
A Geometric Method for Static and Dynamic Collision
Avoidance for UAVs in a 3D Environment

Carolina Pereira Pinheiro

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisors: Prof. Afzal Suleman
Prof. Rodrigo Martins de Matos Ventura

Examination Committee
Chairperson: Prof. Fernando José Parracho Lau

Supervisor: Prof. Afzal Suleman
Member of the Committee: Prof. Homayoun Najjaran

December 2022

Declaration
I declare that this document is an original work of my own authorship and that it fulfills all the
requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

i

ii

Acknowledgments

Firstly I would like to thank Professor Afzal Suleman for the opportunity to come to Canada and do my
thesis here, as well as everybody at CfAR that gave their insight and helpful advice throughout my stay
at the centre, especially Stephen Warwick and Sean Bazzocchi. I would also like to thank Professor
Rodrigo Ventura for his insightful advice on the thesis direction.

I would also like to thank my parents Ermelinda and Victor and my brothers Gonçalo and Manuel,
not only for their support on my decision to come to Canada, but also during all of my university years
and beyond.

A special thank you to my hometown friends as well, hoping that we will continue extinguishing each
others fires for years to come.

To all the friends I made at Técnico, thank you for making these last 5 years a lot more memorable
and enjoyable. A special thanks to Benny for the constant music and playlist sharing, to Joões, Inês
and Nuno for the pointless arguments at the Civil cafeteria and to the Bombarral group for the incredible
memories and constant banter. A warm thank you to the RED and the futsal team too, for making this
experience more than just school work.

A special thank you to all of the friends that I made over here, you elevated my experience in Victoria
and made me feel welcomed 8000km away from home, I’ll miss you dearly and hopefully we will see
each other again.

Thank you as well to the group that accompanied me on this adventure, especially Inês, António
and Luı́s for being the best flatmates that I could ask for and for all the gleeful dinners that we shared
together.

Finally, I need to thank Inês again, for being the best friend that I could’ve asked for. For following
me (or letting me follow her) from Lisbon, to Barcelona and to Victoria. For always being by my side,
figuratively and literally, for being able to match my energy and for all of the advice and life lessons.

iii

Abstract

Generating real-time solutions to avoid dynamic threats that are on a collision course with an Unmanned
Aerial Vehicle (UAV) is a challenging task. This thesis presents the development of a framework with
three integrated main blocks - path generation, collision detection and cost estimation - to find an ade-
quate path in a 3D environment which safely avoids both the impending threat and other threats present
in the environment. The path generation block uses a cubic spline method to generate an initial group
of candidate paths that is then expanded to 3D space by using a rotation matrix. Next, this group of
candidate paths are evaluated for collision detection and any candidate paths that have the possibility
to collide with any threats are discarded. Lastly, a function that estimates a cost determines the optimal
solution for collision avoidance. The cost function takes into account the environment around the candi-
date path and the performance of the UAV. The parameters selected were normalized according to their
distribution across a multitude of scenarios and their weights are tuned to ensure a well balanced cost
function. The results show that the framework is able to find solutions for most situations with promis-
ing run-times, but several improvements and modifications to the implementation and tests still need to
made before field deployment.

Keywords: collision avoidance, static and dynamic obstacles, 3D environment, cost function, online
computation

iii

Resumo

Gerar soluções capazes de evitar ameaças dinâmicas que estão em rota de colisão com um Veı́culo
Aéreo Não Tripulado num cenário on-line é uma tarefa complicada. Esta tese tenta abordar esta questão
desenvolvendo uma estrutura com três blocos principais integrados - geração de caminhos, detecção de
colisão e cálculo de custos - para encontrar um caminho adequado num ambiente em três dimensões
que evite com segurança tanto a ameaça iminente como outras ameaças presentes no mesmo. Para
gerar os caminhos, um método de spline cúbicas é utilizado para gerar um grupo inicial de caminhos
candidatos que é posteriormente expandido para o espaço 3D, utilizando matrizes de rotação. A seguir,
este grupo de caminhos candidatos é avaliado para detecção de colisão e quaisqueres caminhos em
que haja a possibilidade de colidir com ameaças presentes no ambiente não são considerados. Final-
mente, uma função de custo escolhe um caminho adequado como solução. Esta função de custo foi
desenvolvida para ter em conta vários aspectos do problema (desde o ambiente à volta do caminho
candidato até ao desempenho da aeronave) e os parâmetros escolhidos foram normalizados tendo em
conta a sua distribuição em vários cenários. Os pesos destes parâmetros foram ajustados para assegu-
rar uma função de custo equilibrada. Os resultados mostram que o trabalho desenvolvido tem potencial
e pode encontrar soluções para a maioria das situações com tempos de execução promissores. No
entanto, ainda é necessário realizar várias melhorias, modificações e testes antes de implementar o
trabalho desenvolvido numa aeronave.

Palavras-Chave: evasão da colisão, obstaculos estáticos e dinâmicos, ambiente 3D, função de custo,
computação online

v

Contents

List of Tables xi

List of Figures xiii

Acronyms xvii

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Definitions . 2
1.3 Problem Statement . 3

1.3.1 Assumptions . 4
1.4 Project Overview and Objectives . 5

1.4.1 Path Generation . 6
1.4.2 Collision Detection . 6
1.4.3 Cost Calculation . 6

1.5 Contributions . 6
1.6 Thesis Outline . 6

2 Theoretical Background 9
2.1 State of the Art . 9

2.1.1 Path Generation . 9
2.1.1.1 Safety Management Approaches . 9

2.1.2 Collision Detection . 12
2.1.3 Cost Calculation . 13

2.2 Theoretical Concepts . 13
2.2.1 Types of Normalization . 13
2.2.2 Correlation . 14

2.3 Previous work . 15

3 Methodology - Path Generation & Collision Detection 17
3.1 Generation of Candidate Paths . 17

3.1.1 Initial group of candidate paths . 17
3.1.2 Symmetric Candidate Paths . 19
3.1.3 Expansion to 3D space . 19

3.1.3.1 UAV reference frame . 20
3.1.3.2 Rotation of the candidate paths . 21

3.2 Uncertainty . 23
3.3 Velocity . 23

vii

3.4 Collision Detection . 24
3.4.1 Static Security . 24
3.4.2 Dynamic Security . 25

4 Methodology - Cost Function 27
4.1 Cost Function Parameters . 27

4.1.1 Energy Consumption . 27
4.1.2 Smoothness . 29

4.1.2.1 Curvature . 29
4.1.2.2 Standard Deviation . 30
4.1.2.3 Second Derivative . 30
4.1.2.4 Comparison and Selection . 31

4.1.3 Smoothness with Rotation Penalization . 31
4.1.4 Closeness to Moving Objects . 31
4.1.5 Time . 33
4.1.6 Hovering Power . 33

4.2 Final Cost Function . 35
4.2.1 Results . 36

4.2.1.1 Parameters Distribution . 37
4.2.1.2 Runtime results . 38

4.2.2 Normalization . 40
4.2.2.1 Time & Energy . 40
4.2.2.2 Smoothness, Smoothness with penalization & Closeness to Moving Ob-

jects . 44
4.3 Results analysis . 46

4.3.1 Correlation Analysis between Time & Energy . 47
4.4 Implementation . 49

4.4.1 Weight Tuning . 49
4.5 Code Architecture . 55

4.5.1 Overall review . 55
4.5.2 Main Classes . 57

4.5.2.1 UAV . 57
4.5.2.2 Threat . 57
4.5.2.3 Candidate Path . 57

4.5.3 Configuration Files . 58

5 Evaluation - Results 59
5.1 Runtime analysis . 59

5.1.1 Results . 59
5.1.2 Desktop results vs. Onboard flight results . 60
5.1.3 Discussion . 61

5.2 Performance in different Scenarios . 62
5.2.1 Results & Discussion . 62

6 Conclusion 67
6.1 Future Work . 67

Bibliography 70

viii

x

List of Tables

1.1 Default values for the Unmanned Aerial Vehicle (UAV) parameters. 5

4.1 Parameter variation . 36
4.2 Upper and lower bounds for feature clipping of the parameters time and energy. 41
4.3 Environment for the upper cap of the energy. 41
4.4 Environment for the lower cap of the energy. 41
4.5 Parameter values for the UAV2. 42
4.6 Limits for min max normalization and feature clipping. These limits are also the ones used

for feature clipping. 45
4.7 Properties of the path - analysis. 46
4.8 Weight combinations. 50

5.1 Minimum, Maximum and Mean time values for the parameters calculated in different num-
ber of threats in the environment. N is the number of threats in the environment: 1 static
and N − 1 dynamic. SWP: Smoothness with Penalization, CMO: Closeness with Moving
Obstacles. 60

5.2 Total time expected performance for the Raspberry Pi Model 4 as a flight computer. . . . 61

xi

List of Figures

1.1 UAV Market Share by application 2020 [2]. 2
1.2 UAV market size growth from 2020 to 2030 (USD Billion) [2]. 2
1.3 Tarot quad-rotor developed at Centre for Aerospace Research (CfAR). 4
1.4 Flow of the framework developed. 5

2.1 Scatter plot for which there is a perfect linear relationship,ρ(x, y) = 1. [39] 15
2.2 Scatter plot for which there is a perfect negative linear relationship,ρ(x, y) = −1.[39] . . . 15
2.3 Scatter plot for which there is no linear relationship, ρ(x, y) = 0. [39] 15
2.4 Scatter plot with real data for which ρ(x, y) = 0.97 [39] . 15

3.1 Paths generated for Rthreat = 1.5, l = 12, using Chen’s [5] geometric method. 18
3.2 Paths generated for Rthreat = 1, l = 12, using Chen’s [5] geometric method. 18
3.3 Limit situation of the separation between the UAV and the threat Rthreat = 3, l = 12, using

Chen’s [5] geometric method for path generation. 19
3.4 Paths generated for Rthreat = 1, l = 12 . 20
3.5 UAV reference frame used. 20
3.6 Example of reference frame in the 3D environment. x axis is aligned with the original

trajectory and the origin of the reference frame is the UAV current position. The collision
point is represented by the orange sphere, collision path by the blue cylinder. 21

3.7 Initial group of candidate paths generation plane (pink). 22
3.8 Rotation axis (yellow) used to rotate the initial group of candidate paths. 22
3.9 Target plane (green) and rotation angle (θi) example for rotating the initial group of candi-

date paths (in the pink plane) to 3D space. 22
3.10 Example of the velocity calculation method working. The dots are the waypoints pi, and

the lines the velocity vectors vi. 24
3.11 Static security detection example. Blue and orange spheres are threats. 25
3.12 Dynamic security detection example. Blue cylinder is the collision path, orange spheres

is the dynamic threat initial position, blue sphere is the main (static) threat. 26

4.1 Factors that affect energy consumption of UAVs. [43] . 28
4.2 Energy consumption rate versus airspeed for small and large drones.[44] 28
4.3 Example of a candidate path and its shape. 30
4.4 Calculation method used for computing distance for Closeness to Moving Obstacles (MO).

Orange line and circle represent the threat, blue line represents a candidate path. r is the
radius of the threat. 32

4.5 Possible situation 1 when calculating Closeness to MO . 32
4.6 Possible situation 2 when calculating Closeness to MO . 32
4.7 Possible situation 3 when calculating Closeness to MO . 33

xiii

4.8 Possible situation 4 when calculating Closeness to MO . 33
4.9 Smoothness values Distribution (blue) and cumulative percentage (orange). 37
4.10 Smoothness with penalization values Distribution (blue) and cumulative percentage (orange). 37
4.11 Closeness Distribution (blue) and cumulative percentage (orange). 38
4.12 Energy values Distribution (blue) and cumulative percentage (orange). 38
4.13 Hovering power values Distribution (blue) and cumulative percentage (orange). 38
4.14 Time values Distribution (blue) and cumulative percentage (orange). 38
4.15 Smoothness Runtime distribution. 39
4.16 Smoothness with penalization Runtime distribution. 39
4.17 Closeness Runtime distribution. 39
4.18 Energy Runtime distribution. 39
4.19 Hovering Power Runtime distribution. 39
4.20 Time Runtime distribution. 39
4.21 Combined runtime graph for the different cost function parameters. 40
4.22 Time parameter normalized (UAV1). 42
4.23 Time parameter normalized (UAV2). 42
4.24 Time parameter normalized (UAV1) with 1.15 factor. 42
4.25 Time parameter normalized (UAV2) with 1.15 factor. 42
4.26 Energy parameter normalized (UAV1). 43
4.27 Energy parameter normalized (UAV2). 43
4.28 Smoothness distribution histogram after log scaling. 44
4.29 Smoothness distribution histogram after log scaling, feature clipping and min-max norma-

lization. 44
4.30 Smoothness with penalization distribution histogram after log scaling. 45
4.31 Smoothness with penalization distribution histogram after log scaling, feature clipping and

min-max normalization. 45
4.32 Closeness with MO histogram after log scaling. 45
4.33 Closeness with MO histogram after log scaling, feature clipping and min-max normalization. 45
4.34 Energy and Time scatter plot with path ID. 48
4.35 Energy and Time Correlation Analysis. 48
4.36 Zoomed in detail on the solution reached with Combination #1 on Environment 1. 52
4.37 Solutions found for the different weight combinations for Environment 2 53
4.38 Results for the Environment 3 with Combination #5. 53
4.39 Solutions found for the different weight combinations for Environment 4 54
4.40 Code flowchart. 56
4.41 Two example threats: blue - static, orange - dynamic. 58

5.1 Time runtime. 60
5.2 Smoothness with penalization runtime. 60
5.3 Closeness with MO runtime. 60
5.4 Total time runtime . 60
5.5 Solutions found for a collision angle of 160 ° (Scenario 1). 63
5.6 Rthreat = 1.5. No solution found for a collision angle of 174 ° (Scenario 1). 63
5.7 Solutions found for Scenario 2. 64
5.8 Solutions found for Scenario 3. 65
5.9 Solutions found for Scenario 3. 65

xiv

xvi

Acronyms

APF Artificial Potential Field. 11, 12

CDR Conflict Detection and Resolution. 10

CfAR Centre for Aerospace Research. xiii, 1, 3, 4, 9, 12, 15, 28, 35, 68

CSV Comma-Separated Values. 36

FCL Flexible Collision Library. 6, 12, 13, 16, 24, 25, 57, 68

GPS Global Positioning System. 23

HITL Hardware in the Loop. 16, 68

MDP Markov Decision Processes. 12

MO Moving Obstacles. xiii, xiv, 27, 32, 33, 39, 40, 44–47, 49, 52, 54, 55, 57, 59–61, 64, 67, 69

OMPL Online Montion Planning Library. 16

POMDP Partially Observable Markov Decision Processes. 12

ROC Rate of Climb. 4, 23, 57

RRT Rapidly-exploring Random Tree. 10, 12, 15, 16

SAA Sense and Avoid. 1

SITL Software In The Loop. 12, 16, 68

TCAS Traffic Alert and Collision Avoidance System. 11

UAV Unmanned Aerial Vehicle. xi, xiii, xiv, 1–6, 9–13, 15–29, 31–33, 36, 37, 41–44, 46–53, 55, 57–59,
61–64, 68, 69

xvii

Chapter 1

Introduction

In this chapter, the developed is introduced starting with context and motivation behind it, namely the
applications of UAVs in the present context and the future growth of this sector. Several terms that
are used throughout this work are also clarified in this chapter. The different restrictions of the work
developed and the assumptions made when approaching the overall problem are discussed in the prob-
lem statement section. Finally, the objectives, contributions and outlines of the current work are also
presented.

1.1 Context and Motivation

A UAV (Unmanned Aerial Vehicle) is an aircraft with no on-board crew or passengers. These aircraft are
controlled by onboard computers and thus have autonomous flight capabilities. They come in several
sizes, weights, and configurations (fixed wing, multi-rotors, hybrid, etc.).

UAVs are used in several real life applications such as payload delivery, traffic monitoring, surveil-
lance, agriculture, military applications, construction industry, recreational uses, etc. [1] [2]. Figure 1.1
illustrates the UAV market share in 2020, according to a report by Precedence Research [2], where it
can be observed that the main current application for UAVs is the military sector, followed by the recre-
ational and finally the commercial sector. The use of UAVs in this context requires not only offline path
planning but also these aircraft should be equipped with systems capable of avoiding sudden obstacles
not planned for in the initial path planning phase.

Moreover, the growth of the use of UAVs has also been relevant; according to the same report by
Precedence Research [2] the UAV market was valued at US$ 14.3 billion in 2020 and is expected to hit
around US$ 53 billion by 2030, growing at a CAGR (Compound Annual Growth Rate) of 14% over the
forecast period 2021 to 2030. This growth is illustrated in Figure 1.2, and shows that this technology
has future and its systems should be invested in and improved on. Furthermore, the interest in UAV
technology is global. While currently it is mainly focused in North America, the forecast period (2021-
2030) is expected to see the highest growth rate in the Asia-Pacific region, mainly China. Due to the
lucrative opportunities the market has to offer, in recent years, industry giants like Google, Amazon,
DHL, Uber, and Boeing have all made significant investments in the research and development in this
sector.

The work developed in this thesis is a contribution to the current effort at CfAR to develop a Sense
and Avoid (SAA) system. A SAA system is a system which is composed of two main components -
the sense function and the avoid function. The sense function is responsible for identifying and tracking
surrounding traffic whereas the avoid function is responsible for detecting possible conflicts (namely

1

Figure 1.1: UAV Market Share by application 2020 [2].

Figure 1.2: UAV market size growth from 2020 to 2030 (USD Billion) [2].

collision threats) and to instruct maneauvers to the UAV capable of safely avoiding these conflicts [3].
The work in this thesis is inserted into the second function - the avoid function - and a system that, given
information about the environment where it is inserted, is capable of avoiding that threat is developed.

1.2 Definitions

Throughout this thesis several terms will be used that will now be clarified.

