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Abstract

Design optimization applied to rocket nozzles has been well-documented since the 1950s, gaining significant
importance with the development of Computational Fluid Dynamics (CFD). However, with technological
advancement comes an increase in computational requirements, which are not widely available. The
present work aims to develop a low-fidelity and computational-friendly method to conduct nozzle shape
optimization at a preliminary design phase of a rocket nozzle. With this in mind, a two-dimensional Method of
Characteristics (MoC) is implemented as the foundation for the development of a flow simulation algorithm.
Automating the contouring of various nozzle geometries through the popular parameterization technique of
Free Form Deformation, an optimization process is established to maximize the performance of the nozzle.
To verify the reliability of the proposed method, a similar optimization process is executed, recurring to
high-fidelity CFD simulations in the open-source framework SU2. An Euler solver is appointed instead of using
Reynolds-Averaged Navier-Stokes (RANS), for the sake of similarity between both processes. This latter
optimization process is established as a Surrogate-Based Optimization (SBO) not only to mitigate the SU2

framework limitations in performing CFD-based shape optimization on nozzles but also as a way to reduce the
computational power. A good agreement between the results from both methods is achieved, displaying solely a
small offset concerning the optimal contour width and the coefficient of thrust. Thus, proving the usefulness of
the developed aerodynamic shape optimization strategy based on the MoC for the preliminary design of nozzles.
Keywords: Nozzle Design Optimization, Method of Characteristics, Parameterization Techniques, Computa-
tional Fluid Dynamics, Surrogate-Based Optimization.

1. Introduction
1.1. Motivation

The universe and the vastness of space have always been
one of the greatest mysteries known to mankind. As
time passed and technology evolved new secrets about
the cosmos were revealed and humanity’s interest in
space grew exponentially.

As of September 2021, more than 4500 satellites or-
bit the Earth simultaneously [1]. This number is only
expected to grow higher and higher without any pre-
dictions to stop since most communication technologies
of this day and age rely on satellites. Even though the
operational cost of rocket launchers has been declining
in recent years due to improvements in their re-usability,
space flight is still only available to governments, major
companies and hyper-wealthy persons.

Having a great impact on the overall performance
of a rocket launcher, the proper assembly of a rocket
nozzle weighs immensely on the amount of fuel needed
for a specific mission [2], and consequently, the amount
of payload supported, since the saved propellant weight
can be replaced by more payload [3]. Therefore, the
more optimal a rocket nozzle is the less money has to

be invested into a space launch.
As technology advanced, more and more complex

methods of optimization are developed (e.g. aerody-
namic shape optimization based on high-fidelity Com-
putational Fluid Dynamics (CFD)). These high-fidelity
methods are however not within reach of most compu-
tational budgets due to their extreme computational
costs [4].
This is the motivation behind developing a low-

fidelity and computationally friendly algorithm using
the Method of Characteristics (MoC) capable of being
paired with optimization methods and together giving
accurate results during the preliminary design of rocket
nozzles.

1.2. Objectives
Four main objectives, regarding the concepts of rocket
propulsion and shape design optimization, are enumer-
ated:

1. Develop a low-fidelity algorithm in MATLAB®

based on the Method of Characteristics capable of
simulating a flowfield around an arbitrary nozzle
contour;
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2. Apply various optimization methods to the previ-
ously developed algorithm in MATLAB®;

3. Apply Surrogate-based Optimization based on high-
fidelity CFD simulations;

4. Compare the results from low- and high-fidelity
methods.

1.3. Nozzle Configuration
Nozzles were first introduced to build a device capable
of changing a flow’s characteristics, such as its velocity
and pressure distribution. Carl Gustaf Patrik de Laval
developed the first convergent-divergent nozzle capable
of increasing a jet flow into a supersonic state in 1890,
which later became known as a “de Laval” nozzle [5].
Robert Goddard is credited with the first flight using a
“de Laval” nozzle with a combustion chamber [6].

Rocket nozzles come in a wide variety of configu-
rations, like an ideal, conical, bell, plug, expansion-
deflection (E-D) and dual bell nozzles. Recently, a
multi-nozzle grid was also developed.

An ideal nozzle is characterised by producing an isen-
tropic flow (i.e., without internal shocks) and having
uniform properties at the exit, meaning constant pres-
sure, temperature and velocity over the whole exit plane.
However, the ideal nozzle that gives maximum thrust
performance is heavy and lengthy. In order to expand a
flow to match near vacuum conditions one would need
a near infinite nozzle [7]. The length of an ideal nozzle
can be decreased by permitting all the expansion to
occur just at the throat (amid a sharp corner) and then
constructing the nozzle contour to turn the flow such
that it can attain an axial uniform flow at the exit [8].
This nozzle is referred to as a minimum-length nozzle.

