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Abstract

This paper addresses the development of an attitude determination and control system (ADCS) for
a sounding rocket using Thrust Vector Control (TVC). To design the ADCS, a non-linear six-degrees-
of-freedom model for the rocket dynamics and kinematics is deduced and implemented in simulation
environment. An optimal attitude controller is designed using the linear quadratic regulator (LQR)
with an additional integral action, and relying on the derived linear, time-varying, state-space represen-
tation of the rocket. The controller is tested in the simulation environment, demonstrating satisfactory
attitude tracking performance, and robustness to model uncertainties. A linear parameter estimator is
implemented to provide real-time estimates on the aerodynamic forces and moments. These estimates
are used by an adaptive controller that computes the gains in real-time after correcting the state-space
model. Finally, a navigation system is designed, based on measurements available onboard, to provide
accurate estimates on the rocket’s state. The ADCS is the result of the integration of the attitude
control and navigation systems, with the complete system being implemented and tested in simulation,
and demonstrating satisfactory performance.
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1. Introduction

The main motivation behind this work is the de-
velopment of an attitude determination and con-
trol system (ADCS) for a future sounding rocket
from a student rocketry team from Instituto Supe-
rior Técnico (IST), named Rocket Experiment Di-
vision (RED). The designed attitude control system
assumes that the rocket uses Thrust Vector Control
(TVC) technology as the actuation method, and
aims to control the rocket’s pitch and yaw angles.
The roll angle is assumed to be controlled by an
additional roll control system whose design is out
of the scope of this work.

During the atmospheric flight phase of a rocket,
stabilization can be achieved through the use of
aerodynamic fins. With a correct design of the fins,
the vehicle can be naturally stable [1]. However,
the rocket is subjected to various external distur-
bances, such as wind gusts, which prevent the ve-
hicle to follow a desirable, pre-calculated trajectory
or, even more intense, completely destabilize it [2].
It is then clear the necessity of having an active
attitude control and stabilization system that not
only ensures the stability of the rocket, but allows
to actively correct its trajectory in order to achieve
specific mission goals. As for the actuation method,
Thrust Vector Control (TVC), or thrust vectoring
for short, is used by most launch vehicles and works

by redirecting the thrust vector in order to create a
control torque [3]. With respect to other actuation
techniques, like actively controlled fins, TVC allows
for a wider range of operating conditions and pro-
vides better efficiency [4]. The control system de-
sign tends to be very conservative in the aerospace
industry. Restricting the dynamic analysis to ac-
commodate more sophisticated control design tech-
niques risks the later realization that such restric-
tions would have to be lifted and would invalidate
the control design. Among the classical techniques,
the Proportional-Integral-Derivative (PID) control
is on the core of most commonly used launch vehi-
cle control systems [3, 5]. Although widely used,
PID control has its downsides when it comes to
robustness and external disturbances rejection [6].
The problem of controlling ascending launch vehi-
cles is dominated by parameter uncertainty, which
in face of the lack of robustness of the PID controller
may be a concerning issue. Moreover, the rocket
flight parameters considerably change throughout
the flight. To overcome this, gain scheduling tech-
niques have been proposed, that rely on the lin-
earization of the dynamics at different operating
conditions. Still in the linear domain, the use of op-
timal controllers, such as the LQR, provides more
robustness and ensures an optimal solution for a
given cost function [6, 7]. As a way to improve the
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robustness of linear time-varying controllers, real-
time parameter estimators can be introduced in the
control loop to form an adaptive control system.
The online identification of system parameters al-
lows the controller to act on a more accurate repre-
sentation of the system dynamics [8].

This work has several contributions, always hav-
ing in mind the reliability and robustness of the pro-
posed solutions: a six degrees-of-freedom (6 DoF)
non-linear model for the dynamics and kinematics
of a rocket, that serves as a tool for control and nav-
igation system design; a generic state-space repre-
sentation for linear and optimal control design; an
optimal pitch and yaw controller resorting to the
LQR technique; a linear time-varying parameter es-
timator to estimate in real time the aerodynamic
forces and moments acting on the vehicle; and a
navigation system, based on measurements avail-
able on-board, to provide accurate estimates on the
rocket’s state.

2. Rocket Dynamics and Kinematics Mod-
elling

To design the ADCS, a mathematical model that
represents the translational and rotational dynam-
ics and kinematics of the rocket is necessary.

2.1. Assumptions

Some assumptions are used to derive the model:
the rocket is considered to be a rigid body,
meaning no elastic behaviours are modelled; the
rocket is assumed to be axially symmetric,
as well as the mass allocation, which means
that the principal inertia axes coincide with the
body axes, the centre of mass is on the longitudinal
axis, and the aerodynamic behaviour is identical in
both the pitch and yaw planes; and the flat Earth
model is used, meaning that neither the curvature
nor rotation of the Earth are taken into account.

