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Resumo

Embora o uso de esquemas numéricos de segunda ordem permaneça popular devido à sua robustez
de convergência e facilidade de implementação, os esquemas de alta ordem surgiram como alternativas
promissoras devido à sua precisão numérica e eficiência computacional. No entanto, um argumento
recorrente contra a adoção destes esquemas é que, embora sejam mais eficientes que os esquemas
de segunda ordem quando executados em série, têm um desempenho fraco em cálculo paralelo.

Este trabalho compara o desempenho em paralelo de esquemas face least-squares (FLS) de se-
gunda, quarta, sexta e oitava ordem, que foram previamente desenvolvidos para malhas bidimensionais
e não-estruturadas, usando o método de volumes finitos.

O algoritmo FLS foi estendido para três dimensões, e um código correspondente com capacidades
de computação paralela foi desenvolvido. O desempenho paralelo dos esquemas de segunda a oitava
ordem foi estudado para um problema de convecção-difusão tridimensional usando malhas cartesianas
regulares, no supercomputador Oblivion. Os resultados mostraram uma boa escalabilidade em todos
os esquemas, sendo que o esquema de oitava ordem apresentou um desempenho equivalente ao de
segunda ordem. A eficiência de memória e o tempo de execução também foram analisados em cálculo
paralelo, com os esquemas de alta ordem apresentando uma vantagem clara.

Adicionalmente, métodos alternativos referentes ao polinómio de regressão usado pelos esquemas
FLS foram testados para problemas bidimensionais, resultando numa maior precisão numérica. Em
particular, o uso do polinómio de regressão estendido nas direções tangentes à face mostrou-se muito
promissor e, logo, recomenda-se a sua adoção como uma norma em esquemas FLS.

Palavras-chave: Esquemas de alta ordem, Escalabilidade paralela, Computação de alto desempe-
nho, Método de volume finito, Equação de convecção-difusão
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Abstract

Although the use of second-order numerical schemes remains widespread due to their convergence
robustness and implementation ease, high-order schemes have emerged as promising alternatives due
to their increased numerical accuracy and computational efficiency. However, one of the recurring ar-
guments against the adoption of high-order schemes is that, even though they are more efficient than
second-order schemes when executed serially, they perform poorly in parallel computing.

The present work compared the parallel performance of second-, fourth-, sixth-, and eighth-order
face least-squares (FLS) schemes, which had been previously developed for two-dimensional, unstruc-
tured grids under the finite volume method framework.

The FLS algorithm was extended to three dimensions, and a corresponding code with parallel
computing capabilities was developed. The parallel performance of the second- through eighth-order
schemes was studied for a three-dimensional convection-diffusion problem using regular Cartesian
grids, at the Oblivion supercomputer. The obtained results showed good scalability across all schemes,
with the eighth-order scheme performing equivalently to the second-order one. Their memory and run-
time efficiency were also analyzed for parallel execution, with the high-order schemes presenting an
overwhelming advantage.

Additionally, alternative methods regarding the regression polynomial for the FLS schemes were
tested for two-dimensional problems, yielding a higher numerical accuracy. In particular, the use of
extended regression polynomial showed great promise and should be considered as a standard in FLS
schemes.

Keywords: High-order schemes, Parallel scalability, High-performance computing, Finite volume method,
Convection-diffusion equation
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Chapter 1

Introduction

The myriad happenings that occur in the everyday world around us are in essence just a collection of
physical phenomena. These are in turn described by their own governing set of mathematical relations.
Since these relations often describe the rate in which quantities of interest change in relation to reference
quantities, they take the form of differential equations. If such an equation depends on more than one
reference quantity or variable, it is classified as a partial differential equation (PDE). PDEs lie at the base
of many scientific fields such as finance, chemical reactions, neuroscience, optics, quantum mechanics,
thermodynamics, and – of more interest to the current work – fluid mechanics [1].

The development of scientific fields such as fluid mechanics has historically followed a two-pronged
approach based on theoretical derivation and experimental observation [2]. The latter should involve the
use of an experimental model replicating the desired phenomena in full-scale. While obtaining actual
measurements is crucial to study and understand a phenomenon, all measurements inherently suffer
from measurement errors due to equipment. Furthermore, it is often difficult or even impossible to
build a full-scale model, leading to the use smaller-scale setups from where the final conclusion have
to be extrapolated, leading to the yet other error sources. As such, experimental investigations have
often been hindered by insufficient accuracy, expensive or even nonexistent equipment, and difficulty in
reproducing results.

On the other hand, theoretical prediction has its own set of advantages and limitations, originating
from the consideration of a mathematical model instead of a physical one [2]. This set of methods
is inherently low-cost and accessible, essentially requiring only paper, pencil, and patience. Alas, the
complex nature of many governing systems of PDEs present an often insurmountable challenge in
obtaining closed analytical solutions, usually being possible only after several simplifying assumptions
or when considering very simple configurations. Indeed, proving either existence or nonexistence of
a solution to the Navier-Stokes (NS) equations is one of the seven Clay Millennium Prize Problems
[3], each worth US$ 1 million. As such, even though theoretical derivation holds a large importance to
the formal development and understanding of a field, it is often of limited practical interest to complex
engineering problems.

The aforementioned experimental-theoretical duality formed the sole basis for scientific contributions
in fluid dynamics up until the past century. More specifically, the field of experimental fluid dynamics,
for example, had its foundations laid in the seventeenth century, while its companion field of theoretical
fluid dynamics was developed throughout the eighteenth and nineteenth centuries [4]. The development
of computers in the twentieth century, however, birthed a novel “third approach” – computational fluid
dynamics (CFD).
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Figure 1.1 The current three-pronged approach to studying fluid dynamics. Adapted from Anderson [4].

Hirsch [5] defines CFD as “the set of methodologies that enable the computer to provide us with a
numerical simulation of fluid flows.” By using these methods, one can approximately solve the PDEs that
govern fluid dynamics (NS, Euler, etc.), thus obtaining a set of data for the desired flow problem. In this
sense, CFD is closely related to the experimental approach and may even be regarded as a “numerical
experiment” [4], but based on a mathematical instead of a physical model. As such, it combines char-
acteristics of both classical approaches and stands as an equally important aspect to the development
of fluid dynamics. Figure 1.1 serves to illustrate the current three-pronged approach to the study of fluid
dynamics and how each aspect complements the others.

The field of CFD underwent rapid and drastic developments in the latter half of the twentieth century
[4]. This evolution has been fueled, in part, by the development of high-speed digital computers, specially
its performance-to-cost ratio [6]. In the 1950s, computers operated at a few hundred floating-point
operations per second (flop/s), and there was the field of CFD was only just appearing in academia.
The 1970s witnessed the appearance of commercial CFD codes and the start of adherence by industry
pioneers; however, the technology still limited applications mainly to two-dimensional flows.

By the turn of the century, the scenario was much different, with major industry powerhouses – such
as Boeing [7] and Airbus [8] – using CFD as an indispensable tool. Johnson et al. [7] comment that the
number of CFD simulations run at Boeing’s commercial airplane division increased from 100-200 in 1973
to more than 20 000 in 2002, noting that these latter run cases involved much more complex physics and
geometries. Currently, CFD is used by many industrial sectors besides aeronautics, including automotive
[9, 10, 11], marine [12], energy [13, 14, 15, 16, 17], chemical [18, 19], food [20, 21], biomedical [22, 23],
among others. According to the market research group IMARC [24], the global CFD market was valued
at US$ 2.11 billion in the past year 2021 and is expected to reach US$ 3.43 billion by the year 2027.

1.1 Motivation

As previously noted, the development of CFD accompanied and was even aided by the growth in
computing power over the twentieth century. However, the slowing down of Moore’s Law – which cor-
relates with computing power in a single processor – lead to widespread development of multi-core
processors. Nowadays, all commercially available processors (except microcontrollers) are multi-core,
even those included in mobile devices. Inevitably, the high-performance computing (HPC) community
also adopted this paradigm, causing a shift from classical vector supercomputers to massively parallel
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clusters – i.e. multiple computing units joined together by a high-speed interconnections. Ferziger et al.
[6] points out that this increased the economic scalability of supercomputers by significantly reducing
their associated costs, since they could now be built even using off-the-shelf components.

Inevitably, there has been a corresponding need for methods and algorithms to take advantage of
these available resources. In a 2014 report [25], the National Aeronautics and Space Administration
(NASA) presented its vision for state-of-the-art CFD in 2030, along with recommended research strate-
gies for achieving it. The “effective utilization of HPC” was among the five key underlying areas identified
in the report, with “robust CFD code scalability” being listed as a major technology gap. The authors
pointed out that, at the time, most codes ran efficiently on at most ∼1000 cores, which represented only
∼0.1% capacity for the then largest supercomputers – a stark contrast to the 1980s when commercial
codes ran on vector supercomputers at maximum utilization.

Practical engineering CFD calculations in industry have mostly used solvers based on the Reynolds-
averaged Navier-Stokes (RANS) equations, which are obtained by averaging the NS equations over time
(for steady flows) or over realizations (for unsteady flows). Given the non-linear nature of the original
equations, this averaging technique leads to the appearance of new terms, and, therefore, the new
equations do not form a closed set. As such, RANS methods require the use of approximations for
these terms, in the form of turbulence models. Overall, these methods have proven to be an important
tool in the engineering design process, such as in determining flow features and predicting aerodynamic
loads. However, the main limitation of RANS is its inability to accurately predict separated flows, since
the turbulence models approximate the entire spectrum of turbulence [26]. An alternate method arises
by averaging (filtering) the NS equations over volumes of space, which then allows one to model only
the small (subfilter) scales of motion while accurately solving the motions of scales larger than the filter
– hence its name, large-eddy simulation (LES).

Traditionally, commercial solvers based on the aforementioned equations have used second-order
accurate numerical schemes, because of their robustness in obtaining a converged solution and ease of
implementation on any grid type. However, these schemes require very fine grid resolutions for accurate
results, which may lead to prohibitively large computational problems in terms of memory requirement.
A promising alternative arises in high-order schemes (usually defined as third-order and higher), since
these can achieve the same error tolerance by using a coarser grid. This benefit has been shown
for several grid types, including structured [27], curvilinear or deformed [28], and unstructured [29].
Additionally, Ekaterinaris [26] shows, through a simple rationale, that the use of high-order methods is
also advantageous in terms of solver runtime, barring a drastic increase of the operation count for the
linear solver. As such, this makes high-order schemes notably suitable for LES simulations, particularly
of complex flows.

The scope of this Thesis is to compare the parallel performance of high- and low-order schemes,
from a family of finite volume method (FVM) schemes called face least-squares (FLS). Although the
aforementioned works point to this advantage in serial computations, the increased number of halo cells
for the high-order methods drastically increases the matrix bandwidth, thus making its superiority in
parallel computations a nontrivial conclusion. The present Thesis expands on the previous works of
Vasconcelos [30, 31], Diogo [32], and Costa [33, 34], who developed high-order, convection-diffusion
schemes (up to eighth-order) for transient problems on unstructured grids.
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1.2 Background

Built upon the foundations of the classical finite difference method (FDM) to solve differential equa-
tions, the FVM was first developed in the 1960s. While the former is based on nodal relations for dif-
ferential equations, the latter uses the integral form of conservation laws to provide a balance of forces
acting on a discretized control volume [35]. The FVM assumed a prominent role in heat transfer and fluid
flow problems through major contributions by the Imperial College research group led by DB Spalding
[36, 37]. High-order FVM methods have as one of its precursors the 1990 work by Barth and Fred-
erickson [38], with quadratic reconstructions (third-order) on unstructured grids for the Euler equations.
Since then, efforts led to the implementation of fourth-order schemes by Ollivier-Gooch et al. [39, 40, 41]
and sixth-order schemes by Clain et al. [42, 43, 44]. For an extensive background on high-order FVM
schemes, readers may refer to the comprehensive review articles on structured grids by Ekaterinaris
[26] and on unstructured grids by Wang [45].

One of the general criticisms towards high-order FVM schemes is that they lack robustness for flow
regions of high gradient or discontinuities, being susceptible to spurious oscillations and thus possibly
failing to converge [26]. The traditional way to deal with this is by using flux limiters such as total variation
diminishing (TVD) schemes; however, Ferziger et al. [6] point out that this reduces the order of accuracy
in the problematic region, where they must become first-order to maintain monotonicity. There have
been several methods developed to deal with these oscillations while preserving high-order accuracy,
with a major family of these being the essentially non-oscillatory (ENO) schemes [46] and its variants
– weighted ENO (WENO) [47, 48], central ENO (CENO) [49], and targeted ENO (TENO) [50]. Cueto-
Felgueroso et al. [51, 52] provided an alternative by implementing the moving least-squares (MLS)
technique to FVM schemes. This technique provides “shape functions” to the grid by means of least-
squares reconstructions, which uses a weight function related to the distance between the reference
face and the cell sample. This technique differs from the one used in FLS by considering the mean
values in cells, instead of the point-wise values of the centroids.

Nogueira et al. [53] compared two high-order methods – a MLS-based FVM scheme and a finite
element method (FEM) scheme based on discontinuous Galerkin (DG) – for both inviscid and viscous
flows. The study showed that, even though the accuracy of both methods are equivalent, the FVM is
far less expensive computationally-wise, since it requires considerably less degrees of freedom (DOFs).
Wang [45] explains that, while the number of DOFs of a FVM scheme depends only on the number
of grid points, that of a FEM scheme also depends on the scheme’s order of accuracy. This happens
because each element in a FEM scheme has multiple DOFs (proportional to the scheme’s order), while
each cell in a FVM scheme has only a single DOF.

Parallel computing may be divided into two main approaches based on memory architecture: shared-
memory systems, such as commercial multiprocessors; and distributed-memory systems, such as com-
modity clusters. The de facto programming standards for these two paradigms are, respectively, Open
Multi-Processing (OpenMP) [54] and Message Passing Interface (MPI) [55]. In the HPC field, parallel
computing using distributed-memory systems (i.e. distributed computing) is the preferred parallelization
strategy due to its inherent scalability, since the number of computing elements incorporated into such
systems is limited not by hardware, but only by cost and power [56]. Furthermore, it also allows for larger
problems (e.g. whose memory requirements exceed that provided by a single machine) to be solved,
since the problem and its associated memory cost is split between different machines. Shared-memory
parallelism is sometimes used to provide finer-grain parallelization, especially in low-level software pack-
ages such as Linear Algebra Package (LAPACK) [57].
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One of the widely used programming libraries for the parallel numerical solutions of PDEs is the
Portable, Extensible Toolkit for Scientific Computation (PETSc) [58, 59]. This toolkit, which uses the MPI
standard, provides a wide array of data structures and routines for linear algebra, linear solvers (Krylov
subspace methods), data and grid management, among others. The scaling of the preconditioned
Krylov methods provided in PETSc has been studied by Fettig et al. [60] and Sood et al. [61]. Additionally,
Silva [62] also used PETSc to study the scalability of data balancing algorithms, focusing on machine
load balancing.

Several authors have performed studies of parallel computation performance for CFD-inspired prob-
lems. Younas [63] compares the scalability of several PETSc solvers for both symmetric and non-
symmetric Poisson problems. In turn, Eller et al. [64] compare the parallel performance of several
PETSc preconditioners, for the case of FEM watershed simulations. Although the use of OpenMP is
not directly supported by PETSc, Lange et al. [65, 66] and Weiland et al. [67] have performed studies
using matrices derived CFD applications showing that this approach of mixed-mode parallelism may be
advantageous for very large instances. There has also been scaling studies for CFD applications without
using PETSc, for FVM [68, 69, 70], FEM [71, 72, 73, 74], and FDM [75, 76] schemes. Additionally, when
studying WENO schemes, Tsoutsanis et al. [77] noted that the higher-order methods tended to have
better scalability than their lower-order counterparts, attributing this difference to the former’s larger ratio
of computation time to communication time.

The publicly available results of different parallel numerical methods are quite scattered throughout
the literature, which hampers comparisons between them. To aid this process, the Author gives a brief
summary of the surveyed results in Table 1.1. These are classified according the parallel application
programming interface (API) adopted, besides the type and order of studied scheme. The listed results
of strong-scaling and, when available, weak-scaling efficiencies correspond to those for the highest
number of used cores for which a sustained efficiency was achieved. Note that some studies used
nonstandard baselines for measuring scaling efficiency – i.e. efficiency was measured against a ref-
erence runtime which was not that of a single-core execution (see Section 2.6 for a formal definition
of strong- and weak-scaling efficiencies). Note that the Author’s goal with this list is not to determine
which methods are “better”, as that would be naïve and reductive, given the different natures of both the
surveyed methods and the corresponding problems. Instead, it is to provide examples of the level of
parallel performance that the scientific community considers acceptable, at the least.

Table 1.1 Survey of available literature results on the parallel performance of different numerical schemes.

Reference Parallel
API Scheme Type Order

Scaling Efficiency

Strong Weak

Costa et al. [78] OpenMP
FVM

polynomial
reconstruction

2 56%, 16 cores n/a
4 69%, 16 cores n/a
6 75%, 16 cores n/a

Junqueira-Junior et al. [76] MPI FDM, LES 2 68%, 3072 cores 76%, 524 cores

Tsoutsanis, Drikakis [79] MPI FVM WENO 3 67%, 6144 cores n/a
5 87%, 6144 cores n/a

Antoniadis et al. [80] MPI FVM CWENO 4 89%, 131072 cores n/a

Pei et al. [81] MPI FEM DG+WENO 3 91%, 100 cores n/a

Guermond et al. [82] MPI FEM Continuous 2 63%, 98304 coresa 89%, 98304 coresb

Kronbichler et al. [83] MPI FEM DG 80%, 3200 coresc 86%, 512 cores

Nonstandard baselines: a1536 cores, b192 cores, c128 cores.

5



1.3 Present Contributions

This section aims to list the contributions made by the present Author to the high-order schemes and
codes developed previously by the HIBforMBP group [30, 32, 33].1 The contributions may be divided
into three categories.

