showing
ideal scaling. As expected, for the same grid size
higher-order methods exhibit a higher SRT due to
a higher number of nonzeros in the matrix, albeit
also yielding a lower numerical error. Also, the de-
viation from ideal scaling increases with the number
of processes; this seems to stabilize for Np ≥4.

For the strong-scaling tests, a significant improve-
ment of efficiency can be observed for 16 and 32 pro-
cesses, especially for the second- and fourth-order
schemes. This is due to an increase in cache perfor-
mance from the additional cache memory of more
systems. This advantage starts to disappear with 64
processes (spread among 32 nodes, or 64 sockets),
when the socket bandwidth starts to limit the com-
putation rate. Such decrease in efficiency is more
evident with Np = 128, because there is no addi-
tional L1 cache relative to Np = 64 since no more
sockets are included. This improved cache perfor-
mance does not happen for higher-order methods
(at the considered problem size) because of their
higher memory requirement; if a smaller problem
size were considered, the same trend would also be
observed for the sixth- and eighth-order methods.

As seen by the listed values of weak scaling, the
higher-order methods tend to exhibit slightly higher
weak-scaling efficiencies of close to 5% higher, which
shows a marginal advantage for these methods. Al-
though this is a very promising result, one could
argue that the decreased efficiency of the lower-
order method stem not from an inherently worse
parallel suitability of FLS2, but instead of its lower
SRT. This happens because, given a lower runtime,

Table 5. Grid size NC for a number of processors
Np, in weak-scaling tests with reference N ref

C .

Grid Sizes (weak scaling, N ref
C =803)

Np 2 4 8 16 32 64 128
N

1/3
C 101 127 160 202 254 320 403
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Figure 4. Solver runtime SRT for strong scaling (left) and weak scaling (right), using a reference size
NC =803. Dashed lines indicate the ideal scaling; listed values indicate the obtained parallel efficiencies.

communication and parallel overhead costs have a
higher negative effect on the overall parallel perfor-
mance.

Therefore, another batch of strong- and weak-
scaling tests were performed using, instead of a
reference size, the same reference SRT for the ini-
tial serial execution independently of the numerical
scheme. The chosen reference SRT for the strong-
scaling tests was Ts ∼ 40 s, while that for weak-
scaling tests was Ts ∼ 20 s. The corresponding grid
sizes for each test and scheme are listed on Table 6.

The results obtained from the aforementioned
tests are plotted in Figure 5. Using this reference
base, the FLS2 scheme exhibits the best parallel
performance, with ηst ∼ 90% and ηwk ∼ 80%. The
FLS8 also exhibits an excellent strong-scaling effi-
ciency of ηst ∼ 90%, but has a lower weak-scaling
efficiency that is on par with the other methods.
The FLS6 exhibited the worse strong-scaling effi-
ciency, with values falling below 70%. Even though,

Table 6. Grid sizes NC given Np processors, in
strong- and weak-scaling tests with reference
SRTs of Ts ∼40 s and Ts ∼20 s, respectively.

Test Type Np

Grid Size NC

FLS2 FLS4 FLS6 FLS8

Strong - 1603 1273 1013 803Scaling

Weak
Scaling

1 1273 1013 803 633
2 1603 1273 1013 803
4 2023 1603 1273 1013
8 2543 2023 1603 1273

16 3203 2543 2023 1603
32 4033 3203 2543 2023
64 5083 4033 3203 2543

128 6403 5083 4033 3203

for this comparison, the FLS2 scheme performed
best, one could also argue that it was because of
the larger problem size used for it, which could re-
sult in a better load balancing between processes.

It is important to discuss the observed drop in
parallel performance during the weak-scaling tests
for values of Np > 32. This happens because
the Oblivion supercomputer has 58 nodes, meaning
that for Np ≥ 64, there will be processes sharing a
node and all its related infrastructure: cache, mem-
ory, bandwidth, etc. This will inevitably lead to a
decrease in performance, which only worsens as the
number of processes increase. Nonetheless, one may
provide an estimate to the SRT value if these later
runs were to have been executed with a one-to-one
mapping of processes to nodes. Let T (NC , Np, Nn)
be the SRT for an NC-sized problem executed with
Np processes spread out among Nn nodes. Then,
the loss of efficiency in running the problem with
a k-fold higher process-per-node concentration may
be estimated by the ratio

T (NC , Np, kNn)
T (NC , Np, Nn) . (21)

