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Abstract

Satellite images offer big cities the ability to easily acquire their entire territory at a good resolution
(70 cm for the Pleiades satellites), with high frequency updates that allow the automatic detection of
certain changes. Following the “Zéro Artificialisation Nette” biodiversity plan proposed by the Ministry
of Ecological Transition in France, municipal governments are searching for solutions to measure soil
artificialisation yearly and accurately. In this work, a tool is proposed to help monitor land use and
understand the artificialisation phenomena in metropolises, based on the processing of Pleiades images.
The tool receives as inputs two very high-resolution satellite images of a region at times T1 and T2 and
produces a change map, which indicates, at a pixel-level (0.5 m), surfaces which have been artificialised
or naturalised between T1 and T2. It is composed of three core modules: a preprocessing module,
responsible for converting the input images in a standardised comparable format (through calibration
and corrections); an image segmentation module, responsible for segmenting the input images into
semantically meaningful objects at a higher level of abstraction (through deep learning segmentation);
and a change detection module, responsible for performing a change detection analysis between the
feature maps. It is shown that the proposed solution can generate artificial maps which correctly
identify artificialised and naturalised regions, with a higher spatial resolution (0.5m) than the current
benchmark solution: CORINE Landcover Dataset. The solution is also applicable in other urban topics
and is currently being tested in CNES projects in Toulouse, Paris and Senegal.
Keywords: soil artificialisation, change detection, very high-resolution satellite images, computer
vision, deep learning segmentation

1. Introduction
Biodiversity is undergoing massive and rapid ero-
sion. Among the main causes is the artificialisa-
tion of soils1. According to cadastral data, as of
2019, 3.5 million hectares in France have been arti-
ficialised [11] and, at the national level, between
20000 and 30000 hectares of NAF soils are con-
sumed.

As an effort to curb this trend, the French Min-
istry of Ecological Transition presented the ”Zéro
Artificialisation Nette” (ZAN) biodiversity plan
[11], with the goal of reaching ”zero net artificiali-
sation” by 2050. The plan measures net artificiali-
sation in terms of a balance of artificialised surfaces
and naturalised surfaces) and by surface area [not
volume]. In accordance to the most recent version of
the law, the ZAN goal is tracked through the annual

1According to the French Ministry of Ecological Transi-
tion, Soil Artificialisation consists in transforming natural,
agricultural or forest soils through development operations
that can lead to partial or total loss of permeability, in or-
der to assign them to urban or transport functions (housing,
activities, shops, infrastructures, public facilities, etc.) [11].

publication of an inventory of the consumption of
natural spaces. Currently, the two main providers
of this type of data are the Teruti-lucas Survey used
by the Ministry of Agriculture and Food and the
CORINE Landcover database (CLC+) used by the
Ministry of Ecological Transition [10]. The survey
is based on on-site polling and the database is based
on the automatic analysis of Sentinel satellite im-
ages. The main drawbacks of the Teruti-Lucas Sur-
vey are the manual resources needed and the time
it takes to get the results. The main limitation of
the CLC+ database is the geometric accuracy of its
satellite data of 10 m, which does not allow for the
detection of dispersed rural areas and roads, and,
consequently, results in an underestimation of arti-
ficialisation.

There is a clear need for a solution, which
can provide governments with data at a
higher geometric resolution in a narrower
time interval.

Due to the technological improvements of both
acquisition sensor technology and data processing
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algorithms of the last decade, there are currently
available multitemporal and multispectral satellite
images with very high spatial resolution, i.e. which
are acquired with a metric to sub-metric spatial res-
olution in the panchromatic channel, by passive sen-
sors.

The Pleiades constellation, developed at the Cen-
tre National d’Études Spatiales (CNES), is com-
posed of two optical Earth-imaging satellites, ca-
pable of acquiring stereo and multispectral satellite
images with a Very High spatial Resolution (VHR)
[2].