• UAV - Unmanned Aerial Vehicle, refers to the the aircraft that has a trajectory associated with it
where the dynamic avoidance system is to be implemented;

• Environment - The 3D space where the UAV is inserted into, it contains all the information avail-
able of the objects present and specific constraints associated with it;

2

• Threat - Refers to any objects in the environment that the UAV should avoid collision with it;

• Main Threat - the threat that is in direct collision route with the trajectory of the aircraft, can be
static or dynamic;

• Path - A path indicates how to move from point A to point B through an environment and is defined
by a set of points;

• Trajectory - A trajectory is a path associated with a time stamp for each point that defines it;

• Candidate Path - A candidate path is one of the paths that are generated by the algorithm to avoid
the incoming threats;

• Static Threat - A threat with no velocity.

• Dynamic Threat - A threat which is moving in the environment.

• Offline vs. Online - offline refers to work done, on the ground, before the flight, whereas on-
line refers to something done during the flight. These phases have different constrictions, as an
example since the online phase is performed in real-time it has more time-sensitive restrictions.

1.3 Problem Statement

One of the problems when developing and flying UAVs is avoiding obstacles that would collide with the
already established trajectory that the UAV is following. These are due to unexpected changes in the
environment, namely birds, other UAVs, humans or manned aircraft, or static obstacles that were not
taken into account when the initial trajectory was planned (terrain, trees, buildings) [4]. In these cases
the UAV has to be equipped with a real-time system capable of detecting the threat, calculating the
evading trajectory and executing the evading trajectory. These threats can be both static (no velocity
and fixed position) or dynamic (moving).

Regarding the requirements for the framework and algorithm developed, the system should be ca-
pable to, when provided with information of threats present in the environment, detect if these entail
collision risk and if so, generate an avoidance path that avoids not only the collision threat but also other
threats present in the environment. The avoidance path should start along the initial trajectory of the
UAV and re-enter the initial calculated trajectory after the threat is avoided.

One of the biggest constraints when trying to solve this problem is the computational constraints
associated with it. The solution must be simple enough that it can be incorporated in an on-board flight
computer like the Raspberry Pi 4 Model B 1 used in the Tarot presented in Figure 1.3 and developed at
CfAR; and fast enough so that the evading trajectory can be calculated and executed before the collision.

1https://www.raspberrypi.com/products/raspberry-pi-4-model-b/, accessed 12/04/2022

3

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

Figure 1.3: Tarot quad-rotor developed at CfAR.

1.3.1 Assumptions

Some assumptions also have to be made in order to simplify the problem and make it easier and fea-
sible to solve in the time frame available for the development of this work. There are assumptions
made regarding four of aspects of the problem and the information available: the threat, the UAV, the
trajectories and the environment of each.

It is assumed that the threat’s size and all the components (x, y and z) of the velocity and position are
known with some uncertainty that will be further discussed in section 3.2. The acceleration is considered
to be null (i.e. constant velocity) and the trajectory can be modelled as a straight line. The size of the
threat is expected to be up to 3m (radius of the threat since the threat will be modelled as a sphere) and
the velocity has no restrictions. Knowing all the components of the velocity also implies that the collision
angle is known and it can be calculated from that initial information. It should be noted that the algorithm
should be easily expanded to deal with bigger threats, but the size had to be constrained to a specific
range in order to facilitate the initial development.

Regarding the UAV, its position, velocity, acceleration is also assumed to be known at all times. The
size is not considered and the UAV is considered to be a point for simplification purposes. The only
constraint regarding the capabilities of the UAV implemented is the maximum Rate of Climb (ROC). In
the initial development the trajectory followed by the UAV is assumed to be straight with zero acceler-
ation. This trajectory is assumed to be already set beforehand and it will not be handled by the system
developed here. This work will mainly focus on a quad-rotor similar to the one developed at CfAR -
Tarot, but one the goals of the algorithm and the framework developed is to be general enough that it
can be easily adapted to other types of UAVs with other constraints and dynamics. Thus, the variables
considered are based on the default values used by the PX4 autopilot software 2

• rate of climb: 3m/s ,

• cruise velocity: 5m/s .

It is also assumed that the UAV is equipped with a sensing system capable of detecting the threats
with some precision and far enough from the UAV so as for the UAV to have time to calculate and execute
the evading trajectory. So, the threats are assumed to be from 3m to 10m away from the UAV, but lower
bound is variable and capped taking into account the threat’s size.

Some other parameters of the UAV will also need to be known to the algorithm to calculate some
aspects of the cost function, these are the drag coefficient (CD), the effective Area (Ae), the mass (m),

2PX4 Autopilot, Parameter Reference, Table ”Multicopter Position Control” https://docs.px4.io/main/en/advanced_

config/parameter_reference.html, accessed 13/09/2022

4

https://docs.px4.io/main/en/advanced_config/parameter_reference.html
https://docs.px4.io/main/en/advanced_config/parameter_reference.html

the number of blades per propeller (N), the chord of the blades (c), the radius of the blades (R) and the
number of rotors (n). The default values for these variables are summarized in Table 1.1. These values
are based on the CFProp 15x5R T-motor blades and in the Tarot.

Table 1.1: Default values for the UAV parameters.

Parameter Value

CD 0.5
Ae 2.5 m2

m 3 kg

N 2
c 0.035 m

R 0.1905 m

n 4

1.4 Project Overview and Objectives

The main goal of this work is to develop an algorithm capable of producing paths to avoid threats that
would otherwise result in collision with the pre-determined trajectory of the UAV. The framework de-
veloped takes as input the current attributes of the UAV (the constants described in Table 1.1, and its
position and velocity), information about the environment (number of threats, position, velocity, size
and constants of the environment - air density, gravitational acceleration) and generates paths capable
of avoiding the main threat (path generation). After these paths are generated, they are checked for
collision detection and the paths that collide with any threat in the environment are disregarded. For
the remaining paths, their quality is quantified using a cost calculation procedure by means of a cost
function that takes into account several attributes of the path and characteristics of the UAV . Figure 1.4
illustrates the basic flow of the framework developed. The framework was mainly developed in Python
3.7.13 . This coding language was chosen due to its ease to quickly develop and test different solutions,
despite not being the fastest language in terms of runtime.

Figure 1.4: Flow of the framework developed.

5

1.4.1 Path Generation

With the inputs given, candidate paths are generated according to a geometric method based on the
work of Chen, et al. (2020) [5]. In Chen’s work the candidate paths are generated in a 2D environment
using the principle of cubic spline second-order continuity. The framework developed on this thesis
expands the mentioned method to the 3D space and adds another type of paths, still based on the initial
group of candidate paths, that will be named symmetric paths. The candidate paths are also generated
in relation to the UAV’s reference frame, being initially generated in the horizontal plane of this reference
frame and then rotated to cover the 3D space.

1.4.2 Collision Detection

The collision detection is done with the help of the Python library Flexible Collision Library (FCL) [6]. As
mentioned before the threats are modelled as spheres and the UAV, that for path generation purposes
is considered a point, is modelled as a sphere as well, with a defined radius that adds uncertainty
considerations to the collision detection. Also based on the work of Chen, et al. (2020) [5], the collision
detection is divided into two sections: static security and dynamic security. The first deals with
the collision with static objects and the second with the collision with dynamic objects. Paths that are
detected to collide with threats in the environment are considered unavailable and disregarded.

1.4.3 Cost Calculation

Finally, the last step is the cost calculation of the remaining candidate paths. The cost function is
composed of different parameters that measure different characteristics of the paths to ensure a well
balanced chosen path. These parameters take into account not only the geometry of the path, but also
the surroundings of the candidate path (i.e. closeness to moving objects), and the UAV performance
while flying the candidate path. To reach the final cost function, the distribution of these cost parameter’s
values across different environments was studied as well as the runtime to calculate them. After studying
the parameters distribution it was possible to normalize them between 0 and 1 so they can be compared
between each other. In order to choose the best parameters to represent the candidate paths the
different parameters are compared and analyzed and the weights of each one were empirically chosen.
In the end, the candidate path with the lowest cost is chosen.

1.5 Contributions

The main contributions of the work developed on this thesis are:

• Development and testing of a new and different type of a dynamic online avoidance algorithm with
collision detection;

• Expansion of a geometric avoidance method to the 3D space;

• Development of a cost function to numerically measure the quality of a candidate path.

1.6 Thesis Outline

This thesis is organized in the following way:

6

• Chapter 2: an overview on the theoretical background needed to comprehend the topics present
in this thesis and a summary of the state of the art in the area.

• Chapter 3: the decisions made when implementing the path generation algorithm are discussed
as well as their implementation. The collision detection as well is also presented in this chapter.

• Chapter 4: the process for calculating, normalizing and tuning the parameters of the cost function
are described and explained. A code architecture overview is also introduced.

• Chapter 5: based on the simulations presented in the previous chapters, the final results are
synthesized and analyzed.

• Chapter 6: gives a summary of the work developed in this thesis, the main conclusions and
suggestions for future work.

7

8

Chapter 2

Theoretical Background

In this chapter, an overview of the theoretical background is presented. Terms, concepts and definitions
are discussed to ensure that a comprehensive understanding of the problem under study. A summary of
the state of the art in this area as well as where the work developed fits within it is described. First, the
different safety management approaches, concerning the path generation block of the framework, are
discussed and compared. Second, a background on collision detection is presented. Next, the back-
ground on the cost calculation block of the framework is addressed. The previous solutions developed
at CfAR in this area are also summarized and preliminary findings are discussed.

2.1 State of the Art

2.1.1 Path Generation

UAV and its development is a very popular research topic - from the conceptual design, to the avionics,
flight computers, building and assembly. One of the aspects that makes UAVs so useful and sought after
is the fact that there is no need for on-board crew. This ensures that the UAV has more freedom (it can
access places that a regular manned aircraft might not be able to), it is easily deployable, can be mass
produced, there is less risk involved (no human life at risk), among other advantages. In the case that
the UAV is not remote controlled by a crew/individual on the ground there is a need for the aircraft to
be able to fly on its own, this entails path planning to be implemented in the aircraft. Path planning is
usually done offline and searches for the most suitable path to connect a starting point to a goal point.
However, the environments where UAVs are inserted in can, sometimes, be unpredictable, and threats
or other aircraft that were not initially considered on the offline path planning phase can appear. For
this reason there is also a need for a mechanism to avoid unexpected threats to be implemented - the
work developed on this thesis focus on developing/testing a framework with the goal of addressing this
problem. Considering everything, even if there is no crew and no inherent human life at risk, the safety
of the airspace still needs to ensured. This is where the safety management approaches, that will be
further discussed, come in.

2.1.1.1 Safety Management Approaches

Safety management guarantees the safety and integrity of the aircraft and the airspace/environment.
Zhang et al. (2018)[7] provides a summary of safety management approaches to UAV and enabling
technologies (such as sensing, command and control communication), where different solutions are
presented depending on the scale of safety. The different scales of safety defined are:

9

• Large-Scale Safety: refers to a global path-planning problem. The goal is to search out an optimal
or near-optimal flight path from a starting point to a desired goal point and avoid any collision with
any known obstacles. [8]

• Middle-Scale Safety: refers to short term flight conflicts due to the dynamic changes of the envi-
ronment during flight such as the changing wind speed and direction. [9]

• Small-Scale Safety: refers to imminent collision avoidance problem that must be handled by the
UAV itself.

For each scale of safety, a quick overview will be given to the solutions presented. However, since
the work developed focus more on solving small-scale safety, a higher emphasis will be given to this
type of safety and its solutions.

The distinction between global path planning and local path planning should also be made. Global
path planning takes into account the whole picture and plans a path from the initial starting position until
the goal position while avoiding the known obstacles in the environment. Local path planning (also
referred as dynamic path planning) works with the information that is receiving while flying to avoid
dynamic obstacles [5] (middle-scale and small-scale safety).

Large-Scale Safety

As mentioned before, large-scale safety mainly focuses in solving global path planning algorithms.
This is usually done offline (i.e. before the flight, on the ground) since it requires heavy computational
resources and time. As evaluation parameters path length, flight duration time, flight manoeuvre efforts,
collision risks and the cooperative nature of the UAV are used. [10] [9]

The path planning algorithms can be divided into three classes: Deterministic Algorithm, Proba-
bilistic Algorithm, Heuristic Algorithm [9].

Deterministic Algorithms have certain search mechanisms to find the best path and fixed cost
equations - for a given scenario it will always generate the same result. A-Star Search Algorithm [11]
[12], Potential Field Method [13], and Mathematical Programming Method (models the problem as a
numerical optimization problem) [14] [15] are examples of this type of algorithm.

Probabilistic Algorithms are based on a randomized search process to achieve feasible or near-
optimal solutions. Contrary to the deterministic algorithm, it may generate different solutions for the
same problem. One of the most popular path planning algorithms - Rapidly-exploring Random Tree
(RRT) [16], is a probabilistic algorithm.

Finally, an Heuristic Algorithm is a combination of the two previously mentioned algorithms, but
represents the problem through an heuristic representation. Some of the main heuristic algorithms are
Genetic Algorithm [17], Particle Swarm Algorithm [18] and Artificial Bee Colony Algorithm [19].

Middle-Scale Safety

A middle-scale safety problem focuses on addressing changes in the environment during flight such
as changing wind speed and direction. An important part in this type of safety is to study how to predict
the possible conflicts in a few hours or minutes and apply conflict resolution algorithms to these changes
- this is called Conflict Detection and Resolution (CDR). CDR is composed of five modules: environment
sensing, trajectories prediction, conflict detection, conflict resolution and manoeuvre strategies [9] .
Conflict resolution and manoeuvre strategies are the most relevant modules for the work developed in

10

this thesis. For conflict resolution, the methods used are: geometric methods, numerical optimization
methods and multi-agent methods.

Geometric methods utilizes geometric features and relations to find the best evasion manoeuvre in
specific scenarios. An example of this type of methods is the work developed by Park et al. [20] which
applies a simple geometric approach to solve collision avoidance between two UAVs.

In order to generate collision-free strategies, the numerical optimization method approach applies
a kinematic model of the aircraft while subject to a variety of constraints. A cost evaluation module is
also needed in order to choose the most economical path and optimize with respect to it. Some relevant
works in this method are the works of Pallotino et al. [21] and Raghunathan et al. [15].

Lastly, multi-agent methods uses multi-agent framework to generate conflict resolution strategies
in multi-UAVs scenarios. In this system each UAV is viewed as an agent , and via the use of a variety
of utility functions, they are able to communicate with one another and negotiate over the best course of
action. Rong et al. [22] and Wollkind et al. [23] are some of the relevant work in this area.

Small-Scale Safety (Collision Avoidance Approaches)

In the case of an imminent collision, the UAV must be able to handle it on its own even with lack of
future information on the obstacles presented. In these cases, the reactive collision avoidance system,
which is inserted into the small-scale safety management, is the last line of defence. The collision avoid-
ance system performs evasive manoeuvres on these threats, although these manoeuvres may not be
the most efficient due to the urgency of the situation. When developing small-scale safety algorithms
there are two main constraints: UAV physical performance (velocity, accelaration, etc.) and the run-
time of the algorithm (how much time it takes to run the algorithm). The solutions for small-scale safety
can be divided into coordinated algorithms and non-coordinated algorithms.

Coordinated algorithm are used when the UAVs/aircraft in collision route share flight intention with
each other - so, there is opportunity to coordinate between the different aircraft; or the UAV has infor-
mation or can get information on the obstacle. In this type of algorithm, rule-based methods, Artificial
Potential Field (APF) methods and geometric methods are included.

Traffic Alert and Collision Avoidance System (TCAS) is the most popular example of rule-based
methods and is used on commercial aircraft. The idea behind rule-based methods is to use prede-
fined rules to avoid collisions. This method is simple; however, it is not capable to adapt to dynamic
environments, despite being computer efficient.

Another example of a coordinated algorithm is the APF. The APF treats each aircraft (or threat) as
a charged particle in a potential field - the aircraft’s goal point is considered an attractive force and the
threats repulsive forces [24] . It was first introduced by Khatib et al. (1986) [25] for mobile robots and
has been expanded to UAVs by other authors [26] [27] [28]. This method is well known and used in
collision avoidance due to its efficiency, robustness, and flexibility [7] - it is based on simple mathematics
equations so the computational time needed is low and thus can be used for real time application [26]
[29]. However, APF main problem is local minima in some situations (one obstacle, two obstacles, goal
not reachable, dynamic or moving obstacles) [26]. The proposed ways to solve these problems are
either modify the APF method itself or combine it with other algorithms [7].

The last type of coordinated algorithm that will be discussed is the geometric method. Geometric
methods, although complex, are highly efficient, but it can be difficult to implement to adapt to complex
environments. Most of the geometric methods also try to avoid deviation from the original path [7]. These
methods use geometric relations between the obstacles and the UAV to calculate a new path so as the
UAV can avoid these conflicts. One of the advantages of these geometric based approaches is that

11

they require less processing power and thus can be more easily implemented on on-board computers
[30]. These geometric-based methods can be categorized into four groups: those that use geometry
information, such as the motion or location of the vehicle, to produce angle changes; those that use
velocity variation; those that combine these methods; and those that also take other types of information
into account (global and probabilistic) [30]. Geometric methods can handle both static and dynamic
obstacles . [31]

Finally, on non-coordinated algorithms, these try to solve collision avoidance in a non-coordinated
environment. A non-coordinate environment is an environment where it is difficult to know the future
movement and state of the threats/environment - which makes this problem harder to solve [7]. Tem-
izer et al. (2010) developed a random probability model that incorporates Partially Observable Markov
Decision Processes (POMDP) and Markov Decision Processes (MDP) to provide an optimized collision
avoidance method while accounting for sensor and aircraft dynamics uncertainty [32]. Another solution
implemented was combining some of the methods discussed previously, such as RRT and APF with
reachable sets in order to avoid dynamic obstacles [33] [34].

Initially, the research on path planning focused mainly on 2D path planning since these algorithms
were being developed for mobile robots that usually did not have the third degree of freedom (altitude).
However, with UAVs there is a need to account for altitude changes - this increases computational time
and also adds an extra level of complexity to the problem. The work developed on this thesis will develop
a path generation algorithm that works in the 3D space.