Therefore, the SRT of a large problem if it were
run with a one-to-one mapping of processes to nodes
may be estimated using the aforementioned ratio
constructed from SRTs of a smaller problem using
less computation resources. For example, for the
case of Np = 64, the estimated SRT using this cor-
rection may be given by the following expression,

T (NC , 64, 64) ≈ T (NC , 64, 32) T (N ref
C , 2, 1)

T (N ref
C , 2, 2)

. (22)

Using this method, the estimated strong- and
weak-scaling efficiencies for 64 and 128 processes
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Figure 5. Solver runtime SRT for strong scaling (left) and weak scaling (right), using reference SRT of
Ts∼40 s and Ts∼20 s, respectively. Dashed lines indicate ideal scaling; parallel efficiencies are listed.

are listed in Table 7. These estimates better con-
tinue the efficiency trend from previous Np values,
without having an acute drop in efficiency.

Table 7. Estimated weak-scaling parallel effi-
ciency ηwk for high Np values, using the cor-
rection method described by (21),(22).

Reference
base Np

ηwk [%]
FLS2 FLS4 FLS6 FLS8

Size 64 69 74 72 73
128 67 71 68 -

SRT 64 77 70 68 72
128 82 72 72 70

6. Computational Cost
Lastly, it is worthwhile to compare the compu-

tational cost of each FLS method. Figure 6 plots
the numerical error norm ∥ε∥1 of each method as
function of two different metrics for computational
cost. On the left, it is plotted against the number of
nonzeros Nnz of the corresponding coefficient ma-
trix, which is an indirect measurement of the mem-
ory required to store the matrix. On the right, it is
plotted as function of the mean SRT measured in
CPU time (Np × T ).

The figure above clearly shows the computational
advantage of higher-order methods. For a given
memory or time constraint, higher-order methods
yield significantly more accurate results. This may
also be seen through another manner: to obtain
a given accuracy, a higher-order method requires
significantly less memory and time. Both of these
are important budget constraints of computational
projects, so having methods that are more memory-
and time-efficient is a considerable advantage.

7. Conclusion
The FLS schemes previously developed by Vas-

concelos [27] and Diogo [23] were implemented in
parallel for HPC and expanded to 3D problems.
The resulting algorithm was verified using the pre-
vious Matlab code and also using manufactured
analytical solutions based on sinusoidal functions.
The influence of the floating-point format used was
also analyzed, with the quadruple-precision for-
mat providing a significant increase in accuracy for
finer meshes in the sixth- and eighth-order schemes.
This improvement was achieved by delaying the on-
set of major contamination by round-off errors in
the results. Therefore, an equivalent improvement
can also be obtained for second- and fourth-order
schemes, given sufficiently fine meshes.

In preparation for the parallel scalability tests,
a comparison study of preconditioner-solver com-
binations was performed at an in-house machine
from LASEF. The criteria for choosing the combi-
nation to be used in the scalability tests were that of
fastest runtime (serial and parallel) and robustness.
The choice of GAMG preconditioner was clear from
the obtained results, which showed it vastly outper-
forming its counterparts in both serial and parallel
runtime. The choice of solver was less obvious, with
four solvers performing the best with not much dif-
ference between them, when paired with the GAMG
preconditioner. As such, the Author chose to use
the BiCGSTAB solver due to its long-standing tra-
dition, especially within the CFD community.

The parallel performance of the developed al-
gorithm was analyzed for three-dimensional prob-
lems at the Oblivion supercomputer managed by
the HPC Center of Universidade de Évora. A series
of strong- and weak-scaling tests were performed to
measure scalability, with both mesh size and solver

8



Figure 6. Numerical error norm ∥ε∥1 as function of number of nonzeros Nnz (left) and solver runtime
SRT given in CPU time (right). The listed values represent the decay order of ∥ε∥1.

runtime fixed as reference points, thus yielding a
total of four performance tests for comparison be-
tween each FLS scheme. No one scheme presented
a significant advantage over others across all tests,
with values for strong- and weak-scaling efficiencies
of over, respectively, 85% and 70% being achieved
consistently. Overall, the obtained results show
that high-order methods, even with their increased
number of halo cells for communication, may indeed
have a parallel performance that is on par with low-
order methods. Thus, this provides evidence to re-
fute a major argument against the use of high-order
methods in HPC.

Furthermore, the computational cost of low- and
high-order FLS schemes were compared. This cost
was measured in terms of both memory and runtime
requirements for a given accuracy. Using either of
these metrics, the advantage of high-order methods
regarding cost efficiency was clearly demonstrated
and, thus, presents a major incentive to their use
over low-order methods.
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