First, the Author significantly improved the existing Matlab code for the two-dimensional, unstruc-
tured, convection-diffusion solver. Using mostly the vectorization techniques available from the Matlab
syntax, the overhauled code was able to obtain a ∼50% reduction in runtime when compared to the
original code’s. The improved code will serve as a new base solver for further studies in the HIBforMBP
group.

Second, the Author developed a parallel solver in C using PETSc, for the two-dimensional convection-
diffusion equation with structured grids. This was mostly a re-implementation of the aforementioned
Matlab code, with a few notable differences. The largest one is the underlying parallel, linear solver
using the PETSc framework, which may even be customized by the user at runtime. Additionally, there
is also the choice of using double (64-bit) or quadruple (128-bit) precision floating-point formats. Fur-
thermore, since this implementation represented an intermediate step in the overall process – between
the original Matlab solver and the final parallel, three-dimensional solver – this solver only considers
structured grids. As such, the previously used, general schemes for unstructured grids were specifically
simplified for the case of regular, Cartesian grids, allowing for significant time-savings when assembling
the coefficient matrix.

Lastly, the Author developed, also in C using PETSc, a parallel solver for the three-dimensional
convection-diffusion equation with structured grids. In terms of numerical methods, the existing Cartesian-
specific schemes were extended to three dimensions, and a new, improved set of cubature rules was
analyzed and chosen. In terms of computational implementation, this solver is mostly an evolution of
the parallel, two-dimensional solver, with the notable addition of a runtime option for defining the user’s
preferred domain decomposition.

1.4 Thesis Outline

The present work contains four chapters. A brief summary of the remaining three chapters will now
be given.

Chapter 2 presents the numerical scheme that will be studied and the metrics used to analyze its
results. The scheme is derived from the three-dimensional convection-diffusion equation using the finite
volume method. This is followed by some details regarding the scheme’s implementation, in both two-
and three-dimensions. Next, the metrics used to measure the results are explained, including their
underlying concepts. Lastly, there is a brief discussion on the approach used for domain decomposition.

Chapter 3 presents the performed tests and obtained results. First, the scheme’s implementation
are verified numerically, showing their effective convergence orders. Next, two alternative methods
for calculating the regression polynomial are presented and shown to produce more accurate results.
Then, the best preconditioned iterative solver is chosen by comparing the solver runtimes of a small-
scale, two-dimensional study. Finally, the results from the scalability and parallel efficiency study of the
three-dimensional code is presented.

1See Appendix A for more information on past and new developed codes.
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Chapter 4 presents the main conclusions of the present work, focusing on the scheme’s parallel
computation metrics. The chapter ends with a section on suggestions for future work, including the
possible use of fast Fourier transform (FFT) to accelerate the solver and the next steps for scheme’s
implementation for the NS equations.
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Chapter 2

Methodology

This chapter introduces the background needed for the subsequent presentation and analysis of
results. First, the numerical method of face least-squares (FLS) is derived in Section 2.1 from the
convection-diffusion equation, with special attention to possible simplifications due to the use of regular
Cartesian grids. Then, Sections 2.2, 2.3 and 2.4 present the finer details of the FLS schemes and
their implementation, namely the stencil generation algorithm, treatment of boundary cells, and choice
of cubature rules. Section 2.6 introduces the measurements and metrics that will be used to analyze
the results in the next chapter. Lastly, Section 2.5 explains the parallelization approach used for domain
decomposition.

2.1 The Numerical Method – Face Least-Squares Schemes

The convection-diffusion equation (2.1) is a general conservation equation present in fields such as
fluid flow and heat transfer [2]. In its general, steady-state format, the equation consists of three terms.
The convective term represents the forced transport of quantity φ through a velocity field. The diffusive
term quantifies the transport of quantity φ due to differences in its concentration across the domain. The
convective and diffusive terms are each characterized by their own coefficient, respectively #»v and Γ.
Lastly, the source term Q accounts for any local addition or removal of φ.

∇ · ( #»v φ)︸ ︷︷ ︸
convection

−∇ · (Γ∇φ)︸ ︷︷ ︸
diffusion

= Q︸︷︷︸
source

(2.1)

2.1.1 Derivation of the Semi-Discretized Equations

Obtaining the numerical solution of an equation means having values of φ for a finite set of points
belonging to the domain of interest. As such, this implies having to transform the original equation
expressed in a continuous domain to an approximate equation expressed in a discrete domain. This
process, known as discretization, will thus replace the original differential equations with a system of
algebraic equations. The discretization used in this work will follow the finite volume method (FVM),
which is of special interest to fluid mechanics since its results will exhibit integral conservation of the
quantity φ [2, 84]. Following the procedure described by Moukalled et al. [84], the first step in this

8



method is to integrate (2.1) over a control volume (CV), as shown in (2.2).∫
CV

(
∇ · ( #»v φ)−∇ · (Γ∇φ)

)
dV =

∫
CV

Q dV . (2.2)

By applying the Divergence (Green-Gauss) Theorem on the previous equation, one transforms the
volume integrals of the convective and diffusive terms into surface integrals over the surface of the CV –
i.e. the control surface (CS) – resulting in∫

CS

(
#»v φ− Γ∇φ

)
· d #»

S =

∫
CV

Q dV , (2.3)

where the term d
#»

S represents the area normal of the surface, defined as positive outwards. Further-
more, defining F(I) as the set of all faces of cell I, then one obtains∑

f∈F(I)

∫ (
#»v φ− Γ∇φ

)
· d #»

Sf =

∫
CV

Q dV . (2.4)

The source term integration – right-hand side of (2.4) – may be calculated using cubature1 rules for
numerical integration (see Section 2.4), resulting in∫

CV

Q dV ≃ V
∑

g∈G(I)

wGgQ( #»xg) , (2.5)

where G(I) is the set of cubature points associated with cell I, #»xg is a vector representing the spatial
position of cubature point g, and wGg is the weight of corresponding to the cubature point g according to
the chosen cubature rule. Similarly, the surface integrals of the convective and diffusive terms in (2.4)
can also be calculated using cubature rules,∑

f∈F(I)

∫ (
#»v φ− Γ∇φ

)
· d #»

Sf ≃
∑

f∈F(I)

∑
g∈G(f)

wGg

(
#»v φ( #»xg)− Γ∇φ( #»xg)

)
· #»

Sf , (2.6)

where G(f) is the set of cubature points associated with face f . As such, combining (2.5) and (2.6) into
(2.4) yields the semi-discretized convection-diffusion equation∑

f∈F(I)

∑
g∈G(f)

wGg

(
#»v φ( #»xg)− Γ∇φ( #»xg)

)
· #»

Sf = V
∑

g∈G(I)

wGgQ( #»xg) . (2.7)

1For the present work, the Author defines the terms “quadrature” and “cubature” as the numerical computational
of, respectively, a univariate and a multivariate integral, following the convention of Krommer and Ueberhuber [85].
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2.1.2 Polynomial Approximations of φ and ∇φ

The terms φ( #»xg) and ∇φ( #»xg) – evaluated at the cubature point g – are approximated using a poly-
nomial centered on face f . Let this regression polynomial be represented in the following form:

φ( #»xg) = κ0 + κx(xg − xf ) + κy(yg − yf ) + κz(zg − zf )

+ κxx(xg − xf )
2 + κxy(xg − xf )(yg − yf ) + κxz(xg − xf )(zg − zf )

+ κyy(yg − yf )
2 + κyz(yg − yf )(zg − zf ) + κzz(zg − zf )

2 + . . . (2.8)

In vector form, one may represent this approximation by the product between a coefficient vector κf and
a vector df (

#»xg) of the terms representing the distance between #»xg and #»xf ,

φ( #»xg) = df (
#»xg)κf . (2.9)

However, this still leaves the coefficient vector κf as unknown. Now, consider a neighboring cell near
the same face f . Using the previous expression, the value of φ at this cell’s centroid #»xnb may be written
as

φ( #»xnb) = df (
#»xnb)κf (2.10)

Therefore, grouping several these neighboring cells into a stencil s(f) and combining their individual
expressions for φ yields the following matrix-vector equation

φs(f) = Ds(f) κf (2.11)

where φs(f) contains φc, c∈s(f) and Ds(f) is a matrix created by concatenating vectors df (
#»xc), c∈s(f).

In an expanded matrix form, the previous equation is given by
φc1

φc2

...
φcN

 =


1 xc1−xf yc1−yf zc1−zf (xc1−xf )2 (xc1−xf )(yc1−yf ) · · ·
1 xc2−xf yc2−yf zc2−zf (xc2−xf )2 (xc2−xf )(yc2−yf ) · · ·
...

...
...

...
...

...
. . .

1 xcN −xf ycN −yf zcN −zf (xcN −xf )2 (xcN −xf )(ycN −yf ) · · ·



κ0

κx

κy
...

 (2.12)

This allows one to pose the issue of determining cf as a weighted least-squares problem expressed
as the minimization of a residual function, as given by the following

minimize: r
(
φ′

s(f)

)
=

(
φs(f) −φ′

s(f)

)T

Ws(f)

(
φs(f) −φ′

s(f)

)
. (2.13)

In this expression, φ and φ′ are, respectively, the original data set of the generated stencil s(f) and
the corresponding obtained solution. Furthermore, Ws(f) is a diagonal matrix containing the weights
assigned to each cell in the stencil. The inclusion of weights gives a greater accuracy to the method by
allowing cells closer to the target face f to be given a greater influence on the value of κf . The choice of
weight functions has been previously studied by Vasconcelos [30] and Diogo [32], each for two different
types of stencil algorithms. For the stencil type considered in the current work (see Section 2.2), Diogo
recommends wc = | #»xc − #»xf |−6, c∈s(f).

Multiplying both sides of (2.11) by DT
f Ws(f) and then performing some algebraic manipulation, one

obtains an equation for the coefficient vector κf given by (2.14), where Ps(f) is the pseudo-inverse
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matrix (or local matrix).

κf = Ps(f)φs(f) , Ps(f) ≡
(
DT

s(f)Ws(f)Ds(f)

)−1

DT
s(f)Ws(f) (2.14)

Then, substituting the obtained expression for κf into (2.9) allows for φ( #»xg) to be calculated from
the corresponding stencil values, as shown in (2.15). Similarly, ∇φ( #»xg) can be calculated from (2.16).
In the particular case of regular Cartesian grids, the values in coefficient vector df (

#»xg) depend only on
cubature point g, since the distribution of cubature points will be the same for any face; as such, the
subscript f has been omitted. Additionally, many of these terms in dg will be null; therefore, only a small
portion of the matrix multiplication dgPf needs to be computed. Unfortunately, the computation of Ps(f)

itself is expensive, due to the need to compute an inverse matrix.

φ( #»xg) = df (
#»xg)Ps(f)φs(f) (2.15)

∇φ( #»xg) = ∇df (
#»xg)Ps(f)φs(f) (2.16)

Substituting these two expressions into (2.7) leads to the final equation used in the method, which
will be used to create the linear system Aφs(f) = b,∑
f∈F(I)

∑
g∈G(f)

wGg

[(
#»

Sf · #»v
)
df (

#»xg)Ps(f) − Γ
(

#»

Sf · ∇
)
df (

#»xg)Ps(f)

]
φs(f) = V

∑
g∈G(I)

wGg
Q( #»xg) (2.17)

2.1.3 Simplifications for Cartesian Grids

For the current case of a strictly regular Cartesian grid, the regression polynomial given in (2.8) may
be extensively simplified. Consider a normal-tangential coordinate system η-τa-τb centered on the face
centroid, with the normal unit vector η̂ defined by the face normal, i.e. η̂ ≡ n̂f . Given the properties
of the grid, η̂ will coincide with one of the original Cartesian coordinate system vectors, and then τ̂a, τ̂b
may be defined to coincide with the remaining vectors according to the right-hand rule. For example, in
the case of a northern face, the corresponding tangential coordinate system would be defined as η̂ = ŷ,
τ̂a = ẑ, and τ̂b = x̂, as seen Figure 2.1.

Figure 2.1 Face-centered, normal-tangential coordinate system η-τa-τb illustrated on selected cell faces in a
three-dimensional, Cartesian grid.
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As such, the regression polynomial – using a Cartesian coordinate system in (2.8) – is written in the
aforementioned normal-tangential coordinate system as

φ( #»xg) = c0 + cη(ηg − ηf ) + cτa(τa,g − τa,f ) + cz(τb,g − τb,f )

+ cη(ηg − ηf )
2 + cητa(ηg − ηf )(τa,g − τa,f ) + cητb(ηg − ηf )(τb,g − τb,f )

+ cτaτa(yg − yf )
2 + cτaτb(τa,g − τa,f )(τb,g − τb,f ) + cτbτb(τb,g − τb,f )

2 + . . . (2.18)

Thus, given that all cubature points for the face flux terms lie on the face itself, it becomes clear that
all terms containing (ηg − ηf ) will be null.2 This drastically reduces the number of required terms in the
polynomial. As such, the simplified polynomial is given by

φ( #»xg) = c0 + cτa(τa,g − τa,f ) + cz(τb,g − τb,f )

+ cτaτa(yg − yf )
2 + cτaτb(τa,g − τa,f )(τb,g − τb,f ) + cτbτb(τb,g − τb,f )

2 + . . . (2.19)

Note that, even though the resulting polynomial does not include many of the original terms, the regres-
sion fit is done considering all terms in Ds(f), since these correspond to the distance between the target
face and the stencil points – instead of that between the target face and its corresponding cubature
points.

The term ∇φ( #»xg) can be obtained by calculating the gradient of (2.18). However, upon inspection of
(2.6), one notices that the full required term is actually ∇φ( #»xg) ·

#»

Sf . Therefore, for the case of Cartesian
grids, this simplifies to ∂

∂ηφ(
#»xg)Sf . Therefore, it suffices to take the derivative of (2.18) with respect to η

only, instead of calculating the full gradient. Furthermore, since any resulting terms containing (ηg − ηf )

will be null, one needs to consider only the terms whose original form is (ηg−ηf )(τa,g−τa,g)i(τb,g−τb,f )j

where i, j ≥ 0. The result is then given by

∇φ( #»xg) ·
#»

Sf = Sfcη + Sfcητa(τa,g − τa,f ) + Sfcητb(τb,g − τb,f ) + . . . (2.20)

These simplifications decrease the necessary size of vectors df and κf . In turn, from equation
(2.14), this consequently decreases the size of the pseudoinverse matrix Pf . The computation of this
matrix is the most time-consuming step in creating the coefficient matrix A of an FLS scheme, due
to the need to calculate the inverse of a square matrix with size corresponding to df . Thus, these
simplifications yield significant savings in computation time for the considered case of Cartesian grids.

2.2 Stencil Generation

As part of the FLS scheme, a stencil composed of neighboring cells and boundary faces needs to
be generated for every face. There were two possible choices for the stencil generation method: using
vertex-neighboring cells [30] or using face-neighboring cells [32]. These methods are based on the
concept of generating a stencil by repeatedly adding neighboring cells from a previous set. It starts at
the target face and then moves outwards. The core difference between them lies in the criteria used to
determine the cell neighbors.

Both methods have the same starting steps, which consist of adding to the stencil any cell that

2Assuming that an appropriate cubature rule is chosen. However, this is true for the most commonly used
cubature rules, including those given in Section 2.4.
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immediately borders the target face. These cells may be categorized as first-level cells and are indicated
by a black number "2" in Figure 2.2. In the next set of steps, cells neighboring the recently-added cells
are in turn inserted into the stencil. Each method determines these second-level cells differently. The
original method developed by Vasconcelos [30] chooses cells that share a vertex with any first-degree
neighbor cell, while the method developed by Diogo [32] chooses cells that share a face. Then, this
second set of steps is repeated until the stencil dimensions are large enough in the directions of the
polynomial, satisfying both

ns,η ≡
⌊
max ηs −min ηs

Lref
+ 1.1

⌉
≥ p , (2.21)

ns,τ ≡
⌊
max τs −min τs

Lref
+ 1.1

⌉
≥ p+ 1 . (2.22)

Here, the notation ⌊a⌉ represents the rounding of a to the nearest integer, and the max,min operations
yield the maximum or minimum centroid coordinate (η or τ ) of all stencil points.

This stopping criterion is determined by the order p of the chosen FLS method and differs for the nor-
mal (η) and tangential (τ ) directions. For example, the FLS4 method requires a stencil with at least four
cells in the direction normal to the target face and at least five cells in the corresponding tangent direc-
tion – which in Figure 2.2a would include all cells marked with either a black "2" or a red "4". Table 2.1
lists the stencil size for an inner face in two- and three-dimensional problems, and the corresponding
total stencil size for an inner cell – i.e. the combined size of all face stencils corresponding to an inner
cell, without repetitions.

(a) Inner-face stencil (b) Boundary-face stencil

Figure 2.2 Stencil generation method using face-neighboring cells, illustrated for the two-dimensional cases
of an inner face (a) and a boundary face (b). The target face is shown in thick solid black, while any other
boundary faces added to the stencil are shown in dashed.

Furthermore, each time that a cell is added to stencil, the algorithm checks if that cell contains a
boundary face. If it does, then that face is also added to the stencil. Taking the previous example as a
base, this means that for boundary stencil (i.e. those containing boundary faces) the necessary number
of cells is marginally smaller, since the included boundary faces also have an associated φ value and
are thus included in the computation of the max,min terms in (2.21) and (2.22).
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Table 2.1 Individual (face) and total (cell) stencil sizes for two- and three-dimensional Cartesian grids using
the face-neighbor algorithm, for non-boundary stencils. The former corresponds to the size of a single,
inner-face stencil, while the latter represents the union of all face stencils of an inner-cell.