2.2. Reference frames

To describe the dynamics and kinematics of the
rocket, it is crucial to define the reference frames
to be used. Two reference frames are used: a body-
fixed one, where the equations of motion are writ-
ten; and an inertial space-fixed one. The body-fixed
reference frame has its origin located in the center
of mass of the vehicle, as shown in Fig. 1.

Figure 1: Body-fixed reference frame.

The x-axis (Xb) is along the rocket’s longitudinal

axis, while the z-axis (Zb) and y-axis (Yb) complete
the orthogonal reference frame. As for the inertial
space-fixed reference frame, given that neither the
curvature nor the rotational motion of the Earth
are taken into account, a simple orthogonal frame
centered in the launch location is used. The x-axis
(Xe) is pointing upwards, so that for a zero incli-
nation launch the x-axes of both reference frames
are aligned; and the other two axes (Ye and Ze) are
preferably aligned with a pair of cardinal directions.

With the reference frames detailed, it is neces-
sary to define the coordinate transformation be-
tween both reference frames. This is done by using
a sequential rotation of the body frame relative to
the Earth frame defined by the three Euler angles:

R(ϕ, θ, ψ) = Rz(ψ) · Ry(θ) · Rx(ϕ) , (1)

where ϕ is the Euler angle of rotation of the body
around the x-axis of the Earth frame, also known
as roll; θ is the Euler angle of rotation of the body
around the y-axis of the Earth frame, also known
as pitch; and ψ is the Euler angle of rotation of
the body around the z-axis of the Earth frame, also
known as yaw.

The Euler angles describe the attitude of the
rocket, representing the variables to be controlled
by the attitude control system. The coordinate
transformation from the body frame to the Earth
frame is then defined by the following transforma-
tion matrix:

R =

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ

 (2)

where c and s stand as abbreviations for the trigno-
metric functions. The inverse transform, from the
Earth frame to the body frame, is defined by the
transpose (RT ).

2.3. External Forces and Moments
From the dynamic point of view, sounding rockets
experience four main forces during a flight: Weight,
Thrust, and the aerodynamic forces - Lift and Drag.

2.3.1. Gravity model
Using the flat Earth model assumption, the gravi-
tational acceleration is considered to vary only with
altitude. This variation is given by:

g = g0
R2
E

(RE + h)2
, (3)

where g0 is the gravitational acceleration constant
at surface level, RE is the mean Earth radius and
h is the altitude. The gravitational force in the
Earth-fixed reference frame is equal to

EFg =

−mg0
0

 , (4)
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and the transformation matrix is used to translate
it into the body frame:

BFg =

 −mg · cθcψ
−mg · (sϕsθcψ − cϕsψ)
−mg · (cϕsθcψ + sϕsψ)

 . (5)

2.3.2. Propulsion model
The propulsion model was derived using equations
mainly obtained from [4], considering ideal propul-
sion and all its underlying assumptions. The thrust
produced by the rocket motor is simply

T = |ṁ| · ve︸ ︷︷ ︸
Dynamic

+(pe − pa) ·Ae︸ ︷︷ ︸
Static

, (6)

where ṁ is the mass flow rate, ve is the effective
exhaust velocity, pe is the nozzle exit pressure, pa is
the atmospheric pressure, and Ae is the nozzle exit
area. two separate contributions can be identified:
the dynamic one, caused by the exhaust of the ex-
panded combustion gases; and the static, caused by
the pressure gradient between the nozzle exit and
the atmosphere.
Considering that the most common propulsion

technology for sounding rockets is solid propulsion,
and that it is the technology used by RED, a model
that uses the internal combustion equations and the
solid propellant characteristics is implemented to
calculate the thrust produced by the motor (T ) and
the associated mass flow rate (ṁ).

2.3.3. TVC actuation
By controlling the direction of the thrust force (or
vector), TVC actuation produces torques that act
on the rocket’s centre of mass, influencing its rota-
tion in pitch and yaw. The decomposition of the
propulsive force in the three body axes can be done
as illustrated in Fig. 2. According to it, the thrust

Figure 2: Thrust vector decomposition in the body
axes [7].

vector is decomposed using the angles µ1 and µ2,
where µ1 is the gimbal angle that, on its own, pro-
duces a pitching moment, and µ2 is the one that
produces a yawing moment. Using these angles,
the propulsive force in the body frame follows [7],

BFp =

 T cosµ1 cosµ2

−T cosµ1 sinµ2

−T sinµ1

 , (7)

while the control moment in the body frame, pro-
duced by thrust vectoring, is

BMp =

 0
−T sinµ1 l

T cosµ1 sinµ2 l

 , (8)

where l is the moment arm, which corresponds to
the distance between the nozzle gimbal point and
the centre of mass of the rocket.