The algorithm developed in this work is an improvement/extension on the work developed by Chen
et al. (2020) [5] and falls into the geometric methods for small-scale safety category. The methodology
of Chen’s solution and the improvements made will be further discussed in Section 3.1 .

2.1.2 Collision Detection

An important topic in the work developed is the ability to check for collisions between the candidate path
and the threats in the environment. The FCL [6] is a library for performing three types of proximity queries
on a pair of geometric models . This library, originally deployed on C++, allows for Collision Detection
(detect if two models overlaps), Distance computation (distance between the closest pair of points of
the models), Tolerance verification (wheter two models are closer or farther than a tolerance distance),
Continuous collision detection (collision detection with moving models), and contact information when
collisions are detected (i.e. what are the coordinates for the collision point). FCL also supports different
types of objects shapes (box, sphere, cylinder, etc.) which makes it a very complete library and tool to
use. 1

In this work Python-FCL2 , an unofficial Python interface for the FCL, was used. This package
supports most of the features of the original C++ library.

This library was also chosen due to its use in previous work developed at CfAR and its integration with
OctoMap [35] - a library used for environment representation that could be used in the future work for
Software In The Loop (SITL) tests and implementations. It was also chosen since it allows for collision
detection between both static objects and dynamic objects, which is an important aspect of collision
detection.

1FCL (GitHub). https://github.com/flexible-collision-library/fcl accessed 19/09/2022.
2Python-FCL (GitHub). https://github.com/BerkeleyAutomation/python-fcl accessed 19/09/2022.

12

https://github.com/flexible-collision-library/fcl
https://github.com/BerkeleyAutomation/python-fcl

2.1.3 Cost Calculation

The final block on the framework is the cost calculation. The cost calculation is done by resorting to
developing a cost function. The goal of the cost function is to numerically describe how good or bad a
candidate path is - i.e. evaluate the performance of the UAV while flying the candidate path. In general
terms, a cost function can have fixed costs and variable costs. In this case, all of the parameters of
the cost function will be associated with variable costs.

One of the most important factors when defining a cost function is choosing which parameters to
use that will, in this case, accurately describe the candidate path and the UAV performance. Fu et al.
(2018) [36] proposes three different different cost functions that measure the smoothness of the path,
the feasibility of the path, and the energy consumption of the UAV while flying the path. De Filippis
et al. (2011) [37] develops an algorithm for path planning that then tries to minimize a cost function
reflecting path length and collision risk. Phung et al. (2021) [38] also formulates a cost function that
takes into account the danger of the candidate path, the feasibility of the path, the smoothness of the
path (that they measure by taking into account the turning rate and altitude changes of the path) and
the altitude cost. Chen et al. (2020) [5] uses 4 factors to set their cost function: static security, dynamic
security, smoothness and consistency. The work developed in this thesis, groups static security (if the
path collides with a static threat) and dynamic security (if the path collides with a dynamic threat) into
the collision detection aspect, and uses the FCL as mentioned above, to do so. This was also done to
save computation time - if a candidate path is known to be involved in a collision the cost function will
not be calculated for it.

It can be concluded that the most important factors when choosing parameters for a cost function
are: collision risk, aircraft energy consumption, shape of the path (smooth), altitude changes
and path length. So, the different parameters should measure a mix of these factors. The parameters
that will be studied to be implemented in the final cost function are smoothness (measures the shape
of the path) , smoothness with penalization(measures the shape of the path and changes in altitude),
closeness to moving objects (measures collision risks), energy (measures energy consumption), time
(measures energy consumption and path length) and hovering power (measures energy consumption).
The final goal is not to use all of these parameters, but to choose the ones that better (accurately and
quickly) represent a candidate path while also taking into account the factors mentioned above. The
implementation of these different parameters will be further discussed in Section 4.1.

2.2 Theoretical Concepts

2.2.1 Types of Normalization

Normalization aims to transform parameters to be on a similar scale. This will be used to normalize
the different parameters for the cost function so that they can be comparable and the weights can be
tuned accordingly. There are different normalization methods that can be used, the ones studied are:
min-max normalization, feature clipping, log scale normalization and z-score normalization 3. A
quick introduction as well as the main advantages and disadvantages of each one will be discussed.

Min-max normalization or scaling to range means converting values from their standard range
(their minimum and maximum values) into a standardized range, in this case it would be between 0 and
1. To do this, the following formula is used, where x is a data point and xmin and xmax are the lower and
upper limits used to scale to range.

3Developers Google - Normalization. https://developers.google.com/machine-learning/data-prep/transform/

normalization, accessed 12/09/2022

13

https://developers.google.com/machine-learning/data-prep/transform/normalization
https://developers.google.com/machine-learning/data-prep/transform/normalization

xnew =
x− xmin

xmax − xmin
. (2.1)

This type of normalization is a good option when both the lower and upper bounds are known with a
few or no outliers and the data is approximately uniformly distributed across the range. Data that is very
concentrated in a certain range and that then tampers out is not ideal since a big quantity of the data
would be squeezed into a small part of the scale.

Feature clipping is used when the data contains extreme outliers. This method caps all values
above a certain threshold to a lower fixed value that would be considered the upper range of the data (or
vice-versa, a values below a certain threshold would be capped into the lower range of the data). This
can be done on its own or even before or after another normalization method. The values used to cap
the data can be user selected or based on the standard deviation (σ), for example clipping the data to
±Nσ, where N is a value chosen by the user.

Log scaling computes the logarithm of the values to compress a wide range to a narrow range.
Assuming that x is a data point

xnew = log(x) , (2.2)

in this situation xnew values would then need to be scaled to a 0 to 1 range to ensure that the require-
ments set for the cost function were fulfilled. Log scaling is useful when a handful of values have many
points while most other values have few points.

Z-Score is a variation of scaling to range that represents the number of standard deviations away
from the mean and ensures that the distribution of the data has mean of 0 and a standard deviation of
1. Z-Score is helpful when there are a few outliers, but not so many that clipping is needed. The new
data point using z-score can be calculated using the following equation, where µ is the mean and σ the
standard deviation

xnew =
x− µ

σ
. (2.3)

2.2.2 Correlation

Correlation is a concept used in statistics to describe the strength of the linear relationship between
two variables. To measure the correlation between two variables the correlation coefficient is used.
The correlation coefficient of two variables (A and B) for their N observations, measures their linear
dependence. This coefficient, the Pearson correlation coefficient, is defined as 4

ρ(A,B) =
1

N − 1

N∑
i+1

(
Ai − µA

σA

)(
Bi − µB

σB

)
, (2.4)

µ and σ are the mean and standard deviations. The correlation coefficient matrix R is defined as 4

R =

(
1 ρ(A,B)

ρ(B,A) 1

)
. (2.5)

ρ(A,B) ranges from -1 and 1. -1 representing a direct, negative correlation, 0 representing no correla-
tion, and 1 representing a direct, positive correlation. A positive correlation means that, as one variable
moves the other variable also moves in the same direction, the closer the correlation coefficient is to
1, the more in sync the variables move. A negative correlation implies that the two variables move in

4MathWorks - Correlation Coefficient https://www.mathworks.com/help/matlab/ref/corrcoef.html?s_tid=doc_ta, ac-
cessed 05/10/2022

14

https://www.mathworks.com/help/matlab/ref/corrcoef.html?s_tid=doc_ta

opposite direction. Figures 2.1 and 2.2 show scatter plots for which there is a perfect linear relationship
and a perfect negative linear relationship, respectively. Figure 2.3 shows a scatter plot for which there in
no linear relationship, as so ρ(x, y) = 0. These 3 cases represent the extreme cases of the Pearson’s
correlation coefficient, with real data, the correlation coefficient is not expected to be exactly -1,0 or 1;
Figure 2.4 shows a scatter plot with real data where the correlation coefficient is ρ(x, y) = 0.97. [39]

Figure 2.1: Scatter plot for which there is a
perfect linear relationship,ρ(x, y) = 1. [39]

Figure 2.2: Scatter plot for which there is a
perfect negative linear relationship,ρ(x, y) = −1.[39]

Figure 2.3: Scatter plot for which there is no
linear relationship, ρ(x, y) = 0. [39]

Figure 2.4: Scatter plot with real data for which
ρ(x, y) = 0.97 [39]

2.3 Previous work

The recent work developed at CfAR on avoidance was developed by Cristóvão [40] and Tavares [41].
Cristóvão [40] developed a framework capable of empowering a UAV from going from a start to a goal
point while avoiding static and dynamic obstacles during its course. This framework utilizes a two step
approach: there is an offline step that includes Pre-Flight Path Planning and an Online phase with
Real Time Path Planning. The offline phases uses a sampling-based motion planning algorithm that
is then optimized by minimizing the jerk (fourth derivative of the position) of the UAV. Cristóvão [40]
compared two algorithms RRT* and Informed RRT* and reached the conclusion that the Informed RRT*
produced better and more optimal results. In the online phase, when dealing with dynamic obstacles, the
framework generates a transitioning trajectory around them. Three methods were compared: Informed

15

RRT*, RRT-Connect and RRT-Connect with a path shortening strategy - the RRT-Connect with the
shortening strategy had the best results and therefore was the chosen method. However, this framework
had some issues, that were described and addressed by Tavares [41]. The main conclusion was that
the online algorithm does not generalize well to an outdoor environment where the static obstacles are
mainly at ground level and the dynamic obstacles are in collision route with the UAV. In these situations,
the algorithm behaved unexpectedly, creating unfeasible trajectories and the time to generate these
trajectories was too high.

Some of these issues were addressed by Tavares [41]. The framework was improved to be more
user friendly and it was extensively documented, as well as other small improvements to make it more
suitable for real time applications. Moreover, a new online avoidance algorithm was developed and
tested . The main goals of this algorithm was for it to be fast (low runtime) and minimization of the
part of the original trajectory that is replaced. Thus, Tavares approach was to develop an algorithm that
strategically places points around the collision point to generate an avoidance manoeuvre. The entry
and exit points of this manoeuvre were calculated with trained Machine Learning models that depended
on the velocity and acceleration of the UAV and the avoidance altitude. Simulations were then done to
test the efficacy of this new method. With these simulations, some issues were identified - in the first
block of tests the shape of manoeuvre was not as expected especially for larger collision angles and
uncertainties - the approach failed with collision angles bigger than 153°. The second block of tests
raised problems of the conjunction of this method with the sensing method since the space to react is
small and most of the corrections to the original trajectory were unfeasible.

It was considered that, given the many changes that had to be done and corrections to this work,
that a new approach would be taken for developing an online avoidance algorithm. One of the issues
of Tavares [41] work was that it was not fast enough to be implemented in an online scenario with the
restrictions that the sensing algorithm provided - for this reason a geometric method was selected as the
basis of the new approach. As stated before, one of the advantages of geometric methods is that they
are simpler and faster to run. It should be mentioned that the framework developed by Cristóvão and
Tavares has state of the art tools that are already implemented, like the Online Montion Planning Library
(OMPL) library as well as integration with the FCL; however, the work developed in this thesis started
before the previous work had been completed, so an integration between the two was not possible.
Nevertheless, this integration could be done in the future in order to build a more robust framework, that
would then be easier to test in SITL, Hardware in the Loop (HITL) and eventually flight test.

16

Chapter 3

Methodology - Path Generation &
Collision Detection

In this chapter, the selected method for path generation is discussed as well as its expansion and
implementation. An overview on the collision detection method used is also provided.

3.1 Generation of Candidate Paths

The first step in developing the collision avoidance system is the path generation. As discussed in the
previous chapter, there are a lot of solutions that can be used to generate a group of candidate paths,
but the work developed in the path generation stems from the work developed by Chen et al. (2020)
[5]. The path generation method adopted (cubic spline method) is a geometric based method that was
chosen due to its simple and easy to understand implementation and potential for low computational
time. One of the improvements that can be made to the path generation algorithm is its expansion to the
3D space that will be further discussed in Section 3.1.3.

3.1.1 Initial group of candidate paths

The initial group of candidate paths is generated assuming that the UAV is flying a pre-defined path
when a threat (static or dynamic) is detected. It is assumed that the position of the threat (in case of a
static threat) or the collision point of the dynamic threat and its movement (velocity and its direction) is
known, as well as the size. Thus, the UAV needs to avoid these sudden threats, that are assumed to be
circular. The corresponding cubic spline curve equation is established as follows [5]

y = a(x− xstart)
3 + b(x− xstart)

2 + c(x− xstart) + ystart, x ∈ (xstart, xend) (3.1)

c = 0 (3.2)

a =
c∆x+ 2(ystart − ymid)

∆x3
(3.3)

b =
3(ymid − ystart)− 2c∆x

∆x2
. (3.4)

ystart, yend, xstart and xend are the starting position (O(xstart, ystart)) and the ending point position
(A(xend, yend)) of the candidate path. xmid is the central abscissa of the threat and ∆x = xmid − xstart.
The parameters a, b,and c are the cubic spline parameters and since c = 0 the shape of the candidate

17

path is controlled by the variables a and b. For these parameters, the variable that is yet to be defined
and that will influence them is the variable ymid. So, when N ymid values are set, N different sets
of a and b parameters will be calculated and consequently N candidate paths will be generated. For
simplification purposes, ymid is defined as [5]

ymid = ystart + ω . (3.5)

The values of ω are controlled by a step ∆ω. The values of ω were defined with trial and error and were
set as

ω = [−3.2×Rthreat, 3.2×Rthreat], ∆ω =
2ωmax

l
, (3.6)

and l is a variable that can be changed that controls how many candidate paths are generated. With
these values there are certain values of ymid that would be placed within the inside of the threat, these
paths are disregarded since they would result in a collision. Finally, the end point is defined as [5]

(xend, yend) = (1.5∆x+ xstart, ystart) . (3.7)

Figures 3.1 and 3.2 show examples of the candidate paths generated with this implementation. In
these Figures the distance between the threat and the UAV is the same but the size of the threat (Rthreat)
is changed.

Figure 3.1: Paths generated for Rthreat = 1.5,
l = 12, using Chen’s [5] geometric method.

Figure 3.2: Paths generated for Rthreat = 1, l = 12,
using Chen’s [5] geometric method.

It should be taken into account that the paths can only be generated if the UAV is far away enough
from the threat. With trial and error, it was found that the minimum distance that should separate the
centre of the threat and the UAV is 2.5 ·Rthreat. Figure 3.3 shows the limit situation where the UAV is at
the limit distance from the centre of the threat and the paths generated in this situation.

18

Figure 3.3: Limit situation of the separation between the UAV and the threat Rthreat = 3, l = 12, using
Chen’s [5] geometric method for path generation.

In the situations discussed in this section, the threat and the UAV have the same ordinate. In the
case that this does not happen, as previously mentioned, it is assumed that the threat is still centred
in the original trajectory of the UAV, and so the candidate paths can still be used as long as they are
rotated accordingly (this will be handled by the expansion to 3D space - Section 3.1.3)

3.1.2 Symmetric Candidate Paths

As it can be seen in the Figures (Figures 3.1 and 3.2), the candidates paths generated have a different
shape before and after crossing the threat - after crossing the threat the aircraft returns to the original
trajectory in a more abrupt way than the one that it leaves the original trajectory with. These type of
paths will be named simple candidate paths. A symmetry between the beginning of the path and the
ending could improve the smoothness of the path and thus making it easier for the UAV fly. So, after
the initial group of simple candidate paths is generated, to generate the symmetric group of candidate
paths the highest absolute point of the y coordinate is found and the symmetric candidate paths will be
mirrored along this y axis in the respective x coordinate. Figures 3.4a and 3.4b illustrate this process.

One of the drawbacks that these group of candidate paths can have is that the ending point of the
paths is further away than with the simple group of candidate paths, which will increase the time and
energy it takes for the UAV to fly these paths.

It should also be mentioned that both types of candidate paths (simple and symmetric) will be coded
into the framework and the type of paths that is generated can be user-selected (the user can choose
between only simple, symmetric, or both).

3.1.3 Expansion to 3D space

Having the equations for candidate paths defined, expanding these to cover more of the 3D space is
crucial. This is done in order to have more options to evade the main threat and to reduce the probability
of colliding with other threats that may be in the environment, thus making the algorithm more versatile
and adaptable. For this, the initial group of candidate paths will be generated in the UAV reference frame
and the candidate paths will be rotated across the 3D space.

19

(a) Simple candidate paths using Chen’s [5] geometric
method. Black line marks the axis where y has the high-
est absolute value.

(b) Correspondent symmetric candidate paths.

Figure 3.4: Paths generated for Rthreat = 1, l = 12 .

3.1.3.1 UAV reference frame

Throughout this work, the reference frame considered is a reference frame like the one in the image
below (Figure 3.5).The x axis is represented in red, the y axis in green, and the z axis in blue.

Figure 3.5: UAV reference frame used.

As it was previously explained, to expand the generation of candidate paths to the 3D space, first a
plane needs to be chosen to generate the initial group of candidate paths before rotating them to cover
the 3D space. To do this, the reference frame of the UAV is used and the xy plane in the UAV reference
frame is the one chosen for this task. For the purposes of simplifications, as explained above, the threat
is considered to be centred in the trajectory of the UAV and so the xy plane of the UAV has to be a plane
that slices the threat in half, with the x axis in the direction of the trajectory and the origin of the reference
frame is the current position of the the UAV. Figure 3.6 shows an example of a reference frame with this
restrictions.

It should be noted that, even if the threat is not centred in the trajectory of the UAV, the algorithm can
consider a threat that is and that encompasses the first one.

In future work, the information for the UAV reference frame should be taken as an input. For now,
only the x axis and the origin of the reference frame is considered and a ”sample” reference frame is
created with this information. This is done by, with the x axis vector coordinates, generating a vector
- y axis, that is perpendicular to the x axis that also goes through the origin and then using the cross

20

Figure 3.6: Example of reference frame in the 3D environment. x axis is aligned with the original trajec-
tory and the origin of the reference frame is the UAV current position. The collision point is represented
by the orange sphere, collision path by the blue cylinder.

product between the two to get the remaining vector - z axis , that is perpendicular to both. With the
UAV reference frame defined, the plane to generate the candidate paths can also be defined.