2D 3D

FLS2 FLS4 FLS6 FLS8 FLS2 FLS4 FLS6 FLS8

Individual (face) 6 16 30 48 18 60 134 248
Total (cell) 9 21 37 57 27 81 171 305

As previously shown by Diogo [32], the stencil generation method using the face-neighbors criteria
significantly outperforms its vertex-neighbors counterpart both numerically (as measured by the accu-
racy of the solution obtained from the resulting numerical method) and computationally (as measured by
the program’s memory usage and runtime). As such, the current work uses solely the face-neighboring
stencil generation method.

2.3 Boundary Treatment

This section describes the treatment given to stencils that contain a boundary face. Since the main
focus of this work is to evaluate the parallel performance of the FLS scheme, different boundary treat-
ments will not be deeply studied, given that boundary stencils amount to only O

(
N

−1/ND

C

)
of total cells,

where NC , ND are the number of cells and number of dimensions, respectively. Therefore, this work
only considers Dirichlet and periodic boundary conditions. Note that Diogo [32] verified that the FLS
method also works correctly for Neumann- and Robin-type boundary conditions.

The treatment for Dirichlet-type boundaries requires reorganizing the matrix Df given in (2.12). For
cells near a boundary, the generated stencil may also include some boundary faces. Organizing the
matrix Df and vector ϕs(f) in a way such that all boundary values are at the lower rows, the boundary
version of (2.12) is then given in expanded matrix format by

φc1

...
φcN

φbf1

...
φbfM


=



1 xc1−xf yc1−yf zc1−zf (xc1−xf )2 (xc1−xf )(yc1−yf ) · · ·
...

...
...

...
...

...
. . .

1 xcN −xf ycN −yf zcN −zf (xcN −xf )2 (xcN −xf )(ycN −yf ) · · ·

1 xbf1−xf ybf1−yf zbf1−zf (xbf1−xf )2 (xbf1−xf )(ybf1−yf ) · · ·
...

...
...

...
...

...
. . .

1 xbfM −xf ybfM −yf zbfM −zf (xbfM −xf )2 (xbfM −xf )(ybfM −yf ) · · ·




κ0

κx

κy
...



(2.23)
whereN andM are, respectively, the number of cells and of boundary faces in the stencil. The horizontal
lines in (2.23) are merely a visual aid to help show the division of the stencil into cells and boundary
faces. As before, the matrix Df is then used to calculate the pseudo-inverse matrix Pf .

2.4 Cubature Rules Used

This section discusses the cubature rules used to numerically integrate the source term and cell
fluxes, as discussed in Section 2.1.1. More specifically, these rules provide the coordinates #»xg and
weights wGg

for each integration point g used in (2.17). For ease of reference, the cubature rules used
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for each of the two- and three-dimensional cases are listed in different subsections.

The aforementioned cubature rules were purposely given in expression form, so that any future
modification or testing may be done with any desired precision. With this, the author attempts to avoid
the common problem of having insufficiently precise values, which arises when listing only the numerical
values for a cubature rule since most of these are taken from older references from when extended
precision (e.g. quadruple precision) such as was not such an important aspect. For the current work,
the author used the Wolfram|Alpha online engine [86] to evaluate the analytical expressions to double-
and quadruple-precision as required.

2.4.1 Two-Dimensional Cases

Face Fluxes

The integration for cell fluxes given by (2.6) is performed over each cell face. In the two-dimensional
case, these faces are simply line segments. As such, it is straightforward to calculate the integral using
quadrature rules, described by the coordinates and weights shown in Table 2.2.

Table 2.2 Quadrature rules used for the p-degree integration using NG points over the interval [−1; 1], with the
respective coordinate ζg and weight wGg for each integration point g [87].

p NG ζg wGg

1 1 0 1

3 2 ±
√

1
3

1
2

5 3
0 4

9

±
√

3
5

5
18

7 4
± 1

7

√
21 + 14

√
1.2 1

72
(18−

√
30)

± 1
7

√
21− 14

√
1.2 1

72
(18 +

√
30)

Since these integration point coordinates are given for the normalized interval [−1, 1], these need to
be transformed into the appropriate dimensions. For the current case of Cartesian regular grids, this is
done simply by #»xg = #»xC + 1

2ζgLref τ̂ , where #»xC is the position of the cell centroid, τ̂ is a positive unit
vector such that τ̂ · #»

Sf = 0, and Lref is the cell’s reference length (i.e. the length of one side).

Source Term

For the calculation of the source term in the two-dimensional case – following the previous works
of Vasconcelos [30] and Diogo [32] – each computational cell I is divided into a set of triangles T (I),
as shown in Figure 2.3. Thus, the numerical integration of the source term is done for each triangle
t ∈ T (I), and then the contributions are summed to obtain the total source term, as shown in (2.24),
where GT2

represents the set of cubature points over a triangle. Note that, for formality, Vt is kept as a
volume term given its units, even though it actually simplifies to a surface term times unity, Vt = zSt = St.

∫
I

Qφ dVI =
∑
t∈T

(∫
t

Qφ dVt

)
=
∑
t∈T

Vt ∑
g∈GT2

wGgQφ(
#»xg,t)

 (2.24)
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Figure 2.3 Cell division into triangles for source term calculation, with 4th-order cubature points illustrated.

The cubature points for a triangle may be grouped into three types, defined by the repetition of the
simplex coordinates, or coefficients, α, β, γ, which affects their multiplicity M – i.e. the number of points
associated to each type (see, for example, [88]). Let the three point types be named as I, II, III; then,

Type I : αg = βg = γg ⇒ MA =
(
2
2

)
= 1 (2.25)

Type II : αg ̸= βg = γg ⇒ MB =
(
3
2

)
= 3 (2.26)

Type III : αg ̸= βg ̸= γg ⇒ MC =
(
4
2

)
= 6 (2.27)

This influence of repeated coefficients on the point multiplicity is clearer when considering the point
coordinate #»xg in its alternative form xg = αgxl + βgxm + γgxn, l ̸= m ̸= n. For example, since all
coefficients for Type I all repeated, it is only possible to form one cubature point; conversely, since all
coefficients for Type III are unique, it is possible to construct six cubature points. The values of the
coefficients α, β, γ used for the two-dimensional source term integration are compiled in Table 2.3 for
the relevant orders. Expressions for p = 1, 3, 5 were taken from Stroud [89], and values for p = 7 from
Dunavant [88]. An asterisk besides the NG column entry denotes that the rule uses the optimal number
of points, according to Cools [90].

Table 2.3 Cubature rules used for the p-degree integration using NG points of a triangle region defined by ver-
tices (0, 0)-(1, 0)-(0, 1), with the corresponding simplex coordinates αg-βg-γg, weight wGg , and multiplicity
M for each integration point g [88, 89, 90].

p NG M αg βg γg wGg

1 1* 1 1/3 1/3 1/3 1

3 4*
1 1/3 1/3 1/3 −9/16

3 3/5 1/5 1/5 −25/48

1 1/3 1/3 1/3 9/40

5 7* 3 (9 + 2
√
15)/21 (6−

√
15)/21 (6−

√
15)/21 (155−

√
15)/1200

3 (9− 2
√
15)/21 (6 +

√
15)/21 (6 +

√
15)/21 (155 +

√
15)/1200

7 13

1 0.333333333333333 0.333333333333333 0.333333333333333 −0.149570044467682
3 0.479308067841920 0.260345966079040 0.260345966079040 0.175615257433208
3 0.869739794195568 0.065130102902216 0.065130102902216 0.053347235608838
6 0.048690315425316 0.312865496004874 0.638444188569810 0.077113760890257

The final coordinates #»xg,t of the cubature point g of triangle t may then be written as the transforma-
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tion of the simplex coordinates κg given by (2.28), where xν,t, yν,t represent the coordinates of vertex ν
of triangle t, as shown by Diogo [32].

#»xg,t = Xtκg =

[
x1,t x2,t x3,t

y1,t y2,t y3,t

]αg

βg

γg

 (2.28)

Since the present work only considers regular Cartesian grids – instead of the more general unstruc-
tured grids used by Diogo [32] – some simplifications can be made, allowing for a larger portion of the
calculations to be hard-coded into the algorithm. First, since all cells are squares, all divisions will be
isosceles triangles of base Lref and sides

√
2Lref .

Fixing one vertex of the triangle to always be the cell centroid (say, vertex 3, as in Figure 2.3), then
the other two vertices may be defined to be consecutive cell vertices in the clockwise direction. As such,
defining the east-facing division to be triangle 1, the coordinate #»xν,t of vertex ν for any triangle t may be
written according to (2.29) and (2.30), where ξ5 ≡ ξ1, µ5 ≡ µ1.

x1,t = x3,t + ξt , x2,t = x3,t + ξt+1 , where ξ = 1
2Lref

[
−1 −1 1 1

]
(2.29)

y1,t = y3,t + µt , y2,t = y3,t + µt+1 , where µ = 1
2Lref

[
−1 1 1 −1

]
(2.30)

Using these expressions, (2.28) may be rewritten as

#»xg,t =

[
x3,t + ξt x3,t + ξt+1 x3,t

y3,t + µt y3,t + µt+1 y3,t

]αg

βg

γg

 =

[
αgξt + βgξt+1 + (αg + βg + γg)x3,t

αgµt + βgµt+1 + (αg + βg + γg)y3,t

]
(2.31)

Therefore, remembering that α+β+γ≡ 1 and #»x3,t ≡ #»xC , the coordinates for each integration point
type may then be written purely in terms of the cell centroid, Lref , and the cubature coefficients α-β-γ
according to (2.32)-(2.41), where

#»

λt = ξt ı̂+ µtȷ̂ and #»xC is the position of the cell centroid.

Type I : #»xg,t =
#»xC + αg

#»

λt + αg
#»

λt+1 (2.32)

Type II :


#»xg,t =

#»xC + αg
#»

λt + βg
#»

λt+1

#»xg,t =
#»xC + βg

#»

λt + αg
#»

λt+1

#»xg,t =
#»xC + βg

#»

λt + βg
#»

λt+1

(2.33)

(2.34)

(2.35)

Type III :



#»xg,t =
#»xC + αg

#»

λt + βg
#»

λt+1

#»xg,t =
#»xC + αg

#»

λt + γg
#»

λt+1

#»xg,t =
#»xC + βg

#»

λt + αg
#»

λt+1

#»xg,t =
#»xC + βg

#»

λt + γg
#»

λt+1

#»xg,t =
#»xC + γg

#»

λt + αg
#»

λt+1

#»xg,t =
#»xC + γg

#»

λt + βg
#»

λt+1

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)
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2.4.2 Three-Dimensional Cases

Since the code for the three-dimensional case was specifically developed for regular Cartesian grids
instead of unstructured grids from the previous 2D works, it uses a simpler set of cubature rules –
especially since the volume integral is calculated directly instead of considering cell subdivisions. The
criteria for choosing the given rules was that their weights are positive, that they use the least possible
number of points, and that their points lie preferably inside the region (or on the boundary, otherwise).
In the following tables listing cubature rules, an asterisk besides the NG column entry denotes that the
rule uses the optimal (i.e. minimum possible) number of points, according to Cools [90].

Furthermore, to present the following tables in a more compact format, these use the notation defined
by Stroud [89] of a symmetric (· · · )S and fully-symmetric (· · · )FS set of points:

(χ1, . . . , χm)S ∋ (χp1
, . . . , χpm

) , ∀p1, . . . , pm ∈ {1, . . . ,m} : p1 ̸= . . . ̸= pm (2.42)

(χ1, . . . , χm)FS ∋ (±χp1
, . . . ,±χpm

) , ∀p1, . . . , pm ∈ {1, . . . ,m} : p1 ̸= . . . ̸= pm (2.43)

where all ± are independent. Therefore, a symmetric set of points can be understood as the set of all
permutations of the coordinates of a reference point. The fully-symmetric set has a similar construction,
but also includes sign variations for all coordinates. As such, a symmetric set as described by (2.42)
has a total of m! points, and a fully-symmetric set as given by (2.43) has 2m(m!) points. Naturally, these
sets will be smaller if there is a repeated value in either set or a zero in the fully-symmetric set.

Face Fluxes

For the face flux terms, the integration given by (2.6) is performed over a square region, using the
cubature rules described in Table 2.4. The expressions were taken from Stroud [89], with a correction
for p = 3 from Cools [90]. Once again, the integration points must be transformed in the appropriate
dimensions since they are presented for a square with vertices (1, 1)FS . This is achieved by #»xg =
#»xC + 1

2Lref(ξg τ̂a + µg τ̂b), where τ̂a, τ̂b is mapped to ı̂, ȷ̂, k̂ as described in Section 2.1.1.

Table 2.4 Cubature rules used for the p-degree integration using NG points over the square region defined by
vertices (1, 1)FS , with the respective coordinates (ξg, µg) and weights wGg for each integration point g [89,
90]. The entries a, b are auxiliary values.

p NG (ξg, µg) wGg a b

1 1* (0, 0) 1 − −

3 4* (a, a)FS
1
4

√
1
3

−

(0, 0) 2
7

− −

5 7* (0,±b) 5
63

−
√

14
15

(±a,±b) 5
36

√
3
5

√
1
3

(a, 0)FS
49
810

√
6
7

−

7 12* (a, a)FS
178981+2769

√
583

1888920

√
114−3

√
583

287
−

(a, a)FS
178981−2769

√
583

1888920

√
114+3

√
583

287
−
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Source Term

The source term integration is done directly over the cube region defined by the cell itself. For that,
the code uses the cubature rules given in Table 2.5 for a cubic region with vertices (1, 1, 1)FS . The
expressions for p = 1, 3, 7 were adapted from Stroud [89], and for p = 5 from Peterson [91]. The
coordinate transformation from the normalized dimensions (ξg, µg, ζg) to grid-appropriate dimensions is
given by #»xg = #»xC + 1

2Lref(ξg ı̂+ µg ȷ̂+ ζgk̂).

Table 2.5 Cubature rules used for the p-degree integration using NG points over the cubic region defined by
vertices (1, 1, 1)FS , with the respective coordinates (ξg, µg, ζg) and weights wGg for each integration point
g [89, 90, 91]. The entries a, b are auxiliary values, as is c ≡ 71440 + 6802

√
19.

p NG (ξg, µg, ζg) wGg a b

1 1* (0, 0, 0) 1 − −

3 6* (1, 0, 0)FS
1
6

− −

(0, 0, 0) 4
19

− −

5 13* ±(a, b, b)S
5

912

(
12 +

√
229−50

√
19

61

) √
1919−148

√
19+4

√
c

3285
−

√
1121+74

√
19−2

√
c

3285

±(a, a, b)S
5

912

(
12−

√
229−50

√
19

61

) √
1919−148

√
19−4

√
c

3285

√
1121+74

√
19+2

√
c

3285

(a, 0, 0)FS
1078
29160

√
6
7

−

7 34
(a, a, 0)FS

343
29160

√
6
7

−

(a, a, a)FS
217107+4145

√
238

5452920

√
960−3

√
28798

2726
−

(a, a, a)FS
217107−4145

√
238

5452920

√
960+3

√
28798

2726
−

2.5 Domain Decomposition

As part of their previous works, Vasconcelos [30] and then Diogo [32] developed Matlab codes in
which they implemented their contributions to the FLS scheme. It is noteworthy to mention that the
Matlab language was chosen for its comparatively simple syntax and straightforward implementation of
mathematical operations, especially those regarding matrices and linear algebra. However, Matlab –
being an interpreted language – is significantly slower than compiled languages, such as C and For-
tran.3 The Author determined that a Matlab-implemented, three-dimensional FLS scheme would be
prohibitively expensive in terms of runtime, besides having limited capability for parallel testing. There-
fore, the author chose to implement the three-dimensional schemes using the C language. Furthermore,
the author also decided to develop a two-dimensional code in C, as an intermediate step from the origi-
nal two-dimensional code in Matlab. As such, the author used the previously developed Matlab code as
a basis for the novel C code. See Appendix A for more information on the past Matlab and the new C
codes.

To cover for the lack of native linear algebra routines in the C language, the author used the Portable,
Extensible Toolkit for Scientific Computation (PETSc) library, which provides high-level routines and
data structures for matrix manipulation, linear solvers, data and grid management, among others [58,
59]. PETSc uses a distributed-memory approach for parallel programming, with the Message Passing

3See Ning [92] for an informal discussion on some different scientific programming languages.
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Interface (MPI) model employed for communication between processors. Unless otherwise explicitly
stated, all PETSc objects are inherently parallel and are distributed among processors based on a
specified MPI communicator.

PETSc provides various classes for grid and data management, for various mesh types. Given
the focus of the current work, the Author chose to use the DMDA class, which provides abstractions for
topology and geometry of Cartesian meshes and manages the required communication. The creation
of such a class for three-dimensional grids is handled by the routine DMDACreate3d(). This routine
allows the programmer to specify the number of processors (m, n, p) along the dimensions of the array
domain such that Np = m × n × p, as shown in Figure 2.4. However, any or all of these may instead be
calculated by PETSc if the programmer uses the macro PETSC_DECIDE. This allows for a fixed type of
domain decomposition regardless of the total number of processors, without the need for hard coding
the distribution. For example, to ensure a pencil- or slab-type decomposition where one dimension is
not decomposed, the programmer can specify the number of processors in just one direction and pass
PETSC_DECIDE for the other two.

In the current work, the Author used the PETSc default for domain decomposition, by passing
PETSC_DECIDE for all directions. Since the number of cells in each direction is equal for regular Cartesian
grids, PETSc attempts to divide the total number of processors as evenly as possible among all three
directions. This results in a checkerboard-like decomposition. If a distribution is not possible given the
provided combination of number of cells and number of processors (e.g. NC =103, Np=11), an error is
called indicating that the partition in a direction is too thin.