2.3.4. Aerodynamic Forces and Moments

The rocket will be subjected to aerodynamic forces
and moments resulting from its interaction with the
fluid medium composing the atmosphere. Starting
by the forces, they are expressed in the body axes
according to

BFa =

−q CA Sq CY S
−q CN S

 , (9)

where CA is the axial aerodynamic force coefficient,
CY is the lateral aerodynamic force coefficient, CN
is the normal aerodynamic force coefficient, q is the
dynamic pressure and S is a reference area, usu-
ally corresponding to the cross sectional area of the
fuselage. The axial and normal aerodynamic forces
correspond to the body axes components of Lift and
Drag, and are related through the aerodynamic an-
gles - the angle of attack and the sideslip angle,

α = arctan

(
wrel
urel

)
, β = arcsin

(
vrel
Vrel

)
, (10)

where urel, vrel, and wrel are the components of
the relative velocity vector with respect to the wind
velocity.

The force coefficients can be determined using a
linear relation with the aerodynamic angles, whose
derivative depends mainly on the angle itself and
Mach number,

CY = CY β β, CN = CNα α . (11)

As for the aerodynamic moments, in the body axes
they are given by

BMa =

 q Cl S dq Cm S d
q Cn S d

 , (12)

where d is a reference length, usually corresponding
to the diameter of the fuselage. If the reference
moment station is defined as the centre of pressure,
and its location can be determined, the reference
moments are zero and the moment coefficients take
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the following form

Cl =
d

2Vrel
Clp p , (13a)

Cm = −CN SM +
d

2Vrel
(Cmq

+ Cmα̇
) q , (13b)

Cn = −CY SM +
d

2Vrel
(Cnr

+ Cnβ̇
) r , (13c)

where the static stability margin (SM =
xcp−xcm

d )
intuitively appears, p, q, and r, are the angular ve-
locities, and Clp , Cmq

, Cmα̇
, Cnr

, and Cnβ̇
are all

aerodynamic damping coefficients.

2.4. 6 DoF equations of motion

2.4.1. Translational motion
By applying Newton’s second law, and taking into
account that the body frame is a rotating, we obtain

Bv̇ =
1

m

(
BFg + BFp + BFa

)
− S(ω) Bv , (14)

where S(.) is a skew-symmetric matrix, and the
mass derivative term has been included in the
propulsive force. By substituting the external forces
in (14), the dynamics can be particularized in the
body acceleration components:

u̇ = −g cθ cψ − q

m
S CA

+
T

m
cµ1

cµ2
− q w + r v

v̇ = −g (sϕ sθ cψ − cϕ sψ) +
q

m
S CY

− T

m
cµ1 sµ2 − r u+ pw

ẇ = −g (cϕ sθ cψ + sϕ sψ)−
q

m
S CN

− T

m
sµ1 − p v + q u

(15)

2.4.2. Rotational motion
Euler’s equation for rigid body rotational motion
yields

BM = J ω̇ + ω × Jω , (16)

where J is the inertia matrix. Following the axial
symmetry assumption, the cross-products of inertia
can be assumed as zero and the y and z terms can
be assumed equal, resulting in

J = diag(Jl, Jt, Jt) , (17)

where Jl denotes the longitudinal inertia and Jt de-
notes the transverse inertia. By substituting the
inertia matrix J and the external moment in the
body frame BM in (16), the explicit dynamics are
obtained in terms of the body angular acceleration
components:

ṗ = Jl
−1 (q S dCl + τr + µr)

q̇ = Jt
−1 (q S dCm − T sµ1

l)

ṙ = Jt
−1 (q S dCn + T cµ1

sµ2
l)

(18)

where µr represents the rolling moment caused by
the additional roll control system and τr accounts
for external disturbances. Finally, the rotational
kinematics are given by the time derivative of the
Euler angles [9]:

ϕ̇ = p+ (q sϕ + r cϕ) tθ

θ̇ = q cϕ − r sϕ

ψ̇ =
q sϕ + r cϕ

cθ

(19)

It is noted that by using the Euler angles a sin-
gularity arises for θ = ±π

2 , however, the way the
reference frames are defined prevents the rocket to
reach this attitude inside the admissible range of
operation. By grouping (15), (18), and (19) the 6
DoF non-linear model of the rocket is fully defined.