The constellation can revisit any place on earth
within a day, providing data on entire territories
in a very short window of time. The optical sen-
sors aboard the satellite capture 5 spectral bands,
namely, a panchromatic band (0.47–0.83 µm) with
a high geometric resolution of 0.7 m/pixel (much
better than the 10 m resolution of Sentinel 2), and
a blue (0.43–0.55 µm), green (0.50–0.62 µm), red
(0.59-0.71 µm) and near infrared (0.74–0.94 µm)
bands with a lower spatial resolution of 2.8 m/pixel
[13]. Finally, Pleiades satellites allow for the acqui-
sition of stereo images, which provide height infor-
mation and allow for the generation of digital height
models, which indicate, the height of objects, such
as buildings and trees, relative to the surface of the
earth [2].

The exploration of such images could provide
the necessary tools for metropolises to efficiently
measure artificialisation in France.

Artificialisation detection through the compar-
ison of satellite images can be inserted into the
research domain of Remote Sensing Image
Change Detection, which refers to the use of re-
mote sensing images and related data, in the same
region at different periods, to, through image pro-
cessing and analysis, identify and extract significant
changes, and generate change images, which reflect
accurate ground object change information.

Despite the potential of VHR satellite images
in artificialisation detection, challenges associated
with these types of data must be taken into
consideration when performing change detection.
Firstly, spectral variability is high. Buildings,
for example, have complex appearances due to
pipelines, chimneys, etc; as a result, spectral
characteristics in VHR images are significantly
heterogeneous. High spectral variability within
geographic objects of interest increases within-class
variance, resulting in an increase in the uncertainty
of image interpretation methods [26]. Additionally,
differences in the conditions of acquisition of the
images to be compared, namely, time of acquisition
(season of the year), sensor parameters, view
angles (satellite orbit), etc. also contribute to the

heterogeneity between images. Differences in the
acquisition view angle, for example, can induce
misalignments due to the impact of topography,
small changes in relief of the terrain or the presence
of buildings [27]. Finally, shadows cast by terrain,
buildings, and trees, are a significant issue in larger
areas for change detection [26].

Several systems have been proposed to tackle
such issues and perform change detection using
VHR satellite images.

In the unsupervised domain, Bovolo et al.[3] pro-
posed a method, where a multi-level extension of
the Change Vector Analysis method coupled with
manual tresholding is applied to features, gener-
ated from segmentation rules based on spectral in-
formation to the input images, in order to gener-
ate a change map. Although simple to implement,
spectral-based segmentation methods identify all
spectral changes, including, for example, weather
changes in vegetation foliage, which are not of in-
terest for our application.

In the deep learning realm, Song et al. [28] pro-
posed a method, where a neural network is trained
to generate change maps from input images, by us-
ing pixels and labels with a low level of uncertainty,
obtained by feeding the outputs of five traditional
unsupervised methods for change detection into an
uncertainty algorithm. Preprocessing of the input
images are necessary before applying the method.
The main drawback from the method is that the
performance of the method is limited by the perfor-
mance of the unsupervised change detection meth-
ods chosen.

Regarding supervised solutions, Saha et al. [24]
proposed a method, which extracts deep features
with the highest variability between two input
images from a pre-trained CNN [30] and applies a
multi-level extension of the CVA coupled with an
automatic thresholding method on those features
to generate change maps. The pre-trained CNN
performs segmentation for classes ”impervious
surfaces”, ”building”, ”low vegetation”, ”tree”,
”car” and ”clutter/background”. Although show-
ing promising results, it is important to note that
the CNN was trained using manually anotated
datasets from two regions of Germany, which are
not representative of urban areas around the world.
Additionally, as in any supervised approach, the
segmentation accuracy is dependent on the quality
of the labelled data.

In the present work, a change detection tool is
proposed to detect soil artificialisation in multitem-
poral very-high resolution (< 1m spatial resolution)
stereo satellite images. Similarly to [24], the tool ex-
ploits a UNET [20] semantic segmentation to gen-
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erate features useful to detect changes of interest.
Differently from [24], the tool includes a labelling
method which generates labelled data from images.
This means the tool can be tailored or generalised
to any region in the world, as long as input data
is available. In order to mitigate errors originated
by the high spectral variability of the input im-
ages, altitude information extracted from the satel-
lite images is paired with the input spectral infor-
mation. The the tool addresses shadow-induced er-
rors through filtering and the grabcut algorithm [21]
is exploited to mitigate classification errors from the
deep learning method.
As a satellite imagery based solution, the pro-

posed tool does not require the resources or time
associated with the Teruti-Lucas Survey. By pro-
cessing satellite images with a sub-metric resolu-
tion, the tool allows for a finer final product resolu-
tion than the CLC+ geographic database.