To handle conversions from the global reference frame to the UAV reference frame, the pytransform3d

library is used [42] - a python library for transformations in three dimensions. The velocity of the UAV
is given in the global reference frame. The coordinates of the candidate paths are originally generated
in the UAV reference frame but are then transformed to the global reference frame with the use of this
library.

3.1.3.2 Rotation of the candidate paths

As mentioned in the previous section, the original plane where the initial group of candidate paths is
generated is the xy plane of the reference frame of the UAV . The initial group of candidate paths are
the candidate paths that would be generated in 2D, but that are now written in the UAV reference frame.
An example representation of this plane can be seen in Figure 3.7 in pink.

Secondly, the rotation axis is chosen. The rotation axis is the line that connects the evading point
and the centre of the threat. This can be seen in Figure 3.8 where the rotation axis is represented in
yellow.

Thirdly, by rotating the original plane along the defined rotation axis according to a certain angle θ,
target planes will be obtained where new candidate paths will be generated. The goal is to cover the 3D
space in the most efficient way, so all the target planes need to be equally spaced out from each other.
Since the original group of candidate paths are generated both at the left and right of the threat, θ only
needs to be defined between [0, 180 °]. To equally space out the planes according to the number of
target planes to be generated n, equation (3.8) is defined that describes θi, the rotation angle for the i-th
target plane. An example representation of the target plane can be seen in Figure 3.9.

θi =
180°
n+ 1

· i, i = 1, ..., n (3.8)

With all of this information, a rotation matrix that rotates points from the original plane to the target
plane based on the angle θi can be defined. These rotation matrix are obtained using the pytransform3d

library function active matrix from angle.
So, with the initial group of candidate paths with the coordinates in the UAV reference frame, these

points are rotated to a target plane separated by θi by means of a rotation matrix. These points, that

21

Figure 3.7: Initial group of candidate paths
generation plane (pink).

Figure 3.8: Rotation axis (yellow) used to rotate the
initial group of candidate paths.

Figure 3.9: Target plane (green) and rotation angle (θi) example for rotating the initial group of candidate
paths (in the pink plane) to 3D space.

are still written in the UAV reference frame, are then transformed to the global reference frame. With
the candidate path in the global reference frame, the angle of elevation α (the angle between the plane
where the candidate path is and the ground plane) is calculated that will then be used for cost calculation
purposes (see Section 4.1.3).

It should also be mentioned that this approach is reasonable because the threat to avoid is assumed
to be spherical, so candidate paths that would avoid it in the original plane will still not collide with it in
the target plane.

When generating new target planes where to project new candidate paths, computational limits have
to be taken into account. Thus, the impact of the number of target planes generated is important. In
environments with few threats (1 to 3) it was found that a reasonable amount of target planes is n = 3.
With more threats, more target planes can be added.

The total number of candidate paths generated is calculated as follows

L = l · (n+ 1) . (3.9)

22

3.2 Uncertainty

Uncertainty has to be considered in order to ensure the safety and robustness of the algorithm and its
implementation. There are several factors to contribute to it and these have to be carefully considered.
Two types of uncertainty are considered: zero-order (associated with the position) and first-order uncer-
tainty (associated with the velocity). The main factors that contribute to these are sensor’s uncertainty
and tracking error.

Sensor’s uncertainty comes from the uncertainty associated with the sensors that are used on-
board of the UAV. These come from namely the Global Positioning System (GPS). There may also be
some uncertainty associated with the speedometer (measures the velocity), the gyroscope (measures
the orientation) or the accelerometer (measures the acceleration), among other sensors.

Tracking error is associated with the original path that is generated for the UAV. It should not be
assumed that the aircraft is perfectly following the path originally programmed. Some small delays may
have occurred that made the UAV being slightly ahead or behind schedule.

To mitigate the effects of the uncertainty, a collision radius is introduced in the collision detection step
of the framework. With this collision radius, instead of the UAV being considered a point it is considered
a box with that given collision radius and the collision detection is done with that in mind, as it will be
further explained in Section 3.4. The default value used for the collision radius is collision radius = 2
m.

3.3 Velocity

To be able to calculate the cost function to choose the best path out of the candidate paths, the velocity
in each waypoint has to be known, as it will be discussed in Section 4. The velocity has 3 components:
vx, vy, vz, and to calculate it the cruise velocity of the UAV in question is considered to be constant
throughout the path. For simplification, it is also assumed that the trajectory between each waypoint can
be modelled as a straight line.

To calculate the velocity in the i − th waypoint vi, first the direction vector between two consecutive
waypoints (in the UAV reference frame) is calculated

dvi = pi+1 − pi; (3.10)

this vector is then normalized and multiplied by the cruise velocity to obtain the velocity in each compo-
nent

vi =
dvi

||dvi ||
· vcruise = (vix, viy, viz). (3.11)

Depending on the waypoints, some of the velocities may be unviable for the UAV, for example if viz
exceeds the maximum ROC, the UAV would not be able to fly that path. To combat this, and since the
limits of the UAV are known, viz is made equal to the max ROC and the remaining components vix and
viy are calculated to ensure the direction calculated previously dvi is maintained. The new velocity in
case the ROC is exceed is calculated as follows.

vnewi =
maxROC

viz
· vi (3.12)

Figure 3.10 shows the results of this method for a small sample of points. The dots represent the

23

waypoints pi of the UAV and the line the velocity vector vi in that waypoint. In each waypoint it is shown
the absolute velocity of the UAV ||vi|| followed by the values of each component [vix, viy, viz].

Figure 3.10: Example of the velocity calculation method working. The dots are the waypoints pi, and the
lines the velocity vectors vi.

In future work, the velocity of the UAV in each waypoint should be given by a model that has the
dynamics of the aircraft in mind, and thus gives more accurate values for the velocity in each waypoint.
For now, the method described above is used as a simple approximation.

3.4 Collision Detection

In this section the collision detection implementation will be discussed. After all the paths are generated,
each one is first classified as either ”Available” or ”Unavailable” taking into account its static security
and dynamic security. The static security describes whether there was a collision with a static (no
velocity) object, whereas the dynamic security describes whether there was a collision with a dynamic
(moving) object. Both the static and dynamic security were inspired by the work developed by Chen et
al. (2020)[5].

3.4.1 Static Security

Static security is implemented on the basis of 0/1, i.e. either a path is statically secure or not. If there
is not a known collision between the UAV and static threat the path is considered to be statically secure
and will be checked for dynamic security. This implementation is done using the FCL, and assumes
that the position and the size of threats are known or at least a good estimation of these variables is
available. The FCL [6] is a library for performing three types of proximity queries on a pair of geometric
models 1, in this work the Continuous Collision Request function is used.

1FCL (GitHub). https://github.com/flexible-collision-library/fcl accessed 19/09/2022.

24

https://github.com/flexible-collision-library/fcl

For the static collision detection, first, a collision object on the form of a box, more specifically a
cube, with a side equal to the collision radius defined in the configuration files to account for uncertainty
is created. For each segment (line between two consecutive waypoints) of the candidate path, the
collision box is considered to start in the coordinates of the first waypoint of the segment and moving to
the second waypoint of the segment in a straight line. The collision object for the static threat is already
defined when the threat is created and, as mentioned previously, is modelled as a sphere. Finally, a
continuous collide request between the UAV moving from the first waypoint of the segment to the second
and the threat is made, and once there is a collision, the candidate path is marked as unavailable by
setting the collision parameter of the candidate to True. If there is not a collision detected, the collision
parameter remains set as False and the collision detection moves on to the dynamic security check.
Figures 3.11a and 3.11b illustrates an example of collision detection with static obstacles. Paths that
are not available (that collide) are highlighted in purple.

(a) General View. (b) Front view.

Figure 3.11: Static security detection example. Blue and orange spheres are threats.

3.4.2 Dynamic Security

After a path is deemed to be statically secure, it is then checked for its dynamic security. Similarly to the
static security, the dynamic security is also implemented on 0 or 1 basis, either the path is dynamically
secure or not.

Dynamic security takes into account the moving objects/threats present in the environment and if
any of them have the possibility to collide with the UAV. For this, the position and the velocity of threats
needs to known or at least estimated. An estimation of the time that the UAV will take to evade the main
threat has also to be known in order to calculate how much movement is expected from the moving
threats/objects while the UAV is evading the main threat, the velocity estimation discussed in Section
3.3 is used to calculate this time. Again, uncertainty in the size, position and velocity of the threats has
to be taken into account in order to make the algorithm more robust.

For the collision detection with dynamic threats, firstly the end point of the threat given its trajectory
is calculated. This is done assuming a straight line trajectory from the threat for simplification purposes.
Each candidate path is associated with the aircraft , and the maximum time that the threat is possibly
going to be interfering with the aircraft that is flying is defined as the maximum time that any of the
candidate paths would take to fly by the aircraft. So, the end point of the trajectory of the threat is defined
based on this maximum time, and on the velocity that the the threat is moving. The dynamic security
was implemented with the FCL[6]. Again, the UAV is modelled as a box (cube) with sides equal to the

25

collision radius variable defined in the configurations to take into account uncertainty. Again, for each
segment of the aircraft’s trajectory, there is a continuous collision request made between the segment
and the moving threat. Similarly as with the static security, once a collision between the aircraft and the
threat is detected the candidate path is marked as unavailable and its cost will not be calculated. Figures
3.12a and 3.12b shows collision detection with moving obstacles. The moving threat is represented by
the orange threat, and its path while the UAV is flying is represented by the dark blue cylinder. The
unavailable paths (paths with collision) are coloured purple.

(a) General view. (b) Side view.

Figure 3.12: Dynamic security detection example. Blue cylinder is the collision path, orange spheres is
the dynamic threat initial position, blue sphere is the main (static) threat.

26

Chapter 4

Methodology - Cost Function

This chapter discusses the process of defining a cost function to evaluate the candidate paths generated
on the previous chapter. First, the six different cost function parameters are defined and described
(Smoothness, Smoothness with penalization, Energy, Hovering Power, Time and Closeness to MO).
Next, thousands of candidate paths are generated and the value of each cost function parameter is
calculated for that given candidate path. The results are analyzed in order to choose the most relevant
parameters and normalize them so they can be comparable. Finally, the weights for the cost function are
chosen and tuned, based on empirical data and correlation analysis between the different parameters.

4.1 Cost Function Parameters

As mentioned in section 2.1.3, the goal of the cost function is to numerically describe how good or a
bad a candidate path is. To do this, 6 parameters are studied (energy, smoothness, smoothness with
rotation penalization, closeness to moving objects, time and hovering power). These 6 parameters will
be defined in this subsection and the process to reach those definitions will be explained and justified.

4.1.1 Energy Consumption

Choosing an energy efficient path is an important factor to consider, since the energy is one of the
constraints regarding the flight of a UAV. Thus, choosing an energy model to describe the energy that
would be spent in each path is a crucial part of the cost function. To do this, it is important to understand
the different factors that affect the energy consumption of the UAV. This can be illustrated in Figure 4.1.
The dotted lines represent an indirect relationship between the two concepts and the full lines a direct
relationship. Weather (temperature, air density) is critical for energy consumption as it affects the travel
speed of the UAV, and the temperature in the atmosphere can affect the energy capacity of batteries
used in UAVs - i.e. battery performance could be negatively impacted by cold temperatures until the
batteries warm up [43]. Flying with the wind could, for example, reduce energy consumption, and the
opposite, flying against the wind, would increase this consumption.The weight and payload carried by
the UAV are also a critical factor, since a heavier aircraft or heavier payload will need more energy to fly.

Zhang et al., (2021) [44] compares 12 different energy consumption models for delivery drones, with
various approaches taken to the problem. These approaches differ in the thrust assumption for flight,
the travel components considered (horizontal, hover, vertical), if it takes into account different factors
(wind, avionics, empty return), the type of model (theoretical model, regression model or both) and if the
model was field tested. They come to the conclusion that even using the same or similar parameters for
5 selected models, the results greatly differ, proving that there is not a unified approach to this problem.

27

Figure 4.1: Factors that affect energy consumption of UAVs. [43]

However, some of the models present similar behaviour in the results, for example in the shape of the
curves - this can be seen in Figure 4.2.

Figure 4.2: Energy consumption rate versus airspeed for small and large drones.[44]

The models studied by Zhang et. al [44], among others, require several aerodynamic components
to be calculated. Since one of the goals of the dynamic avoidance algorithm is to be as a general as
possible, an ideal model would take into account the least amount possible of aerodynamic components
of the UAV to simplify the problem. This is a valid approach since the main goal is to compare between
different candidate paths, so a specific number for the energy consumption for the given candidate path
is not needed, but how this energy consumption compares to the other candidate paths is more relevant.

The model chosen was one developed by Marins et al. (2018) [45]. This model was chosen since it
had also been previously used by Ramalho (2020) [46] in previous work developed at CfAR and it takes
into account the factors that affect energy consumption described by Thibbotuwawa (2020) [43].

In this model, the power related to the acceleration/deceleration can be calculated as the variation of

28

kinetic energy.
E1 = ||EM (i+ 1)− EM (i)|| (4.1)

EM (i) =
1

2
m||vi||2 +mgpi,z (4.2)

In this set of equations, E1 is the consumed energy, EM (i) the mechanical energy at state i, m is the
mass of the UAV, g is the gravitational acceleration, vi the speed of the UAV at state i, and pi,z the
position of the UAV along the z axis.

It is assumed that the work done by the drag forces is proportional to the distance between waypoint,
times the average speed squared.

ED(i) =
1

2
CDρAe||pi+1 − pi||

||vi+1 + vi||2

2
, (4.3)

and

E2 =

n∑
i=0

ED(i) , (4.4)

where CD is the drag coefficient, ρ the air density, Aef the effective area of the aircraft, pi the position at
state i and vi the velocity at state i.

The total energy throughout the path is the sum of the two components

ET = E1 + E2 . (4.5)

This model takes into account all of the direct relationships that affect the energy consumption of
UAVs as described in Figure 4.1. The air density (ρ) is used when calculating the energy due to drag
forces (4.3), the weight of the aircraft is considered when calculating the variation of kinematic energy
(4.2), and the UAV flying speed is taken into account when calculating both types of energy. It was
not possible to reproduce the curves of Figure 4.2 to test if this model is similar to the ones studied by
Zhang, nonetheless, since it had been previously implemented and used the factors described by the
same work, it was considered a good fit for this work.

4.1.2 Smoothness

Another factor that is used to evaluate the quality of the paths generated is the smoothness of the paths
generated, this allows the UAV to fly stably and without sudden changes of movement. Several methods
to calculate the smoothness of the path were studied, these are:

• curvature,

• standard deviation,

• second derivative.

Each of these options will be further explained below.

4.1.2.1 Curvature

Chen et al. [5] defines the smoothness as:

S(i) =

∫ xend

xstart

κ2
i dx (4.6)

29

where κi is the curvature of the i-th candidate path. The curvature of the candidate path is defined as

κ =
|x′′y′ − x′y′′|

((x′)2 + (y′)2)3/2
(4.7)

x′, x′′, y′ and y′′ are obtained using the numpy function np.gradient and are calculated from the co-
ordinates (x and y) of the shape of the candidate path. The shape of a candidate path is the 2D
representation of the path in the plane where it is defined. It is calculated with the method define shape

that rotates the candidate path from the plane where it is defined to the xy plane, the resulting path is
the shape of the candidate path. Figure 4.3a shows one candidate path in the 3D space and Figure 4.3b
the respective shape.

(a) Plot of the candidate path in 3D. (b) Shape of the same candidate path.

Figure 4.3: Example of a candidate path and its shape.

The less curvature a path has, the more smooth the path will be which means that the smoothness
cost will be lower.

4.1.2.2 Standard Deviation

Another method studied to calculate the smoothness of a path was the standard deviation of the y

coordinate of the shape of the candidate path. The idea behind this approach is, since the standard
deviation is a measure of the spread of a distribution, that the higher the standard deviation is, the
higher the difference between the y coordinates will be and the less smooth the path will be. Thus, the
smoothness with this method is defined as

S(i) =

√∑
|y − µy|2
N

. (4.8)

Where N is the number of points and µy the mean of the y coordinate values. This is calculated with the
numpy function numpy.std that calculates standard deviation along a specified axis.

4.1.2.3 Second Derivative

The last method studied to define the smoothness of a candidate path is taking the second derivative
of the shape of said path. The second derivative measures the instantaneous rate of change of the
first derivative. Since the first derivative tells us the slope of a tangent line to the curve at any instant,
the higher the rate that the first derivative changes, the more curve the path will be - which means less
smoothness. Thus, the smoothness can also be defined by taking into account the second derivative as

30

S(i) =

∑N
n=0 |y′′(xn)|

N
, (4.9)

where N is the number of points that defined the candidate path, y(xn) is the y value of the shape of the
candidate path when x = xn, and xn corresponds to x coordinate of the n-th waypoint that defines the
shape of the candidate path.

4.1.2.4 Comparison and Selection

All of these 3 methods, in a way or another, measure the smoothness of the candidate path.
The standard deviation only takes into account the y coordinate, which means that, unless the shape

of candidate path is always aligned with the x axis (which happens as the way define shape is defined
right now) the standard deviation will not be accurate. So, this method is not future proof and expandable
to all kinds of candidate paths in case the define shape method needs to be changed.

Although there are no significant problems with the second derivative, curvature was the approach
chosen since it has been used successfully in other research [5]. Additionally, it is also the one that
more accurately depicts the concept of smoothness (inherently the more curvature a path has, the less
smooth it is). Nonetheless, if needed, the smoothness method can be changed through the configuration
file. It should be noted that if this is done, the normalization process (that will be discussed in Section
4.2.2) needs to be re-calibrated.