Overall, the routine DMDACreate3d() allows for considerable flexibility in the creation and parallel
management of a Cartesian grid. Since the global dimensions in each direction are required parameters,
the code is already prepared to process non-uniform Cartesian grids. Besides the aforementioned
parameters, there are a few more whose influence could be the focus of future studies. Namely, there is
the option of specifying the number of cells for each processor along any or all directions. This allows
for an unequal distribution if desired – e.g. having groups with only inner cells be larger than those
containing boundary cells. As such, further study regarding the influence of domain decomposition on

(a) m = 4, n = 1, p = 2 (b) m = n = p = PETSC_DECIDE

Figure 2.4 Illustration of two examples of domain decomposition for a mesh of NC = 103 among Np = 8
processors. For the current work, only the default decomposition with PETSC_DECIDE was used.
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the parallel performance of the FLS schemes is left for future work.

2.6 Numerical and Computational Metrics

This section describes the measurement methods used to quantify the numerical and computational
performance of the developed code.

2.6.1 Numerical Accuracy

Numerical Error Norms

A numerical method’s accuracy can be measured by the numerical error vector ε defined in (2.44),
where φ,φ′ are the analytical and numerical solution vectors, respectively.

ε = φ−φ′ (2.44)

However, rather than using a vector, it is often convenient and sufficient to condense this measure-
ment into a single real value using norms [93]. This allows for a global overview of the numerical error
that is of a more practical use to the objective of the current work. In general, the weighted p-norm
∥a∥p,w of an n-length vector a is given by

∥a∥p,w =

 n∑
i=1

|ai|pwi

1/p

. (2.45)

The present work uses the weighted 1-norm (2.46) and the infinity-norm (2.47). For the considered
cases, the latter is weighted by the inverse of the domain size NC (i.e. number of cells). These error
norms can also be interpreted as the maximum and mean error, respectively. The final formulas are
given by

∥ε∥1 =
1

NC

NC∑
i=1

|εi| (2.46)

∥ε∥∞ = max
i

|εi| , (2.47)

Convergence Order

The convergence order is defined as the rate in which the numerical error decreases in relation to the
grid refinement, measured by reference length Lref . Its measurement helps to determine the correctness
of the computational implementation of a numerical scheme (i.e. code verification). The convergence
order of each numerical scheme was measured using both the infinity-norm and the weighted 1-norm,
resulting in the two convergence order measurements O∞ and O1, respectively. These are given by the

21



following expressions,

O1 =
log ||ε||1,a − log ||ε||1,b
logLref,a − logLref,b

, (2.48)

O∞ =
log ||ε||∞,a − log ||ε||∞,b

logLref,a − logLref,b
(2.49)

where the subscripts a, b represent values corresponding to meshes with different levels of refinement.

2.6.2 Parallel Computational Performance

Speedup

The main reason of using a parallel code is to solve a problem faster than when compared to its
serial counterpart [94]. As such, one of the main metrics used to evaluate the performance of a parallel
code is its speedup ψ, which represents the ratio between serial execution time and parallel execution
time [95]. Denoting T (NC , Np) as the runtime of an NC-sized problem executed across Np processors,
the speedup may be defined as

ψ(NC , Np) ≡
Ts(NC)

T (NC , Np)
, (2.50)

where Ts(NC) is the runtime of the best purely serial code. Although this is the most correct way to
measure speedup [6, 95], the measurement of Ts would entail the development of yet another complete
code, since the backbone of the developed code – PETSc – is itself an intrinsically parallel framework,
meaning that it is not optimized for a purely serial execution. As such, the current work uses an alterna-
tive measurement – the algorithmic speedup ψ – as given by

ψ(NC , Np) ≡
T (NC , 1)

T (NC , Np)
. (2.51)

Strong-Scaling Efficiency

Consider a fixed problem size of NC , and denote fs = fs(NC) as the fraction of operations that
cannot be parallelized and must thus be executed sequentially. The speedup obtained by using Np

processors to solve the problem must then satisfy

ψ(NC , Np) ≤
1

fs + (1− fs)/Np
. (2.52)

This relation, called Amdahl’s Law, provides an upper bound on speedup for each problem case. As
such, by taking the limit as Np approaches infinity, one finds that the speedup of a fixed-size problem is
ultimately limited by the fraction of serial operations in the code, a behavior first noticed by Amdahl [96].
Thus, one may define a metric called the strong-scaling efficiency ηst and given by

ηst(NC , Np) ≡
ψ(NC , Np)

Np
=

T (NC , 1)

NpT (NC , Np)
, (2.53)

which indicates, for a fixed problem size, how well the computation uses the available parallel resources.
For example, for an ideal parallel computation (i.e. ηst = 1) on four processors, the corresponding
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speedup should be ψ = 4. However, as shown in Amdahl’s Law, the speedup is limited by the fraction of
serial operations in the code, and thus the strong-scaling efficiency will obey the relation

ηst(NC , Np) ≤
1

1 + fs(Np − 1)
. (2.54)

Weak-Scaling Efficiency

As previously explained, Amdahl’s Law provides an upper limit to a computation’s strong-scaling ef-
ficiency, which considers scaling for a fixed problem size. However, as noted by Gustafson [97], this
implicitly assumes that the problem size and the number of processors used are independent. In prac-
tice, this is almost never happens, but instead the problem size scales with the number of processors.
For example, when there are more available processors, one usually solves a larger-sized problem
to use the facilities at hand; conversely, if the problem size is relatively small, it would be considered
wasteful to use many processors.

Following this observation, Gustafson-Barsis’s Law states that upper limit of the achievable speedup
is given by the relation

ψ(NC , Np) ≤ Np + (1−Np)s , (2.55)

where s = s(NC , Np) is the fraction of total runtime that is spent in the serial code. Note that, since s is
based on total runtime, it is a function of both NC and Np – unlike fs, which only depends on NC .

As explained by Quinn [94], the underlying difference between Amdahl’s and Gustafson-Barsis’s
Laws is that they approach the idea of speedup in opposite manners. While Amdahl’s Law takes a
serial computation and predicts the corresponding runtime if that computation were to be run in parallel
on multiple processors, Gustafson-Barsis’s Law considers the reverse – given a parallel computation, it
estimates the runtime if it were to be run serially on a single processor. Thus, it is useful to define a new
efficiency metric – the weak-scaling efficiency ηwk given by

ηwk(wl,Np) =
T (wl, 1)

T (wl,Np)
. (2.56)

The key difference between strong- and weak-scaling efficiency is that, while the former considers
scaling with a fixed problem size, the latter considers scaling with a fixed problem size per processor –
i.e. a fixed workload, defined by wl = NC/Np.

2.6.3 On Floating-Point Arithmetic

Floating-Point Representation

In computers, numbers and other kinds of information are stored as a sequence of binary digits
(bits), each of which representing a single logical state. Since the 1960s, the preferred manner of
storing non-integer numbers has been the floating-point representation, which is done considering its
binary representation in scientific notation [98]. The corresponding standard for binary floating-point
arithmetic was developed by the Institute for Electrical and Electronics Engineers (IEEE) in 1985, with
its current version having been published in 2019 [99].
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The floating-point representation using base β stores a number given by a = (−1)scβe as three dis-
tinct components: the sign s, the significand c, and the exponent e. The IEEE standard uses a normal-
ized representation, meaning that for any nonzero number the leading digit of the significand is always
one and is not explicitly stored. The current version provides three basic formats for binary floating-point
representation: single-precision, double-precision, and quadruple-precision. These consist of, respec-
tively, 32-bit, 64-bit, and 128-bit words. Table 2.6 summarizes the characteristics of these three basic
formats, including the allocation of bits to the different components of the representation.

Table 2.6 IEEE basic representation formats for binary floating-point arithmetic and their bit allocation [99].

Representation name Bit allocation

Common IEEE Sign Exponent Significand

Single precision binary32 1 8 23
Double precision binary64 1 11 52

Quadruple precision binary128 1 15 112

Round-off Errors

The choice of floating-point format ultimately comes down to a balance between the desired accuracy
of results and an acceptable computing cost. Using more bits for a representation comes at the cost of
increased computation time and required memory, but allows for a greater precision in arithmetic oper-
ations stemming from the increased number of significant digits. In the context of scientific computing,
this is important to delay the accumulation of round-off errors.

Round-off errors are a type of computing error defined as the difference between a true value and the
corresponding value stored in a computer [100]. This type of errors may arise in two different manners,
of which the most straightforward is representation error. This error appears when trying to store a
number that cannot be exactly represented by the chosen floating-point format [101]. As such, the
representation has to be approximated into the finite precision offered by the format, therefore incurring
a rounding error. For example, the decimal number 0.1 has an infinite repeating representation in binary
and cannot be perfectly represented. Using single precision, this representation is given by

0.110
binary32
−−−−−−→ 1.100110011001100110011012 × 2−4 = 0.10000000149011611938476562510 (2.57)

where the notation 0.110 indicates that 0.1 is represented using base 10. The single-precision estimate
can only be accurate up to 2−23≈10−7, since it uses 23 bits for the significand. The other, less common
case of representation error is when the desired number is out of the allowable range of the given format,
which is related to the maximum and minimum possible exponent values.

The other origin for round-off errors is in floating-point arithmetic [101]. According to the IEEE stan-
dard, the results from elementary arithmetic operations must be exactly rounded. This means that the
operation itself must be exact, but then the result has to be rounded to fit in the representation format.
Continuing from the previous example, the operation 0.1 + 2 in single precision yields

0.110 ⊕ 210
binary32
−−−−−−→ 1.000011001100110011001102 × 21 = 2.09999990463256835937510 (2.58)

where ⊕ is the binary addition operator. Even though 2 is an exactly representable number (i.e. machine
number), the operation induced an additional rounding error besides the representation error from 0.1.
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To make matters worse, subtracting 2 from the result does not yield the original approximation for 0.1,
but instead retains the accumulated error,

(0.110 ⊕ 210)⊖ 210
binary32
−−−−−−→ 1.100110011001100110000002 × 2−4 = 0.09999990463256835937510 (2.59)

where ⊖ is the binary subtraction operator. This means that the rounding error from floating-point arith-
metic accumulates with operations, up to a point where all digits in the result are meaningless. Note that
a similar behavior occurs for multiplication and division operations.

Consider an expansion of the previous example, where first the addition operation is done n times,
then the subtraction operation is also done n times. Table 2.7 shows how the results evolves with
increasing values of n. It is clear that, as the number of operations increases, the result becomes
progressively more contamined by round-off errors.

Table 2.7 Result of addition/subtraction example performed using single precision for different values of n. The
example may be given by the pseudocode: f = 0.1; do {f += 2} n times; do {f -= 2} n times.

n Binary significand Decimal result Relative error

1 1.10011001100110011000000 0.099999904632568359375 9.54 E-7
2 1.10011001100110100000000 0.1000003814697265625 3.81 E-6
4 1.10011001100110000000000 0.09999847412109375 1.53 E-5
6 1.10011001101000000000000 0.100006103515625 6.10 E-5
8 1.10011001100000000000000 0.0999755859375 2.44 E-4

10 1.10011010000000000000000 0.10009765625 9.77 E-4
12 1.10011000000000000000000 0.099609375 3.91 E-3
14 1.10100000000000000000000 0.1015625 1.56 E-2
16 1.10000000000000000000000 0.09375 6.25 E-2
18 1.00000000000000000000000 0.125 2.50 E-1
20 zero 0.0 1.00 E-0

Choosing a Precision Format: double vs. quadruple

As illustrated in the previous example, the numerical result obtained from a sequence of interdepen-
dent calculations may be contaminated by round-off errors. There are several strategies to mitigate this
effect, including solutions implemented on hardware and others introduced by the compiler [101]. Addi-
tionally, a user or programmer of a scientific computation code should strive to avoid unstable algorithms
and ill-conditioned problems, since these exacerbate the accumulation of round-off errors [101, 102].

Another solution strategy for this issue is to use a floating-point format with higher precision, i.e.
more digits in the significand. While the rate at which the digits in the significand are contaminated
remains the same, having more digits overall means that, for the same amount of operations, a relatively
smaller portion of the significand contains round-off errors. Additionally, since these contaminated digits
are further right in the mantissa, they also represent a smaller absolute value. Repeating the previous
example with double- and quadruple-precision formats illustrates this benefit, as shown in Table 2.8,
which also lists the increased cost in computation time.

Quadruple precision offers a much more accurate result and is, therefore, an interesting option when
determining the numerical accuracy of the FLS schemes. It can also be used in one-off tests to verify if
a result obtained using double precision has been contaminated by round-off errors. On the other hand,
double precision presents a good cost-benefit when accuracy is not the sole objective and is thus the
better alternative when analyzing computational performance. As a rule of thumb for the remainder of
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Table 2.8 Relative errors and elapsed time of addition/subtraction example performed using single, double,
and quadruple precision for different values of n.

n
Relative Error Elapsed Time [s]

binary32 binary64 binary128 binary32 binary64 binary128

1 9.54 E-7 8.88 E-16 7.70 E-34 - - -
10 9.77 E-4 9.09 E-13 7.89 E-31 7.0 E-6 6.0 E-6 2.6 E-5
20 1.00 E-0 9.31 E-10 8.08 E-28 5.4 E-3 5.4 E-3 2.6 E-2

this work, one should assume that any result shown has been obtained with double precision, unless
otherwise stated. As a final note, the reason the times for single and double precision are equivalent is
due to hardware and compiler instructions, and thus out of scope for this discussion.
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Chapter 3

Results and Discussion

This chapter presents the performance analysis of the face least-squares (FLS) schemes. First, their
computational implementations in both two- and three-dimensional cases are verified in Section 3.1
by studying each method’s numerical accuracy. Section 3.2 consists of studies relating to alternative
implementations of the regression polynomial, expanding on previous studies done by Diogo [32]. Then,
Section 3.3 shows the selection procedure for the preconditioned Krylov method used in the parallel
efficiency studies. Finally, Sections 3.4 and 3.5 show the parallel performance and computational cost
of the 3D implementations of the FLS schemes.

3.1 Numerical Errors and Convergence Orders

To verify the implementation of the FLS methods, the author performed a series of tests to measure
each method’s accuracy and convergence order. The manufactured solutions used are given by

φ2D(
#»x/3π) = sinx sin y , φ3D(

#»x/3π) = sinx sin y sin z . (3.1)

Figure 3.1 shows the surface plot for the solution used in the 2D test cases.These functions were chosen
because they allow for the simultaneous verification of several terms, although another C∞ function
(e.g. an exponential) could have fit the same purpose. However, Diogo [32] noted when testing the FLS
schemes that contamination by round-off errors appear earlier on these sinusoidal functions than on
an exponential. As such, the solutions (3.1) provide an interesting opportunity to study the influence of
floating-point precision on the resulting numerical accuracy.

Since the purpose of these tests was to verify the novel implementation in C using the Portable, Ex-
tensible Toolkit for Scientific Computation (PETSc) – and not the FLS method itself – the only boundary
conditions considered were the Dirichlet type, as previously noted in Section 2.3. The error norms and
convergence orders were calculated for all FLS schemes in several grid sizes and also for a second-
order central differences (CD2) as a classical reference. For the remainder of this section, the notation
used to identify an n-order FLS method will be FLSn.

The error norms ∥ε∥1 and ∥ε∥∞ for each case are plotted as functions of the cell’s reference length
Lref ≡ (NC)

1/ND , where NC is the number of cells in the mesh and ND is the number of spatial dimen-
sions. Furthermore, these are listed in tabular format, along with the respective convergence orders O1

and O∞, in Appendix B.
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Figure 3.1 Manufactured solution (3.1) used for the 2D verification studies.

3.1.1 Two-Dimensional Case

To obtain more relevant value for the finer grid sizes, the test was run in 128-bit quadruple precision.
This allowed for a delayed appearance of round-off errors, albeit with a much higher computational cost;
such decision presented an acceptable trade-off since the test’s objective was to confirm numerical
accuracy and not computational performance. The resulting system of equations was solved with the
biconjugate gradient stabilized method (BiCGSTAB) preconditioned using block-Jacobi (see Section 3.3
for more on solvers and preconditioners). The evolutions of the error norms with respect to the reference
length Lref for the two-dimensional case are plotted in Figure 3.2.

In terms of convergence order, the results clearly show that all FLS schemes exhibit their expected
asymptotic behavior. The only small exception to this is FLS8 for error norms of ≲1E-15, when the
round-off error starts to dominate the global numerical error and the scheme then loses its theoretical
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Figure 3.2 Numerical error norms ∥ε∥1 (left) and ∥ε∥∞ (right) for two-dimensional FLS schemes, using the
sinusoidal analytical solution given by (3.1). Values for CD2 are also shown for comparison.
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convergence order. In terms of numerical accuracy, the obtained results agree with those obtained by
Diogo [32], save for fluctuations due to a different choice of solver. Note also that the FLS2 scheme
presents a slightly larger error than its CD2 counterpart, since the latter’s numerical error contains addi-
tional contributions from the weighted least-squares regression error. Overall, these results demonstrate
the correct implementation of the two-dimensional FLS schemes.

Comparison between Quadruple- and Double-Precision Results

The results shown above were obtained using quadruple precision, which helps delay the contam-
ination from round-off errors as stated in Section 2.6.3. Nonetheless, in Figure 3.2 this limit is clearly
identifiable by the FLS8 plateau around ∥ε∥ ∼ 10−15. If one were to use double precision instead, this
value would be even higher. This is shown in Figure 3.3, which plots the results obtained using quadruple
and double precision for chosen FLS schemes alongside each other. The use of quadruple precision
leads to a significant improvement in the numerical accuracy for finer meshes with NC ≳ 1002, which
quickly become dominated by round-off errors when using double precision. Notice that the saturation
values when using double precision are consistent with the results obtained by Diogo [32] for both the
FLS6 and FLS8 schemes.

Figure 3.3 Influence of floating-point format on the resulting error norms ∥ε∥1 (left) and ∥ε∥∞ (right) for FLS6
and FLS8 schemes in 2D, using the analytical solution given by (3.1). Solid curves represent results
obtained with quadruple precision, while dashed curves represent those obtained with double precision.