2. Background
The present work proposes an object-oriented
change detection method, with image preprocess-
ing operations.

2.1. Image preprocessing
Traditional image preprocessing techniques include
any regularization operations to mitigate errors or
increase quality of the images, which are performed
on satellite images before information is exploited.
Three common preprocessing operations, used in
this work are calibration, pan-sharpening and the
generation of digital height models.

2.1.1 Calibration

Raw images captured by optical satellites are char-
acterized by pixel values, called digital numbers
(DN), which quantify the energy recorded by the
satellite optical detectors, influenced by acquisition
conditions [17]. For this reason, DNs are not phys-
ically interpretable or comparable. Image calibra-
tions or corrections aim at normalizing those pixel
values, in order for them to be spectrally and geo-
metrically independent from acquisition conditions,
such as light and atmospheric conditions, the sen-
sor internal parameters, the satellite’s frame of ref-
erence, the earth’s curvature, etc.
Radiometric Calibration is the process of con-

verting digital numbers into a physical unit, which
is spectrally independent of the images’ acquisition
conditions [5].
Calibrated values are called surface reflectivity

(equivalent to surface reflectance or top of canopy
(TOC) reflectivity), which is a ratio denoting the
fraction of light that is reflected by the underly-
ing surface in the given spectral range. As such,
its values lie in the range [0,1] [5]. Depending on

the available data regarding acquisition conditions,
different atmospherical models can be used to ob-
tain surface reflectivity. In the present work, the 6S
radiative transfer model [29, 25] is used.

Rectification is a geometric correction, which
removes the effects of image perspective (tilt) and
relief (terrain) for the purpose of creating a plani-
metrically correct image, projected in a standard
frame of reference, from which it can be adequately
compared with other images [8]. If the frame of ref-
erence is a coordinate reference system, this process,
named orthorectification (orthographic = map),
also includes the assignment of cartographic coordi-
nates (latitude, longitude) to image data (line, col-
umn). Orthorectification is extensively detailed in
literature. In this work, the python library ORFEO
Toolbox[6], developed at CNES, is used to perform
orthorectification.

2.1.2 Pan-sharpening

A very common remote sensing process, called pan-
sharpening, is to fuse a panchromatic image with
high spatial resolution with a multi-spectral one
with a low spatial resolution, so as to get an im-
age combining the spatial resolution of the panchro-
matic image with the spectral richness of the multi-
spectral image [5].

Several pan-sharpening methods have been pro-
posed. The Relative Component Substitution
(RCS) method [8] is used in the present work.

2.1.3 Digital Elevation Models

Models of the Earth’s surface can be generated us-
ing stereo or tri-stereo images, which are images of a
scene taken from different points of view. Different
elevation models exist depending on the reference
location from which altitude is measured. For the
proposed application, a digital height model (DHM)
is explored.

A DHM represents the height of all objects in
Earth’s surface relative to the bare ground surface
[15] and corresponds to the difference between a
digital surface model (DSM) and a digital terrain
model (DTM).

A DSM represents the height of the Earth’s sur-
face including trees, buildings, and any other sur-
face objects. The height can be measured relative
to an Earth ellipsoid or an Earth geoid[18]. Sev-
eral approaches have been proposed to calculate
DSMs from satellite images. In the current work,
the library CNES Algorithms to Reconstruct Sur-
face (CARS) [32], developed at CNES, is used.

A DTM is a height representation of the bare
ground (bare earth) topographic surface of the
Earth excluding trees, buildings, and any other sur-
face objects. The height can be measured relative to
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an Earth ellipsoid or an Earth geoid [18]. Although
multiple approaches have been proposed for the
generation of DTM’s, in this work, the Bulldozer
library [15], developed at CNES, is used. Bulldozer
relies on the cloth simulation principle, firstly pro-
posed in [33], where a filter performs an operation
similar to dropping a cloth on top of an inverted
DSM. The cloth will cover the buildings without
plunging into them, thus revealing the shape of the
bare ground.