4.1.3 Smoothness with Rotation Penalization

Since the smoothness only evaluates the shape of the curve and thus does not distinguish paths with
the same shape in the 3D space, a penalization term for situations where the path is rotated from the
horizontal plane and thus the UAV would have to climb/descend is added. So, the smoothness with
rotation penalization can be defined as

S(i)rp = S(i)(1 + kp| sinαi|) , (4.10)

where αi is the angle of elevation of the candidate path, the angle between the candidate path plane and
the ground plane. This means that paths that are rotated 90°will have the maximum possible penalization
(S(i)rp = S(i) + kpS(i)) and have a higher cost and the ones that are in the horizontal plane will have
the least penalization (S(i)rp = S(i)) and a lower cost.

4.1.4 Closeness to Moving Objects

Another component that can be added to the cost function to measure the safety of the created candidate
paths is the closeness to moving objects. Moving objects are more unpredictable than static ones and
so there should be more care used when handling them. To measure the safety of a candidate path in
relation to a moving object the closeness of the path to moving objects will be measured.

Since each path is represented by the set of points that defines it and since the threat path can be
defined in the same way, to measure the closeness between the two paths, the distance between each
waypoint and each threat path waypoint will be calculated. This can be seen in Figure 4.4, where for
the waypoint a the distance to the different threat waypoints is calculated (lines 1,2,3 and 4). Then, the
smallest one, i.e. the closest neighbour, is associated with the waypoint of the trajectory of the UAV; this
is repeated for the remaining waypoints of the trajectory (b,c,d,e in the figure). Thus, each UAV waypoint
will have a distance to the moving threat associated with it. This process is done with the help of the

31

SciPy library [47] with the function scipy.spatial.KDTree that finds the k closest neighbour between a
point (the candidate path waypoint) and a group of points (the threat waypoints). In this context k = 1

. A constant r equal to the radius of the threat is subtracted to the distance between the waypoint and
the closest neighbour in order to get the minimum possible distance between the UAV and the moving
threat. This distance r is not illustrated in the remaining figures of this section in order to simplify the
illustration of the problem.

Figure 4.4: Calculation method used for computing distance for Closeness to MO. Orange line and circle
represent the threat, blue line represents a candidate path. r is the radius of the threat.

With this information there are now two ways that were considered to measure this metric. The first
one is to take the average of the distances (c) between the UAV waypoints and the moving threat
waypoints. The second one is to take into account only the minimum distance (cmin) from the UAV
waypoint to the threat. Figures 4.5 and 4.6 illustrate two possible situations where each option will be
studied. Let us assume that using the first method (average of the distances) the result would be the
same in both situations. However, it is clear that the second situation is more dangerous given that the
UAV comes in close proximity to the threat and this calculation method does not reflect that. Using the
second method, this proximity would be taken into account. Thus, to calculate the closeness to moving
objects the minimum distance between the UAV trajectory and the moving threat has to be taken into
account.

Figure 4.5: Possible situation 1 when calculating
Closeness to MO .

Figure 4.6: Possible situation 2 when calculating
Closeness to MO .

However, it is also important to not consider only one distance when calculating the closeness to
moving objects, since it will not accurately describe the bigger picture. Figures 4.7 and 4.8 illustrate this
problem. Although in both figures the minimum distance cmin is the same, in the second figure the path
is clearly more dangerous since the UAV spends more time closer to the moving threat, and this fact
can be described by the average distance c. Thus, both methods should be considered: the minimum
distance to the moving threat and the average of the distances to the moving threat.

32

Figure 4.7: Possible situation 3 when calculating
Closeness to MO .

Figure 4.8: Possible situation 4 when calculating
Closeness to MO .

Therefore, the closeness to moving objects can be described as

fc(i) = (k1c+ k2cmin)
−1 , (4.11)

the expression is inverted since a lower distance means more danger which in consequence should
mean more cost. The constants k1 and k2 can be tuned to give more weight to either c or cmin. For
simplifications purposes these weights will be tuned to the same values k1 = k2 = 0.5, however they
can be changed by the user to prioritize one factor or the other.

In the situation that there is more than one moving object in the environment, the cost function for
the closeness with moving objects is calculated individually for all the moving objects present in the
environment. Then, the final value for the cost function is the average between the maximum value of
fc(i) and the average of all the fc(i) values .

M(i) = 0.5max(fc(i)) + 0.5fc(i) . (4.12)

4.1.5 Time

The time that it takes for the UAV to fly the path can be taken into account when calculating the cost
function for a certain path. Knowing the velocity in each waypoint (as it was discussed in Section 3.3)
and the coordinates for each waypoint makes this calculation trivial. The distance between each set of
waypoints is calculated by subtracting the coordinates between the i + 1 and i set of coordinates and
calculating the norm for the result; this assumes that the path flown between each set of waypoints is a
straight line. The time between each set of waypoints is then calculated by dividing the distance by the
velocity, and the sum of all of these times is the final time that the UAV takes to fly the path.

4.1.6 Hovering Power

Using the hovering power to calculate the cost function of a candidate path allows to distinguish between
paths that climb/descend based on the amount and velocity that they do so. There are three possible
methods for calculating the hovering power depending on which phase of flight the UAV is at, which is
determined in each segment between two waypoints and then added for the entire path.

1. Hovering Flight ,

2. Vertical Climb Flight ,

3. Vertical Descent Flight .

Assuming that the UAV that is flying is a quadrotor, according to [48], assuming no wings are located
below the rotors, the total power required for hovering is

33

P = Pi,R + P0 , (4.13)

where Pi,R is the real induced power and P0 the rotor’s profile power.

The ideal induced power is calculated as

Pi = Tvi,h = T

√
T

2ρA
, (4.14)

where vi,h is the induced velocity at the rotor in hover, T the rotor thrust, ρ the air density at hover altitude
and A the rotor disk area. However, this calculation is for the ideal induced power, which does not take
into account drag and other inefficiencies; to calculate the real induced power, a multiplicative factor ki
is included. This factor is approximated to ki = 1.15. Thus, the real induced power can be calculated as

Pi,R = Tkivi,h = kiW

√
W

2ρA
= ki

W 3/2

√
2ρA

(4.15)

The rotor’s profile power, P0 in equation (4.13), considers rectangular blades and Cd (average blade
drag coefficient), independent of Mach and Reynold’s numbers, and will be calculated as follows

P0 = ρAVtip
3

(
σCd

8

)
. (4.16)

The maximum value that the blades’ tip velocity (Vtip) can be is determined as Vtip = 0.8M ; otherwise,
the blades would enter the transonic regime.

So, for hovering flight, the total power equation can be written as

P = Pi,R + P0 = ki
W 3/2

√
2ρA

+ ρAVtip
3

(
σCd

8

)
. (4.17)

For vertical climb flight, assuming the absence of wings under the rotors, the total power required
is given by

P = P0 + Pc + Pi = T (Vy + kivi,c) + ρAVtip
3

(
σCd

8

)
(4.18)

where Pc is the power to climb, Vy the rate of climb and vi,c the induced velocity in climb, written as

vi,c = −1

2
Vy +

1

2

√
Vy

2 +
2T

ρA
. (4.19)

By rearranging the initial equation, and assuming that the drag generated during climb is negligible with
respect to the aircraft’s weight (T = W), the vertical climb flight power is given by

P = W

(
Vy −

ki
2
Vy +

ki
2

√
Vy

2 +
2W

ρA

)
+ ρAVtip

3

(
σCd

8

)
. (4.20)

For the power when in vertical descent flight, the momentum theory can be invalid given that a
more complicated recirculating flow pattern can exist at the rotor. Thus for the interval −2vi,h ≤ Vy ≤ 0,
empirical relations will be used and for Vy/vi,h ≤ −2 the momentum theory will be employed. The
power for vertical descent flight can be calculated similarly as in equation (4.18), whereas instead of
considering the vi,c the vi,d - induced velocity for the descent condition, is written as

vi,d = −Vy

2
− 1

2

√
Vy

2 − 2DL

ρ
(4.21)

34

and thus the power required for vertical descent flight when Vy/vi,h ≤ −2 is given by

P = W

(
Vy −

ki
2
(Vy +

√
Vy

2 − 2DL

ρ

)
+ ρAVtip

3

(
σCd

8

)
. (4.22)

As for −2vi,h ≤ Vy ≤ 0, vi,d is approximated by the quartic equation

vi,d = vi,h

(
ki +K1

(
Vy

vi,h

)
+K2

(
Vy

vi,h

)2

+K3

(
Vy

vi,h

)3

+K4

(
Vy

vi,h

)4
)

(4.23)

where K1 = −1.125, K2 = −1.372, K3 = −1.718, K4 = −0.655. vi,h, the induced velocity at the rotor in
hover, is given by

vi,h =

√
W

2ρA
. (4.24)

The rotor solidity σ used in equations (4.17), (4.20), (4.22) is defined by the are of the rotor disk that
is actually occupied by blade area. Thus, given that the are of rotor blades is given by N · c · R and the
area of the rotor disk πR2, rotor solidity is defined as

σ =
Nc

πR
, (4.25)

where N is the rotor’s number of blades, c is the chord, and R is the blade’s radius. The Tarot quadrotor
at CfAR, which uses CFProp 15x5R T-motor blades with the corresponding values of N = 2, c = 0.035m,
and R = 0.1905m, served as the basis for the values used. This gives a rotor solidity value of σ = 0.117

which is within the range mentioned in [48]: 0.07 < σ < 0.12.
The rotor disk area A is calculated as follows

A = nπR2 (4.26)

where n is the number of rotors and R is the rotor’s blade radius.
The disk loading is calculated by dividing the total weight of the aircraft by the rotor area

DL =
W

A
. (4.27)

The drag coefficient Cd and the air density ρ are imported from the configuration file and are set by
the user prior to the running of the algorithm.

4.2 Final Cost Function

The final cost function should fulfill a number of requirements, namely :

• fast to compute ;

• represents well how good a path is, i.e. a more adequate path will have a cost closer to 0 ;

• clearly distinguishes between a good and a bad path and penalizes certain aspects of a path
accordingly ;

• well defined, between 0 and 1 .

As studied before, several components can be used to evaluate a path, the ones implemented are
the following :

35

• Smoothness ;

• Smoothness with a rotation penalization ;

• Time to complete the trajectory ;

• Hovering Power used during the path ;

• Energy used to fly the path ;

• Closeness to moving objects .

To do this, 16200 environments are created from which 1 062 285candidate paths were generated
. Each environment is created with different parameters, Table 4.1 summarizes the parameters that are
modified between each environment and how they vary. The UAV is considered to be always at the origin
of the referential (pi = (0, 0, 0)) with a cruise velocity of 5m/s (vcruise = 5m/s), and the elevation, the size
of the threats, and its distance in relation with the the UAV varies. Only the elevation is being changed
because, according to the algorithm, it is irrelevant if the obstacle is to the left or right of the UAV, what
is relevant is the distance to it and how much the UAV has to climb or descend. The range of the values
of the parameters present in table 4.1 were chosen by trial and error, varying each parameter between
a feasible (initially larger) range and confirming that there were not any cases where the algorithm
would not be suitable to use. For simplification purposes, there are only two objects considered in the
environment - a static one (the main threat) and a moving one; however, the algorithm can handle more
objects in the environment.

Table 4.1: Parameter variation

Parameter n Range min Range max Interval

Rotation of the path (θi) 13 0 ° 180 ° 15 °
Distance UAV-Main Threat (DM) 5 3 m 10 m 1.75 m

Elevation Main Threat (EM) 9 -7 m 7 m 1.75 m

Main Threat Size (SM) 5 1 m 3 m 0.5 m

Distance UAV-Moving Threat (Dm) 3 3 m 10 m 3.5 m

Elevation Moving Threat (Em) 9 -10 m 10 m 3.33 m

Moving Threat Size (Sm) 3 1 m 2 m 0.5 m

Type of path 2 - - Symmetric or Simple

For each path generated, all the different types of cost are calculated. This is done to study the
variation of each type of path, its maximum and minimum values, and how each parameter affects it
when generating new paths. The time taken to calculate a specific type of cost for each path is also
registered.

To create the environments, an excel file is generated with all of the possible combinations of the pa-
rameters, where in each row a single combination of the different parameters is written that corresponds
to one single environment. Then, a script reads each row and generates the configuration/environment
files corresponding to that combination, these are the files that will be further described in Section 4.5.3.

4.2.1 Results

The algorithm was run with all of the different environment files, the results being saved to a Comma-
Separated Values (CSV) file. This file with the results for each candidate path was then analyzed with

36

MATLAB [49] to better comprehend the behaviour of the different parameters and so the data can be
pre-processed before the parameter tuning is made. For each candidate path, the value of each cost
parameter and the time it took to compute is saved, as well as the environment variables for which the
candidate path was generated.

4.2.1.1 Parameters Distribution

The figures below show the distribution of the different parameters. It can be observed that all of the
different parameters range between different values and have different behaviours in its distribution,
which confirms the need for data normalization. It should also be mentioned that some outliers were
removed from the data plots (data points that occur less than 100 times) to better show the true range
of the different parameters. On the x axis the range of values of the parameters is represented, on the
left y axis the frequency of each of these values is represented using a histogram, on the right y axis, in
orange, the cumulative percentage of values that are less than the value in the x axis is shown.

It can be observed that both the smoothness (Figure 4.9), the smoothness with penalization (Figure
4.10) and the closeness (Figure 4.11) exhibit similar behaviour - with a greater frequency of values in
the lower range, that then diminishes. Similarities can also be observed between the energy (Figure
4.12) and the time (Figure 4.14), that exhibit a distribution more similar to a standard normal distribution.
The hovering power (Figure 4.13) exhibits a more atypical behaviour, with all of the data points being
concentrated within a certain range and with similar frequencies throughout. This is due to the fact that
the hovering power mostly depends on the vertical velocity, which in term depends on the cruise velocity
since it is assumed that the UAV is flying at cruise velocity when possible, which was not changed when
the algorithm was executed. So, despite having an acceptable average runtime as it will be pointed out
in the next subsection, the distribution of its values is not statistically relevant enough to be considered
to measure the cost of a path, as it would not allow to distinguish well between different paths, one of
the requirements of the final cost function. Thus, the hovering power will not be used as a parameter
for the final cost function.

Figure 4.9: Smoothness values Distribution
(blue) and cumulative percentage (orange).

Figure 4.10: Smoothness with penalization values
Distribution (blue) and cumulative percentage (or-
ange).

37

Figure 4.11: Closeness Distribution (blue)
and cumulative percentage (orange).

Figure 4.12: Energy values Distribution (blue) and
cumulative percentage (orange).

Figure 4.13: Hovering power values Distribution
(blue) and cumulative percentage (orange).

Figure 4.14: Time values Distribution (blue) and cu-
mulative percentage (orange).

4.2.1.2 Runtime results

Figures 4.15, 4.16, 4.17, 4.18,4.19 and 4.20 show the runtime results of the different parameters for
each path. On the x axis the runtime for each path in microseconds (µs) is shown, with the y axis being
the frequency. For all the parameters, it can be observed that they follow a somewhat normal distribution
with a higher frequency of values in a certain range that then tapers out.

38

Figure 4.15: Smoothness Runtime distribution. Figure 4.16: Smoothness with penalization Runtime
distribution.

Figure 4.17: Closeness Runtime distribution. Figure 4.18: Energy Runtime distribution.

Figure 4.19: Hovering Power Runtime distribution. Figure 4.20: Time Runtime distribution.

Figure 4.21 shows the comparison between the runtime distribution of the different cost function pa-
rameters. The vertical lines represent the average of each parameter. Using the average as a metric,
the closeness with MO is the parameter that takes the most time per path (702.25 µs), followed by the

39

hovering power (274.78 µs), smoothness with penalization (241.52 µs), smoothness (238.00 µs), energy
(103.23 µs) and time (52.488 µs). The closeness with MO takes the most time since it uses all the way-
points of both paths (from the candidate path and the path of the MO) to calculate the closeness to the
MO - this could be one of the areas that could be improved in future work (see Section 6.1).Smoothness
and smoothness with penalization have very similar values (238µs vs. 241.52 µs) since the smoothness
with penalization only adds a small extra step to the calculation of this parameter. Energy and Hovering
Power have reasonable runtime since they are calculated with simple equations that are optimized with
the use of matrix multiplication.

Figure 4.21: Combined runtime graph for the different cost function parameters.

4.2.2 Normalization

4.2.2.1 Time & Energy

Since both the energy and time distributions (Figures 4.12 and 4.14) present a normal distribution across
a well-defined range, these parameters will be normalized using feature clipping first to remove the
outliers and then they will be scaled using the min-max normalization to a 0 to 1 range. Due to the
big quantity of data points on the dataset and the existence of outliers, the upper cap for feature clipping
that will be chosen will be the data point that represents the 99.5% of the data points in cumulative
percentage. Table 4.2 shows the minimum and maximum values found in the original dataset (without
the removal of the outliers with a count of less than 100 as it was done when plotting the graphs) for the
given parameter and the corresponding value for the 99.5% cumulative percentage.

40

Table 4.2: Upper and lower bounds for feature clipping of the parameters time and energy.

Parameter Minimum (lower cap) 99.5% (upper cap) Maximum

Energy (E) 249.59 1759.0 2028.5
Time (T) 1.2530 7.0814 8.9620

It should also be noted that the time data points were calculated assuming a cruise velocity of
vcruise = 5m/s, so before clipping and scaling to range the time data points, the minimum and maximum
caps should be scaled as well, since an UAV with higher cruise velocity will take less time to fly the same
path. Thus, the minimum and maximum caps must be different for each UAV and should be adjusted.
To solve this issue, a offline step is added where these limits are calculated for the given UAV. The steps
to implement this are:

1. The candidate path for which the lower and upper cap where calculated are saved as objects using
the Python library pickle 1 (this is only done once).

2. Offline, these paths are again loaded and the time values are calculated for the new UAV flying the
given path.

3. These new values (Ct
L and Ct

U) are saved and will be then used as the new lower and upper caps
when normalizing the time parameter.

The candidate paths saved are path ID 23, environment #1440 for the lower cap and path ID 39,
environment #11088 for the upper cap. The environment for the candidate path for the upper cap is
summarized in Table 4.3.