The application of conical nozzles was very popular
during the early stages of rocket propulsion due to its
simplistic design and ease of manufacture. However, its
main downfall compared to an ideal nozzle comes from
the fact that the exit flow is divergent.
Bell nozzles are the most commonly used shapes

in rocket engines. They are comprised of a high-angle
expansion section (20◦ to 50◦) downstream of the nozzle
throat followed by a gradual reversal of the nozzle
contour slope so that at the nozzle exit the divergence
angle is small, avoiding major divergence losses [9].
Rao [10] developed in 1958 a method by using the
calculus of variations to design the wall contour of the
optimum thrust nozzle by using a simple parabolic
approximation.
The main characteristic of a plug nozzle is its ca-

pacity to interact with the external ambient, resulting
in having a free jet boundary that acts as a virtual
outer wall and expands and compresses to match the
freestream ambient pressure. The separation of flow
can be avoided, implying that plug nozzles are altitude
compensating [11].

Like the previous nozzle configuration, the E-D nozzle
is altitude-compensating. Although looking similar to

the bell nozzle, the flow is turned by a “centre body”
onto the outer diverging nozzle wall [9]. This results in
the creation of a viscous wake region within the nozzle.

The dual-bell nozzle, as mentioned in the name, con-
sists of two distinct contours between the throat and
the exit [12]. Considered an altitude-adaptive nozzle
concept, it combines a small nozzle area ratio at low
altitude with a large one at high altitude. Its design is
typically based on an inner base nozzle followed by a
wall inflexion region and an outer nozzle extension.

The multi-nozzle grid configuration is the most recent
and the only nozzle configuration where the nozzle
length (i.e., plate thickness) to throat diameter can be
less than one, yet is capable of providing an extremely
high area ratio.

1.4. Nozzle Optimization

Traditionally, rocket nozzles have been designed exclu-
sively for propulsive performance. The optimization of
nozzle profiles for maximum thrust was pursued long be-
fore computational fluid mechanics (CFD) or multidis-
ciplinary optimization (MDO) became widely-available
tools [13].

Classical optimization procedures usually began with
an inviscid design (such as Rao’s method). Then a
boundary-layer correction would be added to compen-
sate for the viscous effects. Recent advances in com-
putational technology have allowed the integration of
the full Navier-Stokes equations, as well as, enabling
automatic design methods developed by combining the
CFD and optimization codes [14].

Numerical methods can for the most part be divided
into low- and high-fidelity methods. Both are exten-
sively used because of the computational cost of higher-
fidelity models. When computationally expensive analy-
ses are used it is often of benefit to utilise multiple levels
of fidelity to reduce the size of the design space and ini-
tialize subsequent analyses from a lower-fidelity solution
[13]. This approach is referred to as the Multi-Fidelity
Approach.

1.5. Document Outline

This article is divided into five sections. Each one
is subsequently divided into subsections aiming for a
clear organization and smooth reading. Firstly, Sec-
tion 1 describes the objectives and motivation behind
the completion of this research and presents a review
on the topics of rocket nozzles and their optimization.
The most relevant mathematical formulations related
to the field of fluid mechanics, optimization and param-
eterization are comprised in Section 2. Then, Section 3
employs the mathematical foundations previously re-
viewed and describes the steps and strategies towards
achieving the results. It follows Section 4, where the
results regarding both low- and high-fidelity-based opti-
mizations are displayed. Finally, the main conclusions
regarding the obtained results are drawn in Section 5.
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2. Background
2.1. Nozzle Flows
Nozzle flows describe all types of flows going through
nozzles, which are devices that increase the velocity
of a fluid at the expense of pressure. Their interior
flows experience fascinating phenomena ranging from
supersonic speeds to shock waves.

Assuming quasi-one-dimensional flow properties it is
possible to obtain an equation that relates the change in
velocity du to the change in area dA assuming isentropic
flow [15],

dA

A
= (M2 − 1)

du

u
, (1)

where M is the Mach number. It is important to notice
that to reach sonic flow one must first accelerate the
flow by decreasing the nozzle area. After achieving
sonic conditions the area A can be increased in order to
further increase the flow’s velocity u. Hence, a nozzle
designed to achieve supersonic flow at its exit is a
convergent-divergent duct. The minimum area, where
sonic flow is achieved is called the throat. Another very
important equation is the area-Mach number relation,
which is deduced in [15]:(

A

At

)2

=
1

M2

[
2

γ + 1

(
1 +

γ − 1

2
M2

)] γ+1
(γ−1)

, (2)

where γ is the ratio of specific heats. This equation
shows that the Mach at any point of the nozzle is a
function of the ratio between the local and the throat
area.