2.2. Object-oriented change detection
Object-oriented change detection methods process
images through the analysis of image segments and
not image pixels. Images segments are obtained
through semantic segmentation. Firstly, an image
is divided into several regions with homogeneity of
shape and spectral properties; and secondly, each
of these regions is associated with a semantic la-
belling. After segmentation, traditional change de-
tection methods are carried out [31].
In this work, three types of semantic segmenta-

tion are used, namely, spectral-based, deep learning
and graph-based segmentation.

2.2.1 Spectral-based segmentation

Spectral-based segmentation refers to the use of
spectral indices and thresholding to extract objects
or features of interest from a raster image.
Spectral indices are mathematical equations,

which combine spectral reflectance from two or
more spectral bands in order to highlight pixels
showing the relative abundance or lack of a land-
cover type of interest in an image. In the present
work, indices on vegetation [22], bare soil [12], shad-
ows [23] and water [19] are explored.
Segmentation maps can then be obtained by

thresholding any spectral index, manually or
through automatic algorithms. In the present work,
the multi-otsu method [16] will be explored.

2.2.2 Deep learning segmentation

Deep Learning Segmentation refers to the use of
deep neural networks to segment an image into ob-
jects or features of interest. Several network ar-
chitecture have been proposed for the problem of
supervised segmentation. One of the most renown
architectures, which is explored in this work, is the
U-Net.
The U-Net [20] is a fully convolutional neural net-

work (FCN) that performs a compression, followed
by a decompression of an image. The spatial com-
pression step allows to extract feature information
from the input image. The decompression step al-
lows to generate pixel-wise segmentation from the
information calculated during the compression. As

in any FCN, convolutional layers are responsible for
identifying pattern features in data.

2.2.3 Graph-based segmentation

GrabCut is an image segmentation method based
on graph cuts, proposed by Rother et al.[21]. Its
output is a binary map which separates background
pixels from foreground pixels.

The idea is to represent an image as a graph, such
that each pixel is a node connected to it’s 4 or 8 sur-
rounding neighbors (the surrounding pixels). The
edges connecting pixel nodes have weights which re-
flect inter-pixel color similarities. There is a virtual
”source” node denoting foreground, and a virtual
”sink” node denoting background. The source and
sink nodes are both connected to every single pixel-
node. The weights associated with the edges con-
necting the ”sink” and ”source” nodes to the pixels
reflect the probability of the pixel to match a color
distribution of the background or foreground.

The goal is then to solve a mincut algorithm, with
a cost function equal to the sum of all weights of the
edges that are cut. Pixels connected to the source
node become foreground and those connected to the
sink node become background. This iterative pro-
cess stops when the classification converges.

2.2.4 Change detection

The change detection method employed in the
present work is image differencing.

Image Differencing is one of the simplest unsu-
pervised change detection methods. A difference
image, containing change information, is generated
by finding the difference between each correspond-
ing pixel in the two images, band by band [1]. For
this technique to work, the two images must first be
aligned so that corresponding points coincide, and
their pixel values must be made compatible, either
by careful calibration, or by post-processing (using
color mapping).

3. Proposed Approach
The proposed framework for the Zéro Artificialisa-
tion Nette tool is presented in figure 1.

Figure 1: ZAN Tool architecture.

The tool receives as input two very high-
resolution (VHR) satellite images of a region A at
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times T1 and T2 and produces a change map, which
indicates at a pixel-level (0.5 m) surfaces which have
been artificialised or naturalised between times T1
and T2.
To achieve its goal, the tool is composed of three

core modules: a preprocessing module, responsible
for converting the input images in a standardised
comparable format; an image segmentation mod-
ule, responsible for segmenting the input images
into semantically meaningful objects at a higher
level of abstraction; and a change detection mod-
ule, responsible for performing a change detection
analysis between the feature maps. Depending on
data availability, the tool is capable of generating
labelled training datasets from any image.