Table 4.3: Environment for the upper cap of the energy.

DM (m) EM (m) SM (m) Dm(m) Em(m) Sm(m)

8.25 -1.75 3 3 -10 1

The values for the environment for which the candidate path for the lower cap is generated can be
seen in Table 4.4.

Table 4.4: Environment for the lower cap of the energy.

DM (m) EM (m) SM (m) Dm(m) Em(m) Sm(m)

3 0 1 3 -10 1

With the new Ct
U and Ct

L values calculated in an offline phase, the time parameter can be normalized
as such

xt
new =

0, if xt < Ct

L

1, if xt > Ct
U

xt−Ct
L

Ct
U−Ct

U
, otherwise

(4.28)

Figure 4.22 presents the distribution of values for the time (T (i)) after the normalization was implemented
for the default values of the UAV. Figure 4.23 presents the distribution of values after normalization was
implemented for alternative values of the parameters of the UAV - Table 4.5 presents the values used

1Pickle Library, https://docs.python.org/3/library/pickle.html, accessed 15/08/2022

41

https://docs.python.org/3/library/pickle.html

in these last simulations. These simulations were run with a smaller dataset than the one used for the
original distribution figures for time saving purposes.

Table 4.5: Parameter values for the UAV2.

Parameter Value

CD 0.8
Ae 10 m2

m 10 kg

vcruise 15 m/s

maxROC 8 m/s

Figure 4.22: Time parameter normalized (UAV1). Figure 4.23: Time parameter normalized (UAV2).

Looking at these two images, one of the issues is that there is a high number of candidate paths with
T (i) = 1 - an explanation for this phenomenon is that the upper cap of the time parameter is too low. To
solve this problem, with trial and error, a multiplying factor was introduced to the upper cap in order to
make the distribution of values more balanced out. The new distribution with the new multiplying factor
(Ct

Unew
= 1.15 × Ct

U) is plotted in Figures 4.24 and 4.25. It can observed that there is no longer a jump
in frequency at T (i) = 1 and that the distribution continues to be balanced out.

Figure 4.24: Time parameter normalized
(UAV1) with 1.15 factor.

Figure 4.25: Time parameter normalized (UAV2)
with 1.15 factor.

42

For the energy, a similar logic can be implemented. The energy has two components: the me-
chanical energy and the energy due to drag forces. According to Equation (4.2) the mechanical energy
depends on the mass (m), absolute velocity square (||vi||2) - which mainly depends on the cruise veloc-
ity (vcruise), on the gravitational acceleration (g) and on the vertical position (pi,z). And the drag forces
energy, according to Equation (4.3) depends on the drag coefficient (CD), on the air density (ρ), on the
effective area (Aef), on the absolute change in position (||pi+1 − pi||) and on the absolute change in
velocity squared (||vi+1 + vi||2) - which also mainly depends on the cruise velocity (vcruise). The gravita-
tional acceleration and the air density are constants and the variation in the vertical position and position
is already considered to be taken into account by varying the elevation and position of the threats. How-
ever, the other variables (m,CD, vcruise, Aef) are UAV dependent and so new lower/upper bounds need
to be calculated for different UAVs.

The same method used for calculating the upper and lower caps for the time is implemented for the
energy. For the same candidate paths generated for the previously mentioned environments, the energy
for each UAV is calculated in an offline phase and saved.

Having the upper and lower caps for the normalization for any given UAV using the upper and lower
caps calculated offline, it is now possible to write the normalization equations. Again, the normalization
methods used are: feature clipping followed by min-max normalization to a 0 to 1 range. The new
upper and lower caps are referred to as Ce

U and Ce
L. Thus, the energy normalized can be written as:

xe
new =

0, if xe < Ce

L

1, if xe > Ce
U

xe−Ce
L

Ce
U−Ce

L
, otherwise .

(4.29)

Figure 4.26 presents the distribution of values after the normalization was implemented for the default
values of the UAV. Figure 4.27 presents the distribution of values after normalization was implemented
for alternative UAV. These new simulations were again run with a smaller dataset than the one used for
the original distribution figures for time saving purposes. This shows that, the distribution of the values
is similar with a different UAV and that, although there is a higher frequency of values in the extremes
end of the values (0 and 1), this frequency is still reasonable and it can be concluded that the lower and
upper minimum and maximum values were correctly implemented.

Figure 4.26: Energy parameter normalized (UAV1). Figure 4.27: Energy parameter normalized (UAV2).

43

4.2.2.2 Smoothness, Smoothness with penalization & Closeness to Moving Objects

All of the three remaining parameters (Smoothness, Smoothness with penalization and Closeness to
MO) exhibit similar behaviour regarding its distribution, with a higher frequency of values focused on
the lower range of the distribution that then tappers off - this can be seen in figure 4.9, 4.10 and 4.11.
It should be also noted that, contrary to the time and energy, these parameters do not depend on the
specifications of the UAV, so there is no need for them to be adjusted depending on the aircraft that is
flying the candidate path. Both the smoothness and the smoothness with penalization only depend on
the geometry of the path, whereas the closeness with MO depends on the position of the path and on
the environment (which threats are in the environment and its position).

With these data from the original dataset results, MATLAB[49] was used to try different normalization
methods. Log scaling is one of the types that could be used with this type of distribution, since there is
handful of values that have many points and the other values have few points. The results of applying
log scaling to the data for each parameter can be seen in Figures 4.28, 4.30 and 4.32 for smooth-
ness, smoothness with penalization and closeness with MO respectively. These histograms were then
analyzed in order to define the limits for feature clipping and for min-max normalization since the ex-
pected range of each parameter should be between 0 and 1. Table 4.6 shows the limits chosen - these
limits were chosen based on analyzing the range of the distribution after log scaling and with trial and
error for small adjustments. Figures 4.29, 4.31 and 4.33 shows the results with all of the normalization
methods implemented for a smaller dataset - these simulations were run with a smaller dataset than the
one used for the original distribution figures for time saving purposes. It can be seen that the results are
more well distributed than in the original distribution - this allows for a better distinction between god and
bad paths and more separation between paths that may be similar.

Figure 4.28: Smoothness distribution histogram
after log scaling.

Figure 4.29: Smoothness distribution histogram
after log scaling, feature clipping and min-max
normalization.

44

Figure 4.30: Smoothness with penalization
distribution histogram after log scaling.

Figure 4.31: Smoothness with penalization distri-
bution histogram after log scaling, feature clipping
and min-max normalization.

Figure 4.32: Closeness with MO histogram after
log scaling.

Figure 4.33: Closeness with MO histogram after
log scaling, feature clipping and min-max normal-
ization.

Table 4.6: Limits for min max normalization and feature clipping. These limits are also the ones used for
feature clipping.

Parameter xmin xmax

Smoothness (S) -3 2.5
Smoothness w/penalization (Srp) -3 3

Closeness w/MO(M) -3 0.001

Thus, using equation (2.1) and substituting the xmax and xmin values for the values present in the ta-
ble above, the set of equations to normalize and feature clip the data after log scaling for the smoothness
can be written as

xs
new =

0, if log(xs) < −3

1, if log(xs) > 2.5
log(x)+3

5.5 , otherwise .

(4.30)

45

For the smoothness with penalization, the process is similar, but with different limit values. Thus,

xsp
new =

0, if log(xsp) < −3

1, if log(xsp) > 3
log(x)+3

6 , otherwise .

(4.31)

And finally, for the closeness with MO

xm
new =

0, if log(xm) < −3

1, if log(xm) > 0.001
x+3
3.001 , otherwise .

(4.32)

4.3 Results analysis

Understanding how each parameters interacts and varies with each of the different aspects of the
candidate path is also relevant. By understanding these relations, the final cost function parameters
can be chosen so as they do not overlap and are all measuring different aspects of the quality of the
path.

The different aspects of the path that are considered are:

• Geometry of the path - if the shape of the candidate path influences the calculation of the param-
eter;

• Variance in altitude - if a change in altitude will affect the calculation of the parameter;

• Imminent danger - if moving objects and its proximity will affect the calculation of the parameter;

• Performance while flying the path - if the performance of the UAV while flying the candidate path
is measured by this parameter.

Analyzing Table 4.7, smoothness and smoothness with penalization depend on the shape of the
candidate path, but whereas smoothness does not, smoothness with penalization introduces a penal-
ization factor that takes into account the variance in altitude. Time and energy also both measure the
performance of the UAV while flying the candidate path and closeness with moving objects is the only
one that takes into account threats outside of the main threat.

Table 4.7: Properties of the path - analysis.

Parameter
Geometry
of the path

Variance
in altitude

Imminent
danger Performance

Smoothness (S) X
Smoothness w/penalization(Srp) X X

Time (T) X
Energy (E) X

Closeness w/MO (M) X

Since smoothness with penalization and smoothness both take into account the geometry of the
path, only one of them is needed as a final cost function parameter. Smoothness with penalization
also considers the variance in altitude and so, the choice between the two is trivial. Moreover, one
of the novelties of the path generation algorithm is its expansion to the 3D space and the inclusion
of a penalization factor that is related with the change in altitude (the variable that was added when

46

expanding to 3D space) is relevant to the work developed. It should also be noted that the average
runtime between the two parameters is similar, with only a difference of approximately 3.5µs between
the two which is not a difference in performance that is big enough to give preference to the smoothness
over the smoothness with penalization.

Closeness with MO is the only cost function parameter that measures the imminent danger associ-
ated with the path. For this reason it should be included in the cost function. However, it should also be
noted that it has one major drawback - its average runtime of 702.25µs. This is something that it will be
needed to be addressed in the future. Nevertheless, there is a need for this cost function parameter in
the framework developed. Security is one of the most important factors when flying UAVs, and making
sure that the final candidate chosen is as safe as possible is very important. One of the solutions to
overcome this problem could be to generate a smaller pool of initial candidate paths, so as the total
runtime to choose the best candidate path is also smaller. This has also a drawback, if less candidate
paths are being generated, the likelihood of a very good candidate path being chosen is also smaller.
Nonetheless, the usage of closeness with MO is crucial and a threshold for the final value of the cost
function should be implemented to ensure the quality of the chosen candidate path.

The final choice that needs to be done is between the time and energy parameters. Although both
parameters measure the performance of the UAV while flying the path, they measure it in different ways
and may or may not be strongly correlated. To test this hypothesis, for a smaller pool of the 16200
environments used when studying the cost function parameters and its distribution, different paths will
be generated and the time and energy outputs will be recorded (these outputs are already normalized).
The following subsection discusses and analyzes the results.

4.3.1 Correlation Analysis between Time & Energy

Figure 4.34 shows one of the plots used to analyze the correlation between the two parameters. The
x axis represents the ID of the path generated, the y axis the value of the parameter (the magnitude of
each variable), the blue dots represent the energy values and the orange ones the time values. It can
be seen that there is a strong relation between energy and time, with both parameters following a similar
pattern with the different path IDs. It should also be mentioned that the pattern visualized is due to the
fact that the dataset used is not in a random order, and the variables in the environment files that are
used to generate the candidate paths are being increasingly incremented as the environment ID (and
consequently the path ID) increments.

To better study the correlation between these two parameters, Figure 4.35 was generated with MAT-
LAB. The data used was the data pertained to 10648 paths that were generated from a smaller number
of environments than the original dataset used in Section 4.2 - this was done to save computational time,
since, from other plots, it is already established that the same relations between the different parameters
are maintained with this smaller dataset. This figure shows the correlation graph between energy and
time; the x axis represents the energy values and the y axis the time values. As described in Section
2.2.2, the behaviour observed in this plot (the linear relationship between the two variables) is typical of
the behaviour presented between two variables that are strongly correlated. The fitted line that describes
the relation between the energy (E) and time(T) is proof of that and can be written as

T = 1.0013E + 0.0060 , (4.33)

this equation, that was calculated with the least squares method, shows the clear linear relation between
the two variables, with a slope very close to 1 (m = 1.0013) and the line intercepting the origin very close
to 0 as well (b = 0.0060) The correlation coefficient is corr(E, T) = 0.9120. As mentioned in Section

47

Figure 4.34: Energy and Time scatter plot with path ID.

2.2.2, the closer a correlation coefficient is to 1, the more positively correlated these two variables are
(as an example, corr(T, T) = 1).

Figure 4.35: Energy and Time Correlation Analysis.

It can be concluded that there is a strong correlation between time and energy. For this reason, it
does not make sense to use them both as cost function parameters since they would be measuring very
similar attributes of the path. From a theoretical stand point these results can be easily justified - if a
UAV is taking more time to fly a certain path it will inherently spend more energy to do so and vice versa.
Nonetheless, the fact that the correlation analysis backs up this, is a testament to the validity of the time
and energy calculations. It should also be noted that the time parameter has a clear advantage that the
energy does not have - the runtime per path (52.5µs vs. 103.23µs). Considering all of this, the logical

48

conclusion is to only use one of them as a cost function parameter, and since the time parameter takes
less time to compute it should be the one chosen.

4.4 Implementation

To recap, the final three cost function parameters chosen were:

• Smoothness with penalization,

• Time,

• Closeness with Moving Objects.

The final step of the cost function implementation is choosing the weights to tune the cost function
to. The cost function is defined as

C(i) = kSS(i)rp + kTT (i) + kCM(i) (4.34)

where C(i) is the final value of the cost function for the path i, S(i)rp the smoothness with penalization
value for the path i, T (i) the time cost value for the path i, M(i) the closeness with moving objects value
for the path i, and kS , kT , kC the weights for the smoothness with penalization, time and closeness with
moving objects, respectively.

4.4.1 Weight Tuning

It should be noted that all of the candidate paths that will be evaluated by the cost function are already
considered adequate candidate paths that have no collisions and that, baring any unexpected changes,
would be safe for the UAV to fly. So, the goal of the weight tuning of the cost function is to choose
the most desirable path between the available solutions. What is considered the most adequate path
or which factors have more importance can be interpreted differently by each user. In this work, a
qualitative approach was taken; however, this can be argued and changed by future users. Additionally,
a quantitative approach can be explored in future work, with more set and defined constraints.

To tune the weights for the cost function, firstly the importance of each parameter, from a theoretical
point of view, should be established. Closeness to MO is the most important parameter - the security
of the aircraft is always the top priority and this parameter is the one that best measures this, so kC

should be the highest weight. The second highest weight should be the smoothness with rotation
penalization - this parameter measures the ”ease” that the UAV has while flying the given path, an
easier path to fly is a better path to fly since the UAV will waste less resources doing so. This parameter
also takes into account altitude changes, which influences the effort that it takes for the aircraft to fly
the path. Finally, kT should be the lowest - although time is an important factor, it is not a top priority;
moreover, any loss of time sustained while flying a slower path, can then be made up when the aircraft
re-enters its original trajectory by increasing velocity. In conclusion, kC > kS > kT . It should also
be noted that kS + kT + kC = 1 is a restriction of the problem, since each parameter was normalized
between 0 and 1 and one of the requirements of the final cost function is for it to be defined between 0
and 1 as well.

In order for the closeness to MO to not be too dominant, a limit was introduced and kC ≤ 0.70. A
minimum limit was also established, and kT ≥ 0.10 for the opposite reasons. Table 4.8 summarizes the
7 different weight combinations that will be tested.

49

Table 4.8: Weight combinations.

kC kS kT

1 0.70 0.20 0.10
2 0.60 0.30 0.10
3 0.60 0.25 0.15
4 0.50 0.40 0.10
5 0.50 0.30 0.20
6 0.50 0.35 0.15
7 0.40 0.35 0.25

For these 7 combinations, several types of environments will be used; for these environments there
are a number of different variables that can be changed, such as:

• Type of the main threat (dynamic or static);

• Size of the main threat;

• Direction that the main threat is moving;

• Number of other threats in the environment (1 to 3);

• Type of other threats (static or dynamic);

• Size of the other threats;

• Direction that the other threats are moving;

• Position of the threats in relation to the UAV;

It is not feasible to test all of the possible combinations, so 4 environments were crafted that will cover a
combination of these different variables.

Environment 1

• Main threat size = 1;

• Dynamic ;

• No other threats ;

• UAV 10.2 m from
the main threat.

50

Environment 2

• Main threat size = 3;

• Static ;

• One other threat,
dynamic ;

• UAV 9.4 m from the
main threat.

Environment 3

• Main threat size = 2;

• Static ;

• Two other threats,
dynamic ;

• UAV 6 m from the
main threat.

Environment 4

• Main threat size = 2;

• Dynamic ;

• Three other threat,
2 dynamic, 1 static ;

• UAV 6 m from the
main threat.

So, for each weigh combination, the results will be generated for the 4 environments. Each result
will be manually checked and qualitatively classified. The chosen path will be compared to the other
available paths in aspects such as:

51

• Overall distance from the threats in the environment;

• How (and if) the collision angle affects the chosen path;

• Path length and curvature;

• Changes in altitude;

Environment 1: As an example, Figure 4.36 shows a zoomed in detail on the solution found when
using the weight combination #1 on the environment (this is also the same solution reached with com-
binations #2 and #3, although with different final cost values). In this situation there are more adequate
paths like the one directly on the left of it. This second path is shorter and less curve than the chosen
one, while still safely avoiding the threat in the environment. The cost function chooses the other path
due to the high importance that is being given to the closeness to MO (kC ≥ 0.60) - it can be extrapolated
that with kC ≥ 0.60 the penalization from the distance to moving threats is too high and that it overshad-
ows the other cost function parameters. The remaining weight combinations choose a path that, with
the criteria defined, is more adequate. With these criteria, combinations #1 to #3 are disregarded.

Figure 4.36: Zoomed in detail on the solution reached with Combination #1 on Environment 1.