3.1.2 Three-Dimensional Case

As with the previous case, the test was run in 128-bit quadruple precision using BiCGSTAB precon-
ditioned with block-Jacobi. The error norms ∥ε∥1 and ∥ε∥∞ for the three-dimensional case are plotted in
Figure 3.4, with the corresponding convergence orders annotated for each method.

Similarly to the two-dimensional case, the three-dimensional implementation of all FLS schemes ex-
hibit the expected asymptotic behavior. Unlike the previous case, the results do not enter a region where
round-off error dominates. This happens because the error is not small enough and the 3D problem is
memory-limited – i.e. using a finer grid would exceed the system’s available memory capacity.
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Figure 3.4 Numerical error norms ∥ε∥1 (left) and ∥ε∥∞ (right) for three-dimensional FLS schemes, using the
sinusoidal analytical solution given by (3.1). Values for CD2 are also shown for comparison.

3.2 Alternative Methods for the Regression Polynomial

This section introduces two alternative methods regarding the regression polynomial and the cal-
culation of the coefficient vector κf . To compare these approaches to the original one, tests in two
dimensions were performed using the following analytical solution, with periodic boundary conditions:

φ( #»x/2π) = sinx sin y + sinx cos y + cosx sin y + cosx cos y . (3.2)

This analytical solution was chosen over the previous (3.1) because it has a greater variety of terms in its
Taylor series expansion, thus leading to a better comparison of the regression polynomial approaches.
Furthermore, the use of periodic boundary conditions leads to a faster and simpler comparative analysis
of the asymptotic regime.

3.2.1 Extended Regression Polynomial

In the original approach of the FLS method, the regression polynomial is symmetric regarding its
tangent and normal terms. However, the stencil algorithm introduced in Section 2.2 generates a stencil
that has an extra layer cells in the tangential direction relative to the target face (on which the regression
is centered) than in the normal one. As such, it is reasonable to extend the regression polynomial in the
tangential direction by introducing additional layer of high-order terms. This is illustrated in Figure 3.5,
which shows the terms included in the regression polynomial for each scheme – with the colors red,
blue, green, and yellow corresponding to second-, fourth-, sixth-, and eight-order schemes, respectively.
The base terms required for the original weighted least-squares (WLS) approach are shown upon a solid
background, while the additional terms for this extended approach are marked by stripes. Note that the
polynomial for any high-order scheme also includes the terms corresponding to lower-order schemes.

The numerical errors corresponding to each approach is plotted in Figure 3.6; the plot shows the
1-norm errors ∥ε∥1, while the auxiliary table lists relative error reductions obtained from the extended
approach. As shown, the extended approach provides consistent error reduction, increasing with the
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Figure 3.5 Polynomial terms included in the regression polynomial for each scheme in the original and ex-
tended approaches. The colors red, blue, green, and yellow correspond to second-, fourth-, sixth-, and
eight-order schemes, respectively. The base terms required for the original approach are shown upon a
solid background, while the additional terms for the extended approach are marked by stripes.

scheme order since more terms are included. The obtained reductions are between 30% and 50% for
the high-order schemes, being 53% for FLS8. However, this improvement comes at the cost of a slight
increase in computation time when solving the local least-square matrices.

Diogo [32] previously studied this approach with the vertex-neighbors stencil algorithm. Although
the analytical solution used for that study was slightly different – corresponding to (3.1) – the error
reductions obtained were more significant than those obtained here. However, the face-neighbors stencil
already produces a more accurate result than the vertex-neighbors, so a less drastic improvement for
the extended approach with the former was expected. The norm-1 error obtained by Diogo for FLS2 was
reduced by 17%, the one for FLS4 by 59%, the one for FLS6 by 71%, and the one for FLS8 by 72%.

Error reduction
1− ∥ε∥ext1 / ∥ε∥wls

1

FLS2 0.2 %
FLS4 30 %
FLS6 44 %
FLS8 53 %

Figure 3.6 Comparison of the numerical error norm ∥ε∥1 obtained for the original (solid line) and extended
polynomial (dashed line) approaches, using the analytical solution given by (3.2). The auxiliary table lists
the corresponding error reduction obtained with the extended approach for each scheme.
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3.2.2 Direct Computation of Polynomial Coefficients

In the general case of an unstructured grid, the layout of cells in the grid is case-specific. Therefore,
even with a well-defined algorithm, the stencil dimensions are unknown a priori. This is the main reason
behind the use of a WLS approach when building these numerical schemes. By having a stencil of size
larger than the required number of polynomial coefficients, this approach allows for a stable and robust
scheme even for the most irregular of grids. However, this comes at cost of regression errors, which are
an additional error source induced from the least-squares regression procedure.

However, the layout of cells in a structured grid follows a regular and known geometrical pattern.
Thus, for a given stencil algorithm, the resulting stencil size is known a priori. As such, it is possible
to use an alternative approach which does not induce regression error. By having the same number of
stencil points as the required polynomial coefficients, one may directly define the pseudo-inverse matrix
as the inverse of the distance matrix Df , without the need for a statistical regression,

φs(f) = Ds(f)κf ⇒ κf = Ps(f)φs(f) , Ps(f) ≡ D−1
s(f) (3.3)

Diogo [32] studied how this direct approach compared to the WLS approach, using the vertex-
neighbor stencil algorithm, for the case of convection-diffusion in two dimensions. In two dimensions,
this stencil algorithm produces, for a p-order scheme, a rectangular stencil with p+1 points in the tan-
gential direction from the target face and p points in the normal direction, for a total of p2+p stencil
points. On the other hand, the face-neighbor stencil algorithm used in the present work and described
in Section 2.2 produces, in two dimensions, a hexagonal stencil with 1

2p
2 + 2p points. For schemes of

fourth-order and higher, this hexagonal stencil can be obtained from the rectangular stencil of the former
algorithm by trimming its corners; for the second-order case, both algorithms produce the same stencil.

For a p-order scheme, the number of required terms in the polynomial approximation is 1
2p

2 + 1
2p,

which is less than the stencil points produced by the aforementioned algorithms. As such, to proceed
with the direct computation of the polynomial coefficients, either the stencil algorithms must be modified
or more terms must be included in polynomial. Following the study by Diogo [32], this work will con-
sider solely the latter approach. Figure 3.7 illustrates the polynomial terms for each scheme – with the
colors red, blue, green, and yellow corresponding to second-, fourth-, sixth-, and eight-order schemes,
respectively. The base terms required for the WLS approach are shown upon a solid background, while
the additional terms for the direct approach are marked by stripes. Note that the polynomial for any
high-order scheme also includes the terms corresponding to lower-order schemes.

The numerical errors corresponding to each approach are compared in Figure 3.8; the plot shows
the 1-norm errors ∥ε∥1, while the auxiliary table lists relative error reductions obtained from the direct
approach. As shown, the direct approach provides a significant error reduction, of up to 56% in FLS8.
However, it is important to note that this approach is, in general case of unstructured grids, not feasible
due to the unknown geometric distribution of the local stencils. Lastly, the Author notes that the outlier
behavior from FLS4 – which presents a higher error using the direct approach – remains unexplained,
and its investigation is therefore left as future work.

In the study by Diogo [32] – using as analytical solution (3.1) – the norm-1 error for FLS6 was reduced
by 74% and for FLS8 by 79%. As was the case with the extended approach, the error reductions
obtained in the present study are less pronounced than those obtained by Diogo. However, as was the
case with the extended approach, this was expected since the face-neighbor stencil used here already
produces a more accurate result than the vertex-neighbor stencil used by Diogo.
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Figure 3.7 Polynomial terms included in the regression polynomial for each scheme in the original WLS and
direct approaches. The colors red, blue, green, and yellow correspond to second-, fourth-, sixth-, and
eight-order schemes, respectively. The base terms required for the original approach are shown upon a
solid background, while the additional terms for direct approach are marked by stripes.

Error reduction
1− ∥ε∥dir1 / ∥ε∥wls

1

FLS2 8 %
FLS4 -20 %
FLS6 36 %
FLS8 56 %

Figure 3.8 Comparison of numerical error norm ∥ε∥1 obtained for the original WLS (solid line) and direct
(dashed line) approaches, using the analytical solution given by (3.2). The auxiliary table lists the corre-
sponding error reduction obtained with the direct approach for each scheme.

3.3 Selection of Preconditioner and Solver

This section describes the preliminary studies done with the two-dimensional code to help choose a
preconditioner-solver combination for the full-fledged studies on parallel performance (see Section 3.4).
Both versions of the code use the same approach to solve the linear system resulting from the discretiza-
tion process. Using the PETSc framework, the system is solved with an iterative linear solver, through
the combination of a preconditioner (PC) and a Krylov subspace method (KSP) [58]. Table 3.1 lists the
full names and PETSc acronyms of the preconditioners and solvers considered in this work.

The main goal of this preliminary study was to reduce the myriad choices of preconditioner-solver
combinations available in the PETSc library into a handful of promising candidates, selected mostly
based on solver runtime. Given the preliminary nature of this study, it was performed in an in-house

33



Table 3.1 List of full names and PETSc acronyms for preconditioners (PCs) and solvers considered.

PETSc Acronym Name

PCs
BJACOBI Block-Jacobi

ASM Additive Schwarz Method
GAMG Geometric Algebraic Multigrid

Solvers

CG Conjugate Gradient
BICG BiConjugate Gradient
BCGS BiConjugate Gradient Stabilized
IBCGS Improved BiConjugate Gradient Stabilized
GMRES Generalized Minimal Residual

FGMRES Flexible Generalized Minimal Residual
TFQMR Transpose-Free Quasi-Minimal Residual

Linux server at Laboratório de Simulação em Energia e Fluidos (LASEF) instead of at a proper high-
performance computing (HPC) system. As such, the resulting runtimes values should not to be taken
as absolute, but instead used as an order-of-magnitude estimates – which is sufficient for the desired
comparison. The server – codenamed Hopper – consists of two 8-core Intel Xeon E5-2650 processors
running at 3 GHz.

The results of solver runtime (including preconditioner setup time) for the FLS2 scheme are shown in
Table 3.2 (serial) and Table 3.3 (parallel, NP =8), where a dash indicates that either the combination is
invalid or the system did not converge. The entries for the additive Schwartz method (ASM) and geomet-
ric algebraic multigrid (GAMG) preconditioners have divisions that represent the additional parameters
of overlap (ASM-only) and threshold percentage (GAMG-only). As shown, the choice of GAMG precon-
ditioner considerably reduces the runtime by orders-of-magnitude in relation to Block Jacobi and ASM.
However, this preconditioner resulted in a stable method only for lower threshold values (≤ 0.02). In rela-
tion to solvers, those which formed a valid combination with the GAMG preconditioner exhibit equivalent

Table 3.2 Serial runtime in seconds for preconditioner-solver combinations, with FLS2 scheme.

KSP
PC

BJACOBI
ASM GAMG

0 1 2 3 0 2 4 6

CG 4412 2625 2530 3279 2600 11 095 133 82 93
BICG 716 834 832 832 831 - - - -
BCGS 548 1063 737 733 739 71 66 73 97
IBCGS 451 563 561 555 567 - - - -
GMRES 2778 4521 2861 3048 2984 61 58 66 85

FGMRES 6076 4990 3700 3639 3037 62 73 82 95
TFQMR 5263 5571 4565 4852 4384 58 54 63 77

Table 3.3 Parallel runtime in seconds, using 8 cores, for preconditioner-solver combinations, with FLS2
scheme.

KSP
PC BJACOBI

ASM GAMG

0 1 2 3 0 2 4 6

CG 277 341 - - - 1700 13 - -
BICG 138 191 21 14 7 - - - -
BCGS 100 125 129 113 100 12 11 - -
IBCGS 110 133 89 110 121 - - - -
GMRES - - 414 414 419 11 10 - -

FGMRES 486 683 719 625 594 13 14 - -
TFQMR 107 140 - - - 12 11 - -
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runtimes, except for an outlier in the conjugate gradient (CG) solver. It is also worth noting the excellent
values yielded by the combination of ASM-BiCG.

The previous results with FLS2 showed the promising combinations to be ASM with BiCG and GAMG
with any valid solver except CG. As such, to determine if any of these good results were specific to
the FLS2 case (e.g. due to the thin matrix bandwidth), additional tests using the FLS8 scheme were
performed. The results are shown in Table 3.4, where a dash indicates that the solution did not converge.
The ASM-BiCG combination performs poorly in comparison to the GAMG combinations. On the other
hand, the GAMG threshold value of zero is now unstable.

Table 3.4 Runtime in seconds for preconditioner-solver combinations, with FLS8 scheme.

ASM

0 1 2 3

serial, BICG 10629 11867 10657 12233
parallel, BICG 2155 - - 1816

serial, GAMG parallel, GAMG

0 2 4 6 0 2 4 6

BCGS - 820 1337 - - 154 213 -
GMRES - 770 1298 - - 165 210 -

FGMRES - 961 1579 - - 180 283 -
TFQMR - 789 1290 - - 148 206 -

These results indicate that, for the given problem, the best choice of preconditioner is GAMG with
a threshold value of 0.02. Since the solvers analyzed in combination with GAMG yielded equivalent
results, the BiCGSTAB solver was chosen due to its long-standing tradition among the computational
fluid dynamics (CFD) community.

3.4 Parallel Efficiency

This section describes the results obtained regarding the FLS schemes’ parallel performance, which
were determined using strong- and weak-scaling tests. As mentioned in Section 2.6, these two methods
of measuring scalability differ in relation to the evolution of the problem size as the number of processes
increase. In strong scaling, the problem size is kept fixed throughout the test; in weak scaling, it is the
workload (i.e. problem size per process) that is kept fixed. While both metrics provide useful information,
the weak-scaling tests better simulate engineering situations where more resources are allocated to
larger problems.

The main issue encountered in executing these tests was the fact that, for higher-order methods, the
memory requirement is quite restrictive. This is not a problem when running the code in parallel, since
this memory cost is distributed among several machines. However, when running serially in a single
machine, the available memory is sometimes insufficient for the complete problem. This means that a
full scaling test (i.e. starting from a serial execution) with high-order methods is only possible for smaller
problem sizes. As such, the chosen starting mesh size for all schemes was N ref

C =803, with the mesh
size evolution for weak-scaling tests listed in Table 3.5.

These tests were performed at the Oblivion supercomputer, which is the newest center of Rede
Nacional de Computação Avançada (RNCA) – the Portuguese HPC network [103]. Built with funds from

Table 3.5 Grid sizes NC , given a number of processors Np, for weak-scaling tests with reference N ref
C =803.

Grid Size (weak scaling, N ref
C =803)

Np 1 2 4 8 16 32 64 128
NC 80³ 101³ 127³ 160³ 202³ 254³ 320³ 403³
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the EuroHPC Initiative and managed by HPC Center of the Universidade de Évora, this supercomputer
consists of 58 nodes, each with two sockets containing 18-core Intel Xeon Gold 6154 processors running
at 3 GHz, connected via Infiniband EDR. This entails a peak theoretical performance of ∼240 Tflop/s.

The results of selected strong- and weak-scaling tests using N ref
C =803 are shown in Figure 3.9 as

plots of solver runtime (SRT), with the corresponding efficiency listed and the dashed lines showing ideal
scaling. As expected, for the same grid size higher-order methods exhibit a higher SRT due to a higher
number of nonzeros in the matrix. As also expected, the deviation from ideal scaling increases with the
number of processes; however, this seems to stabilize for Np≥4.

Figure 3.9 Solver runtime SRT for strong scaling (left) and weak scaling (right), using a reference size NC =
803. Dashed lines indicate the ideal scaling, while listed values indicate the obtained parallel efficiencies.

For the strong-scaling tests, a significant improvement of efficiency can be observed for 16 and 32
processes, especially for the second- and fourth-order schemes. This is due to an increase in cache
performance from the additional cache memory of more systems. This advantage starts to disappear
with 64 processes (spread among 32 nodes, or 64 sockets), when the socket bandwidth starts to limit
the computation rate. Such decrease in efficiency is more evident with Np = 128, because there is
no additional L1 cache relative to Np = 64 since no more sockets are included. This improved cache
performance does not happen for higher-order methods (at the considered problem size) because of
their higher memory requirement; if a smaller problem size were considered, the same trend would also
be observed for the sixth- and eighth-order methods.

As seen by the listed values of weak scaling, the higher-order methods tend to exhibit slightly higher
weak-scaling efficiencies of close to 5% higher, which shows a marginal advantage for these methods.
Although this is a very promising result, one could argue that the decreased efficiency of the lower-order
method stem not from an inherently worse parallel suitability of FLS2, but instead of its lower SRT. This
happens because, given a lower runtime, communication and parallel overhead costs have a higher
negative effect on the overall parallel performance.

Therefore, another batch of strong- and weak-scaling tests were performed using, instead of a refer-
ence size, the same reference SRT for the initial serial execution independently of the numerical scheme.
The chosen reference SRT for the strong-scaling tests was Ts ∼ 40 s, while that for weak-scaling tests
was Ts ∼ 20 s. The corresponding grid sizes for each test and scheme are listed on Table 3.6.

The results obtained from the aforementioned tests are plotted in Figure 3.10. Using this reference
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Table 3.6 Grid sizes NC , for a given number of processors Np, in strong- and weak-scaling tests with reference
initial solver runtimes of Ts ∼ 40 s and Ts ∼ 20 s, respectively.

Test Type Np

Grid Size NC

FLS2 FLS4 FLS6 FLS8

Strong Scaling - 160³ 127³ 101³ 80³

Weak Scaling

1 127³ 101³ 80³ 63³
2 160³ 127³ 101³ 80³
4 202³ 160³ 127³ 101³
8 254³ 202³ 160³ 127³

16 320³ 254³ 202³ 160³
32 403³ 320³ 254³ 202³
64 508³ 403³ 320³ 254³

128 640³ 508³ 403³ 320³

base, the FLS2 scheme exhibits the best parallel performance, with ηst ∼ 90% and ηwk ∼ 80%. The
FLS8 also exhibits an excellent strong-scaling efficiency of ηst ∼ 90%, but has a lower weak-scaling
efficiency that is on par with the other methods. The FLS6 exhibited the worse strong-scaling efficiency,
with values falling below 70%. Even though, for this comparison, the FLS2 scheme performed best, one
could also argue that it was because of the larger problem size used for it, which could result in a better
load balancing between processes.