The Image Preprocessing Module takes as
input a Pleiades stereo or tri-stereo image bundle,
in sensor geometry and digital number measure-
ments, and generates a pansharpened image in top
of canopy reflectivity pixel values, merged with a
digital height model, both orthorectified into a ref-
erence coordinate system, provided as a parameter.
The following operations, described in [8, 4, 32, 15],
are performed:

• a radiometric calibration, where digital num-
bers are converted into top of canopy reflec-
tivity pixel values of the nadir multi-spectral
image;

• a pansharpening operation, where the nadir
multi-spectral calibrated image is merged with
the corresponding panchromatic image;

• an orthorectification, where the pansharpened
image in sensor geometry is converted into a
reference ground geographic geometry;

• a digital height model generation, from the
stereo panchromatic images;

• a co-registration operation, where the digital
height model is projected into the reference ge-
ometry of the pansharpened image;

• a concatenation operation, which generates the
output raster image in GeoTIFF format, with
five bands: red, green ,blue ,nir and height.

The Image Segmentation Module takes as
input an orthorectified calibrated image composed
of five bands (red, green, blue, near-infrared
and height) and generates as output an artificial
map composed of one band, classifying pixels as
non-artificial and artificial. To achieve its goal,
the module is divided into two steps: an initial
classification step, in which the input image is used

to generate a segmentation map of five classes,
namely, vegetation, bare soil, building, road and
water; and a binarisation step, in which the five
classes are converted into two classes, namely,
artificial and non-artificial.

The classification task is a multi-label problem
solved using a supervised learning approach.

The network architecture considered is a UNET
[20], with 5 levels of compression and 16 convolu-
tional filters in the first and last layers. The acti-
vations functions of the hidden and output layers
are the ReLU function and the sigmoid function,
respectively, which are adapted to the multi-label
problem. The loss function chosen for learning is
the binary cross-entropy calculated as follows

L = −
M∑
j=0

N∑
k=0

yjk log(ŷjk) + (1− yjk) log(1− ŷjk)

(1)
where M is the number of pixels per window, N is
the number of classes, y is the prediction result and
ŷ is the corresponding label (expected result).

As in any supervised approach, representative la-
belled data is necessary to train the model. A la-
belling method is used to generate binary masks
of vegetation, bare soil, building, road and water
classes, by exploiting spectral information from the
input images, Openstreetmap [7] and Urban At-
las [14] open source urban planning datasets and
Sentinel-2 satellite images2.

Supervised prediction through the above men-
tioned methods generates a probability map with
five bands, each containing the probabilities of
pixels belonging to each class. Segmented maps
are then generated through algorithm 1, where
MO(p, n) is the application of a multi-otsu method
[16] to a probability map p to generate n thresholds
and GC(R, a, b, c, d) is the application of the grab-
cut algorithm [21] to a color image R, initialised
with binary masks a, b, c and d corresponding
to ’background’, ’probably background’, ’probably
foreground’ and ’foreground’, respectively, to gen-
erate binary segmented masks.

As opposed to simply applying the argmax()
function to the probability map, algorithm 1
improves upon the results of the deep learning
approach, by using them as inputs in a graph-
based binary segmentation method: grabcut. The
grabcut algorithm typically generates a more
conservative segmentation result i.e. smaller and
more cohesive objects than the argmax() function.
It is therefore ideal for the segmentation of objects
with simple shaped borders, but is not as effective
otherwise. Therefore, algorithm 1 applies the

2Refer to thesis for further information.
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Algorithm 1 Urban Classification Algorithm

Input:
R, the color image to be segmented
p, the probability map

1: procedure Urban Classification(R, p)
2: for each p ∈ {pbuilding, proad, pwater} do
3: τmin, τmiddle, τmax ←MO(pk, 4)
4: a← p < τmin

5: b← τmin < p < τmiddle

6: c← τmiddle < p < τmax

7: d← τmax < p
8: g ← GC(R, a, b, c, d)
9: p← p · g

10: end for
11: psoil ← psoil · ¬(gbuilding ∨ groad ∨ gwater)
12: pall ← [pvegetation, psoil, pbuilding, proad, pwater]
13: curban ← argmax

k
pall(k)

14: end procedure
Output:

curban, the segmented urban map

grabcut algorithm to classes ’building’, ’road’ and
’water’ and uses the results to exclude pixels from
belonging to the ’building’, ’road’ and ’water’
classes. Additionally, it prioritizes the ’vegetation’
class probability results (as it has been shown to
be the class with better performance).

