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Abstract 

 

Proteins are biomolecules essential for life and responsible for many of the bio-

logical processes and reactions present in every living organism. The existence 

of computational supportive tools for viewing and presenting results, reasoning 

and formulating hypotheses related to their molecular structure is crucial for the 

development of scientific areas like chemistry, biology etc. However, this kind 

of visualization tools are very computational heavy and demanding since there 

are structures with hundreds of thousands of atoms. For this scenario, we have 

standalone tools that already present acceptable performance and a wide range 

of visualization features, but they are not very approachable for students or a 

more casual audience aiming for quick and simple investigations. On the other 

hand, there are web browser applications that are trying to achieve the same 

features as the standalone ones and at the same time be more accessible for eve-

ryone. Still, they are conditioned by the web programming languages’ perfor-

mance and their inability to deal with heavy amounts of data. Considering this 

scenario, the main objective of this work is to deal with these limitations on the 

web browser, loading the highest possible number of atoms using the least 

memory possible and implementing the same visualization features which are 

only available in standalone applications. 
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Resumo 

 
 

As proteínas são biomoléculas essenciais à vida e responsáveis por muitos dos proces-

sos e reações biológicas presentes em cada organismo vivo. A existência de ferramentas 

computacionais de apoio à visualização e apresentação de resultados, raciocínio e for-

mulação de hipóteses relacionadas com a sua estrutura molecular é crucial para o de-

senvolvimento de áreas científicas como química, biologia, etc. No entanto, este tipo 

de ferramentas de visualização são muito pesadas e exigentes em termos computacio-

nais, uma vez que estamos a falar de estruturas com centenas de milhares de átomos. 

Para este cenário, temos as aplicações standalone que já apresentam um desempenho 

aceitável e uma vasta gama de features de visualização, mas que não são muito acessí-

veis ou de fácil uso paras estudantes ou para um público mais casual, uma vez que esses 

utilizadores têm o objetivo de as usar para realização investigações rápidas e simples. 

Por outro lado, existem aplicações de navegação web que estão a tentar alcançar as 

mesmas características que as standalone e ao mesmo tempo ser mais acessíveis para 

todos. Ainda assim, são condicionadas pelo desempenho das linguagens de programa-

ção web e pela sua incapacidade de lidar com grandes quantidades de dados. Conside-

rando este cenário, o principal objetivo deste trabalho que incide em lidar com estas 

limitações no browser, carregando o maior número possível de átomos utilizando o 

mínimo de memória possível e implementando as mesmas características de visualiza-

ção que só estão disponíveis nas aplicações standalone. 
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1 Introduction 

The chemical compounds that we humans ingest are mainly known by macronutrients, 

which provide us with most of our energy, being protein one of the three primary ones 

(the others being carbohydrate and fat). Every cell in the human body contains protein, 

which is an important nutrient, not just for athletes and bodybuilders but for everyone. 

Humans can’t survive without all nine essential amino acids, and protein is essential to 

strengthen bones and body tissues (such as muscles), but it does much more than that, 

it participates in practically every process of a cell, playing a part in providing a source 

of energy, assisting in cellular repairing, metabolic reactions, form blood cells, acting 

as immune response, and more. 

 

Massive biomolecular structures are being used and experimented daily setting up tech-

niques such as electron microscopy (high resolution images of biological specimens) 

and crystallography (discerning the arrangement and bonding of atoms). Also, emerg-

ing integrative or hybrid methods (I/HM) are building structural models of vast macro-

molecular machines, at times containing more than hundreds of millions of atoms. 

Moreover, a file format was specifically in order to store all needed data from atoms 

and molecules about certain proteins, called Protein Data Bank (PDB) which is refer-

enced with more detail in the sections below. 

Having this situation, the interactive visualization of massive macromolecular com-

plexes on the web is turning into a challenging issue as some techniques, such as those 

ones, advance at an unprecedented rate and deliver structures of increasing size, and 

they are a widely used tool in biological research.  

Of course, displaying these molecular structures on the web and making them accessi-

ble to all educators, scientists, and students (not just experts with access to dedicated 

networking, hardware and software), is essential. 

Despite the significant advances in molecular dynamics (MD) and biology research, 

there’s still a lack of specialized bioinformatic tools. The difficulty lies in the efficient 

management of the data, in sending and processing 3D information for its visualization. 

In order to visualize such scenes at interactive rates, it is necessary to limit the number 

of geometric primitives rendered in each frame. 
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Molecular viewers are a vital tool for our understanding of protein structures and func-

tions, because different 3D shape visual representations of proteins can give us visual 

clues about the protein structure and its functions. There are various types of protein 

representations and studying these adversities helps the biologists to better understand 

the protein behavior and to design proteins with modified properties. One of the most 

common approaches to these studies is to compare the protein structure with other mol-

ecules and reveal similarities and differences in their polypeptide chains (chain of 

amino acids).  

One of the many challenges, in observing multiple protein representations at the same 

time and comparing each one of them, is that in some cases it is just not possible to 

scale the atoms enough in order to get the desired detailed information about them, 

because we are talking about hundreds of thousands of particles. 

 

The general objective of all visualization modules is to reduce or avoid geometry data 

whenever possible, and recently, image-based rendering (IBR) techniques have 

emerged as an alternative to geometry-based systems for interactive scene display. With 

IBR methods, the 3D scene is replaced by a set of images, and traversing the scene is 

therefore independent of object space complexity. 

Polygon meshes are a large field of computer graphics and a geometric modelling that 

simplifies rendering. Polygons is a collection of faces, vertices and edges defining a 

shape of an object and the respective faces usually consist of triangles or other simple 

convex polygons. With this, it is possible to apply a variety of operations like smoothing 

and Boolean logic or algorithms like ray tracing. In these approaches, 3D models are 

replaced by a small set of textured polygons that resemble the original geometry.  