2.2. Prandtl-Meyer Expansion
Expansion fans occur when a supersonic flow is turned
away from itself [15]. An expansion fan is a continuous
expansion region that can be visualized as an infinite
number of Mach waves, contrary to an oblique shock
that is made of a single shock wave, a consequence of the
flow turning into itself. An expansion wave appearing
from a sharp convex corner is called a centred expansion
wave. This kind of fan will be visualized during the
implementation of the Method of Characteristics and
is commonly addressed to as Prandtl-Meyer expansion
waves in honour of Ludwig Prandtl and Theodor Meyer,
who first worked on a theory for centred expansion
waves. From Prandtl-Meyer’s theory comes an equation
that relates the infinitesimal change in velocity dV to
the infinitesimal deflection dθ:

dθ =
√
M2 − 1

dV

V
. (3)

For a convex corner of angle θd equation 3 is integrated
resulting in:

θd = ν (M2)− ν (M1) , (4)

where ν is called the Prandtl-Meyer function:

ν(M) =

√
γ + 1

γ − 1
tan−1

√
γ − 1

γ + 1
(M2 − 1)

− tan−1
√
M2 − 1 .

(5)

2.3. Method of Charcateristics
When dealing with supersonic flows the partial differ-
ential equations (PDEs), i.e., the Euler Equations, that
govern the flow-field properties (e.g., temperature, pres-
sure, speed and density) are hyperbolic. The main
goal of this method is to simplify these PDEs into an
ordinary differential equation (ODE).
Characteristic lines divide two adjacent regions de-

scribed by expressions which are analytically different.
In general, characteristic lines exist when the transition
from one region to another involves discontinuities of
some derivatives. This means that there are certain
lines in the xy space along which the derivatives of the
flow variables are indeterminate. These characteristic
lines divide the region of the flow where the action is
produced from the region of the flow that ignores the
presence of the disturbances [16].
When the flow is governed by a supersonic steady

motion having constant entropy and constant total en-
thalpy, the characteristic surfaces are coincident with
the envelope of Mach as shown by the following equa-
tion: (

dy

dx

)
char

= tan(θ ∓ µ) , (6)

where

µ = sin−1

(
1

M

)
, (7)

and u = V cos(θ) and v = V sin(θ).

Figure 1: Left- and right-running characteristic lines
through point A [15].

Along the characteristic lines displayed in figure 1,
the PDE reduce to an ODE, as presented next:

dθ = ∓
√
M2 − 1

dV

V
. (8)

Equation 8 is identical to the expression used to de-
scribe Prandtl-Meyer expansion waves resulting in the
following relations:

θ + ν(M) = constant along C− , (9a)

θ − ν(M) = constant along C+ , (9b)

where C+ and C− denote the left- and right-running
characteristics, respectively.
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2.4. Free Form Deformation
The idea behind Free Form Deformation (FFD) is to en-
close a geometry into a parallelepiped of control points
that define the parametric domain. A physical analogy
for FFD would be to imagine a parallelepiped of clear,
flexible plastic undergoing deformation [17]. FFD can
be based on different principles like Sederber’s scheme
based on Bernstein’s polynomials or NURBS FFD which
is more complex.
To apply Sederber’s technique every point of the

base geometry has to be converted into the coordinate
system (x, y, z) established by the parallelepiped region

X = X0 + xS+ yT+ zU, 0 ≤ x, y, z ≤ 1 . (10)

Let Pijk, i = 0, ..., l, j = 0, ...,m, k = 0, ..., n, represent
the movement of the control points from their latticed
position, one computes the new points Xnew by

Xnew = X+Xdef , (11)

where

Xdef =

l∑
i=0

(
l
i

)
(1− x)l−ixi

[ m∑
j=0

(
m
j

)

(1− y)m−jyj
( n∑

k=0

(
n
k

)
(1− z)n−kzkPijk

)]
.

(12)

2.5. Design Optimization
Design optimization deals with the improvement of a
structure’s properties by improving its shape. In the
specific case of a rocket nozzle properties such as the
coefficient of thrust and the specific impulse can be
analysed to improve its performance. Optimization is
often confused with the term improvement. Mathe-
matically speaking, it means finding the best possible
solution by changing control variables, often subjected
to constraints [18].

To find the optimal design, it is necessary to define an
objective function whose goal is to differentiate better
from worse designs. Properties like the coefficient of
thrust and the specific impulse can be quantified using
an objective function, where different design variables
result in different outcomes. Objective functions can
be implemented in various ways. In this work, both
the Method of Characteristics and CFD are used to
compute the objective functions of interest.
Most engineering applications are constrained prob-

lems. Constraints are used to restrict possible solutions
to a feasible region. The constraints can limits the de-
sign values directly, denominated bounds, or indirectly
limit the results through equality and/or inequality
constraints [19]. A typical constrained optimization
problem can be formulated as:

min
x

f(x) such that


A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub,

(13)

where x is the vector of design variables, f is the ob-
jective function and lb, ub are the lower and upper
boundaries of the design variables, respectively. A,b and
Aeq,beq are linear inequality and equality constraints,
respectively.