Once the classification task is performed, binari-
sation of the segmented 5-class urban map is per-
formed by classifying all pixels belonging to the
classes vegetation, bare soil and water as non-
artificial and all pixels belonging to the classes
building and road as artificial.

The Change Detection Module takes as input
two artificial maps, with classes artificial and non-
artificial, and generates an artificialisation map,
with classes artificialised, unchanged or naturalised.
To achieve this goal, the following image differenc-
ing is performed, pixel by pixel,

cchange = cT1
artificial − cT2

artificial (2)

where cT1
artificial and cT2

artificial are the classifications
(1 or 2) given to the pixel in the input images of time
T1 and T2 respectively.

Additionally, in order to mitigate classification
errors induced by the presence of shadows, the fol-
lowing filtering operation is performed

cchange = cchange · ¬(sT1 ⊕ sT2) (3)

where sT2 are the shadow masks of image T1 and
image T2. The shadow masks for both images
are obtained by calculating the shadow indices [23]

of each input image and thresholding the result,
such that all pixels with a shadow index inferior to
τshadow are considered to be shadows. The thresh-
old can be obtained through automatic methods,
but in the current implementation, the threshold
was empirically defined at 0.12. The defined filter-
ing operation is based on the assumption that if a
shadow appears in a given region in one image, but
does not appear in the other image and a change
appears in the corresponding region of the change
map, that change was probably detected due to the
misclassification of the shadow.

Finally, a morphological opening with a radius of
3 pixels (1.5m) is performed on the change map, in
order to remove objects which are not of interest for
the considered application (< 10 m2).

4. Results

4.1. Problem description
The proposed solution is tested using a pair of
Pleiades stereo images of the Montpellier region,
around October of 2018 and July of 2020.

The training dataset is composed of two labelled
images of Montpellier and Toulouse, in October of
2018 and 2017 respectively, generated from the pro-
posed labelling method.

4.1.1 Ground-truth image

The ground-truth artificialisation dataset (used for
validation) is the result of filtering public data on
demolition and construction permits of Montpel-
lier, provided in the SITADEL database [9] between
2017 and 2020. In total, it contains 89 artificialised
parcels and 26 naturalised parcels. Although the
information provided by public authorities is over-
all reliable, the definition of change used to gener-
ate the ground-truth can be questioned: a building
razed following a demolition permit can be consid-
ered as naturalised in the validation dataset even
if the soil is not yet permeable. Moreover, a large
parcel with a small construction will be considered
as completely artificialised even if the change was
minimal when compared to the size of the parcel.

4.1.2 Conversion to parcel level

As the results obtained from the system are at pixel-
level, a conversion into parcel-level is necessary be-
fore performing the validation of the system. The
conversion into parcel-level is performed as follows:

cchange(p) = argmax (nart(p), τp ·N,nnat(p)))− 1
(4)

where cchange(p) is the class of a parcel (unchanged,
artificialised or naturalised), N is the number of

pixels in the parcel, nart(p) =
∑N

k=1(cchange(k) =
−1) is the number of pixels in the parcel classified
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as artificialised, nnat(p) =
∑N

k=1(cchange(k) = −1)
is the number of pixels in the parcel classified as
naturalised and τp = 0.1 is the percentage of pix-
els in a parcel above which the parcel is considered
changed.

4.1.3 Metrics

The tool is evaluated at two different stages: firstly
during the training of the classifier network and sec-
ondly at the output stage, through the validation
process described above.
At the network training stage of validation, five

metrics are tracked, namely, the loss and accuracy
of the training and validation datasets, and the pre-
cision, recall and confusion matrix of each class.
The model chosen for prediction corresponded to
the model with the lowest validation loss (in a total
of 400 epochs).
At the output stage of validation, three metrics

are evaluated, namely, the precision, recall and nor-
malised confusion matrix of each class (by row).

4.2. Segmentation analysis
The segmentation approach is consolidated through
the comparison of its results with other approaches.

4.2.1 Label sensitivity study

To validate the decision of segmenting the input im-
ages into a multi-label of five classes, three opposing
segmentation problems are studied:

• a mono-label problem with five classes : vege-
tation, bare soil, building, road and water;

• a mono-label problem with two classes : non-
artificial and artificial;

• a multi-label problem with two classes : non-
artificial and artificial.