There are also imposters (Christiansen, 2005) (known as billboards) methods that are 

mainly used to reduce the time required to render a 3D scene, by caching images of 3D 

objects and using their images in place of the real objects in a scene that is only ren-

dered as 2D objects when they are far enough from the camera. Presentation is tested 

in regards to the distance the camera has from the imposter and from what angle we 

look at the imposters from. In a few words, they are 2D elements incrusted into a 3D 
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world. This technique decreases the amount of work performed each frame results in 

less time spent rendering.  

 
Basically, the web applications, to these days, have very basic visual features, they 

don’t use ray tracing on the contrary of the standalone ones. Since, the atoms alongside 

with the polygons have a lot of information that occupy a lot of memory in the CPU 

(atom information loading) and in the GPU (when the spheres have a lot of vertexes, 

triangles and polygons etc.), in this work, it will be attempted to load the most possible 

quantity of atoms with the less possibly memory and optimize that process, that is cru-

cial. For that, a parser and loader will be created to convert PDB files into the formats 

that the libraries eventually use, smoothing the all loading procedure. Also, a hybrid 

implementation will be done, that will consist in having impostors/billboards when the 

objects are too far away and ray tracing when the objects are close to the camera. This 

approach needs to be heavily considered, because ray tracing is a slow process and it’s 

not bearable to have it working for all situations in a 3D scene with a lot of information 

going on simultaneously.  This process will have as consideration the study and inves-

tigation performed in web ray tracing done in 2021 (Vitsas N. , 2021), alongside with 

the Rayground framework (Vitsas N. , 2020) that provides an easy way to test the al-

gorithms and visualize their outputs right away. 

2 Related Work 

In this section the main aspects of the standalone and web tools for protein visualization 

will be addressed. A more detailed explanation and overview will be done to the web 

applications, since those ones will be the main reference for what will be implemented 

in the solution of the problem. In section 2.3 are referenced the most known and useful 

web tools and a brief summary will be presented for each one of them, mentioning their 

main aspects, advantages, principal results, limitations, weak points, how they evaluate, 

use, manage and test the data from the protein structures. Also, in section 2.1 a quick 

summary will be given about PDB file format which is the format that all these appli-

cations use to get the atoms data, alongside with a brief description regarding the vari-

ous representation of proteins. 
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2.1 Protein Data Format and Representation 

Protein Data Bank (PDB) format is a standard for files containing atomic coordinates, 

it is used for structures and is read and written by many programs. It is a text file con-

sisting in lines of information having each line called a record. A PDB file generally 

contains several different types of records, arranged in a specific order to describe a 

structure. 

As for describing molecular structures, PDB is the most commonly used way to store 

and share atomic coordinates, still its use is increasing every year, with over 600 million 

total downloads from the RCSB PDB (Berman, 2003). Although the data is kept in flat 

ASCII files, the PDB format is ubiquitous.  

 

 
 

Fig. 1. Example of a PDB file format (Botzki, 2021). 

There are four types of protein representation: the space filling diagram that shows all 

atoms that are making up the protein, the ribbon/cartoon diagram shows the organiza-

tion of the protein backbone and highlights the alpha helices, the surface representation 

shows the areas that are accessible to water molecules and finally the ball-and-stick 

model that displays both 3D positions of the atoms and the bonds between them. 
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One of many challenges in visualizing multiple protein representations and compare 

each one of them, is that such representations are very limited to its scalability and due 

to the occlusion problems, for example, the spatial representation is only possible for 

comparison in a few structures (Kocincová, 2017).  

 

 
 

Fig. 2. Protein representations (2a - Ball and stick model, 2b – Surface model, 2c - Ribbon 
model, 2d – Space filling model) (Mary, 2004). 

The representation model that is going to be focused is the space-filling one. In this 

model, its envisioned the surface of the molecule as being determined by the Van Der 

Waals radius (radius of an imaginary hard sphere representing the distance of closest 

approach for another atom) of each atom of the molecule and crafted atoms as hard-

wood spheres of diameter proportional to each atom’s Van Der Waals radius. This rep-

resentation reflects the electronic surfaces that molecules present, that dictate and show 

how they interact, one with another. The main difference between the space filling 

model and ball stick is that, in the ball and stick model, the molecular structures are 

depicted by spheres and rods, whereas, in the space filling model, the molecular struc-

tures are depicted by full-sized spheres without rods. 
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It will be important to know exactly which different elements may be present in the 3D 

environment, including all their specific characteristics in order to make things 

smoother and simpler. So, there are about 20 amino acids within a protein, and the most 

prevalent 5 atoms are: Carbon (C), Hydrogen (H), Oxygen (O), Nitrogen (N) and Sul-

fur(S) as shown in the figure 3 below. Each one of them have their size, Van der Waals 

radius of the sphere and color as represented in the table 1 below. The rendered 3D 

scene will only have 5 types of different elements, with their specific radius. Yet, there 

will be hundreds of thousands spheres in the proteins themselves. 

 

 
 

Fig.  3. Protein elements representation (Methionine Essential amino, 2021). 

Table 1. Elements that build a protein (Marcella Martos, 2021).  

Atom Ele-

ment  

Chemical 

Symbol 

Van Der Waals Radius 

(Å = 10−10 m) 

Standard 

Color 

Carbon C 170 Gray 

Oxygen O 152 Red 

Nitrogen N 155 Purple 

Sulfur S 180 Yellow 

Hydrogen H 120 Blue 
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2.2 Standalone Tools 

A standalone application runs entirely on the device and does not require any additional 

software to work, because the application contains all the logic, it does not require an 

internet connection or the installation of any other services, all the files will be included 

in the setup file itself. They use our PC resources, so generally these tools are more 

powerful allowing a more sophisticated studies and analysis taking place, which is 

handful for scientists, biologists, biochemistries, basically a shorter and more specific 

audience of users. As we can see in table 2, there’s an example of a few of the main 

standalone applications for protein analysis alongside their type of image rendering 

(Imposters or Polygons).  