It is important to discuss the observed drop in parallel performance during the weak-scaling tests for
values of Np> 32. This happens because the Oblivion supercomputer has 58 nodes, meaning that for
Np≥64, there will be processes sharing a node and all its related infrastructure: cache, bandwidth, etc.
This will inevitably lead to a performance decrease, which only worsens as the number of processes
increase. Nonetheless, one may provide an estimate to the SRT values were these later runs executed
with a one-to-one mapping of processes to nodes. Let T (NC , Np, Nn) be the SRT for an NC-sized
problem executed with Np processes spread out among Nn nodes. Then, the loss of efficiency in
running the problem with a k-fold higher process-per-node concentration may be estimated by the ratio

T (NC , Np, kNn)

T (NC , Np, Nn)
. (3.4)

Figure 3.10 Solver runtime SRT for strong scaling (left) and weak scaling (right), using reference SRTs of
∼40 s and ∼20 s, respectively. Dashed lines indicate ideal scaling; the parallel efficiencies are listed.
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Therefore, the SRT of a large problem if it were run with a one-to-one mapping of processes to nodes
may be estimated using the aforementioned ratio constructed from SRTs of a smaller problem using less
computation resources. For example, for the case of Np =64, the estimated SRT using this correction
may be given by the following expression,

T (N large
C , 64, 64) ≈ T (N large

C , 64, 32)
T (N small

C , 2, 1)

T (N small
C , 2, 2)

. (3.5)

Using this correction method, the estimated strong and weak parallel efficiencies for 64 and 128
processes are listed in Table 3.7. These estimates better continue the efficiency trend from previous Np

values, without having such an acute drop in efficiency.

Table 3.7 Estimated weak-scaling parallel efficiency ηwk for high Np values, using the correction method
described by (3.4),(3.5). Efficiency values are given as percentage points.

Reference
base Np

ηwk [%]

FLS2 FLS4 FLS6 FLS8

Size 64 69 74 72 73
128 67 71 68 -

SRT 64 77 70 68 72
128 82 72 72 70

3.5 Computational Cost

Lastly, it is worthwhile to compare the computational cost of each FLS method. Figure 3.11 plots the
numerical error norm ∥ε∥1 of each method as function of two different metrics for computational cost.
On the left, it is plotted against the number of nonzeros Nnz of the corresponding coefficient matrix,
which is an indirect measurement of the memory required to store the matrix. On the right, it is plotted
as function of the mean SRT (measured in CPU time, i.e. Np × T ).

Figure 3.11 Numerical error norm ∥ε∥1 as function of number of nonzeros Nnz (left) and solver runtime SRT
given in CPU time (right). The listed values represent the decay order of ∥ε∥1.

38



The figure above clearly shows the computational advantage of higher-order methods. For a given
memory or time constraint, higher-order methods yield significantly more accurate results. This may
also be seen through another manner: to obtain a given accuracy, a higher-order method requires
significantly less memory and time. Both of these are important budget constraints of computational
projects, so having methods that are more memory- and time-efficient is a considerable advantage.
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Chapter 4

Conclusion

The face least-squares (FLS) schemes previously developed by Vasconcelos [30] and Diogo [32]
were implemented in parallel for high-performance computing (HPC) and expanded for three-dimensional
problems. The resulting algorithm was verified using the previous Matlab code and also using manufac-
tured analytical solutions based on sinusoidal functions. The influence of the floating-point format used
was also analyzed, with the quadruple-precision format providing a significant increase in accuracy for
finer meshes in the sixth- and eighth-order schemes. This improvement was achieved by delaying the
onset of major contamination by round-off errors in the results. Therefore, an equivalent improvement
can also be obtained for second- and fourth-order schemes, given sufficiently fine meshes.

In preparation for the parallel scalability tests, a comparison study of preconditioner-solver combi-
nations was performed at an in-house machine from Laboratório de Simulação em Energia e Fluidos
(LASEF). The criteria for choosing the combination to be used in the scalability tests were that of fastest
runtime (serial and parallel) and robustness. The choice of geometric algebraic multigrid (GAMG) pre-
conditioner was clear from the obtained results, which showed it vastly outperforming its counterparts
in both serial and parallel runtime. The choice of solver was less obvious, with four solvers perform-
ing the best with not much difference between them, when paired with the GAMG preconditioner. As
such, the Author chose to use the biconjugate gradient stabilized method (BiCGSTAB) solver due to its
long-standing tradition, especially within the computational fluid dynamics (CFD) community.

The parallel performance of the developed algorithm was analyzed for three-dimensional problems
at the Oblivion supercomputer managed by the HPC Center of Universidade de Évora. To measure
scalability, a series of scalability tests were performed, with both mesh size and solver runtime fixed
as reference points, thus yielding a total of four performance tests for comparison between each FLS
scheme. No one scheme presented a significant advantage over others across all tests, with values for
strong- and weak-scaling efficiencies of over, respectively, 85% and 70% being achieved consistently.
Overall, the obtained results show that high-order methods, even with their increased number of halo
cells for communication, may indeed have a parallel performance that is on par with low-order methods.
Thus, this provides evidence to refute a major argument against the use of high-order methods in HPC.

Furthermore, the computational cost of low- and high-order FLS schemes were compared. This
cost was measured in terms of both memory and runtime requirements for a given accuracy. The ob-
tained results showed that, for a q-order scheme, the numerical error’s 1-norm decreased with O

(
N

q/3
nz

)
and O

(
T q/3

)
, where Nnz and T are the number of nonzeros and the solver runtime (CPU time). Us-

ing either of these metrics, the advantage of high-order methods regarding cost efficiency was clearly
demonstrated and, thus, presents a major incentive to their use over low-order methods.
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Additionally, two alternative methods regarding the regression polynomial for face-neighboring sten-
cils were developed. Following the work of Diogo [32] with vertex-neighboring stencils, these encom-
passed extending the polynomial to include higher-order terms in the tangential direction and calculating
the coefficient vector directly instead of relying on the weighted least-squares approach. Although these
methods do not affect the schemes’ order of convergence, they did lead to a reasonable reduction in the
numerical error of the high-order schemes, at the cost of a slight increase to computation effort. In par-
ticular, the extended approach appears quite promising given its flexibility and ease of implementation.
On the other hand, the direct approach remains a niche method for Cartesian grids and also presents
implementation challenges for non-periodic boundary conditions.

4.1 Future Work

The methods studied and implemented during the current work have shown to be very promising. As
such, there are several research avenues for future work, regarding either the computational and numer-
ical aspects. Furthermore, the current project has recently received additional computational resources,
this time in the Bob supercomputer operated by the Minho Advanced Computing Center (MACC) [104].
Performing additional tests on a different cluster aids in verifying overall parallel performance, since the
results from a single-machine test may contain hardware bias. These tests are currently ongoing.

Given that a higher matrix bandwidth leads to higher memory and time requirements, it could be
worthwhile to study how to decrease these effects. One possibility is using fast Fourier transforms along
one or more dimensions, which Costa [105] has shown to yield promising results in parallel computing.
The Author has completed some preliminary research into this topic for the course Project in Aerospace
Engineering, with results presented in Appendix C. Another approach is to use matrix-free methods,
which consist of using values that are known at compile time rather than calculating them during runtime.
As such, these methods do not require the explicit storage of the matrix. However, such approach is
not valid for unstructured grids, whose layouts are unknown at compile time. Nonetheless, matrix-
free methods could provide a significant improvement for structured grids, especially given the limiting
memory requirements that were observed with high-order schemes. Currently, PETSc also supports
this matrix-free approach for iterative solvers.

The parallel implementation introduced in this work was based on a domain-decomposition approach
with MPI using PETSc, resulting in a program suited for CPU-only computers. Given the increasing
adoption of accelerators such as graphics processing units (GPUs) and general-purpose graphics pro-
cessing units (GPGPUs) in the HPC field, it would be interesting to adapt the present algorithm for such
devices. The PETSc framework already provides an interface for GPU kernel parallelism, including the
popular CUDA model. However, data must be copied from the CPU to the GPU. Since this memory
copy process is usually slow compared to GPU computing speed, it needs to be keep at a minimum in
order to achieve good performance. Thus, practically all computation should be done on the GPU, which
entails a major overhaul of the existing code.

Further developments to the numerical aspects of the FLS schemes consist of progressing towards
the solution of the Navier-Stokes equations. Previously, Costa [33] developed temporal discretization
for the FLS schemes, verifying the resulting algorithm for two-dimensional problems. Currently, there
is ongoing research within the HIBforMBP group regarding the implementation of the fractional-step
method with FLS schemes. These developments can be integrated into the existing code, for a parallel
implicit solver of the Navier-Stokes equations.
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Appendix A

Code Documentation

A.1 List of HIBforMBP Git Repositories

As part of the work done in the context of the HIBforMBP Project, the Author sought to organize
the codes used and developed by the group for ease of reference and future use. As such, these
were uploaded into public Git repositories hosted by GitLab, under the HIBforMBP group umbrella.
The web address of all these repositories are of the form https://gitlab.com/hibformbp/<NAME>,
where <NAME> is the name of the repository. This appendix lists these repositories and provides a short
summary of the included contents.

dif-2d-unstruct Contains the original Matlab code developed by Vasconcelos [1] to solve two-dimensional
Poisson problems. The code allows for import and use of an external grid, or the user may choose to
generate a Cartesian grid using the built-in functionality.

conv-dif-2d-unstruct Contains both the original Matlab code developed by Diogo [2] and a com-
putationally improved version developed by the present Author using Matlab vectorization. This code
solves two-dimensional convection-diffusion problems on any grid by importing and using an external
grid. Alternatively, the user may choose to generate a Cartesian grid using the built-in functionality.

conv-dif-2d-cart Contains the parallel solver for two-dimensional, convection-diffusion problems in
Cartesian grids, developed for the current work. The code is written in C, using the PETSc library for
the linear-algebra and parallel computing framework. Besides the base FLS schemes, this solver also
includes additional methods for the regression polynomial – namely, extended polynomial and direct
coefficients.

conv-dif-3d-cart Contains the parallel solver for three-dimensional, convection-diffusion problems
in Cartesian grids, developed for the current work. Besides the base FLS schemes, this solver also
includes some FFT capabilities (see Appendix C), which are not yet completely implemented. As with
the 2D solver, the code is written in C, using PETSc for the linear-algebra and parallel framework;
furthermore, the FFTW library was used for the FFT operations.
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Appendix B

Selected Results in Tabular Form

This appendix lists, in tabular form, results that have been presented as plots in Chapter 3. Note
that the following tables only list primary-type metrics (e.g. error norms and runtime) instead of any
derived-type metrics (e.g. convergence order and parallel efficiency) that may be calculated from the
corresponding measurements. The main motivation for this appendix is to facilitate any future reproduc-
tion or verification of results obtained in the current work.

B.1 Numerical Error Norms

Tables B.1 and B.2 present the numerical error norms ∥ε∥1 and ∥ε∥∞ for, respectively, two- and
three-dimensional face least-squares (FLS) schemes, using the analytical solution given by (3.1) with
Dirichlet boundary conditions. Both of these results were obtained using quadruple precision, to delay
the onset of contamination by round-off errors. The corresponding linear systems were solved using the
biconjugate gradient stabilized method (BiCGSTAB) solver, with the 2D cases being preconditioned with
block-Jacobi and the 3D ones with 0.02-threshold, geometric algebraic multigrid (GAMG).

Table B.3 compares the numerical error norm ∥ε∥1 of 2D FLS schemes using the standard or ex-
tended regression polynomial, as explained in Section 3.2.1. On the other hand, Table B.4 compares
the numerical error norm of 2D FLS schemes with polynomial coefficients computed directly or using
the standard WLS method, as explained in Section 3.2.2. Both results were obtained using BiCGSTAB
solver preconditioned with block-Jacobi, for the analytical solution (3.2) with periodic boundary condi-
tions.
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Table B.1 Numerical error norm ∥ε∥1 and ∥ε∥∞ for two-dimensional FLS schemes, using the sinusoidal analytical solution given by (3.1) with Dirichlet boundary conditions.
Results were obtained from BiCGSTAB preconditioned with block-Jacobi, using quadruple precision. Corresponds to Figure 3.2.

NC
FLS2 FLS4 FLS6 FLS8

∥ε∥1 ∥ε∥∞ ∥ε∥1 ∥ε∥∞ ∥ε∥1 ∥ε∥∞ ∥ε∥1 ∥ε∥∞
10² 3.777278 E−2 8.532236 E−2 4.487545 E−3 1.604884 E−2 1.189534 E−3 3.224379 E−3 9.298174 E−4 3.559529 E−3
20² 8.777496 E−3 2.131917 E−2 1.990097 E−4 6.845547 E−4 9.746955 E−6 5.172965 E−5 7.926631 E−6 2.851207 E−5
40² 2.124171 E−3 5.236612 E−3 7.724761 E−6 2.302125 E−5 9.742007 E−8 1.303967 E−6 9.244221 E−9 6.381465 E−8
80² 5.233854 E−4 1.304881 E−3 3.073132 E−7 1.449615 E−6 1.136594 E−9 2.325380 E−8 2.075563 E−11 2.599164 E−10

160² 1.298428 E−4 3.249887 E−4 1.429156 E−8 9.572314 E−8 1.582411 E−11 3.751032 E−10 4.711389 E−14 1.025197 E−12
240² 5.757970 E−5 1.442565 E−4 2.572985 E−9 1.909526 E−8 1.354368 E−12 3.312153 E−11 2.376432 E−15 4.006741 E−14
320² 3.235251 E−5 8.111442 E−5 7.864716 E−10 6.062065 E−9 2.386211 E−13 5.906673 E−12 1.210030 E−15 4.011987 E−15
480² 1.436296 E−5 3.602750 E−5 1.520640 E−10 1.200174 E−9 2.053468 E−14 5.192810 E−13 1.113236 E−15 2.746082 E−15
640² 8.074869 E−6 2.025961 E−5 4.790813 E−11 3.800225 E−10 3.408324 E−15 9.246497 E−14 1.110463 E−15 2.739940 E−15

Table B.2 Numerical error norm ∥ε∥1 and ∥ε∥∞ for three-dimensional FLS schemes, using the sinusoidal analytical solution given by (3.1) with Dirichlet boundary conditions.
Results obtained from BiCGSTAB preconditioned with 0.02-threshold GAMG, using quadruple precision. Corresponds to Figure 3.4.

NC
FLS2 FLS4 FLS6 FLS8

∥ε∥1 ∥ε∥∞ ∥ε∥1 ∥ε∥∞ ∥ε∥1 ∥ε∥∞ ∥ε∥1 ∥ε∥∞
10³ 2.971106 E−2 9.985035 E−2 7.601767 E−3 2.527045 E−2 1.429892 E−3 7.056045 E−3 1.430996 E−3 4.470106 E−3
20³ 6.732156 E−3 2.438771 E−2 4.284892 E−4 1.465967 E−3 2.222095 E−5 1.743542 E−4 7.820208 E−6 6.108891 E−5
40³ 1.593045 E−3 5.976863 E−3 2.270009 E−5 7.764135 E−5 3.195246 E−7 3.590689 E−6 1.660670 E−8 1.637591 E−7
80³ 3.862377 E−4 1.480327 E−3 1.210016 E−6 4.352053 E−6 4.025959 E−9 6.006006 E−8 4.496722 E−11 8.141603 E−10

160³ 9.500592 E−5 3.671997 E−4 6.835786 E−8 2.570170 E−7 5.293032 E−11 9.537420 E−10 1.144942 E−13 3.628813 E−12
240³ 4.198506 E−5 1.630484 E−4 1.299856 E−8 4.980098 E−8 4.333037 E−12 8.395048 E−11 – –
320³ 2.355153 E−5 9.159198 E−5 4.032487 E−9 1.560531 E−8 7.427116 E−13 1.495764 E−11 – –
480³ 1.043876 E−5 4.066953 E−5 7.805182 E−10 3.052640 E−9 – – – –
640³ 5.863887 E−6 2.286515 E−5 – – – – – –
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Table B.3 Comparison between numerical error norm ∥ε∥1 of two-dimensional FLS schemes using the standard or extended regression polynomial, for the analytical
solution given by (3.2) with periodic boundary conditions. Results were obtained from BiCGSTAB preconditioned with block-Jacobi, using double precision. Corresponds
to Figure 3.6.

NC
FLS2 FLS4 FLS6 FLS8

∥ε∥std1 ∥ε∥ext1 ∥ε∥std1 ∥ε∥ext1 ∥ε∥std1 ∥ε∥ext1 ∥ε∥std1 ∥ε∥ext1

10² 2.966156 E−2 2.967756 E−2 5.166213 E−4 3.680766 E−4 6.345924 E−5 3.632408 E−5 6.844690 E−6 3.288953 E−6
20² 7.456088 E−3 7.433270 E−3 3.396957 E−5 2.376566 E−5 1.069726 E−6 6.035123 E−7 2.966036 E−8 1.408858 E−8
40² 1.853241 E−3 1.850208 E−3 2.144876 E−6 1.498189 E−6 1.702547 E−8 9.578087 E−9 1.189372 E−10 5.626748 E−11
80² 4.639462 E−4 4.629621 E−4 1.344689 E−7 9.385523 E−8 2.673842 E−10 1.502733 E−10 4.648162 E−13 2.008589 E−13

160² 1.159361 E−4 1.156968 E−4 8.410869 E−9 5.869564 E−9 4.209227 E−12 2.339797 E−12 6.746729 E−14 1.305138 E−13
240² 5.152492 E−5 5.142004 E−5 1.661583 E−9 1.159498 E−9 4.248937 E−13 3.531481 E−13 2.779259 E−13 5.995041 E−14
320² 2.898242 E−5 2.892351 E−5 – 3.669113 E−10 2.177108 E−13 6.106207 E−13 4.558117 E−13 1.849039 E−13
480² 1.288095 E−5 1.285476 E−5 1.038512 E−10 7.220526 E−11 7.181719 E−13 1.764908 E−12 2.760230 E−13 –
640² 7.245511 E−6 7.230777 E−6 3.273364 E−11 2.246034 E−11 1.775129 E−12 9.316299 E−10 – 1.881223 E−12

Table B.4 Comparison between numerical error norm ∥ε∥1 of two-dimensional FLS schemes with regression polynomial coefficients calculated using the standard WLS
method or directly, for the analytical solution given by (3.2) with periodic boundary conditions. Results were obtained from BiCGSTAB preconditioned with block-Jacobi,
using double precision. Corresponds to Figure 3.8.