3. Preliminary Rocket Design
In order to test and validate the proposed ADCS
it is necessary to use a reference rocket model. In
this way, a preliminary design for a future RED’s
rocket with Thrust Vector Control is performed.
The rocket is designed to have a burning phase
coinciding with the full duration of the climb, so
that TVC can be used to control its attitude up
to apogee. Additionally, it is required that the ter-
minal velocity is inside a safe range to allow the
correct activation of the recovery system. To meet
these design goals, the solid motor characteristics
are iteratively tested using the developed propul-
sion model, and the flight for a vertical trajectory
is simulated resorting to the simulation model. Ta-
bles 1 and 2 respectively present the main rocket
characteristics and the simulation results.

Table 1: Main rocket characteristics.

Total mass 82.9 kg

Dry mass 40.0 kg

Length 3.57m

Max diameter 24 cm

Table 2: Simulation results for a vertical trajectory.

Apogee 4945m
Max velocity 82m/s
Max acceleration 1.7m/s2

Time to apogee 100 s
Velocity at burnout 27m/s
Vertical distance after burnout 38m

4. Attitude Control System Design

4.1. Model Linearization
To design an optimal, linear controller, it is neces-
sary to obtain a linear version of the model and re-
spective state-space representation. The non-linear
model can be linearized at equilibrium points of
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the system by using a Taylor series expansion, con-
sidering small perturbations. For the case of a
rocket, conditions change considerably throughout
the flight, hence, it is not correct to choose a single
equilibrium point to linearize the system. Instead, a
nominal trajectory is selected and the system is lin-
earized at multiple operating points. The outcome
is a linear time-variant system.

When obtaining the linear version of the system,
it is advantageous to consider some assumptions:
the roll rate (p) is considered to be zero as it will
be controlled by an external roll control system, re-
ducing the order of the system by one; the wind is
assumed to be zero, allowing to directly use the lin-
ear velocity in the body frame in the aerodynamic
terms; the actuator dynamics are not included in
the model; and the system parameters are con-
sidered to be constant at the linearization points,
removing the dependencies on the state variables
when computing the Taylor derivatives. By apply-
ing this Taylor series expansion to the non-linear
system around the operating points, a linear time-
variant system in the perturbation domain is ob-
tained, that can be represented in the state-space
form:

δx = [δu, δv, δw, δq, δr, δϕ, δθ, δψ]T , (20a)

δu = [δµ1, δµ2]
T , (20b)

δẋ(t) = A(t) · δx(t) +B(t) · δu(t) , (20c)

where A(t) and B(t) are the state-space matrices
given by the first-order Taylor derivatives with re-
spect to system states and inputs, respectively, cal-
culated at the operating points.

4.1.1. Nominal Trajectory

Regarding the attitude reference that defines the
nominal trajectory, a varying pitch trajectory, in
which the controller restricts the motion to the
pitch plane (yaw equal to zero) and makes the
rocket deviate from the vertical to later recover it, is
selected. In this way, it is ensured that the apogee is
reached further away from the launch site, increas-
ing safety. Figure 3 shows the nominal pitch angle
and rate over time.

(a) Pitch rate (◦/s) (b) Pitch angle (◦)

Figure 3: Nominal Pitch rate and angle over time.

Since the system is naturally unstable, it is neces-
sary to find the time evolution of the nominal con-
trol inputs that allows the rocket to nominally fol-
low the trajectory, defined by an attitude reference
over time. This is done by using a PID controller
that in simulation, without perturbations, is able
to stabilize the vehicle and track the attitude refer-
ence. The input values over time are then stored to
use as predetermined feedforward control inputs.

4.1.2. Linearization Results
It is possible to identify two distinct sections of the
nominal trajectory: a first section up to t = 25 s in
which motion is strictly vertical, and a second sec-
tion up to burnout in which pitch is varying. In the
vertical section, we have that: ϕ0 = θ0 = ψ0 = 0,
v0 = w0 = 0, q0 = r0 = 0, and µ10 = µ20=0. This
results in a simplified version of the state-space rep-
resentation, for which the longitudinal and lateral
modes are decoupled, and δu and δϕ are no longer
states:

δxlon = [δw, δq, δθ]T , δulon = [δµ1] ; (21a)

δxlat = [δv, δr, δψ]T , δulat = [δµ2] . (21b)

For the varying pitch section, we have that: ϕ0 =
ψ0 = 0, v0 = 0, r0 = 0, and µ20=0. This results in a
simplified version of the state-space representation,
for which the longitudinal and lateral modes are
also decoupled:

δxlon = [δu, δw, δq, δθ]T , δulon = [δµ1] (22a)

δxlat = [δv, δr, δϕ, δψ]T , δulat = [δµ2] (22b)

4.1.3. Modal Analysis
It is important to determine the location of the
system poles throughout the nominal trajectory to
derive the open-loop stability. For a time-varying
system, the stability is not mathematically guaran-
teed with this method, however, the study is car-
ried out to understand the behaviour of the systems
throughout the flight. Figure 4 details the pole evo-
lution (from blue to green) up to t = 25 s.