Applications like Chimera (Pettersen, 2004), Chimera X (Goddard, 2018), VMD 

(Humphrey, 1996), Pymol (DeLano, 2002) or Yasara (Krieger, 2014) can make the use 

of new technologies power like RTX and OptiX providing all the visualization features 

needed for protein representation as ray tracing, shaders, lighting, reflections and many 

more, allowing a more detailed information about them. Being their strong advantages 

factor against the web applications that will be referred to in section 2.3. However, all 

this progression comes from a long way that can be marked with the arrival of QuteMol 

(Tarini, 2006), revealing one of the first of ambient occlusion implementations. 

Table 2. Standalone tools with their respective main IBR technique.  

Name Last 

Update 

Imposters Polygons Link 

Chimera 2020   https://www.cgl.ucsf.edu/chimera/ 

Pymol 2021   https://pymol.org/2/ 

VMD 2014   https://www.ks.uiuc.edu/Re-

search/vmd/ 

Chimera X 2021   https://www.cgl.ucsf.edu/chimerax/ 

Yasara 2021   http://www.yasara.org/index.html 

QuteMol 2007   http://qutemol.sourceforge.net/ 

 

https://www.cgl.ucsf.edu/chimera/
https://pymol.org/2/
https://www.ks.uiuc.edu/Research/vmd/
https://www.ks.uiuc.edu/Research/vmd/
https://www.cgl.ucsf.edu/chimerax/
http://www.yasara.org/index.html
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Table 3. Standalone tools with their respective visualization features.  

Name Shaders Reflections Light Source 

Positioning 

Chimera    

Pymol    

VMD    

Chimera X    

Yasara    

QuteMol    

 

 

2.3 Web Tools 

On the other hand, web tools are targeted for a more casual audience, they have more 

care about how the UI is presented and make sure if it’s easy to use and understand its 

output and results, they have more focus on portability and guarantee that the main and 

essential algorithms and analysis are working.  

The general steps for displaying a macromolecular structure on the web are: download 

file, decompress and parse, populate a data model, create geometry and render it. 

A web application executes in the server side where it is hosted and mostly uses web 

technologies like HTML5, CSS, JavaScript, WebGL and other browser extensions. 

Logic and data storage are not on the client machine (there may be limited exceptions 

due to this factor), rather one or more servers take those architectural roles. The UI 

capabilities on the client machine are limited to what the web browser (including 

plugins) supports and the programmer generally has no ability to implement arbitrary 

functionality on the client, but rather must work within the capabilities supported by 

the client.  

WebGL was developed to allow JavaScript applications running in the web browser to 

take advantage of OpenGL ES 2.0 (first portable mobile graphics API to expose pro-

grammable shaders in the latest generation of graphics hardware) compatible GPUs 

which had been specifically designed for mobile devices. While WebGL has been avail-

able for several years in Chrome and Firefox, WebGL support was only recently added 

to Microsoft’s Internet Explorer and Apple’s Safari, including iOS. 
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In the table 2 below, there’s a list of the most reliable and used web applications for 

protein analysis and visualization referring to their type of image rendering (Imposters 

or Polygons) and the programming language used. 

 

Table 4. Web browser tools with their respective IBR technique and programming language. 

Name Last 

Update 

Impostors Polygons WebGL1 WebGL2 JavaScript Link 

HTMol 2019      https://htmol.tripplab.com/ 

Molmil 2016      https://pdbj.org/molmil2/ 

Web3DMol 2017      https://web3dmol.net/ 

JSmol 2016      http://jmol.sourceforge.net/ 

Aquaria 2015      https://aquaria.ws/ 

Mol* 

viewer 

2019      https://molstar.org/viewer/ 

EzMol 2018      http://www.sbg.bio.ic.ac.uk/ezmol/ 

NGL 

Viewer 

2018      https://nglviewer.org/ 

ICn3D 2019      https://www.ncbi.nlm.nih.gov/Structure/icn3d/ 

LiteMol 2017      http://webchemdev.ncbr.muni.cz/Litemol/ 

 

 

 

These web applications have way fewer visual features than the standalone applications 

and at most they provide some shaders and some management regarding the lights 

source positioning, as discriminated in the table 5 below. 

 

 

 

 

 

 

 

 

 

 

 

 

https://htmol.tripplab.com/
https://pdbj.org/molmil2/
https://web3dmol.net/
http://jmol.sourceforge.net/
https://aquaria.ws/
https://molstar.org/viewer/
http://www.sbg.bio.ic.ac.uk/ezmol/
https://nglviewer.org/
http://webchemdev.ncbr.muni.cz/Litemol/
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Table 5. Web browser tools with their respective visualization features. 

Name Shaders Light Source 

Positioning 

HTMol   

Molmil   

Web3DMol   

JSmol   

Aquaria   

Mol* 
viewer 

  

EzMol   

NGL 

Viewer 

  

ICn3D   

LiteMol   

 

 

2.3.1 HTMol 

 
 

Fig. 4. HTMol Interface. 

HTMoL (Carrillo-Tripp, 2018) is a safe GPU-accelerated web application specifically 

designed to visualize and stream molecular dynamics trajectory data in a web browser. 
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Focuses on the efficiency of data management in processing and sending 3D infor-

mation for its visualization. 

It integrates the latest web technologies and hardware acceleration in the client-side. Its 

architecture is a dedicated full-stack tool that integrates the recent web technologies 

like WebGL, NodeJS, HTML5, CSS3, allowing to execute several remote tasks through 

calls between the client and a web server. Primarily used by researchers, but is just as 

applicable to other fields, like learning and education. 