NC
FLS2 FLS4 FLS6 FLS8

∥ε∥wls
1 ∥ε∥direct1 ∥ε∥wls

1 ∥ε∥direct1 ∥ε∥wls
1 ∥ε∥direct1 ∥ε∥wls

1 ∥ε∥direct1

10² 2.966156 E−2 2.712610 E−2 5.166213 E−4 6.183625 E−4 6.345924 E−5 4.106365 E−5 6.844690 E−6 3.065137 E−6
20² 7.456088 E−3 6.835835 E−3 3.396957 E−5 4.073754 E−5 1.069726 E−6 6.881694 E−7 2.966036 E−8 1.304510 E−8
40² 1.853241 E−3 1.696763 E−3 2.144876 E−6 2.577670 E−6 1.702547 E−8 1.093757 E−8 1.189372 E−10 5.213950 E−11
80² 4.639462 E−4 4.248207 E−4 1.344689 E−7 1.615782 E−7 2.673842 E−10 1.715824 E−10 4.648162 E−13 2.908276 E−13

160² 1.159361 E−4 1.061556 E−4 8.410869 E−9 1.010601 E−8 4.209227 E−12 2.665925 E−12 6.746729 E−14 5.960253 E−13
240² 5.152492 E−5 4.717745 E−5 1.661583 E−9 – 4.248937 E−13 2.077695 E−13 2.779259 E−13 5.882923 E−13
320² 2.898242 E−5 2.653687 E−5 – 6.312916 E−10 2.177108 E−13 4.767544 E−13 4.558117 E−13 4.728013 E−13
480² 1.288095 E−5 1.179403 E−5 1.038512 E−10 1.248379 E−10 – 9.785511 E−13 2.760230 E−13 1.177561 E−12
640² 7.245511 E−6 6.634121 E−6 3.273364 E−11 3.795285 E−11 – 9.955417 E−13 – 1.471543 E−12
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B.2 Solver Runtimes

Tables B.5 and B.6 present the solver runtime (SRT) from strong- and weak-scaling test, respectively,
performed at the Oblivion supercomputer with up to 128 processes. Each table lists results from two
battery of tests, which differ in the chosen comparison point – i.e. a reference starting mesh size or a
reference starting SRT. The tests used the three-dimensional FLS schemes with the analytical solution
given by (3.1), with Dirichlet boundary conditions. Results were obtained using the BiCGSTAB solver
preconditioned with 0.02-threshold GAMG, using double precision.

Table B.5 Solver runtime (SRT) from strong-scaling tests performed at the Oblivion supercomputer, using two
different comparison points – reference mesh size and reference starting SRT. Corresponds to Figure 3.9
(left) and Figure 3.10 (left).

Np
Ref. NC = 803 Ref. SRT |Np=1 ≈ 40 s

FLS2 FLS4 FLS6 FLS8 FLS2 FLS4 FLS6 FLS8

1 4.1012 11.886 21.786 35.374 41.307 48.326 44.475 35.374
2 2.3166 7.7050 12.414 19.958 23.481 28.012 29.403 19.958
4 1.2634 3.1940 7.0541 9.8499 11.609 15.918 14.724 9.8499
8 0.57855 1.5882 3.4587 4.8949 5.8758 7.9251 7.3124 4.8949

16 0.22028 0.70712 1.4600 2.4359 2.7817 3.9586 4.1820 2.4359
32 0.10362 0.29634 0.79645 1.1835 1.3265 1.8902 1.7789 1.1835
64 0.05555 0.16614 0.40542 0.62198 0.70810 0.97076 1.0504 0.62198

128 0.03420 0.08527 0.22032 0.38539 0.37944 0.50544 0.56084 0.38539

Table B.6 Solver runtime (SRT) from weak-scaling tests performed at the Oblivion supercomputer, using two
different comparison points – reference starting mesh size and reference starting SRT. Corresponds to
Figure 3.9 (right) and Figure 3.10 (right).

Np
Ref. NC = 803 Ref. SRT |Np=1 ≈ 20 s

FLS2 FLS4 FLS6 FLS8 FLS2 FLS4 FLS6 FLS8

1 4.1012 11.886 21.786 35.374 20.179 23.988 21.786 16.879
2 4.8783 13.802 29.403 41.400 23.481 32.475 29.403 19.958
4 5.8798 15.918 30.483 47.998 24.268 32.799 30.483 23.609
8 5.8758 15.934 29.677 46.295 25.040 32.435 29.677 23.692

16 5.9271 16.689 30.952 48.350 24.308 33.042 30.952 23.556
32 6.0016 16.704 30.512 48.915 24.516 32.778 30.512 24.273
64 6.2324 17.286 31.521 50.876 25.577 35.053 31.521 25.609

128 6.6232 18.460 34.203 – 27.311 37.176 34.203 26.439
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Appendix C

FFT-Based Acceleration of Numerical
Schemes

This appendix, which consists of previous work done by the Author for the university course Project
in Aerospace Engineering, presents acceleration approaches – based on fast Fourier transforms (FFTs)
– to the numerical solution of partial differential equations (PDEs). The numerical methods presented
will be applied to the diffusion equation (C.1) and to the convection-diffusion equation (C.2). These two
are given here in their steady form in terms of conservation quantity φ, with Q being a source term and
Γ, #»v the diffusion and convection coefficients, respectively.

∇ · (Γ∇φ) = Q (C.1)

∇ · ( #»v φ)−∇ · (Γ∇φ) = Q (C.2)

This previous work presented an FFT-based acceleration for the numerical solutions of equations
(C.1) and (C.2). This method, presented in Section C.1.1, was based on the recent work by Costa [1,
2], who has applied it only for Poisson’s equation under the finite difference method (FDM) framework.
The section also presents two approaches for adapting the method to convection-diffusion equations, by
treating convection terms implicitly or explicitly.

Furthermore, the Author studied different approaches of combining this method to the face least-
squares (FLS) schemes in Section C.2. An implementation of FFT acceleration into the second-order
FLS (FLS2) was derived in detail, but it remains unclear if this same derivation may be adapted to
higher-order methods. Additionally, a brief discussion regarding boundary conditions and related issues
was also included.

Lastly, the deferred-correction approach was briefly introduced in Section C.3. The approach was
successfully implemented for the second-order central differences (CD2) scheme and FLS schemes of
all orders, significantly improving upon past literature results. However, the approach was unsuccessful
when using the FFT-accelerated CD2.

It is important to note that, except for Section C.1.1, this work presented novel investigation results,
which are not available in literature. All of developed code is available online under the “FFT” branch of
Git repository hosted at gitlab.com/hibformbp/conv-dif-3d-cart.
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C.1 FFT Acceleration in an FDM Framework

C.1.1 Poisson Problems

Consider Poisson’s equation, given by (C.3) – which is identical to (C.1) except that Γ, being constant
throughout space, has been incorporated into the source term f≡Q/Γ.

∇2φ = f (C.3)

The method for using a FFT to accelerate the solution of Poisson problems explained here follows
the work of Costa [2] in the FDM framework. The usual CD2 expression for the second derivative of a
function ϕ is given by

d2

dx2
ϕ(x) =

ϕ(x−∆x)− 2ϕ(x) + ϕ(x+∆x)

∆x2
+O(∆x2) (C.4)

where O(∆x2) represent the higher-order terms. Since the expression will be used numerically, it is
useful to consider a discrete representation ϕi ≡ ϕ(x), ϕi±1 ≡ ϕ(x±∆x), where ∆x now represents
the grid spacing along x. Thus, performing the discretization of (C.3) using CD2 in all three dimensions
yields the following equation, which represents a linear system described by a matrix with seven non-
zero diagonals:

φi−1,j,k − 2φi,j,k + φi+1,j,k

∆x2
+
φi,j−1,k − 2φi,j,k + φi,j+1,k

∆y2
+
φi,j,k−1 − 2φi,j,k + φi,j,k+1

∆z2
= fi,j,k (C.5)

Using the method of eigenfunctions expansions, it is possible to reduce the complexity of the above
system by decoupling along an arbitrary dimension. This “Fourier synthesis” described by Schumann
and Sweet [3] is achieved by using a Fourier-based discrete expansion operator Fζ along the chosen
direction ζ. Let the chosen direction be x. Schumann and Sweet [3] give the following result,

Fx (φi−1,j,k − 2φi,j,k + φi+1,j,k) = Λiφ̂i,j,k , Λi ≡ −4 sin2
κi
2nx

(C.6)

where □̂ = Fx (□), Λi is the eigenvalue corresponding to grid point i along the expansion direction x, κi
is the associated wavenumber, and nx is the number of grid points along x. Then, applying the operator
Fx to (C.5) results in the Helmholtz equation

Λiφ̂i,j,k

∆x2
+
φ̂i,j−1,k − 2φ̂i,j,k + φ̂i,j+1,k

∆y2
+
φ̂i,j,k−1 − 2φ̂i,j,k + φ̂i,j,k+1

∆z2
= f̂i,j,k (C.7)

Although Schumann and Sweet [3] give these eigenvalues in the form shown in (C.6), these may be
also written in the form 2 cos(κi/nx)−2 by applying trigonometric identities. By using the linearity propriety
of operator F , one can rewrite the eigenfunction expansion along x and separate φi,j,k from its neigh-
bors. Combining these two expression, one may define a simplified eigenvalue λi, which represents the
transformation of only the neighboring points according to (C.8).

F (φi−1,j,k − 2φi,j,k + φi+1,j,k) = Λiφ̂i,j,k =

(
2 cos

κi
nx

− 2

)
φ̂i,j,k

F (φi−1,j,k − 2φi,j,k + φi+1,j,k) = F (φi−1,j,k + φi+1,j,k)− 2φ̂i,j,k

∴ F (φi−1,j,k + φi+1,j,k) = λiφ̂i,j,k, λi ≡ 2 cos
κi
nx

(C.8)
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As such, the Helmoltz equation (C.7) may be given in following alternate form

λiφ̂i,j,k − 2φ̂i,j,k

∆x2
+
φ̂i,j−1,k − 2φ̂i,j,k + φ̂i,j+1,k

∆y2
+
φ̂i,j,k−1 − 2φ̂i,j,k + φ̂i,j,k+1

∆z2
= f̂i,j,k (C.9)

It is important to note that the eigenfunction expansion operator F and the wavenumbers κi both
depend on the boundary conditions at the end of the chosen decoupling direction. Table C.1 lists these
for different combinations of boundary conditions. Furthermore, the grid spacing in the decoupling
direction must be constant.

Table C.1 Wavenumbers κq, forward transforms F , and backward transforms F −1 (with normalization factor
θ) used in (C.7), for different combinations of boundary conditions. (I)DFT stands for the (inverse) discrete
Fourier transform, and DCT/DST for the standard types of discrete cosine/sine transforms. Note that some
authors incorporate the normalization factor into the inverse transform itself; the values shown here are in
accordance with the FFTW library [4].

Boundary Conditions κq/(2π) F θF −1 θ

Periodic q DFT IDFT n
Neumann q/2 DCT-II DCT-III 2n
Dirichlet (q + 1)/2 DST-II DST-III 2n

Neumann-Dirichlet (2q + 1)/4 DCT-IV DCT-IV 2n

Results

The method described above was implemented with the CD2 scheme for Poisson problems. The
results are summarized in Table C.2, which show the error norm ∥ε∥1 and runtime for different grid
sizes using both the standard and FFT-accelerated approaches. The error values serve as a verification
means, showing that the FFT approach was correctly implemented. As seen from the runtime values,
the FFT approach is significantly faster than the standard approach. In fact, this advantage increases
with grid size, as shown by the increasing value of runtime ratio.

Table C.2 Comparison of error norm and runtime values for the standard and the FFT-accelerated CD2
schemes, using several grid sizes.

N
Error Norm ∥ε∥1 Runtime [s]

Standard FFT Standard FFT Ratio

10³ 2.022588E-02 2.022588E-02 8.48E-03 2.99E-02 0.28
20³ 4.843051E-03 4.843051E-03 6.85E-02 5.95E-02 1.15
40³ 1.197906E-03 1.197906E-03 9.48E-01 4.85E-01 1.95
80³ 2.986803E-04 2.986803E-04 1.10E+01 3.69E+00 2.98

160³ 7.462042E-05 7.462042E-05 1.52E+02 2.84E+01 5.34

Results from Literature

Costa [2] compared the computational performance of the FDM-based direct numerical simulation
(DNS) solvers with and without FFT acceleration, with different decomposition approaches and decou-
pling directions. The results are shown in Figure C.1 for the case of lid-driven cavity flow, with increasing
number of allocated central processing units (CPUs); Table C.3 gives the corresponding speedups of
using an FFT-based method relative to traditional FDM. As shown in Figure C.1a and Table C.3, the
methods with FFT decomposition (except for 2D MG w/ FFT) exhibit a significant advantage over
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(a) Strong scaling, given in wall-clock time (b) CPU time per grid size

Figure C.1 Comparison of computational performance obtained by Costa [2] using different methods for a lid-
driven cavity flow, with 512³ and 1024³ grid cells. The notation 3D MG represents the traditional FDM (using
multigrid) without FFT decomposition, while the other notations are methods with FFT decomposition but
using different decomposition approaches. The choice of FFT-based synthesis direction is represented by
increasing color lightness, in order of x, y, z respectively.

the traditional method in terms runtime, being around twofold faster. However, the performance of
these methods gradually worsen and are indeed slower than the traditional method. This happens for
NCPU > 1024 in the N = 5123 case and for NCPU > 2048 in the N = 10243. This is even clearer in Fig-
ure C.1b, where the curve for the traditional method is approximately a flat line (representing a perfect
scaling), while the curves for methods with FFT decomposition clearly exhibit upward trends. Costa
notes that this decrease in parallel efficiency happens due to the load per CPU becoming too small, and
that the runtime in this saturation region is already very small – meaning that one might as well use less
CPUs and save computer budget.

Table C.3 Speedups obtained by Costa [2] by using different FFT-based methods (x-decomposition), for lid-
driven cavity flow. The values shown here are relative to the runtime corresponding to the 3D MG method.

N Method
NCPU

64 128 254 512 1024 2048 4096

512³ 3D MG w/ FFT 1.72 2.39 1.67 1.47 1.03 0.74 0.41
2D MG w/ FFT (P↔S) 1.90 2.52 1.77 1.78 – – –

1024³ 3D MG w/ FFT – 1.60 1.78 1.66 1.50 0.95
2D MG w/ FFT (P↔S) – 1.63 1.87 1.57 – –

Comparison of Estimated Computational Cost

Applying a multidimensional Fourier synthesis is also possible and indeed forms the backbone of
another family of numerical methods – spectral methods – which are the de facto standard for DNS and,
to a lesser degree, large-eddy simulation (LES) [5, 6]. These methods fall outside the scope of this
work, but it is nonetheless interesting to compare the theoretical computational cost between different
numerical approaches. Costa [2] gives some estimates on the computational cost of these different
approaches.

The use of a multidimensional Fourier synthesis reduces the matrix bandwidth to such an extent
where the use of a direct solver may become more affordable than an iterative solver. Specifically for
the case of CD2, the original system with seven non-zero diagonals is reduced to a tridiagonal system,
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for which efficient direct solvers methods (i.e. Gauss elimination) have long existed [1]. Using a direct
solver with two-dimensional Fourier synthesis, the computational cost scales with O(N log n2n3), where
N ≡ n1n2n3 is the number of grid cells and n2, n3 are the number of grid cells along the two decoupling
directions. On the other hand, using a geometric multigrid solver, the corresponding cost scales with
only O(N).

However, Costa notes that, for Poisson problems with N ∼ 109–1010, FFT-based direct solvers have
instead been reported to yield much better performance – on the order of 3–10 times. This happens
mainly because of two reasons. First, the hidden constant for the computational cost of direct solvers is
smaller than that of the iterative solvers. Second, the term log n2n3 grows quite slowly when compared
to N .

Costa suggests that the now-ambitious problem sizes are still orders-of-magnitude smaller than the
required sizes for iterative solvers to overperform direct solvers. Given the prohibitive memory require-
ment for such a problem size, the current Author believes that, save a revolutionary innovation in the
area, it is unlikely that such a point will be achieved in the near-future – even with the arrival of exascale
high-performance computing (HPC) in this current year of 2022 [7].

C.1.2 Treatment of Convection Terms

The aforementioned method has been derived – by, among others, Schumann and Sweet [3] and
Costa [2] – only for Poisson’s equation. As part of the current work, the Author will now present possible
approaches to expanding the method to the convection-diffusion equation.

The approach that will be shown here is to solve implicitly for the diffusion terms only, and instead
treat the convection terms explicitly. This may be understood as incorporating the convection terms into
the source term, thus defining a modified source term Q̃. This allows matrix A to remain with the reduced
bandwidth obtained by the FFT decomposition. However, since the Fourier synthesis only removes
off-diagonal terms corresponding to the decoupling direction ζ, then only the convection terms in ζ

The modified convection-diffusion equation may then be written as the following, where the decoupling
direction was assumed to be x,

∂

∂y
(vyφ) +

∂

∂z
(vzφ) +∇ · (Γ∇φ) = Q̃(φ), where Q̃(φ) ≡ Q− ∂

∂x
(vxφ) . (C.10)

However, this means that this modified source term now depends on φ itself, and the resulting alge-
braic system will thus be nonlinear, Aφ = b(φ). One may linearize the system using an estimate of
φ and update the values of Q̃ by performing additional outer iterations1. For an outer iteration n, the
linearized system is then given by Aφn = b(φn−1).