2.6. Optimization Algorithms

The process of optimization consists in iteratively guess-
ing the optimal value of the design variables until a
solution is obtained. No single optimization algorithm is
effective for all optimization problems, since each differ-
ent algorithm has a different strategy to move between
consecutive iterations [18]. A common classification
to characterize optimization algorithms is by dividing
them into gradient-free and gradient-based algorithms.

The gradient-free optimization approach is solely
based on moving from one point to another if the value
of the objective function decreases. A gradient-free
algorithm is easier to set up because no additional cod-
ing is needed other than the objective function and its
constraints. On the other hand, gradient-free methods
require a lot more objective function evaluations than
gradient-based when the number of design variables
increases.

Gradient-based algorithms take advantage of both
the objective function and its derivative with respect
to the design variables to converge to the optimum
more efficiently. Gradients are used to ensure that the
optimizer converges to the mathematical optimality
condition. Though they usually need fewer iterations,
gradient-based algorithms require the objective function
to be sufficiently smooth. In practice, however, they
can tolerate discontinuities as long as they are not near
the optimum [18].

2.7. Surrogate-Based Optimization

A surrogate model consists on an approximation of a
functional output that represents a curve fit to some
data. The main purpose of a surrogate-based optimiza-
tion is to perform optimization using a model that is
much faster to compute than the original function, with-
out losing substantial accuracy [18]. Surrogate models
are a computationally cheap and easy alternative for
models which are computationally expensive, such as
high-fidelity CFD simulations.

In addition, they are also helpful to visualize how
the objective function varies with respect to the design
variables. On the contrary, surrogate models display
poor scalability, in other words, the larger the number
of inputs, the more model evaluations are needed to
construct a surrogate model that is accurate enough.

3. Implementation
3.1. Minimum-Length Nozzle - Method of Characteris-

tic Implementation in MATLAB®

Supersonic nozzles can be divided into two different
types: gradual-expansion nozzles, and minimum-length
nozzles. Gradual expansion nozzles are typically used
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when maintaining a high-quality flow at the exit is
desired, like for supersonic wind tunnels. However, due
to being lengthy and heavy, a minimum-length nozzle,
which utilizes a sharp corner at the throat, is a better
option for a rocket nozzle [20].
If the nozzle contour is not properly shaped, shock

waves can occur inside the duct. The Method of Char-
acteristics provides a technique for properly designing
the contour of a supersonic nozzle for shock-free, isen-
tropic flow, taking into account the multidimensional
flow inside the duct.
As aforementioned, for a minimum-length nozzle,

the expansion section is shrunk to a point and the
expansion takes place through a centred Prandtl-Meyer
wave emanating from a sharp-corner throat with an
angle θwmax as demonstrated in figure 2. The criterion
for a minimum-length nozzle is determined as half of
the Prandtl-Meyer function for the exit Mach number:

θwmax
= ν(Me)/2 . (14)

Figure 2: Minimum-length Nozzle Design [21].

Another important aspect regarding the minimum-
length nozzle is that its contour is made to absorb
expansion waves instead of reflecting them. This means
that the flow near the wall will neither expand nor com-
press meaning its direction angle θ stays equal according
to equation 8. The conditions for no compressibility is

θwall = θadj (along C+) . (15)

3.2. Minimum-Length Nozzle - Algorithm Implementa-
tion

The Method of Characteristics needs some initial data
to calculate the flow properties. From the desired exit
Mach number Me using equation 14 the angle at the
starting point is obtained. Since all characteristics come
up from the same point and have to be initiated with a
different initiation angle θinii in order to display different
paths, the initiation angle vector θini is computed as a
distribution with the intervals [0, θwmax

].

3.3. Arbitrary Nozzle - Algorithm Implementation
Previously, the MoC was used to define a contour. How-
ever, the main goal is to apply the MoC on preexisting
contours and calculate its flowfield properties in order
to calculate its coefficient of thrust.

The major differentiation is that equation 15 no
longer is obeyed and the direction of the flow near
the wall θwall is equal to the contour’s slope (Euler
boundary condition):

θwall = θcontour (16)

Implementing the Method of Characteristics on a
contour is not as straightforward as creating a contour,
because the grid generated by the MoC is not identical
to the domain of the nozzle. This happens because the
contour is continuous in space, while the grid is discrete.
In other words, the algorithm in charge of computing
the characteristics generates each left-running charac-
teristic line one by one and will only stop when the last
characteristic line goes beyond the nozzle contour. This
leads to the last left-running characteristic being par-
tially located outside the nozzle. In order to calculate
the flowfield variables at the exit, a “virtual” charac-
teristic is imagined between the last two left-running
characteristics, where the flowfield properties can be
calculated through linear interpolation.