 

Tests were performed to evaluate the effects that the use of third-party 3D libraries 

(plugins) have on the application’s front-end performance, and three.js, a JavaScript 

library, was developed to create and display animated 3D computer graphics on the 

web browser, and also minimizes code implementation work, but a detrimental impact 

was found on the application’s performance. Despite these not so good results, HTMoL 

abandoned the use of such libraries in version 3.0 anyway. Now, the code implemented 

was made with native primitives built-in. This strategy reduced the total weight of the 

application and consistently increased the rendering performance one order of magni-

tude in all browsers and platforms. 

Since HTMoL does not depend on a third-party 3D library anymore, it is a light-weight 

tool reaching high frame rates. Also, the modular design of the core engine ensures that 

HTMoL will be adaptable to future technological improvements.  

 

Also, a comparison was made through a variety of environments (browsers + Operative 

Systems) and internet explorer demonstrated to be a little slower due to its lack of sup-

port to modern technologies. With this, one weak point of web tools, and particularly 

in this one, is that the performance of some functionalities from the tool may vary de-

pending on the user’s browser. 

 

 

 

 

 

 

 

 



22 

 

 

2.3.2 Molmil 

 

 
 

Fig. 5. Molmil Interface. 

One of the design goals of Molmil (Bekker, 2016) was to create a molecular viewer 

which can produce high quality images suitable for publications. It can take advantage 

of GPU hardware acceleration using WebGL. It runs on a wide range of platforms such 

as Windows, Linux, Mac OSX, Android and iOS. On the other hand, it should also be 

able to scale to very large structures available in the Protein Data Bank (PDB) consist-

ing of hundreds of thousands to millions of atoms. 

 

By default, WebGL can only display a limited number of polygons. However, by using 

an extension to WebGL (OES_element_index_uint) which is available on all modern 

platforms, it becomes possible to efficiently render very large or highly detailed struc-

tures. Molmil uses this extension to build high quality geometry for small and medium 

sized structures and dynamically scale down the quality as the size of the structure in-

creases to gigantic proportions.  

 

To enable high quality lighting even when using polygon models of low detail for these 

gigantic structures, Molmil uses tuned Phong shading (reflection model) which can ac-

curately calculate the lighting even for simplistic polygon models.  
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Molmil is also a light-weight and full featured viewer for the PDB, as such it can load 

multiple types of file formats, being flexible in that way. Users can also load these files 

from their local hard drive. 

 

In contrast, it’s very dependent on the user’s browser, Molmil requires the browser to 

support WebGL. Also, to be able to load these gigantic structures, an adequate amount 

of memory is still required, which is often not available on smartphones, tablets and 

older systems. 

Having this, multiple studies were done to different browsers, and what was concluded 

is that due to limitations of Chrome’s JavaScript engine, even Chrome’s 64-bits version 

is incapable of loading 3j3q (Atomic-level structure). Mozilla’s Firefox and Apple’s 

Safari however have no such problem with the 64-bit versions. Still, it will still take 

dozens of seconds to several minutes depending on the web browser, the user’s hard-

ware such as the processor and the user’s internet connection since 3j3q’s compressed 

data file is still about 40 MB large. 

 

 

2.3.3 Web3DMol 

 

 
 

Fig. 6. Web3DMol Interface. 

Web3DMol (Shi, 2017) has unique functionalities, including sequence plot, fragment 

segmentation, measure tool and meta-information display. Is a valuable tool for both 
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researchers and developers who are interested in protein structure research.  It saves 

users the time and energy spent on installing of software or plugins and gaining famil-

iarity with command-lines. It’s helpful for visualizing protein structure data without a 

need to parse PDB archives (required process for displaying a macromolecular struc-

ture) and construct geometries from the beginning.  

 

Since PDB archives record not only the 3D coordinate data but also some related infor-

mation about the molecules, such as the molecular classification in biology, the struc-

tural resolution and the experimental details. With this, Web3DMol supports several 

types of measurement, including distance, vector angle, dihedral angle and area among 

atoms, which can be carried out through simple mouse interactions. 

 

As expected, 3D modeling and rendering are both resource intensive calculations, and 

as a form of interpreted language, JavaScript is not good at high efficiency calculations. 

Therefore, when the size of a molecule becomes very large, Web3DMol sacrifices some 

graphical quality to maintain the efficiency. Another restriction is from web browser 

manufacturers, like for example, V8, the JavaScript engine in Google Chrome, has a 

threshold for maximum heap memory usage, so that when the number of atoms is too 

large, Chrome will crash. In fact, for very large molecules, RCSB PDB does not offer 

common PDB archives to download.  JavaScript was originally designed for web page 

interaction, and its function libraries are not abundant, therefore, it is difficult for 

Web3DMol to handle PDB archives if they are in zipped format while users are manip-

ulating the 3D structure.  

The support for WebGL on mobile devices is uneven, Web3DMol runs well on some 

of the latest cell phones, but not very smoothly on most mobile devices at present. 
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2.3.4 JSmol 

 

 
 

Fig. 7. JSmol Interface. 

Jmol (Herraez, 2006) was developed by a community of volunteers and the most rele-

vant feature that make it a promising tool is that it is open source, meaning that anyone 

can get the source code and modify it, promoting future development. Also, it is avail-

able freely on the internet and at no cost. It is written in Java, which makes it compatible 

with most operating systems and with all major web browsers and provides triple im-

plementation: standalone application, applet for embedding in a web page, and devel-

opment tool kit for inclusion into other Java software. 

The file format is recognized automatically upon reading the file, without giving any 

instructions. The software has been designed to be modular so is easily expanded into 

new formats since the file parser is independent of the core functionality. In addition to 

reading molecules, it can read script files, text files with instructions or commands to 

be applied to the model (type of rendering, rotation, translation etc.).  