Figure 4: Poles for the vertical section (up to t =
25 s).
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With the modal analysis some conclusions can
be made. Firstly, the system is naturally unstable,
which was expected due to negative static stabil-
ity margin caused by the absence of aerodynamic
fins. Secondly, during the vertical section, there is
an equivalence between the lateral and longitudi-
nal due to the symmetry of the vehicle and equality
in nominal variables. Thirdly, the system displays
natural oscillatory behaviour during the first sec-
onds, after which all poles start to be located in the
real axis. Finally, it is concluded that the velocity
of the rocket is a driving factor for the dynamics of
the system. At higher velocities the system is seen
to have higher magnitude poles and hence faster
dynamics.

4.2. Linear Quadratic Integral (LQI) Control
Using the linear time-varying state-space represen-
tation of the system, a linear quadratic regulator
(LQR) is designed with the addition of an inte-
gral action, also known as linear quadratic integral
control (LQI). The LQR is a technique that finds
the optimal gain matrix k for the linear control law
u = −kx, which minimizes a quadratic cost func-
tion given by

J =

∫ T

t

[x′(τ)Qx(τ) + u′(τ)Ru(τ) ] dτ , (23)

where Q is a positive semi-definite matrix and R
is a positive definite matrix. In the cost function,
the quadratic form x′Qx represents a penalty on
the deviation of the state x from the origin, and the
term u′Ru represents the cost of control, making Q
and R the tuning parameters for the resultant con-
troller. By using the infinite-horizon version, which
means taking T as infinity, the solution which min-
imizes the cost function and guarantees closed-loop
asymptotic stability is the constant gain matrix

k = R−1 BT P , (24)

where P is the solution to the Algebraic Riccati
Equation (ARE),

PA+AT P−PBR−1 BT P+Q = 0 . (25)

Since the system is time-varying, the ARE has to
be solved for models coming from each lineariza-
tion point, resulting in a set of gain matrices to be
selected, or scheduled, throughout the flight.
The LQR feedback control law ideally drives the

states of the system in the perturbation domain to
zero, ensuring that the nominal values throughout
the trajectory are followed. However, it does not
guarantee a zero tracking error for non-zero refer-
ences in terms of attitude. In order to have a zero
reference tracking error, and to increase the robust-
ness of the controller, an integral action that acts

on the attitude tracking error is added, according
to the scheme in Fig. 5.

Figure 5: LQI control scheme.

Let the difference between the reference signal, r,
and the output of the system, y, (the tracking error)
be the time derivative of the state-space variable
that results from adding the referred integrator, xi.
The state-space representation of the resulting reg-
ulator can be obtained by combining the open-loop
state-space representation with the feedback law,

ż =

([
A 0
−C 0

]
−
[
B
0

]
K

)
z+

[
0
1

]
r , (26)

where z = [x xi]
T
is the augmented state vector and

C is the output matrix that selects the output of
the system from the original state vector (y = Cx).
The optimal gain K is obtained by solving the ARE
using the rearranged system matrices,

A =

[
A 0
−C 0

]
, B =

[
B
0

]
. (27)

4.2.1. Implementation in the linear domain
Considering the decoupling between the longitudi-
nal and lateral modes, the decoupled augment state
vectors are

δzlon = [δu δw δq δθ δθi]
T , (28a)

δzlat = [δv δr δψ δψi]
T , (28b)

where δθi and δψi are the integral states. This im-
plies that the A, B are divided into the longitudinal
and lateral modes, and that the C matrix for the
lateral mode is the one that selects the yaw angle,
while for the longitudinal mode is the one that se-
lects the pitch angle.