3.4. Coefficient of Thrust - Method of Characteristics
The thrust F of a quasi-one-dimensional nozzle flow is
known and calculated as

F = ṁVe + (pe − pamb)Ae , (17)

where ṁ stands for mass flow, Ve is the exit speed, pe
and pamb are the exit and ambient pressures, respec-
tively, and Ae denotes nozzle exit area. As mentioned
before, this equation is used for quasi-one-dimensional
flow, meaning the flowfield variables only vary in x.
In order to obtain the thrust of the nozzle using

the Method of Characteristic it is necessary to apply
a Riemann sum to the normal component of the exit
velocity

Vn = Vx = Ve · cos(θe) , (18)

and pressure pe along the last two characteristic lines
and interpolate the values obtaining the average exit
pressure and velocity along the “virtual” characteristic.
For this problem a “centred” Riemann sum is applied
as:

Rsum =

n−1∑
i=0

(f (xi+1) + f (xi)) ·
xi+1 − xi

2
, (19)

and the average value

favg = Rsum/n . (20)

Proceeding to the interpolation, one obtains:

ϕe = fbefore +
xe − xwall1

xwall2 − xwall1

· (fafter − fbefore) , (21)

where xwall1 and xwall2 are the x-location of the inter-
section of the characteristics with the contour before
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and after the exit point, respectively. After the deter-
mination of both exit velocity and pressure the thrust
can be obtained using equation 17 as well as the thrust
coefficient

CT =
F

p0 At
. (22)

The subscripts 0 and t denote total conditions and
throat, respectively.

3.5. Design optimization in MATLAB®

Before implementing any kind of optimization method
it is necessary to define an objective function. As
mentioned before, the main goal of the optimizer is
to increase the coefficient of thrust of a rocket nozzle.

When using an optimizer for the MoC, one has to take
into consideration that the restriction to the optimizer is
intrinsic to the method itself instead of being expressed
separately. Equation 13 reduces to:

min
x

f(x) such that
{
lb ≤ x ≤ ub . (23)

Regarding the optimizer, two different optimization
methods were applied to the Method of Characteristics
(Fmincon and NSGA-II) which are presented next.

Fmincon is a gradient-based method used to find
the minimum of a constrained nonlinear multivariable
function identical to equation 13. It is implemented in
MATLAB® as follows:

x = fmincon(f,x0,A,b,Aeq,beq, lb,ub,nlc) (24)

where nlc are the non-linear constraints. Like most
gradient-based methods it is designed to operate on
problems where the objective function and its deriva-
tive are continuous. This method performs a local
search since its characterized by a single starting point
and presents a deterministic behaviour because it al-
ways evaluates the same points given the same initial
condition.
The genetic algorithm NSGA-II stands for nondom-

inated sorting genetic algorithm II. Contrary to the
previous algorithm, NSGA-II is a gradient-free algo-
rithm that is population-based like most genetic algo-
rithms [22]. The optimization starts with a set of design
points rather than a single starting point, and each op-
timization iteration updates this set in some way. This
algorithm performs a global search since it does not
begin at a specific point and evolves throughout the
problem domain. Furthermore, it involves randomness
in the population generation. Another important char-
acteristic of this algorithm is associated with the fact
that it is a multiobjective optimizer.

As the second objective to be analysed, the width, or
rather, the height of the nozzle is chosen since it shows
a direct proportionality to the drag forces subjected to
the rocket nozzle. During take-off, minimizing forces
opposed to the thrust is critical, being the drag force
one of the most dominant ones, due to the high air
density near sea level.

The NSGA-II algorithm is inspired by biological re-
production and evolution using three main steps: selec-
tion, crossover, and mutation [18].

3.6. Computational Fluid Dynamics - SU2 Solver

Computational fluid dynamics or CFD is a very power-
ful tool for the analysis of systems involving fluid flow,
heat transfer and other associated phenomena. From
the 1960s onwards CFD techniques have been used in
the aerospace industry. CFD leads to substantial time
and cost reduction of new designs as well as enables
the study of systems where controlled experiments are
difficult, such as simulating rocket nozzle supersonic
flows [23].

On the other hand, one has to take into consider-
ation its computational cost. When working with a
computational budget it is necessary to be able to find
a trade-off between the accuracy and the computational
cost of the solver.