Writing WebGL export drivers for Jmol is somewhat more complicated than a direct 

translation of Java into JavaScript, and Apple decided to not allow Java on their iOS 

platform and the Java browser plugin coming under fire as a possible security risk. As 
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a consequence, as technology advances, web applications, such as Proteopedia, are at 

risk of losing their audience. 

 

Although Java does not run in some devices like iPhones and iPads, JavaScript does. 

Due to this, JSmol (Hanson, 2013) was developed, a JavaScript-only version of Jmol, 

and its use in Proteopedia (3D protein encyclopedia). A key aspect of JSmol is that it 

includes the full implementation of the entire set of Jmol functionalities, including file 

reading and writing, scripting, and rendering. 

 

A comparison of Jmol and JSmol was made and Jmol has shown that it is more compact 

than JSmol. This difference is due to the fact that the Java language library is already 

present on the client machine, in the form of a Java plug-in, and that the Java code is in 

a binary format. In contrast, when a page utilizing JSmol is accessed, the required com-

ponents of the Java language, translated into nonbinary JavaScript, must be downloaded 

in full. In both cases, however, files are cached, and subsequent page views are far 

faster than the first viewing. Performance with small molecules is very similar in the 

two versions, but clearly JavaScript does not scale at the same rate as Java. However, 

nowadays JavaScript lacks many of the basic features of Java. 
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2.3.5 LiteMol 

 

 
 

Fig. 8. LiteMol Interface. 

LiteMol (Sehnal D. , 2017) focuses on three components: data delivery services, the 

BinaryCIF compression format (efficient binary encoding), and a new lightweight 3D 

molecular viewer. Together, these components enable near instant delivery and visual-

ization of large macromolecular data sets. It works in all modern web browsers and 

mobile devices, and this makes macromolecular structure data available to diverse com-

munities of users with and without structural biology expertise. Provides 3D visualiza-

tion capabilities to display 3D coordinates data in standard representations and overlay 

them with additional annotations. Moreover, it readily displays experimental maps and 

has the ability to visualize low resolution structures obtained using bioimaging tech-

niques and thus lacking atomic coordinate models. LiteMol components can be used 

either independently or together in a wide variety of applications including the analysis, 

delivery, and visualization of custom data sets. 

 

The BinaryCIF compression format provides a uniform data storage framework for 

macromolecular structure data (including experimental maps and annotations), and this 
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removes the need for handling multiple file formats. Standard PDBx/mmCIF dictionary 

definitions, provided by the PDB, are used to store macromolecular models, and this 

facilitates straightforward adaptation of existing software to use BinaryCIF. These fea-

tures make BinaryCIF an important improvement over the MMTF format, which is 

limited to storing coordinate information.  

On the other hand, a MMTF file is much more oriented to performance and makes 

things much faster than using BinaryCIF, which can be a negative factor to LiteMol, 

not being very worried about rendering and parsing speed. NGL Viewer, mentioned in 

section 2.3.9 is a good example of this, because they have a different file format pref-

erence. 

 

2.3.6 Aquaria 

 

 
 

Fig. 9. Aquaria Interface. 

Aquaria (O'donoghue, 2015) in contrast to most molecular graphics tools, the user in-

terface is organized primarily by protein sequence, not structure. A user starts by spec-

ifying a protein of interest by name and organism, by identifier or by URL, then gener-

ates a concise visual summary of all related PDB structures. The related structures are 

grouped first by alignment to the specified sequence and second by oligomeric state. 
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Aquaria is designed for biologists, its user interface creates clear and useful default 

views that shows only the most relevant structural information tightly integrated with 

sequence, features and text that provide biological context. It uses a minimal set of 

mouse-based controls that are intuitive yet powerful. For example, its “Autofocus” fea-

ture allows exploration of large complexes by focusing on one molecule at a time. Can 

also be controlled via hand gestures using the Leap Motion (hand tracking software). 

Currently, Aquaria contains millions of precalculated sequences to structure align-

ments, providing a depth of sequence-to-structure information currently not available 

from other resources. 

Although much of the Aquaria workflow could be performed using a combination of 

other resources, it greatly reduces the time and effort required. 

 

Since Aquaria is more focused in organization and guaranteeing a more friendly UI, it 

doesn’t concern much about how the files are parsed, which type of files are being used, 

or any kind of high level of rendering techniques, which of course it may impact its 

performance. Besides, no tests were performed regarding this issue, which proves that 

they need to work on this particularity. 
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2.3.7 Mol* Viewer 

 
 

Fig. 10. Mol Star Viewer Interface. 

Mol* Viewer (Sehnal D. , 2021) is a powerful web application for the visualization and 

analysis of molecular data. Its visualization capabilities far exceed other currently avail-

able web visualization tools, and its speed and robustness allow the fast and intuitive 

visualization of molecular data ranging from atomistic models from PDB or MD sim-

ulations up to hybrid models with hundreds of thousands of residues. Furthermore, of-

fers advanced selection and a rich set of visualization models and coloring types. Being 

this way, the primary 3D structure viewer is used by RCSB PDB and can be easily 

integrated into third party services. 

 

Also enables 3D visualization and streaming of macromolecular coordinate and exper-

imental data, together with capabilities for displaying structure quality, functional, or 

biological context annotations, it can show one structure, a few and a large set of struc-

tures. Inherits many LiteMol and NGL Viewer features (mentioned below in section 

2.3.9). High performance graphics and data management that allows users to simulta-

neously visualize up to hundreds of protein structures, stream molecular dynamics sim-

ulation trajectories, and render cell-level models.  
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One of the main purposes of Mol* Viewer is to enable web based molecular visualiza-

tion and analyses by providing a common library for the rapid and efficient develop-

ment of tools and services for the structural biology/bioinformatics enthusiasts and 

more casual audience. 