The design degree of freedom is the selection of
the tuning matrices Q and R, which will also be di-
vided into the longitudinal and lateral mode. First
of all, setting all non-diagonal entries to zero, and
only focusing on the diagonal ones, allows for a more
intuitive matrix selection given by the ”penalty”
method. According to this method, the diagonal
entries of the Q matrix will determine the relative
importance of the state variables in terms of origin
tracking performance, while the diagonal entries of
the R matrix allow to directly adjust the control
effort for each input. Therefore, the weighting ma-
trices have the following generic format, separated
for each mode

Qlon = diag (qu, qw, qq, qθ, qθi) , (29a)
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Qlat = diag (qv, qr, qψ, qψi
) , (29b)

Rlon = rµ1 , Rlat = rµ2 , (29c)

Given the nature of the TVC actuation, trying to
control the linear velocities will conflict with the
attitude control, specially for non-zero attitude ref-
erences. Hence, the linear velocity related terms are
set as zero. By doing this, the associated gains will
have negligible magnitude, allowing to use partial
state feedback with,

klon = [kq kθ kθi ] , klat = [kr kψ kψi
] . (30)

The tuning parameters are iteratively adjusted
looking at the closed-loop poles and at the step re-
sponse performance in the linear domain, includ-
ing the actuator dynamics, modelled as a first-order
system. Regarding the closed-loop poles, the con-
trol law allowed to stabilize all operating points,
placing all closed-loop poles in the left-hand side of
the complex plane. Table 3 details the step response
parameters for multiple operating points.

Table 3: Closed-loop step response parameters.

Op. point Rise time (s) Settling time (s) Overshoot (%)

t = 5 s 0.2686 0.4461 0.5710
t = 35 s 0.3401 0.5723 0.1239
t = 65 s 0.3278 0.5303 1.7586
t = 95 s 0.3667 0.6052 0.7995

4.3. Linear Parameter Estimator
The robustness of the LQR is limited since the
controller is designed considering a nominal evolu-
tion of model parameters that might considerably
differ from the real evolution during the mission.
Amongst the model parameters, the ones related
with the aerodynamic properties of the rocket are
subjected to an higher level of uncertainty, due to
the difficulty in obtaining accurate aerodynamic co-
efficients and derivatives of the rocket for a broad
range of velocities and aerodynamic angles. In this
way, an online parameter estimator is proposed so
that the controller acts on an informed value of the
aerodynamic parameters. The aerodynamic param-
eters are hidden under the aerodynamic force and
moment coefficients. Since a first estimate on these
quantities is available using the stored aerodynamic
data, a proportional error factor is multiplied in
each aerodynamic force and moment and then esti-
mated.

4.3.1. Estimator design
The estimator design follows along the methodology
proposed in [10], where an hovercraft control system
is designed based on dynamics parameter identifi-
cation, which details a generic parameter estimator
for time-varying systems, linear in the parameters.
The proportional error factors, δax , δay , δaz , δm,

and δn are included on the aerodynamic forces and

moments,

BFa =

−q CA Sδaxq CY Sδay
−q CN Sδaz

BMa =

 0
q CmS dδm
q CnS dδn

 (31)

where the aerodynamic rolling moment is discarded
due to the additional roll control system. After
substituting the rearranged aerodynamic forces and
moments in the rocket model, and considering the
linearity in the parameters to be estimated, the non-
linear differential equations take the form,

ẋ = f(x, t) +G(x, t) ζ , (32)

where x = [u v w q r ϕ θ ψ]
T

and ζ =[
δax δay δaz δm δn

]T
. Using state augmentation

with the parameter vector, ζ, and assuming full
state measurements, y, are available, this system
can be written in state-space form as[

ẋ

ζ̇

]
=

[
0 G(y, t)
0 0

] [
x
ζ

]
+

[
f(y, t)

0

]
. (33)

in which the full state measurement assumption al-
lows to regard the system as linear, and the pa-
rameters are assumed to be slowly varying. The
G(y, t) and f(y, t) matrices are easily obtained us-
ing the derived rocket model with the inclusion of
the correction factors and so are not here presented
to improve readability.

In order to design the estimator for this system, it
is necessary for it to be observable. In the reference,
it is demonstrated that the system is observable if
and only if there exists no unit vector d, with the
dimension of the parameter vector, such that∫ t

t0

G(y, σ) dσ · d = 0. (34)

Taking the time derivative in both sides and substi-
tuting for the rocket dynamics, the equivalent non-
observability condition is

−m−1 q S CA d1 = 0

m−1 q S CY d2 = 0

−m−1 q S CN d3 = 0

J−1 q S dCm d4 = 0

J−1 q S dCn d5 = 0

⇔



CA d1 = 0

CY d2 = 0

CN d3 = 0

Cm d4 = 0

Cn d5 = 0

(35)

where di, for i = 1, 2, 3, 4, 5, are the components of
the unit vector, and the simplification is due to m,
J , q, d, and S being always different from zero.
It is possible to infer that the system is observ-

able only when the aerodynamic force and moment
coefficients are all different from zero, since if one
of them is not, the unit vector with di = 1, where i
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corresponds to component multiplying the null co-
efficient, satisfies the non-observability condition.
However, given a null coefficient, the correspon-
dent correction factor is the unobservable param-
eter, meaning that estimates can still be obtained
for the remaining ones. Nevertheless, to ensure full
observability, if the pre-calculation of a given coef-
ficient results in zero, it can be forced to a small
non-zero value. After verifying that the system can
be made observable, a Kalman filter represents sim-
ple and easily tunable solution for the estimation of
the system state.