The labels used for the 2-class problems are gen-
erated by performing a binarisation operation on
the corresponding 5-class label.
The loss and output layer activation function cho-

sen for the mono-label problems are the weighted
categorical cross-entropy and softmax func-
tions. The loss is given by:

L = −
M∑
j=0

N∑
i=0

yji log(
ŷji∑N

u=0 ŷju
) (5)

where M is the number of pixels per window, N
is the number of classes, y is the prediction result
and ŷ is the corresponding label (expected result).
These are the default functions for mono-label
problems.

Performance is evaluated at the artificial map,
with classes natural and artificial, stage. In order
for the class assignment phase, i.e. the operations
which transform the probability map into an arti-
ficial map, to minimally influence the analysis on
label sensitivity, the same method is used in all
considered problems to select the dominating class:
curban = argmax(p1, ..., pN ), where N is the num-
ber of classes considered, curban is the urban seg-
mentation map and pk is the probability map of
class k.

Figure 2 shows a close-up of all the maps gener-
ated.

(a) Mono-label with 2
classes.

(b) Mono-label with 5
classes.

(c) Multi-label with 2
classes.

(d) Multi-label with 5
classes.

Figure 2: Close-ups of mono-label and multi-label
artificial maps (red and green correspond to the ar-
tificial and non-artificial classes respectively) super-
imposed over the prediction images (in RGB com-
position).

It is possible to observe that the borders of ob-
jects, such as buildings, are more clearly defined in
the multi-label maps as opposed to the mono-label
maps. Additionally, the mono approaches seem to
not be unable to identify roads.

In order to quantitatively evaluate the aforemen-
tioned results, a 2-class mono-label of the evalu-
ated regions of both Montpellier images is used as
a ground-truth. The label is generated through the
same method as the 2-class mono-label training la-
bel. There are several issues with this approach.
Firstly, all the inaccuracies generated from the la-
belling method which are present in the training la-
bel will also be present in the validation label. Sec-
ondly, the label is generated using the same method
as one of the approaches’ training label. Conse-
quently, if training were to be ’perfect’, that is, if
the model were to learn to perfectly replicate the
labelling method’s output, the 2-class mono-label
would automatically generate the best metrics, even
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if it was not the most accurate label. However,
because no additional ground-truth data is avail-
able and the 2-class mono-label labelling method
directly generates images with the same format as
the artificial maps, the decision is made to compare
the artificial maps with the label.
Table 1 presents the accuracy of the model and

the recall and precision of both classes for the con-
sidered approaches.

Table 1: Performance of artificial map generation
methods.

Mode Mono-Label Multi-Label

Nb of Classes 2 5 2 5

Accuracy 0.84 0.86 0.96 0.96

Non-artificial
Recall

90.8% 93.0% 98.3% 98.6%

Non-artificial
Precision

87.9% 88.0% 96.5% 96.2%

Artificial
Recall

66.8% 66.5% 90.5% 89.8%

Artificial
Precision

73.2% 78.2% 95.5% 96.0%

Overall, the multi-label approaches have superior
results. Although the 2-class multi-label approach
presents the best results, because the difference is
not significant and a five class segmentation allows
for several applications to be explored, it is possible
to validate the choice of a multi-label approach with
five classes.

4.2.2 Method sensitivity study

The choice of object segmentation through deep
learning was made based on its research-proven effi-
cacy, as well as the availability of label information
for the considered application.
To evaluate the relevancy of the proposed seg-

mentation method, which performs supervised
learning, using labelled data, generated from a
combination of radiometric masks and open source
datasets, an alternative radiometric classification
approach is tested.
The radiometric method generates an artificial

binary map of classes non-artificial or artificial, by
combining the label masks of three classes: veg-
etation, bare soil and water to define the class
non-artificial. Each label is generated through the
thresholding of a different radiometric index. The
vegetation label is obtained by the same process as
the proposed approach’s vegetation label i.e. NDVI

and NIR thresholding. The bare soil label is also
generated through NDVI and NIR thresholding.
Finally, the water label is generated through the
thresholding of the SWM Index [19], using Sentinel-
2 input images and an empirically defined minimum
threshold.