As such, it is possible to render many types of large systems, including ribosomes, virus 

capsids, collections of macromolecules or MD simulation systems. It can visualize 

markedly larger molecular systems than other currently available web visualization 

tools. Due to built-in BinaryCIF, decompression support, and advanced techniques for 

model and volume/experimental data streaming, even large structures are interactively 

renderable over limited bandwidth.   

 

Mol* Viewer offers a diverse visualization and streaming capabilities and displaying 

options, which is good, however, this many possibilities at the same time is not that 

very user friendly, at least for casual users who are still learning the application itself 

and the basics of protein visualization. Furthermore, this factor wasn’t even tested or 

mentioned in the article which leads to a strong indication that they are not worried 

about how the UI is organized. 
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2.3.8 EzMol 

 

 
 

Fig. 11. EzMol Interface. 

EzMol (Reynolds, 2018) focuses on guiding the user through a series of steps designed 

to encompass the most common needs for the visualization of protein molecules. Is 

intended to allow the quick rendering and coloring of molecular structures. Provides 

limited functionality that is nevertheless sufficient for many biological purposes and 

does not require the user to download software. It has applications in situations where 

the user has a short time to prepare images for an e-mail, presentation or lecture, or 

even using it dynamically to highlight areas of structures onscreen and visualize where 

they lie on the protein structure. Has potential for teaching, particularly for younger 

students who have not yet learned how to use a more complex molecular graphics pro-

gram, and for the prototyping of macromolecule images. 

 

Allows the upload of molecular structure files in PDB format to generate a customized 

image manipulation tool for that structure. Provides intuitive options for chain display, 

adjusting the color/transparency of residues, side chains and protein surfaces, and for 

adding labels to residues. The final adjusted protein image can then be downloaded as 

a high-resolution image.  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/molecular-graphics
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/macromolecule
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Another main advantage we can get by using EzMol goes around being a cross-browser 

compatible on multiple platforms, requires no text input and addresses the most com-

mon molecular visualization requirements. 

 

EzMol features were put in comparison with those of JSMol, PyMol and UCSF Chi-

mera. As expected, these programs have greater capability, but there is a trade-off be-

tween usability and control. To spotlight EzMol, for instance to apply a single applica-

tion of color to a contiguous set of residues can be done using three clicks in EzMol: 

two to open the palette and select a color and one to highlight the residues. Also has the 

benefit of being able to see the color being applied in real time as the corresponding 

cells are highlighted. 

 

 

2.3.9 NGL Viewer 

 

 
 

Fig. 12. NGL Viewer Interface. 

NGL Viewer (Rose, 2015) is a memory efficient representation for molecular data, as 

well as a reference implementation for decoding and parsing MMTF files (compressed 

binary data) in JavaScript, speeding up the download time.  More known for the devel-

opments in the NGL data model and the use of MMTF that significantly reduce the 

peak memory consumption. Due to its high performance, NGL Viewer has been se-

lected as the default 3D viewer for the RCSB PDB website, a dedicated viewer for 
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mobile devices. NGL Viewer downloads MMTF files that contain the asymmetric unit 

and transformations to create biological assemblies. 

It includes all necessary bonding information for rendering. The NGL data model uses 

a flat, columnar layout with a single JavaScript TypedArray for each property. This 

allows the parsed MMTF data to be reused or copied in blocks to the NGL data model.  

Several tests and comparisons were done in different file formats like MMTF and 

mmCIF and the results demonstrated that MMTF files can be parsed about 10 times 

faster than mmCIF, and one factor that plays a role in that difference is that a MMTF 

file is one third the size of a zipped mmCIF file. This file format preference, compared 

with other web tools, may provide less 3D visualization and representation capabilities.  

Another use case of NGL is the interactive download and rendering of structures using 

the plugin in Jupyter Notebooks. The fast download and rendering allow the user 

browse through a set of structures without any noticeable delay in loading and rendering 

structures. 

 

For rendering, WebGL is efficiently used by preparing the data such that the number of 

calls to the WebGL API does not grow with the size of the macromolecules. WebGL 

API calls have a fixed time cost, therefore molecular representations are grouped and 

rendered together as opposed to rendering each atom individually. By that, the substan-

tial overhead every WebGL API call adds is avoided. Impostors are also used to render 

cylinders and hyperboloids. 
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2.3.10 iCn3D (I-see-in-3D) 

 

 
 

Fig. 13. iCn3D Interface. 

iCn3D (Wang, 2020) can simultaneously show 3D structure, 2D molecular contacts and 

1D protein and nucleotide sequences through an integrated sequence/annotation 

browser. Pre-defined and arbitrary molecular features can be selected in any of the 

1D/2D/3D windows as sets of residues and these selections are synchronized dynami-

cally in all displays. Biological annotations such as protein domains, single nucleotide 

variations can be shown as tracks in the 1D sequence/annotation browser. iCn3D fol-

lows the FAIR (Findable, Accessible, Interoperable and Reusable) guiding principles, 

for this the JavaScript code is oriented to be reusable as annotations could also be re-

trieved by other tools.  

Third party annotations, such as mutations from ClinVar (public archive that stores 

information about genomic variations), functional sites, interaction interfaces, struc-

tural or conserved domains, and their simultaneous visualization in 1D/2D/3D can pro-

vide useful and compelling evidence relating sequence, structure and function. More 

detailed genome level annotations could be linked to the structures in the future. For 

example, protein sequences could be shown together with “chromosome”, “gene”, “in-

tron” and “exon” in a genome browser. In the future, the developers of iCn3Dare think-

ing of adopting an emerging 3D technology such as virtual reality. 
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This unique visualization features provided by this tool may bring, of course, some 

performance issues in its rendering process or at least not that high performance wise 

compared side to side, for instance, with NGL Viewer.  

3 Methodology 

A web browser application was created based on billboards and global illumination, 

programmed in WebGL2 and several techniques were used to reduce the memory us-

age, load big data structures, increase performance and provide a fairly decent friendly 

graphics. 