4.3.2. Adaptive LQI control

By using the designed linear parameter estimator,
the LQI controller gains can be computed on-board
recurring to the real-time estimates of the aerody-
namic correction factors. Instead of referring to the
nominal evolution of the aerodynamic parameters
and pre-calculate the gains to be scheduled during
the flight, the gains are computed online. This is
done by rewriting the state-space representation, in-
cluding the estimated parameters, and solving the
ARE onboard, with the updated state-space mod-
els. The rewriting of the system dynamics matrix,
A, can be easily achieved and is not here presented.

5. Navigation System Design

So far, it was assumed that the developed control
system had access to an exact full-state measure-
ment. In reality, it is necessary to have a navigation
system, composed by sensors and estimators, capa-
ble of providing an accurate estimate on the state
vector. For the case of rockets, and taking into
account the state variables to measured, it is com-
mon to use an Inertial Measurement Unit (IMU),
composed by accelerometers, gyroscopes, barome-
ters, and magnetometers, and a Global Navigation
Satellite System (GNSS) receiver.

5.1. Estimator Architecture

The estimator architecture was based on [11]. It
is composed by three main filters, according to the
scheme in Fig. 6. The first is an Attitude Comple-
mentary Filter (ACF), which in this case will use
the Euler angles readings (λr), obtained through
the combination of a magnetometer and accelerom-
eter, and the measured angular rates from the gyro-
scopes (ωr) to provide a filtered attitude estimate

(λ̂) and an estimate of the angular rate bias (bω)
to correct the signal from the sensor. Dynamic ac-
celeration will cause errors in the pitch and yaw
measurements by the accelerometer. In this way,
a pre-processing is done using the GNSS measured
velocity to account for the dynamic acceleration.
The second one is a Position Complementary Filter
(PCF), which merges the position reading from the
GNSS receiver, translated into the inertial frame

(Pr), and the accelerations measurements from the
accelerometer (ar) to provide an estimate of the ve-
locity components. This filter is also self-calibrated
since it accounts for the bias in the accelerome-
ter (ba). Finally, the last filter is the previously
detailed linear parameter estimator (LPE), which
will use the velocity, angular rate and attitude pre-
filtered values to give a final estimate on the state
vector (x̂) and parameters (ζ̂).

Figure 6: Estimator Architecture.

5.1.1. ACF
For the ACF, it is assumed that the Euler angles
measurement is corrupted by Gaussian white-noise
as well as the angular rates reading, and that the
gyroscope bias is described by a constant term with
additional Gaussian white-noise. Considering this,
the filter is based on the kinematic equations for the
Euler angles (19), using directly the Euler angles
readings in the process matrices to allow for the use
of a linear estimator, in this case a Kalman filter.
Its state-space representation follows,

˙̂x =



0 0 0 −1 −sϕr
tθr 0

0 0 0 0 −cϕr
sϕr

0 0 0 0 −sϕr

cθr
−cϕr

cθr
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


x̂+

+



1 sϕr tθr 0
0 cϕr −sϕr

0
sϕr

cθr

cϕr

cθr
0 0 0
0 0 0
0 0 0


ωr +K (y − ŷ) ,

(36a)

x =
[
λ bω

]T
, y = λr +wλ , ŷ = λ̂ . (36b)

To calculate the gain matrix K, the time-invariant
equivalent of the system is obtained by choosing the
vertical attitude, λ = [0 0 0]

T
, to define the process

matrices and compute the time-invariant Kalman
gains.

5.1.2. PCF
For the PCF, both the position and acceleration
measurements are considered to be corrupted by
Gaussian white noise, and the accelerometer bias is
also described by a constant term with additional
Gaussian white noise. This filter is also kinematic,
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considering the following equations of motion,

Ṗ = Ev , Ev̇ = R Ba . (37)

The state-space representation of the filter is then
obtained,

˙̂x =

0 I 0
0 0 −R
0 0 0

 x̂+

0
R
0

ar+

 K1

K2

RT K3

 (y− ŷ) ,

(38a)

x =
[
P Ev ba

]T
, y = Pr +wP , ŷ = P̂ .

(38b)
The rotation matrix R is calculated using the Euler
angles estimate from the ACF (λ̂). The individ-
ual gain matrices K1, K2 and K3 can once again
be computed considering the vertical attitude time-
invariant to define the rotation matrix R, so as to
obtain time-invariant kalman gains.