While this approach of explicitly treating the convection terms preserves the smaller matrix bandwidth
achieved by the FFT decomposition, it is very costly in terms of runtime. This happens because it
requires the solution of several linear systems, which are inherently dependent on the system from
a previous iteration. To make matters worse, the convergence rate of outer iterations – measured in
terms of the iteration residual – becomes considerably slower with larger grid sizes. Therefore, for the
considered cases, it is actually more efficient to forego the reduction of matrix bandwidth and implicitly
solve for the convection terms.

1Denoted these as “outer iterations” since assuming that an iterative solver will be used for the linear system.
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C.2 FFT Acceleration for FLS Schemes

With the procedure described in the previous section, the Author attempted to implement FFT ac-
celeration for FLS schemes, in strictly regular Cartesian grids. First, consider the pure-diffusion version
(i.e. with #»v = 0) of the equation defining a FLS method:∑

f∈F(I)

∑
g∈G(f)

wGg
Γ
(

#»

Sf · ∇
)
dgPfφs(f) = V

∑
g∈G(I)

wGg
Q( #»xg) (C.11)

Inner Face Stencils

Consider the contribution for a single inner face fin, as given in (C.12). The summation in g is the
same for all faces, and the pseudo-inverse matrix Ps(fin) of any inner face is equal, since the stencils
of all inner faces are equivalent. Thus, these terms may be grouped into a single vector αs(fin), which
depends only on the distances from the stencil cells to the target face fin. As such, the values α = α( #»x )

are odd-symmetric about face fin – i.e. α( #»x− #»xfin) = −α(− #»x− #»xfin).

for face fin :
∑

g∈G(f)

wGgΓ
(

#»

Sf · ∇
)
dgPs(fin)φs(fin) ⇒ αs(fin)φs(fin) (C.12)

The FLS2 method requires, for an inner face, a stencil of size ns(fin) = 2×3×3. In terms of symmetry
around target face fin, there are three types of cells corresponding to the only unique values α1, α2, α3 of
vector αs(fin). Therefore, expanding (C.12) for the case of FLS2 yields the expression shown in (C.13).
In this expression, η, τa, τb are grid coordinates centered on the target face fin, with η representing the
normal direction and τa, τb the tangential directions.

αs(fin)φs(fin) =

1
2∑

δ=− 1
2

(−1)δ−
1
2

[
α1

(
φη+δ,τa,τb

)
+ α2

(
φη+δ,τa+1,τb + φη+δ,τa,τb+1 + φη+δ,τa−1,τb + φη+δ,τa,τb−1

)
+ α3

(
φη+δ,τa+1,τb+1 + φη+δ,τa+1,τb−1 + φη+δ,τa−1,τb+1 + φη+δ,τa−1,τb−1

)]
(C.13)

To avoid the η, τa, τb grid system, it is useful to consider a pair of opposing inner faces f+in , f
−
in of a cell

I at i, j, k. Because of the odd-symmetry, the vectors from both faces are related by αs(f+
in)

= −αs(f−
in)

.
Without loss of generality, let the face pair be along the x direction – i.e. f+in , f

−
in are east and west

faces, respectively. As such, east face f+in is at i+ 1
2 , j, k, and west face f−in is at i− 1

2 , j, k. Therefore, the
contribution from this pair of faces may be written as

αs(f+
in)

φs(f+
in)

+αs(f−
in)

φs(f−
in )

= α1

(
φi−1,j,k − 2φi,j,k + φi+1,j,k

)
+ α2

1∑
m,n=−1

(
1− δ|m||n|

)(
φi−1,j+m,k+n − 2φi,j+m,k+n + φi+1,j+m,k+n

)

+ α3

1∑
m,n=−1

∣∣mn∣∣(φi−1,j+m,k+n − 2φi,j+m,k+n + φi+1,j+m,k+n

)
(C.14)
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where δab is the Kronecker delta in terms of a, b. For a shorter notation, let αs(fx
in)
φs(fx

in)
≡ αs(f+

in)
φs(f+

in)
+

αs(f−
in )

φs(f−
in)

. Spatially, the total stencil s(fxin) ≡ s(f+in) ∪ s(f
−
in) represents a 3×3×3 cube centered on

cell I. Additionally, let the set {φi−1,j,k;φi,j,k;φi+1,j,k} be called a “pencil” for a given j, k.

The previous equation highlights how the form of the stencil contributions is similar to the CD2
scheme. As such, it should also be possible to apply the same kind of Fourier synthesis as done in
Section C.1. Let x be the decoupling direction and Fx the corresponding Fourier-based discrete expan-
sion operator. Then, applying the operator to a single pencil for a given j, k yields

F
[
αjk

(
φi−1,j,k − 2φi,j,k + φi+1,j,k

)]
= αjkΛiφ̂i,j,k (C.15)

and applying the operator to the entire contribution of f+in , f
−
in results in

F
(
αs(fx

in)
φs(fx

in)

)
= α1Λiφ̂i,j,k

+ α2Λi

(
φ̂i,j+1,k + φ̂i,j−1,k + φ̂i,j,k+1 + φ̂i,j,k−1

)
+ α3Λi

(
φ̂i,j+1,k+1 + φ̂i,j+1,k−1 + φ̂i,j−1,k+1 + φ̂i,j−1,k−1

)
(C.16)

Similar expressions as (C.14) may be derived for the face pairs along y (north-south) and along
z (top-bottom), as given in (C.17) and (C.18). These expressions are identical to (C.14) except for a
permutation of the index variations l,m, n.

αs(fy
in)
φs(fy

in)
= α1

(
φi,j−1,k − 2φi,j,k + φi,j+1,k

)
+ α2

1∑
l,n=−1

(
1− δ|l||n|

)(
φi+l,j−1,k+n − 2φi+l,j,k+n + φi+l,j+1,k+n

)

+ α3

1∑
l,n=−1

∣∣ln∣∣(φi+l,j−1,k+n − 2φi+l,j,k+n + φi+l,j+1,k+n

)
(C.17)

αs(fz
in)
φs(fz

in)
= α1

(
φi,j,k−1 − 2φi,j,k + φi,j,k+1

)
+ α2

1∑
l,m=−1

(
1− δ|l||m|

)(
φi+l,j+m,k−1 − 2φi+l,j+m,k + φi+l,j+m,k+1

)

+ α3

1∑
l,m=−1

∣∣lm∣∣(φi+l,j+m,k−1 − 2φi+l,j+m,k + φi+l,j+m,k+1

)
(C.18)

Since these face pairs do not line up with the decoupling direction x of Fx, the expressions above
need to be rearranged to highlight the form

(
φi−1,j+m,k+n − 2φi,j+m,k+n + φi+1,j+m,k+n

)
:

αs(fy
in)
φs(fy

in)
= −2

[
α2

(
φi−1,j,k − 2φi,j,k + φi+1,j,k

)
+
(
α1 + 2α2

)
φi,j,k

]
+

1∑
m,n=−1

|mn|
[
α3

(
φi−1,j+m,k+n − 2φi,j+m,k+n + φi+1,j+m,k+n

)
+

(
α2 + 2α3

)
φi,j+m,k+n

]

− 2

1∑
n=−1

|n|
[
α3

(
φi−1,j,k+n − 2φi,j,k+n + φi+1,j,k+n

)
+

(
α2 + 2α3

)
φi,j,k+n

]
+

1∑
m=−1

|m|
[
α2

(
φi−1,j+m,k − 2φi,j+m,k + φi+1,j+m,k

)
+

(
α1 + 2α2

)
φi,j+m,k

]
(C.19)
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αs(fz
in)
φs(fz

in)
= −2

[
α2

(
φi−1,j,k − 2φi,j,k + φi+1,j,k

)
+
(
α1 + 2α2

)
φi,j,k

]
+

1∑
m,n=−1

|mn|
[
α3

(
φi−1,j+m,k+n − 2φi,j+m,k+n + φi+1,j+m,k+n

)
+

(
α2 + 2α3

)
φi,j+m,k+n

]

+

1∑
n=−1

|n|
[
α2

(
φi−1,j,k+n − 2φi,j,k+n + φi+1,j,k+n

)
+

(
α1 + 2α2

)
φi,j,k+n

]
− 2

1∑
m=−1

|m|
[
α3

(
φi−1,j+m,k − 2φi,j+m,k + φi+1,j+m,k

)
+

(
α2 + 2α3

)
φi,j+m,k

]
(C.20)

Applying operator Fx to the obtained expressions lead to the transformed contributions of north-south
pairs (C.21) and top-bottom pairs (C.22).

F
(
αs(fy

in)
φs(fy

in)

)
= −2Λi

(
α1 + 3α2

)
φ̂i,j,k

+ Λi

(
α1 + 3α2

)(
φ̂i,j+1,k + φ̂i,j−1,k

)
− 2Λi

(
α2 + 3α3

)(
φ̂i,j,k+1 + φ̂i,j,k−1

)
+ Λi

(
α2 + 3α3

)(
φ̂i,j+1,k+1 + φ̂i,j+1,k−1 + φ̂i,j−1,k+1 + φ̂i,j−1,k−1

)
(C.21)

F
(
αs(fz

in)
φs(fz

in)

)
= −2Λi

(
α1 + 3α2

)
φ̂i,j,k

− 2Λi

(
α2 + 3α3

)(
φ̂i,j+1,k + φ̂i,j−1,k

)
+ Λi

(
α1 + 3α2

)(
φ̂i,j,k+1 + φ̂i,j,k−1

)
+ Λi

(
α2 + 3α3

)(
φ̂i,j+1,k+1 + φ̂i,j+1,k−1 + φ̂i,j−1,k+1 + φ̂i,j−1,k−1

)
(C.22)

Adding the contributions from all three inner face pairs yields the final equation for an inner cell I,
representing row I of the transformed linear system b̂ = F (Aφ), as given by

b̂I = −Λi

(
3α1 + 6α2

)
φ̂i,j,k

+ Λi

(
α1 + 2α2 − 6α3

)(
φ̂i,j+1,k + φ̂i,j−1,k + φ̂i,j,k+1 + φ̂i,j,k−1

)
+ Λi

(
2α2 + 7α3

)(
φ̂i,j+1,k+1 + φ̂i,j+1,k−1 + φ̂i,j−1,k+1 + φ̂i,j−1,k−1

)
(C.23)

Boundary Conditions and Related Issues

Due to the initial assumptions of the previous derivation, equation (C.23) is only valid for cells whose
face stencils do not contain boundary faces. As such, it can only be applied to the entire system if all
boundary conditions – including those of dimensions that are not the decoupling direction – are peri-
odic. As listed in Table C.1, the direct operator for a periodic boundary condition is DFT. This, however,
presents an additional difficulty, because this operator represents a real-to-complex transform – i.e. even
when given a pure-real input, the output will always be complex. Thus, the underlying solver must be
able to deal with complex numbers. Given the timeframe, the Author was unable to successfully imple-
ment FFT with periodic boundary conditions. The implementation of this feature is thus left for future
work.

The use of FFT in an FLS scheme with Dirichlet and/or Neumann boundary conditions is up-to-now
not clear. One could attempt to decouple only the inner face stencils, and, for stencils with boundary
faces, take advantage of the linearity propriety of F by transforming only the φ values – e.g. F

(
φi−1,j,k−

2φi,j,k+φi+1,j,k

)
= φ̂i−1,j,k−2φ̂i,j,k+ φ̂i+1,j,k – thus not reducing the number of stencil points. While this

approach – at the time of writing – has not yet worked, it appears to be a promising strategy, specially
since, for large grid sizes. The number of total faces in a grid is on the same order of magnitude as
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the number of cells, Nf ∼ NC ≡ NxNyNz where the Nx, Ny, Nz are the number of cells along each
dimension. On the other hand, the number of stencils that contain a boundary face is on the order of the
outer grid area, Ns(f) − Ns(fin) ∼ 2(NxNy + NyNz + NzNx). Therefore, as the grid size increases, the
number of boundary-face-containing stencils becomes negligible in relation to inner-face stencils, and
the overall benefit given by the reduction of the matrix bandwidth is then recouped.

C.3 Deferred-Correction Approach

Some high-order methods may sometimes be unstable, unlike their lower-order counterparts. There-
fore, it might be beneficial to combine the two to take advantage of the stability of low-order methods and
the accuracy of high-order methods. One such approach is the so-called “deferred correction”, which
has been traditionally used in the context of flux limiters [8].

Consider the linear systems created from two numerical methods, one corresponding to a low-order
method (C.24) and another to a high-order method (C.25). Now, assuming that the system will be
solved using an iterative method, one may define φn as the solution vector at iteration n. Combining
a previous-iteration version of (C.24) and (C.25) into the current-iteration version of both (C.24) yields
the deferred-correction linear system (C.26). Assuming that the system converges, then, as the solver
iterates, φn−1 approaches φn and, in the limit of convergence, the deferred-correction system becomes
equivalent to the high-order system.

ALφ = bL (C.24)

AHφ = bH (C.25)

ALφ
n = bH + (AL −AH)φn−1 (C.26)

It is important to note that the deferred-correction approach as described in (C.26) is significantly
less computationally efficient than using a single method, since it requires the computation and storage
of two N×N – albeit sparse – matrices.

C.3.1 Without FFT decomposition

To test the deferred-correction approach described above, the same was applied to combinations
of CD2 and FLS as, respectively, the low- and high-order methods. The results are summarized in
Figure C.2, which plots, for different grid sizes, the iteration residual norm ∥∆φ̂n∥ and the numerical
error norm ∥ε∥ in terms of outer iterations.

The norm type considered here is the weighted l1-norm, defined according to (C.27) for an arbitrary
vector υ of length N . Equations (C.28) and (C.29) define the iteration residual norm and the numerical
error norm, where φ,φ′ are the analytical and numerical solutions, respectively. The reference error
∥εref∥ – used to normalize the error norm in Figure C.2b – is the actual converged error value, obtained

64



(a) Iteration error, ∥∆φn∥ (b) Normalized error, ∥ε∥
εref

Figure C.2 Error measurements for deferred-correction approach with CD-2 and FLS-n as the low- and high-
order methods, for different grid sizes and convergence criteria of ∥∆φn∥ > 108.

by solving the FLS scheme implicitly without deferred correction.

∥υ∥ ≡ 1

N

N∑
i=1

|υi| (C.27)

∥∆φ̂n∥ ≡
∥∥∥φ̂n − φ̂

n−1
∥∥∥ (C.28)

∥ε∥ ≡ ∥φ−φ′∥ (C.29)

It is clear from Figure C.2a (and also, to a lesser extent, from Figure C.2b) that the convergence rate
of the deferred correction is not dependent on the order of the chosen methods, but instead on the grid
size. Figure C.2b shows the clear trend of “diminishing returns” as the results converge. This illustrates
something common to all numerical methods, which is the difficulty and importance of choosing an
adequate convergence criteria, considering that ∥εn∥ is unknown a priori, in general.

Note that, in Figure C.2b, the results from FLS2 are the only that show a normalized error of less
than one, i.e. ∥ε∥< ∥εref∥; this happens due to the CD2 method having a lower numerical error than
FLS2, meaning that the deferred-correction approach has to converge to a larger error than its initial
value.

An unexpected result from these tests was that, using CD2 as the implicit lower-order method, con-
verged solutions were obtained for all FLS schemes, including the sixth- and eight-order variants. This
goes against what was reported by Vasconcelos [9]. However, his results were done with a purely
one-dimensional implementation, while the current tests were obtained with a fully three-dimensional
implementation.

C.3.2 With FFT decomposition

The same deferred-correction approach could be applied – in theory, at least – for methods with FFT
decomposition. The implicit method could be chosen to be the FFT-accelerated CD2, while the explicit
high-order method could be a FLS scheme. With this, one manages to avoid developing an FFT-based
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FLS scheme. However, the Author was unable to successfully implement this approach. This is specially
unnerving because, since both the deferred-correction approach (without FFT) and the FFT-based CD2
have been correctly implemented, the combination of these two should have been fairly straightforward.

C.4 Final Remarks

Regarding computational cost, the Author believes that – in the considered context of FFT acceler-
ation – the explicit treatment of convection terms and the deferred-correction approach are extremely
lacking. For the former, there is no gain in runtime when compared to the implicitly solving for the con-
vection terms. However, these two strategies remain relevant for their original purposes, which is to
provide additional stability to the numerical methods.

Regarding implementation, most of the issues encountered were not regarding the formal derivation
of the FFT-based methods. Instead, the most troublesome issue was in programming with and con-
ciliating the two distinct numerical library used: FFTW [4] and PETSc [10]. In specific, these two take
different approaches to – among others – the definition of a complex variable type and the decompo-
sition of parallel (distributed) arrays. The former was the main obstacle in implementing a FFT-based
method with periodic boundary conditions, while the latter was the main reason why the current work
only considers serial and not parallel computation.

Overall, although some proposed approaches were unsuccessful, the underlying strategy has been
shown to be promising, for the considered case of regular Cartesian grid. It is doubtful, however, that
such can be implemented for unstructured grids – for which the FLS schemes were originally developed
– since the Fourier synthesis requires that the grid spacing along the decoupling dimension be uniform.

Regarding future work on this topic, it would first be relevant to solve the implementation issues for an
FFT-accelerated FLS2 (section C.2). This enables a more solid comparison between the two versions of
FLS2, specially in regards to parallel performance. Second, for the case of CD2, it would be interesting
to compare how much of the FFT-acceleration benefit is lost when implicitly solving for convection terms.
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