SU2 is an open-source collection of software tools writ-
ten in C++ and Python for the analysis of PDEs and
PDE-constrained optimization problems [24]. One of
the main disadvantages of being an open-source frame-
work is its limited documentation on code. Even though
providing some tutorials, the process of setting up the
configuration file showed to be very exhaustive.

To properly run the simulation applied to the noz-
zle mesh a configuration .cfg file had to be developed.
Some of the decisions regarding the choices used in the
configuration are presented next.

For the simulation of a supersonic nozzle flow, an
Euler solver was applied, in order to compare this high-
fidelity method with the Method of Characteristics,
since both are based on the Euler equation. As a result,
no turbulence or viscosity models needed to be imple-
mented. The fluid was assumed as an ideal gas with the
ratio of specific heats γ=1.4 and a specific gas constant
of R = 287 J/(kg·K), the default value for standard air.
Regarding the boundary conditions, the Euler condi-
tion was applied to the nozzle wall, while the symmetry
condition was enforced on the centerline. As for the
inlet (throat) of the nozzle, a supersonic inflow Dirich-
let condition was applied and the temperature, static
pressure and velocity direction were assumed. Concern-
ing the output of the nozzle one simply enforced the
static outlet pressure. To compute the gradients of
the flow variables the weighted least-squares numerical
method for spatial gradients was implemented. Regard-
ing the Courant-Friedrichs-Lewy (CFL) condition an
adaptive CFL number was implemented which could
fluctuate between 0.5 and 100. A multigrid with two
levels is used to carry out the simulations faster and
help convergence. The convergence criteria used to ob-
serve if the solver converges is the Root-Mean-Square
(RMS). Finally and most importantly a ROE scheme
was used as the convective numerical method. ROE
is a modern high resolution, shock-capturing scheme.
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The main idea behind this scheme is to determine the
approximate solution by solving a constant coefficient
linear system instead of the original nonlinear system
[25]. This scheme has shown to be particularly effec-
tive when dealing with the Euler equation and was
implemented for this reason.

3.7. Grid Convergence Study
Before commencing with the optimization of the nozzle
design a grid convergence study was conducted to define
the optimal mesh discretization. The assessment of the
spatial convergence of a simulation involves performing
the simulation on two or more successively finer grids.
As the grid is refined and the time step is reduced the
spatial and temporal discretization errors, respectively,
should asymptotically approach zero, excluding com-
puter round-off error. A usual method to examine spa-
tial and temporal convergence is known as Richardson’s
Extrapolation (RE) [26]. The Richardson’s Extrapola-
tion value, which estimates the continuum value (value
at zero grid spacing) is expressed as:

fh=0
∼= f1 +

f1 − f2
rp − 1

, (25)

where

p = ln

(
f3 − f2
f2 − f1

)
/ ln(2) , (26)

and f1, f2 and f3 represent the finest to the coarsest
grid, respectively. The grid refinement ratio r for a
structured mesh is defined as:

r =
√
Nsfine

/Nscoarse . (27)

where Ns is the number of cells on the mesh.
A structured mesh can easily be implemented for a

rocket nozzle flow without compromising the solver’s
accuracy or demanding too much computational power.

3.8. Surrogate Model - Implementation
After completing the grid convergence study the sur-
rogate model may be initiated. Having obtained a
database of meshes, running the simulation is the
next step to gather the training data to build the sur-
rogate model. Implementing polynomial fitting (in
MATLAB®/EXCEL®) the surrogate model is com-
puted and later cross-validated with the test data, which
was generated simultaneously with the training data. If
the surrogate model presents negligible errors regarding
the test data, one can assume that the model simulates
the SU2 framework to a certain extent. Finally, an
optimizer (Fmincon and/or NSGA-II) can be applied
to obtain the optimal design and compare it to the
design obtained using the Method of Characteristics.
Although SU2 provides a feature to perform shape

design optimization the computational budget available
for this work would not sustain such complex simula-
tions. Furthermore, to use this design capability in SU2

one has to adapt the source code such that nozzle design

with the aforementioned features is enabled (e.g. nozzle
outputs and flow post-processing), which is outside the
scope of this document.

4. Results

Before starting with the discussion of the results, it is
important to underline that a two-dimensional MoC
produces a wedge-shaped nozzle with a rectangular
outlet [27]. Additionally, the nozzles produced with
the two-dimensional algorithm are calculated for a unit
breadth and unit throat height.

4.1. Minimum-length nozzle - Results

Being the easiest nozzle design to implement, the
minimum-length nozzle is a good candidate to test the
implementation of the Method of Characteristics. Since
the algorithm applied to arbitrary nozzles is a variation
of the one developed for minimum-length nozzles it is of
utmost importance to assure the accurate functioning
of this algorithm.