3.1 Techniques, Mechanisms and Data Structures 

 

There was a need for special care during the code implementation like trying to reuse 

objects such as geometries, materials and textures to avoid the creation of unnecessary 

objects, for instance, in a render loop. A data structure called BufferGeometry was 

mainly used, which is a representation of a mesh, line or a point of geometry from the 

three.js library that is an API used to create and display animated 3D computer graphics 

in a web browser using WebGL.  

JavaScript TypedArrays were also used since it is a good option because they are objects 

that provide a mechanism for reading and writing raw binary data in memory buffers, 

they grow and shrink dynamically and can have any value, so they are fast. If each 

property of the data model is a TypedArray, it can allow the parsed data to be reused or 

copied in blocks, which can lead to a reduction of the peak memory consumption. A 

parser and a loader of PDB files was created in order to obtain the information of the 

atoms that will be represented as objects in the 3D scenes, allowing as well memory 

reuse and avoiding duplicating data. Utilization of common text-based 3D data formats 

was avoided, such as Wavefront OBJ or COLLADA, for asset delivery.  
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3.2 Rayground 

 

During the development of the web application the framework Rayground (Vitsas N. , 

2020) was explored and used for quick prototyping of algorithms based on ray tracing 

algorithms, it works in any platform with WebGL2. It was developed based on the 

studies done about ray tracing in the web, called WebRays (Vitsas N. , 2021). Its main 

purpose is to help develop and test modules that showcase a particular method or tech-

nique. The graphical UI is designed to have two discrete parts, the preview window and 

the shader editor. Its visual feedback is interactively provided in the WebGL rendering 

context of the preview canvas, while the user performs live source code modifications. 

So, this framework, was really helpful for the ray tracing implementation, which brings, 

automatically, characteristics like shadows, ambient occlusion and many others.  

 

 

 

Fig. 14. Screenshot from the web interface of Rayground showing the code and its respective renderization example. 
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3.3 Implementation 

 

The approach of a hybrid implementation was the main goal, consisting in placing im-

postors/billboards while the objects, in the scene 3D, are distant and applying the simple 

GI algorithm (similar ray tracing in terms of visualization) when the objects are near to 

the camera. This approach was heavily considered, because ray tracing is a slow process 

and it’s not bearable to have it working for all situations in a 3D scene with a lot of 

information going on simultaneously. 

The objects in the 3D scene were only composed by spheres, so it was just needed the 

coordinates (x,y,z) of the sphere’s center, type of element, radius and color. In the end, 

it was predicted that 7 bytes should be enough for each atom, since 1 byte will be for 

the element type and 3 x 2 bytes (3 x 16 bits) for the coordinates. A special attention 

and care were done to the memory allocation, making sure that no memory is wasted 

and ultimately load the highest possible number of atoms with the least possible 

memory. 

3.3.1 Ambient Occlusion and Simple GI 

 

Before explaining the simple GI algorithm, it is needed to give a little overview of what 

Ambient Occlusion is, there is a similar demonstration of it in the figure 18 below. So, 

it gathers the light from everywhere around, but in a very simplified mode, and thus all 

the geometry in the scene is blocking the light arriving from everywhere to that point. 

In the case of ambient occlusion, the concept of shadow doesn’t exactly exist, because 

its more occlusion than anything. If a point is completely surrounded by dense geome-

try, then the point is going to be occluded and no light arrives to it so it will be dark. If 

a point has no geometry above it, it will be white because all the light arrives on it. 

Since Ambient Occlusion is the result of simplifying the rendering equation that de-

scribes the light interaction, the idea was to approximate (or fake) global illumination 

to a very small 3D scene. Mesh vertices become the sampling points of the GI, they are 

light emitters and receivers. The irradiance emission of a vertex is simulated by its 

color. First, all vertices are black. To simulate the first bounce of light, each sampling 

point (vertex) is calculated by how much light arrives from the emitters. This light 
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gathering process is traditionally done by ray casting the hemisphere around the normal 

to the surface in each point. However, for this to be fast, the scene is rendered with a 

camera in the vertex position and oriented in the direction of the normal. It’s used a 

field of view as close to 180 degrees as possible and the color of the pixels is accumu-

lated in the resulting frame buffer to estimate the incoming radiance [a rendering size 

of 16*16 simulates a total of 256 rays]. This accumulated color will be the irradiance 

of this vertex for the next pass, repeating the process for each vertex completes the 

simulation of the first bounce of light. Repeating the process allows to simulate more 

bounces of light. This method can take as many lights as desired.  

This method is applied to every sphere in the scene, individually. To remember, all of 

this is only applied when the camera is close to the protein.  

 

Fig. 15. Simple GI Implementation Part 1. 
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Fig. 16. Simple GI Implementation part 2. 

 

3.3.2 Impostors/Billboards 

 

If certain spheres from the protein are far enough from the camera, the sphere is auto-

matically replaced by a billboard, a 2D figure that represents a screenshot from the 

specific atom with its respective color. This in order to improve or maintain perfor-

mance and have less vertex possible to calculate in real time. This process is done dy-

namically and is responsive, the exchange is always done whenever the user zooms in, 

zooms out or rotates the 3D scene. 
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4 Results and Discussion 

 

The main objective of this implementation is to have an interactive 3D scene while an 

algorithm that simulates similar visual effects to raytracing is being executed in real 

time, and some protein customization along with it. While in Rayground, that was men-

tioned in the section earlier, its raytracing is implemented in the browser, however it 

does not let the user to interact in the view and is just a static image, at least until the 

final image is not rendered.  

 

The data sample that was examined, consisted in proteins with different numbers of 

atoms in order to compare each one of them, more essentially with different magnitude 

order. Most proteins can have between 1 to 100 thousand atoms.  