Environment 2: On environment 2 the main threat is static with a moving object that is flying above
the static one, in parallel with the y axis. With the weight combinations used, two different chosen paths
are found. The first one, illustrated in Figure 4.37a is the one chosen by combinations #1, #2, #3, #4,
whereas the remaining combinations choose the path shown in Figure 4.37b. Due to the direction that
the MO is moving, it can be argued that all of the candidate paths in the UAV reference frame or under it
are considered safe enough - so the two solutions meet this criteria. When moving from combination #4
to #5, the weight given to closeness with MO is the same, but the importance given to smoothness with
penalization decreases (from kS = 0.40 to kS = 0.30) and the importance given to time increases (from
kT = 0.10 to kT = 0.20) - which means that the time calculations consider that the path chosen by the
second set of combinations is quicker to fly. This is due to the fact that the first path entails a higher rate
of descent, and since there is a limit imposed on the rate of the descent (to avoid issues such as Vortex
Ring State [50]), the other candidate path is considered to be faster. So, an higher weight to the time is
also an important factor and thus kT ≥ 0.20. With the limits found when analyzing environment 1 and 2,
the remaining combinations that will be considered are combinations #5 and #7.

52

(a) Chosen path for combinations #1, #2, #3, #4. (b) Chosen path for combinations #5, #6, #7.

Figure 4.37: Solutions found for the different weight combinations for Environment 2

Environment 3: For Environment 3, the same path is chosen for all of the weight combinations, as
it can be seen in Figure 4.38. This is expected since the solution is more straightforward, than the other
environments. The available paths on the right of the UAV are similar to the the others in terms of path
length and curvature (time and smoothness) but pose an higher danger due to its close proximity to the
threat diagonally moving. The chosen path, in green, also does not have any change in altitude and its
one of the shortest path, making it an adequate solution for all of the 3 remaining combinations (#5, and
#7).

Figure 4.38: Results for the Environment 3 with Combination #5.

53

Environment 4: Finally, for Environment 4, the two remaining weight combinations find two distinct
solutions - combination #5 finds the solution presented on Figure 4.39a and combination #7 finds the
solution presented on Figure 4.39a. Both of the solutions are valid; however, due to the collision angle
and the lower importance given to closeness with MO, the path chosen by combination #7 is closer
to the MO (reminder that this is still a safe path, since for collision detection uncertainty is taken into
account). In this case, giving more importance to closeness with MO was prioritized and so combination
#5 was chosen as the most adequate one. Combination #5 is also the one that has the most balanced
weights (i.e. there is not a huge disparity between each weight (like 0.50 and 0.15 in combination #6) or
there are not any weights that are too close (like 0.40 and 0.35 on combination #7)).

(a) Zoomed in detail on the chosen path for
combination #5.

(b) Zoomed in detail on the chosen path for
combination #7.

Figure 4.39: Solutions found for the different weight combinations for Environment 4

Thus, the final cost function can be written as:

C(i) = 0.30S(i)rp + 0.20T (i) + 0.50M(i) (4.35)

54

4.5 Code Architecture

In this section the architecture of the code will be explained. First, the focus is given to the overall archi-
tecture of the code. Secondly, the main classes of the program will be discussed, which variables are
associated with them and some of the main methods will be explained in more detail. Next the configu-
ration files used to set different variables and load the environment and the objects for the algorithm to
calculate and choose the paths will be discussed.

4.5.1 Overall review

The code can be divided into 4 sections: Initialization, Path Generation, Collision Detection and Cost
Calculation. A flowchart that describes the code can be seen in Figure 4.40.

The first step is the Initialization - in this step the configuration files are read and the environment
is created. This includes creating the instances of the threats that are present as objects of the type
threat, initializing the UAV as an object of the type UAV and defining the equation of the original trajectory
of the UAV and the reference frame of the aircraft. This step also includes the calculation of the upper
and lower limits that are used to normalize the cost function parameter time (see Section 4.2.2.1). Ideally
most of this section would be done offline, before the UAV flies and the values and variables would be
stored and used when needed. Of course that the initialization of the threats cannot be done offline
since they are suppose to be sudden and thus, in a realistic scenario, are initialized just before the next
section - path generation.

In the path generation section, the candidate paths are created. Firstly, the distance to the main
threat that is in collision route with the UAV is calculated. If this distance is less than the minimum
security distance defined (2.5 × Rthreat) it is not possible to calculate candidate paths and the code is
exited (see Section 3.1.1). Otherwise, the code moves to the next step - generating the candidate paths
in the UAV reference frame. These paths only have x and y coordinates on the UAV reference frame
associated with them (the z coordinate is always equal to 0), and thus need to be expanded to three
dimensions. This is done by rotating the candidate paths by a rotation axis in order to cover the 3D
space and then, with a transformation matrix, transform the coordinates into the global reference frame
(see Section 3.1.3). When the candidate paths are defined, the velocity for each waypoint is calculated
which allows for the calculation of the maximum time - the maximum time that the UAV takes to fly any
of the given candidate paths. This variable is used in the collision detection section.

The next section, collision detection, will check if there is any collision between the candidate
paths and the threats present in the environment. This collision detection is performed individually for
each candidate path so. For each candidate path, each threat is checked for collision individually as
well. Firstly, it is checked if the threat is static or dynamic. For a static threat, the static security will be
checked and for a dynamic threat the dynamic security will be checked (see Sections 3.4.1 and 3.4.2).
In both of these securities, if there is a collision the path is deemed to be unavailable and its cost will not
be calculated in the future. If there is no collision, the path is marked as available. Once the security for
all of the candidate paths and all of the threats is checked, the code flows to the next section.

The final section, cost calculation, is where the cost function is calculated for each candidate path in
order to choose the best one. So, for each available candidate path, each cost parameter (smoothness
with penalization, closeness to MO and time) is calculated and normalized. These cost parameters are
then added with the weights that are chosen when weight tuning (equation (4.35)) . Finally, the candidate
path with the lowest cost is chosen. The available path status is maintained for the paths that were not
selected but for which there were no collisions.

55

Figure 4.40: Code flowchart.

56

4.5.2 Main Classes

There are 3 main classes used in the implementation of the algorithm developed: UAV, threat and
candidate path. A fourth class reference system defines the UAV reference frame and handles the
transformations between itself and the global frame and target planes.

4.5.2.1 UAV

The UAV class represents an UAV that is present in the environment and has a known position (x, y, z:
x,y,z) in meters (m), a known velocity (vx, vy, vz: vel x, vel y, vel z) in meters per second (m/s), an
effective area (Aef : effective area) in squared meters (m2), a drag coefficient (CD: drag coefficient),
a mass (m: mass) in kilograms (kg), the number of blades (N), the chord of the blades (c) in m, the ra-
dius of the blades (R) in meters, the number of rotors (n), the max ROC (max ROC) in m/s, the current
time (t: t) in s, and the caps dictionary that includes the lower and upper limits for the normalization of
the time and energy parameters. Since the hovering power and the energy were not chosen as a cost
function parameter, some of these variables are not used in the final version of the code (R,N,n, etc.),
nonetheless, they are still available in case the cost function parameters need to be changed. Most
of the information to initialize an object of this class is set by reading a configuration file, that will be
discussed in Section 4.5.3.

Regarding some of the methods in this class, these include methods to calculate certain variables (
rotor solidity, rotor disk area, disk loading, absolute velocity), methods to calculate certain relationships
with other objects in the environment (calculate distance to a point or the direction of the aircraft) and a
method to plot the UAV.

4.5.2.2 Threat

The threat class represents a threat that is present in the environment that the UAV has to avoid.
These threats are modelled as a sphere in 3D with a radius of size in meters (m). The threat class
has the position of the threat (x, y, z, in meters m) and the velocity (vel x, vel y, vel z, in meters
per second m/s) at a given time t and the maximum time max time that the threat will be interfering with
the UAV. The threat also has a static property, a boolean, that is set to True if all the components of
the velocity are 0 and False otherwise, as well as a FCL collision object (collision object).

Regarding the methods present in this class, besides updating the position according to the velocity
and the current time, there are also methods to plot the threat and the collision paths. The collision paths
- the space that the threat will occupy given its velocity and the expected time for the UAV to avoid the
main threat - are plotted as cylinders with a radius of the size of the threat, the direction of the velocity
vector of the threat and a height of the absolute velocity of the threat times the expected time referenced
before (max time). In Figure 4.41 two plotted threats can be seen, one static that is the threat that the
UAV will try to avoid in blue, and one dynamic in orange where the collision path is represented by the
dark blue cylinder.

4.5.2.3 Candidate Path

The candidate path class represents one of the paths generated by the algorithm to avoid the main
threat. The parameters needed to initialize this class are the position array in the 3 axis (x, y, z) and
an instance of the class of the UAV that is supposed to fly that path. Other parameters include the
value of the different cost parameters (smoothness, smoothness with penalization, energy, closeness
to MO, hovering power), the total cost, the runtime that it takes to calculate each of these parameters,

57

Figure 4.41: Two example threats: blue - static, orange - dynamic.

the velocity vector in each waypoint, the total time that the UAV takes to fly the path, the shape of the
path and the angle of elevation. It also includes two boolean variables that define if either the path is in
collision or if the path is the chosen one. If the collision boolean is set to False, the path is deemed as
available.

Regarding the methods, this class has methods to plot the path according to its availability (purple
- unavailable, light blue - available, green - chosen), to define the shape (for smoothness calculation
purposes - see Section 4.1.2), to define the velocities in each waypoint (see Section 3.3) and to calculate
the total path time (see Section 4.1.5).

4.5.3 Configuration Files

The work uses 3 different configuration files: one general one (named config.yaml), one that describes
the environment, and one that defines the UAV. All of the configuration file are of the type YAML. A YAML
file was chosen since it is both easily readable for a human as well as a machine, making it a popular
option for configuration files. Also, there are already libraries in Python that allow for the easy parsing
of the data from this type of file, namely pyyaml 2 that was used in this work. When parsing from the
configuration file it is capable of knowing if the variable is a string, boolean, integer or float.

The main configuration file is named config.yaml and has information about the collision radius used
for uncertainty when collision detecting (see Section 3.2), the size of the plotted graph (map: size),
the type of method used to calculated the smoothness (see Section 4.1.2), the weights used for the
final cost function, the number of target planes used when expanding to 3D (see Section 3.1.3), the air
density and gravitational acceleration values and the location of the other two configuration files.

There are also two other types of configuration file: UAV configuration file and environment con-
figuration file, both YAML files as well. The UAV configuration file contains the information needed
to initialize an instance of the class UAV as mentioned in 4.5.2.1. This way, it is possible to run and
compare how the algorithm performs with different types of UAVs in the same environment. The other
configuration file, the environment configuration file, contains information about the objects present
in the environment, its type (mainly the objects are threats - 4.5.2.2), position (x,y,z; floats, in meters
m), velocity (vel x, vel y, vel z; floats, in m/s) and size (float, in m). So, it is possible to test the
performance of the algorithm in different environments and compare the results.

2PyYAML library, https://pypi.org/project/PyYAML/,accessed 12/06/2022

58

https://pypi.org/project/PyYAML/

Chapter 5

Evaluation - Results

In this chapter, the framework developed is evaluated and validated on simulated scenarios, a parametric
study is performed and the results are compared with previous cases reported in the literature.

5.1 Runtime analysis

The time it takes for the code to execute (runtime) is one of the most important factors when dealing with
online collision avoidance - the fastest a solution is found, the better it is. In this section, firstly the results
will be presented - both for the runtime of each cost function parameter, as well as for the total runtime.
Next, since these results are obtained in a desktop computer, the runtime times will be extrapolated to
an onboard flight computer. With this information, the results will be discussed a potential changes that
would need to be made to the framework due to the runtime will be suggested.

5.1.1 Results

The runtime is analyzed for 3 different types for environments, that mainly vary in the amount of threats
considered in the environment. Thus, the 3 types of environments are:

• Environments with 1 static threat (blue) - 54 different environments, run three times;

• Environments with 2 total threats: 1 static threat and 1 dynamic threat (orange) - 288 different
environments, run once ;

• Environments with 3 total threats: 1 static threat and 2 dynamic threats (blue) - 72 different envi-
ronments, run twice;

Figures 5.1, 5.2, 5.3 and 5.4 show the violin plots that describe the runtime distribution for the three
parameters and the total time. The time for the three parameters is expressed in microseconds (µs)
whereas the time for the total time is expressed in (s). The parameters runtime corresponds to the time
it took to calculate that cost parameter for one candidate path, the total time runtime is the runtime of the
total online phase (Path Generation, Collision Detection, Cost Calculation). For these results the values
l = 4 (variable that controls the number of initially generated candidate paths in the UAV reference
frame) and n = 3 (variable that controls the number of target planes generated) were used, which leads
to, using equation (3.9), to L = 16 candidate paths per environment to be evaluated. Table 5.1 presents
the minimum, maximum and mean values for each runtime for the different parameters and the total
time. Since for the environment with 1 static threat there is no moving obstacles, there are not runtime
values for the closeness with MO associated with it.

59

Figure 5.1: Time runtime. Figure 5.2: Smoothness with penalization runtime.

Figure 5.3: Closeness with MO runtime. Figure 5.4: Total time runtime .

Table 5.1: Minimum, Maximum and Mean time values for the parameters calculated in different number
of threats in the environment. N is the number of threats in the environment: 1 static and N−1 dynamic.
SWP: Smoothness with Penalization, CMO: Closeness with Moving Obstacles.

Parameter Min Max Mean

N=1 N=2 N=3 N=1 N=2 N=3 N=1 N=2 N=3
Time (µs) 37.50 37.20 35.80 249.8 355.0 230.80 62.90 59.54 56.897
SWP (µs) 159.7 173.9 173.5 698.9 867.2 735.6 214.8 222.8 224.0
CMO (µs) - 646.0 1226.2 - 3347.8 5473.3 - 802.64 1537.4
Total (s) 0.05547 0.1165 0.1842 0.1292 0.3414 0.3247 0.0837 0.1527 0.2319

5.1.2 Desktop results vs. Onboard flight results

The results from the previous subsection were obtained in a computer with the following specifications:

• Processor: Intel Xeon CPU E5-1620 v3 @ 3.50 GHz

• Installed memory (RAM): 32.0 GB

• System type: 64-bit OS, Windows 10

Assuming the use of a Raspberry Pi Model 4B as a flight computer, its specifications are: 1

1https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/, accessed 15/10/2022

60

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/

• Processor: Quad core Cortex-A72 (ARM v8) @ 1.5GHz

• Installed memory (RAM): 1GB to 8GB

• System type: Raspberry Pi OS

According to the PassMark Software CPU bench-marking tool 2 , from the desktop CPU to the
Raspberry Pi CPU the loss of performance expected is of 83 %. The exact CPU specified in the
Raspberry Pi specification page was not available in the CPU benchmark website, however, a similar
one, the ARM Cortex-A72 6-Core @ 1.5GHz, was used as a comparison. Since the CPU is the main
responsible for performance, the comparison between the CPU’s will be the one used to extrapolate
computational times to the flight computer.

With this loss of performance (83 %), the total time expected for the different number of threats in the
environment is presented in Table 5.2 for the total time taken.

Table 5.2: Total time expected performance for the Raspberry Pi Model 4 as a flight computer.

Parameter Min Max Mean

N=1 N=2 N=3 N=1 N=2 N=3 N=1 N=2 N=3

Total (s) 0.1015 0.2132 0.3371 0.2364 0.6248 0.5942 0.1532 0.2794 0.4244

5.1.3 Discussion

Looking at the violin plots that describe the runtime distribution of the different cost function parameters
(Figures 5.1, 5.2 and 5.3) and of the total time (Figure 5.4), it can be stated that most results are concen-
trated within a certain range, with some outliers on the upper scale. This difference of computation time
within the same parameter was to be expected. The fastest cost function parameter to compute was
time (mean of 62.90µs, 59.54µs and 56.897µs per path for N = 1, 2, 3 respectively), followed by smooth-
ness with penalization (mean of 214.8µs, 222.8µs and 224.0µs per path for N = 1, 2, 3 respectively) and
finally Closeness with MO (mean of 802.64µs and 1537.4µs per path for N = 2, 3 respectively).

These results also confirm that, along with the number of candidate paths generated (equation (3.9)),
the number of threats in the environment is the other factor that greatly influences the total runtime. As
expected, when moving from 1 to 2 MOs in the environment, the mean average time approximately
doubles (from 802.64µs to 1537.4µs) - this shows that there needs to be an effort to either optimize the
calculation of the Closeness with MOs parameter or to limit the number of MOs considered when calcu-
lating the Closeness with MO value. More in-depth discussion on how to implement these improvements
will be discussed in section 6.1, but a simple solution would be to either not consider MOs that are more
than a certain distance from the UAV when calculating the cost for the Closeness with MO or to only
include the 3 closest MOs when calculating this parameter. Since both the smoothness with penaliza-
tion and time only depend on the path, the number of threats in the environment does not influence its
calculations only the number of candidate paths to be evaluated, as it can be seen in Figure 5.2 and 5.1.

In Tavares [41] work the upper time limit that it took for a solution to be found was around 100ms =

0.1s. Although the restrictions of the problem were different (Tavares work only dealt with one dynamic
object in collision route with the the UAV), a comparison can still be made between the two works. The
most similar situation that can be compared are the results for N = 2: an Environment with 2 total threats

2PassMark Software CPU bench-marking tool. Intel Xeon E5-1620 v3 @ 3.50GHz vs ARM Cortex-A72 6 Core 1512 MHz
https://www.cpubenchmark.net/compare/2409vs4679/Intel-Xeon-E5-1620-v3-vs-ARM-Cortex-A72-6-Core-1512-MHz,
accessed 21/10/2022

61

https://www.cpubenchmark.net/compare/2409vs4679/Intel-Xeon-E5-1620-v3-vs-ARM-Cortex-A72-6-Core-1512-MHz

(1 static and 1 dynamic). In this situation the solution developed takes a minimum of 0.1165s, maximum
of 0.3414s and a mean of 0.1527s for desktop results and a minimum of 0.2132s, maximum of 0.6248s
and a mean of 0.2794s for the estimated time for the Raspberry Pi Model 4B. The results presented by
Tavares pertain to desktop simulations with the code being written in C++. It is known that Python can
be significantly slower than C++ (around 29x slower, according to [51]), so, the work developed here as
the potential to be as fast or faster than Tavares’ work, if implemented in C++. However, it should be
stated that it is not certain, and only an implementation of this work in C++ could compare, with more
certainty, the computational times of the two works.