The implementation of the MoC for a minimum-
length nozzle with an exit Mach Me = 3, with a varying
number of characteristics nchar shows how quickly the
relative error between the numerical simulation and the
analytical equation 2 descends by increasing nchar.

Another important aspect of the minimum-length
nozzle is noticing that the characteristics maintain an
identical distance between each other outside of the
kernel zone. This reaches back to equation 15, where it
was assumed that the flow experiences neither expansion
nor compression, as proven by figure 3. The kernel zone
is defined as the zone of flow expansion and it is outlined
by the characteristics that are initialized at the throat.

Figure 3: Minimum-length nozzle design with Me = 3,
for nchar = 50

4.2. Bell Nozzle nozzle

To design a bell nozzle contour the parameterization
method FFD is applied to a base geometry, which in
turn is generated from a minimum-length nozzle. For
all bell nozzle simulations, the contour of a minimum-
length nozzle with Me = 3 and nchar = 50 was chosen
as the base geometry.

Before deforming any kind of geometry a free-form
deformation box has to be built around the base ge-
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ometry. The starting point as well as the endpoints of
the nozzle’s geometry delimit the size of the box. A
FFD box can have as many control points as wanted,
however, the influence of each control point reduces
when increasing the refinement of the grid, as shown
by equation 11.

The Method of Characteristics can now be used for
different bell nozzles by changing the deformation pa-
rameters xFFD, which are linked to Pijk. The node
most up-right of the FFD box is the one that will be
dislocated in the vertical direction to obtain new geome-
tries. This decision is taken, because that control node
is the one that has the most influence on the coefficient
of thrust since the exit velocity and pressure are mainly
dependent on the exit area, which is directly controlled
by that specific node.

4.3. MoC-based optimization in MATLAB® - Results

Before carrying out any optimization some properties of
the rocket nozzle have to be clarified. The base nozzle
is engineered in a way that its exit pressure equals 1
atmosphere, where 1 atm = 101325 Pa. To achieve
this feat the chamber pressure p0 has to be exactly
3723300 Pa. The nozzle is structured this way in order
for it to be optimal for an ambient pressure near the
sea level since the condition of optimality states that
pe = pamb. Additionally, a chamber temperature T0 of
3000 K was chosen.

Various simulations were run using the Fmincon
method. As discussed before the most up-right node of
the FFD box has the biggest influence on the coefficient
of thrust of a rocket nozzle. For that reason, this will be
the only node to be deformed, with a lower and upper
boundary of -0.5 and 2, respectively. In order to have
some variety throughout the results 4 different FFD
grids will be used.

The results show that for pressures lower than sea
level the nozzle widens, as expected since the nozzle tries
to minimize the difference between the exterior and the
exit pressures (optimality condition).This outcome can
be visualized for a [2x2] FFD grid in figure 4. However, a
total optimal condition (pe = pamb) cannot be achieved
because the flow may not be expanded too extensively.

Figure 4: Optimal Nozzle Geometry for [2x2] FFD grid
for various ambient pressure - Fmincon

To achieve the best possible results one can allow
other control points to be deformed as well as shown
in figure 5. By applying this change the CT can be
increased even further. The optimization achieves an

Figure 5: Optimal Nozzle Geometry for [9x2] FFD grid
using multiple optimization variables in vacuum

overall increase of the coefficient of thrust in vacuum
CTvac from 1.56784 to 1.61612. Regarding the NSGA-II
method, an identical result was attained.

4.4. Grid Convergence Study SU2 - Results
A grid convergence study is executed for 5 different
structured meshes. The study showed that the CT con-
verges when the number of grid elements is increased
as well as calculated the RE estimated from the three
finest grids. For generating the surrogate model, the
data set was computed using a [200x30] mesh to keep
the computational cost low. Since the computational
time increases exponentially with the increase of grid
elements and a sufficiently large dataset has to be sim-
ulated to build the surrogate model it is wiser to keep
the computational cost on the lower end.

4.5. Surrogate Model - Results
Comparing the results of the SBO, the MoC seems
to overestimate the coefficient of thrust. Regarding
the optimal deformation, in vacuum, the MoC signif-
icantly overshoots the value of xFFD for coarse FFD
grids (∆xFFD ≈ 0.16), while for an ambient pressure
of 0.5 amb finer FFD grids are the ones dealing with
overshooting issues (∆xFFD ≈ 0.10). For sea level con-
ditions, the surrogate model outcomes dictate a small
deformation, which can be neglected and assumed zero,
meaning the nozzle geometry is developed for an opti-
mal nozzle at take-off. The optimal nozzle evolution
for various ambient pressure is shown in figure 6. The
discrepancies can be caused by various factors. These
can be divided between the limitations of the MoC and
the limitations of the surrogate model.