The application was tested in Chrome, Mozilla Firefox and Microsoft Edge, there was 

not much big of a difference between the 3, in terms of FPS. 

 

The main metrics that were taken into consideration in order to compare the implemen-

tation with the Rayground framework, some algorithm parameters and variances were:  

• Percentage of CPU usage, 

• Percentage of GPU usage, 

• Percentage of memory usage,  

• Amount of FPS,  

• Response time in Milliseconds (MS),  

• Total MBytes (MB) of allocated memory. 
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Fig. 17. Number of atoms impact in performance. 

Different proteins size were put into testing and as expected when it comes to 2000 plus 

atoms the fps drop to under 50 as shown in the figure above. And in the table 6 below 

we will have a more detailed information about the consequences into having a bigger 

protein size. 
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Table 6. Number of atoms increase and its impact into the metrics defined before. 

 

 

The Table 6 above shows the variation of FPS, CPU%, GPU% and Memory (MB) ac-

cordingly the number of atoms. So, as we can see CPU and GPU are not affected that 

much, but memory is significantly consumed. Although the FPS are massively im-

pacted by proteins size. 

In the figures below we can observe the preview of a protein of 500 atoms and conse-

quently 1000 atoms preview one.  
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Fig. 18. 1000 atoms preview (Protein: 1d2b). 

 

 

 

Fig. 19. 500 atoms preview (Protein: 103d). 
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The most relevant comparison parameters were the FOV (field of view of the camera), 

SIZE (size of the auxiliar rendering camera target, that is crucial for the GI algorithm) 

and Detail of each atom.  

• SIZE impacted directly the velocity of the Simple GI algorithm.  

• FOV did have an impact in performance, but very little, since it only deter-

mines how close is the reflection of the color of the vertex that corresponds to 

the medium color calculated from what’s is in the surroundings. However, the 

more it can be seen, the more the computer has to do to render in those objects. 

• The more atoms are detailed, more vertex it will have so it increases greatly 

the algorithm processing time. 

 

In the figure 17 we can see an overview of the 3 parameters, described above, compared 

to each other. 

 

 
 

Fig. 20. Impact Performance Comparison. 
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   Fig.  21. Shading Similar to Ambient Occlusion.  

 

Also, different proteins were placed into test that have different compositions between 

each other and of course with a great different in terms of quantity of atoms that com-

posed them. 

 
 

Fig.  22. Ideal Parameters - FOV:75ª, Size:16, Detail:8. 
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After some tests the parameters that looked closer to raytracing was the atom level of 

detail placed around between 8-11, SIZE to 32 or 64(preferable to 32 because of per-

formance) and FOV around 65ª - 70ª, giving us fairly decent color reflection as we can 

observe at figure 19 and 20. 

 

 

 
 

Fig.  23. Ideal Parameters another perspective. 
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Fig.  24. Rayground raytracing example. 

 

 

 
 

Fig.  25. Another Protein presented in Rayground Framework. 
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To remember, in Rayground the image is static, just the first frame is rendered, there is 

no interaction or GUI that the user can use to manipulate the camera of the scene. Also, 

the visual effect is not that great as we can see in figure 22 and 21 above. 

 

 

 

 
 

Fig.  26. Low Atom Detail Demonstration – Detail:2, FOV: 70ª, SIZE:32. 

 

In the figure 23 situation its notable how visual impact, the atom detail has when it goes 

to very low values.  
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Fig.  27. Low Size Demonstration – Detail:8, FOV: 70ª, SIZE:2. 

Here, with very low size we can start to see some kind of stains in the points where 

should be color reflections as demonstrated at figure 24. 

 
 

Fig. 28. Low FOV Demonstration – Detail:8, FOV: 5ª, SIZE:32. 
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With very low FOV, it means the reflection point has a very tiny gap resulting into 

those effects as shown in figure 25. 

 

 
 

Fig.  29. High FOV Demonstration – Detail:8, FOV: 160ª, SIZE:32. 

 

Instead, very high FOV, it means the reflection point has wide spread spread view 

resulting into those a more blur visual effect as ilustrated in figure 26. 
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5 Conclusion 

Considering this is a browser application with certain characteristics that currently are 

still not very refined, there were difficulties and challenges making performance and 

efficiency going right. In the middle of the thesis, it was verified that ray tracing really 

takes a massive fraction from the computers resources and an alternative had to be cho-

sen in order to make a balance between good graphics/visualization and performance, 

so the simple GI algorithm was picked and made a perfect combination, because now 

it was possible to load hundreds and thousands of atoms, since that was nearly impos-

sible with raytracing even in close range to the camera. This technique has very similar 

lighting visual effects and results to ambient occlusion without resorting to full global 

illumination techniques. 

 

Three.js was really handful and made a big part of the implementation, this third-party 

supportive library and its mechanisms offers support to massive different scenarios and 

situations, it was game changing. 

 

The results and tests are a little bit incomplete since I did not have the time for it, like 

using profiling tools to test in multiple browsers etc. Plus, some optimization tools from 

WebGL2 were not implements like: Uniform Buffer Objects, Texture arrays and sam-

plers. Would be interesting to see those features working into this project. 

 

This method brought some more realism to the 3D scene and a more detailed overview 

of the atoms which could be beneficial for analysis and studies led by students and 

scientists. As a future work this method could be improved by a lot, for instance, cal-

culate how many milliseconds the algorithm can spend in the lifetime of a frame, use 

all those milliseconds optimally and at the same time make the frame reach 30 FPS 

(1000ms/30ms) and for each group of 32 vertex, check how many times it has elapsed 

since the beginning of the frame and continue to update even more vertex and more 

sphere until we get to that gap. 
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Another alternative is to implement something similar to masking as presented in this 

article (Zadvornykh, 2016). It will bring a very innovative and interesting perspective 

visually. 
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