The artificial map generated from the radiomet-
ric method is compared with the one generated from
the best approach of the last analysis (2-class multi-
label approach). Because no ground-truth is avail-
able to quantitatively evaluate both methods, only
a qualitative analysis is performed.

In figure 3 several close-ups of the maps, which
overall exemplify the benefit of the deep learning
approach, are presented.

(a) Radiometric map. (b) 2-class multi-label
map.

(c) Radiometric map. (d) 2-class multi-label
map.

(e) Radiometric map. (f) 2-class multi-label
map.

Figure 3: Close-ups of the 2-class multi-label and
radiometric artificial maps (red and green corre-
spond to the artificial and non-artificial classes re-
spectively) superimposed over the images.

In the first close-up, it is possible to see how the
neural network was able to detect a patch of bare
soil, while the radiometric index classified it as ar-
tificial. In the second close-up, it is possible to see
how the canal and the sand were both classified
as artificial in the radiometric map, but identified
as non-artificial in the deep learning map. Finally,
the third close-up shows an example where the ra-
diometric map is as successful as deep learning in
identifying non-artificial regions. In this particular
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case, the neural network only needed the radiomet-
ric information to perform a prediction.
Overall, there is a clear benefit in a machine

learning approach if information additional to ra-
diometric information is provided for a training im-
age, even if the number of classes is kept as two.
The information provided by osm in the label, as
well as by the DHM generated by the stereo images,
allows for the neural network to be able to more
clearly distinguish artificial from non-artificial.

4.3. Output analysis
Performance metrics for the output of the proposed
system are presented in table 2.

Table 2: Metrics (in %) of Change Classes for pro-
posed solution.

Approach Precision Recall
Unchanged 86% 93%

Artificialised 89% 81%
Naturalised 71% 68%

The naturalised class presents the worst results
out of all classes. A possible reason is the ambiguity
of the definition of a naturalised surface, detailed in
section 4.1.1. A recently demolished area may easily
still be classified as a road, as opposed to bare soil,
due to its imperviousness, but be identified as a
naturalisation in the ground-truth image.
Figure 4 presents results obtained for different

parcels.

(a) 2018. (b) 2020. (c) Change Map.

(d) 2018. (e) 2020. (f) Change Map.

Figure 4: Close-up on images (in RGB) and
artificialisation maps (green and red in change
maps correspond to naturalised and artificialised
pixels) of parcels 34172000KM0031 (top) and
34172000EZ0159 (bottom).

It is possible to observe that the tool correctly
identifies artificialisation.

5. Conclusions
In the present work, a tool capable of generating
an indicator of urban artificialisation from multi-
temporal very high-resolution stereo satellite im-
agery, was presented. The tool generates artifi-
cial maps which correctly identify artificialised and
naturalised regions, with a higher spatial resolution
(0.5m) than the current solution used by the french
government: CLC+.

A comparative analysis between the proposed
segmentation approach and alternative approaches
validated the approach. In particular, it was pos-
sible to verify the superior performance of a multi-
label deep learning approach compared to a radio-
metric based approach or even a mono-label based
approach.

Verification and validation of the porposed solu-
tion was performed at parcel scale using a validation
dataset developed at CNES.

There are several leads to follow in future work.

Regarding the image segmentation module, the
labelling method currently generates incomplete
and noisy data, which influences the training of the
classifier network. A future step could involve ei-
ther the search for a more accurate label for train-
ing or the implementation of a network resistant to
incomplete and noisy labels.

Regarding the validation process, because the
validation dataset is at parcel scale, it is not possi-
ble to quantitatively validate the system at a finer
level of resolution. An interesting future step could
be to explore the possibility of developing of a val-
idation dataset with a higher resolution.

Finally, all tests performed on the system used a
single pair of images. An important development in
the project is the robustification of the system rel-
ative to different input conditions, such as lighting,
acquisition angles, period of acquisition and region
analysed. Currently, the tool is being tested in the
Eolab for projects in Toulouse and the Senegal.

The tool developed is currently being used in
CNES missions in Toulouse, Paris and Senegal.
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