4.6. Limitation of the Surrogate Model versus the
Method of Characteristics

The surrogate model was implemented using a wide ar-
ray of data points, meaning that the polynomial fitting
can lead to errors due to ”overfitting”. Another limita-
tion is due to the value of the data points themselves
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Figure 6: Optimal Nozzle Geometry for [2x2] FFD grid
for various ambient pressure - Surrogate

being poorly precise because the SU2 framework only
outputs the CT with four decimal places. In some cases,
the value of CT is equal for adjacent design variables,
resulting in difficulties in accurately fitting the data
distribution to a polynomial without having to increase
its order, inducing the occurrence of “overfitting”. As
mentioned before, during the grid convergence study,
the sizing of the CFD mesh has an impact on the un-
derestimation of the CT . Finally, the main limitation
of the surrogate model approach is its inability to work
with more than one design variable at a time without
the curve fitting process becoming too complex.

Being a low-fidelity method, the MoC has consid-
erably more limitations that any high-fidelity model.
The main downside of the MoC is its exit conditions
not being coincident with the real nozzle exit. This
leads to error when the flowfield is not uniform leaving
the last characteristic line, since part of the flow is
not simulated. This is particularly damaging when the
deformation applied to the base geometry only occurs
towards the exit (finer FFD grids) since the expansion
of the flow near the centre of the nozzle is not computed.
Another problem leading to a loss in accuracy is the
fact that the characteristic grid becomes coarser along
the nozzle, reinforcing the statement that variations in
the flow due to geometry changes near the exit are less
precisely computed. Additionally, the “overshooting”
and intersection of the last characteristic line with a
made-up contour, as well as, the interpolation and Rie-
mann sum, induce errors, since the distance between the
“virtual” exit characteristic and its adjacent ones is not
constant. One might ask if all these inaccuracies could
be avoided by increasing the number of characteristic
lines used during the implementation of the MoC. The
problem with that statement is that for too fine a grid
the characteristic line might collapse when experiencing
slight compression. This outcome is strictly undesired
since the whole characteristic grid might break down
introducing far worse errors than the ones trying to be
avoided.

5. Conclusions

The present work consisted in developing a fast and
reliable tool for preliminary nozzle design optimization,

as well as, testing out the reliability of the proposed
low-fidelity optimization method.

A simulation tool based on the Method of Charac-
teristics in 2D was developed. It demonstrates the
capability of contouring ideal nozzles with high accu-
racy. For a total number of 100 characteristic lines,
the nozzle exit height hnozzle differs from the analytical
value by a margin of 0.18%.

A FFD-based parameterization technique was imple-
mented to automatize the generation of nozzle geome-
tries to be evaluated and optimized. The first major
achievement was attaining an automated procedure to
deform a base contour and simulate its flowfield. An
ideal nozzle with an exit Mach number of 3 was chosen
as the base contour, calibrated for optimum thrust at
sea level conditions.

Having established an optimization process, based on
the MoC, capable of resembling an objective function,
two contrasting optimization algorithms were employed
to maximize the thrust (and minimise drag) produced
by the nozzle for various ambient pressures. The re-
sulting thrust-optimized contour (TOC) demonstrated
being able to be contoured accurately by a parabola,
meaning the optimization process deformed an ideal noz-
zle into a TOP. An improvement of 3.08% is achieved
for the coefficient of thrust in vacuum CTvac by the
developed optimization process using multiple design
variables and a 9x2 FFD grid.

In order to validate the results obtained by the im-
plementation of the Method of Characteristics a CFD
simulation using the Euler solver of the SU2 framework
was configured. Applying a Richardson Extrapolation
to the various results obtained for CTSSL

the study
showed a relative error of 0.297% concerning the MoC
for an ideal nozzle with Me = 3. For the following
simulations, a mesh of 200x30 elements was appointed
due to its low computational time of 3.4 seconds and
its still negligible relative difference of 1.157%.

An accurate surrogate model based on the CFD train-
ing data was built as a way to simplify the optimization
process, since implementing a surrogate model-based
optimization is considerably computationally cheaper,
than running a CFD-based optimization.

Having implemented an optimization based on a high-
fidelity method, even though in some sort simplified by
the implementation of a surrogate model, the fidelity
of the MoC-based optimization was verified. A good
agreement regarding the results of both routes was
achieved, however with a small offset concerning the
design variable xFFD and coefficient of thrust CT for the
optimal design. The maximal deviation of the design
variable ∆xFFD between both methods showed not to
exceed a 20% absolute variation.

In conclusion, the present work proved that the MoC
is a strong and reliable tool for preliminary design
optimization since it reduces the computational cost
regarding CFD-based optimization for a small loss in
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accuracy. The method developed throughout this work
is ideal for a multi-fidelity approach.
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