6. Simulation Results
6.1. Simulation Model
To test the proposed ADCS in the complete non-
linear model, a simulation model is implemented
in MATLAB/Simulink environment. The model is
composed by several subsystems in order to com-
pletely transcribe the derived dynamics and kine-
matics.

6.2. LQI control
The LQI controller is implemented in the simula-
tion model and tested by adding wind, with and
without gusts, as external perturbation. Table 4
displays the results in terms of attitude tracking
performance and control effort, not only for the LQI
controller, but also for a tested PID controller for
comparison.

Table 4: Tracking error and control effort.

Average wind Average wind + gusts

LQI PID LQI PID

Σθe
2 3.15E-04 0.0173 2.6083 15.0879

Σψe
2 0.0016 1631.3 0.2457 1632.7

δµ1,rms 0.2336 0.2299 0.6109 0.6125

δµ2,rms 0.1512 177.88 0.3273 177.91

It is noted that the LQI controller provides better
attitude tracking for the same control effort with
respect to the PID. In the yaw plane, the results
for the PID are significantly worse since it is very
affected by the initial wind perturbation. The step
response is also analysed (Tab. 5).

Table 5: Step response performance.

t = 5 s t = 40 s

LQI PID LQI PID

θ ψ θ ψ θ ψ θ ψ

Rise time (s) 0.26 0.26 0.77 0.50 0.32 0.25 0.70 0.58

Settling time (s) 0.48 0.48 3.54 2.85 0.56 0.46 5.92 4.65

Overshoot (%) 0.21 0.14 8.69 28.17 1.23 0.69 10.29 18.98

Once again the LQI displays satisfactory perfor-
mance, close to the design values (3), and signifi-
cantly better than the classical PID. Additionally,
a robustness analysis is carried out, in which the
model parameters are varied in percentage. For
the assumed parameter uncertainties, the LQI con-
troller shows high robustness.

6.3. LPE

The linear parameter estimator is also tested in sim-
ulation, by inducing errors in the aerodynamic coef-
ficients, and is able to correctly estimate the param-
eters. Figure 7 presents the results for a simulation
in which the aerodynamic corrections factors con-
verge to the correct values.

Figure 7: LPE simulation results.

6.3.1. Adaptive LQI control

Due to the high robustness of the regular LQI con-
troller, the adaptive version is not able to produce
significant performance improvements.

6.4. Navigation System

The navigation system is tested and is able to re-
ject the noise introduced by the sensors, remove the
bias, and provide an accurate estimate on the state
of the rocket. Figure 8 presents the pitch angle es-
timation by the ACF, while Fig. 9 presents the
position and velocity estimation by the PCF, both
as exemplification of the performance of the system.

(a) Full trajectory (b) Zoomed in the maximum
pitch interval

Figure 8: ACF attitude estimation.
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(a) Position estimation (b) Velocity estimation

Figure 9: PCF position and velocity estimation.

6.5. Complete ADCS
Finally, the complete ADCS system is tested by in-
tegrating the attitude control and navigation sys-
tems. Table 6 details the attitude tracking per-
formance and the control effort with wind gusts
present, in comparison with the results for the con-
trol system alone without sensor noise.

Table 6: ADCS simulation results.
Control system alone Complete ADCS

Σθe
2 2.6083 15.3665

Σψe
2 0.2457 11.9733

δµ1,rms 0.6109 0.6309
δµ2,rms 0.3273 0.3176

As expected, there is a performance decrease.
However, it is still satisfactory.

7. Conclusions
With the conclusion of this work, it is possible to
state that the primary goal has been achieved: the
successful design of an attitude determination and
control system applicable to sounding rockets with
thrust vectoring. The design process was described
in a generic way to ensure that the system can be
easily applied to different vehicles under the same
category. Nevertheless, the future implementation
of the system in a student-built sounding rocket was
always taken into account, as it was the initial mo-
tivation behind this work.
As future work, it would be of interest to de-

velop non-linear controllers for the attitude con-
trol problem in order to compare the performance
of said controllers with the developed ones. Par-
ticularly, the designed linear parameter estimator
could be used for a non-linear control system that
requires accurate information on the aerodynamic
forces and moments to guarantee its correct func-
tioning. Moreover, both the developed simulation
model and navigation system can be verified and
validated using real flight data from sounding rock-
ets launched by RED. Finally, RED is currently
developing small scale prototypes to test the TVC
technology and the associated navigation and con-
trol systems. In this way, it is intended to imple-
ment the techniques in here developed to such pro-

totypes and to analyse all the results coming from
test campaigns.
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