Finally, the effect of the calculation time has to be discussed. With a mean calculation time of 0.1532s
for N = 1, 0.2794s for N = 2 and 0.4244s for N = 3, and a cruise velocity of vcruise = 5m/s, the UAV
would move on average 0.766m for N = 1, 1.397m for N = 2, and 2.122m for N = 3. This shift in
position has to be taken into account when generating the candidate path, and the starting point should
be adjusted accordingly. One solution could be to shift the starting point 3.75m (for vcruise = 5m/s,
which would leave 0.75s for computation time) from the position received when a collision is detected.
This shift has to be cruise velocity dependent and adds another restriction to the problem.

5.2 Performance in different Scenarios

To evaluate the performance of the framework developed, 3 scenarios will be created and the solutions
found presented and discussed. One of the issues outlined by Tavares [41] in her framework was that
her work could not handle collision angles greater than 153 °, so, a scenario with this specification will be
created. This scenario, scenario 1, will test increasing collision angles to test the solutions presented by
the framework in these situations and its limitations. Scenario 2 will have two threats moving in parallel
with the UAV’s original trajectory with the main threat also moving in order to reduce the candidate paths
availability and test the framework in a more difficult scenario. Scenario 3 will test the framework’s
behaviour by having two dynamic obstacles in very close proximity to most of the candidate paths.

5.2.1 Results & Discussion

Scenario 1

In the first scenario, the effect of the collision angle (the angle from which the main threat is ap-
proaching the collision point from) is studied. Figures 5.5a and 5.5b show its behaviour with a collision
angle of 160 ° and different threat sizes. In both situations the threat is successfully avoided; however,
the candidate path chosen when dealing with the bigger threat is wider than the one chosen with the
smaller one since that, with a bigger threat, the less wide candidate path comes in closer proximity to
its collision path and so the other one is prioritized. Nonetheless, the framework can handle collision
angles bigger than the 153 ° limit of Tavares’ work considering reasonably sized threats.

The collision angle was then increased to 174 °. In this variation the framework is no longer capable
of finding a solution since all of the candidate paths are unavailable, as it can be seen in Figure 5.6. This
happens since that, with a greater collision angle, the collision path of the threat is now also in collision
with the original trajectory of the UAV, and since all of the end points of the candidate paths are the same
and the candidate path has to be, by definition, in original trajectory, it is not possible to find a suitable
solution. However, analyzing the figure below, in real-time, when the UAV is approaching the end point
(considering every candidate path), the main threat would be at the collision point (in orange), and so, in
reality, there would not be a collision and the path should be suitable. This shows that considering the
entirety of the threat’s collision paths to increase collision security may have been an over-correction,

62

and a collision detection method that also considers the threat’s trajectory (path with time associated)
may be necessary - more detailed discussion on this topic will be presented in the Future Work section -
Section 6.1. It is also not possible to define a concrete limit to the collision angle for which the framework
can find a solution. Nonetheless, it can be stated that the collision angle limit for smaller threats will be
bigger than for bigger threats.

(a) Rthreat = 1. (b) Rthreat = 3.

Figure 5.5: Solutions found for a collision angle of 160 ° (Scenario 1).

Figure 5.6: Rthreat = 1.5. No solution found for a collision angle of 174 ° (Scenario 1).

Scenario 2

In the second scenario, the UAV is climbing when a moving threat approaches from below with
two other threats moving in parallel with the UAV’s original trajectory. Figures 5.7a and 5.7b show the
behaviour of the framework in this scenario. Here, the candidate path chosen avoids the threat by
climbing over the collision point - this path is chosen over the similar path that, in contrast, descends
first and then climbs due to the proximity to the collision path that the UAV would have if chosen. All
of the the other candidate paths would collide with the two threats moving in parallel. Analyzing the
chosen candidate path, it is evident that there should be some consideration about the collision path
of the main threat after the collision point. If there were unexpected variations on the velocity of the

63

main threat, it could have reached the collision point before expected and may have collided when the
UAV was climbing over the collision point. Thus, adding an extra layer of security by either extending
the collision path to after the predicted collision point or to also consider the collision angle as a cost
function parameter can be an improvement. This improvement can also be argued for scenario 1 when
discussing the collision angle of 160 ° and Rthreat = 1 - if the main threat were to be faster than
predicted, it could have collided with the chosen candidate path since both the chosen candidate path
and the main threat are moving in the same plane (z = 0). In this scenario 1, a candidate path that
would climb/descend over the collision point may have been safer.

(a) Overall view.

(b) Zoomed in.

Figure 5.7: Solutions found for Scenario 2.

Scenario 3

In this scenario, there are two threats moving diagonally above the collision point . These threats
and its collision paths either collide or are in close proximity to most of the candidate paths. Firstly, the
main threat is considered to be static, as it can be seen in Figures 5.8a and 5.8b. In this situation, the
solution found shows the prioritization of the Closeness to MO, as the candidate path that descends first
and then climbs is chosen due to its distance from the collision paths, despite the higher energy that
it takes. This is evidenced when the main threat is changed and now considered dynamic, as it can
be seen in Figures 5.9a and 5.9b, the final cost of the chosen path of the first version of scenario is
0.355 and 0.405 in the second version. Here, since it is now not possible to choose the path previously
chosen, the chosen one avoids the main threat by going to the left.

64

(a) Overall view.

(b) Zoomed in.

Figure 5.8: Solutions found for Scenario 3.

(a) Overall view.

(b) Zoomed in.

Figure 5.9: Solutions found for Scenario 3.

In summary, the framework developed can find solutions for most situations. However, some im-
provements and adjustments should be made to increase the robustness of the work developed. These
adjustments mainly pertain to the collision detection block, by either expanding the collision path consid-
ered beyond the collision point or by changing how the collision detection is made - i.e. not considering
all of the collision path for collision detection. In addition, the collision angle should also be taken into

65

account when choosing a candidate path, as it was evidenced by scenario 1 and 2. Furthermore, the
biggest impediment to finding a solution is that a threat intersects the candidate paths ending points -
one the common attributes between all of the candidate paths. This is what happens when dealing with
collision angles close to 180 ° as it was explored in Scenario 1. The work may also fail in a situation
where there are more than one collision point, since, by avoiding the first collision point, there may not
be enough space and time to calculate and avoid the second.

66

Chapter 6

Conclusion

In this thesis, a framework was developed that, given adequate information about either a dynamic or
static threat that is in collision course with the UAV and other threats present in a 3D environment,
generates two types of candidate paths (based on a cubic spline method) capable of safely avoiding
the main threat. A candidate path is chosen based on a cost function that was developed to take into
account several aspects of the environment and UAV performance parameters. Six parameters were
studied and compared in order to find the three most suitable ones (time, SWP and CMO). Next, these
parameters were normalized by an analysis of their distribution and weights in the cost function and
were tuned using a qualitative approach. The framework is also equipped with collision detection for
both static and dynamic obstacles, where the uncertainties associated with the movement of the UAV
are considered.

The framework finds a solution most times but fails to find one when the end point of the candidate
paths is in collision path with any threat present in the environment (which happens for collision angles
> 160°, but the collision angle limit depends on the size of the threat). In these situations, the UAV is
only given a message to stop. Nonetheless, the results obtained are promising, with adequate runtimes
that could be greatly improved by porting the framework to C++ or by code optimization, specially for the
CMO calculation. Moreover, several modifications still need to be made to make the work reliable, robust
and secure. These modifications would still need to be followed by software and hardware-in-the-Loop
testing before a potential flight test.

6.1 Future Work

One of the biggest factors in online dynamic avoidance algorithms is the runtime. To improve the runtime
of the algorithm, one of the factors that can be improved is the calculation of the parameter closeness
MO since it is the one that takes, on average, the most time to calculate. There are a few ways that
this could be improved. One of the reasons that it takes a lot of time is that it uses all of the waypoints
of the candidate path and of the threat path and calculates the distance between them. Using less
waypoints for each path would reduce the runtime of this parameter. Another method could also be
used to improve the time efficiency of this parameter - either by using a different library or by taking into
account the relative position between the two objects throughout time and calculating the closeness to
MO in each time step instead.

Another step that could be taken to improve the runtime of the algorithm is to improve the collision
detection process. By checking if, for each threat, there is a collision with any of the candidate paths
(instead of the other way around as it is currently implemented) would lead to less collision detection

67

queries. In addition, for the dynamic security, the collision is being checked for all of the path of the
dynamic threat. In case there is accurate information about the trajectory (path with time information)
of both objects, the collision detection could be performed with this information, i.e. check if there are
collision in each time step, instead of checking for the complete time interval as it stands - there are FCL
functions for this purpose. This would also improve the selection of the candidate paths, since paths
that in real-time would not collide with an obstacle (but the totality of its path does), would be considered
secure.

It should also be mentioned that Python is not known to be the fastest coding language; however
some of its strong suits are its simplicity and the high number of libraries available which makes it easier
to quickly develop a prototype (one of the goals of this work). A more computer-efficient language,
like C++, could be used to obtain better results in terms of runtime. This would also make it easier
to integrate with the framework developed by Tavares [41] and Cristóvão [40]. Some of the important
libraries used in this work have C++ counterparts, like FCL, so this translation from Python to C++ is
not unreasonable. An integration with the work previously developed at CfAR would also make it easier
to perform SITL, HITL and eventually flight tests, since some of the libraries and framework to perform
these tests are already implemented.

Another improvement that should be added is taking into account the UAV restrictions when gen-
erating paths. As it stands, this algorithm does not check for that and assumes that the UAV can fly
any of the candidate paths. An extra step after the initial group of candidate paths are generated that
checks for the feasibility of the candidate path could be added (for example, checking if the turn rates
needed are possible). In addition to this, some of the variables used in this work are currently being
estimated with simple methods (like the velocity and the reference frame). Ideally the velocity calcula-
tions would be adapted to each type of aircraft and take into account its restrictions and the reference
frame should also be taken as an input instead of creating one based only on the direction of the original
trajectory. Studying the optimal number of waypoints needed to generate a path is also a topic that can
be addressed.

Another restriction of the work is that the original trajectory of the UAV is assumed to be straight.
In some situations, this assumption may be unreasonable and the aircraft may be performing a curved
trajectory. In that case the end point of the candidate paths generated would not coincide with the
original trajectory, and so a correction would need to be done to account for that.

In situations where none of the generated candidate paths are available, two options arise: activate
an emergency loop that stops the UAV - in case of a quad-rotor it can easily just hover and wait for the
threats to pass - or generate a new batch of candidate paths to try to avoid the threat. As it stands only
the first option is implemented - if all of the candidate paths are unavailable, no solution is found and
the aircraft is instructed to stop. There are several ways to generate new paths using the same path
generation equations. For example, the end point of the candidate paths can be changed, the size of
the threat can be considered bigger so the trajectories are wider or the number of target planes when
expanding the initial group of candidate paths can be increased. The generation of new paths should be
also implemented in the case that a threshold for the cost of chosen path is defined (i.e. a path is only
deemed as chosen if its cost is lower than a certain amount). The decision on the value to choose for
the threshold would also need to be studied.

Another route that the work developed on this thesis can take is using the cost calculation for op-
timization purposes and find the overall candidate path with the least cost by using either uninformed
searching methods like breadth-first search or depth-first search or informed search methods like greedy
search. Although this can be an interesting approach, it would increase the computation time. Moreover,
in online avoidance scenarios, the most optimized path is not needed in most cases, just a good enough
path to avoid the imminent danger. Nonetheless, if it were to be efficiently implemented, it could be a

68

valuable added feature.
Additionally, the weight tuning section could also be expanded by taking a more quantitative approach

to choose the weights. Although the approach taken here is still valid, an approach more set in numerical
data could be proven useful and give another insight into the work developed.

Finally, the improvements discussed in Section 5.1.3 to take into account the expected loss of time
while calculating the chosen candidate path could also be implemented, such as, shifting the starting
point of the candidate paths. Additionally, considering limiting the number of MOs used for Closeness
with MO calculation is another implementation that would improve the runtime - this can be done by
either not considering MOs that are more than a certain distance away from the UAV and/or to consider
only the x closest MOs for cost calculation purposes since they may not have a real influence on the
candidate paths and greatly add to the runtime.

69

70

Bibliography

[1] Magdi S. Mahmoud, Mojeed O. Oyedeji, and Yuanqing Xia. “Chapter 10 - Path planning in au-
tonomous aerial vehicles”. In: Advanced Distributed Consensus for Multiagent Systems. Academic
Press, 2021, pp. 331–362. DOI: 10.1016/B978-0-12-821186-1.00018-0.

[2] Precedence Research. Unmanned Aerial Vehicle (UAV) Market (By Class: Tactical UAVs, Small
UAVs, and Strategic UAVs; By Technology: Fully-autonomous, Semi-autonomous, and Remotely
Operated; By System: UAV Payloads, UAV Airframe, UAV Avionics, UAV Software, and UAV
Propulsion; By Application: Commercial, Military, and Recreational) - Global Industry Analysis,
Size, Share, Growth, Trends Analysis, Regional Outlook and Forecasts, 2021 - 2030. 2020. URL:
https : / / www . precedenceresearch . com / unmanned - aerial - vehicle - market (visited on
09/12/2022).

[3] Martina Orefice, Vittorio Di Vito, and Giulia Torrano. “Sense and Avoid: Systems and Methods”.
In: Encyclopedia of Aerospace Engineering (Dec. 2015). DOI: 10.1002/9780470686652.eae1149.

[4] Eulalia Balestrieri, Pasquale Daponte, Luca De Vito, Francesco Picariello, and Ioan Tudosa. “Sen-
sors and Measurements for UAV Safety: An Overview”. In: Sensors 21.24 (2021). DOI: 10.3390/
s21248253.

[5] Xia Chen, Miaoyan Zhao, and Liyuan Yin. “Dynamic Path Planning of the UAV Avoiding Static and
Moving Obstacles”. In: Journal of Intelligent & Robotic Systems 99.3 (Sept. 2020), pp. 909–931.
DOI: 10.1007/s10846-020-01151-x.

[6] Jia Pan, Sachin Chitta, and Dinesh Manocha. “FCL: A general purpose library for collision and
proximity queries”. In: 2012 IEEE International Conference on Robotics and Automation. 2012,
pp. 3859–3866. DOI: 10.1109/ICRA.2012.6225337.

[7] Xuejun Zhang, Yanshuang Du, Bo Gu, Guoqiang Xu, and Yongxiang Xia. “Survey of Safety Man-
agement Approaches to Unmanned Aerial Vehicles and Enabling Technologies”. In: Journal of
Communications and Information Networks 3.4 (Dec. 2018), pp. 1–14. DOI: 10.1007/s41650-
018-0038-x.

[8] Antonios Tsourdos, Brian White, and Madhavan Shanmugavel. “4. Collision Avoidance”. In: Co-
operative path planning of Unmanned Aerial Vehicles. American Institute of Aeronautics and As-
tronautics, 2011. DOI: 10.1002/9780470974636.

[9] B. M. Albaker and N. A. Rahim. “Unmanned aircraft collision detection and resolution: Concept and
survey”. In: 2010 5th IEEE Conference on Industrial Electronics and Applications. 2010, pp. 248–
253. DOI: 10.1109/ICIEA.2010.5516808.

[10] Changwen Zheng, Lei Li, Fanjiang Xu, Fuchun Sun, and Mingyue Ding. “Evolutionary Route Plan-
ner for Unmanned Air Vehicles”. In: Robotics, IEEE Transactions on 21 (Sept. 2005), pp. 609–620.
DOI: 10.1109/TRO.2005.844684.

71

https://doi.org/10.1016/B978-0-12-821186-1.00018-0
https://www.precedenceresearch.com/unmanned-aerial-vehicle-market
https://doi.org/10.1002/9780470686652.eae1149
https://doi.org/10.3390/s21248253
https://doi.org/10.3390/s21248253
https://doi.org/10.1007/s10846-020-01151-x
https://doi.org/10.1109/ICRA.2012.6225337
https://doi.org/10.1007/s41650-018-0038-x
https://doi.org/10.1007/s41650-018-0038-x
https://doi.org/10.1002/9780470974636
https://doi.org/10.1109/ICIEA.2010.5516808
https://doi.org/10.1109/TRO.2005.844684

[11] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for the Heuristic Determi-
nation of Minimum Cost Paths”. In: IEEE Transactions on Systems Science and Cybernetics 4.2
(1968), pp. 100–107. DOI: 10.1109/TSSC.1968.300136.

[12] Fan Hsun Tseng, Tsung Ta Liang, Cho Hsuan Lee, Li Der Chou, and Han Chieh Chao. “A Star
Search Algorithm for Civil UAV Path Planning with 3G Communication”. In: 2014 Tenth Inter-
national Conference on Intelligent Information Hiding and Multimedia Signal Processing. 2014,
pp. 942–945. DOI: 10.1109/IIH-MSP.2014.236.

[13] Jen-Hui Chuang and N. Ahuja. “An analytically tractable potential field model of free space and
its application in obstacle avoidance”. In: IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics) 28.5 (1998), pp. 729–736. DOI: 10.1109/3477.718522.

[14] Michael B. Bragg Scot E. Campbell and Natasha A. Neogi. “Fuel-Optimal Trajectory Generation
for Persistent Contrail Mitigation”. In: Journal of Guidance, Control, and Dynamics 36.6 (2013).
DOI: 10.2514/1.55969.

[15] Arvind U. Raghunathan, Vipin Gopal, Dharmashankar Subramanian, Lorenz T. Biegler and Tariq
Samad. “Dynamic Optimization Strategies for Three-Dimensional Conflict Resolution of Multiple
Aircraft”. In: Journal of Guidance, Control, and Dynamics 27.4 (2004). DOI: 10.2514/1.11168.

[16] Mangal Kothari and Ian Postlethwaite. “A Probabilistically Robust Path Planning Algorithm for
UAVs Using Rapidly-Exploring Random Trees”. In: Journal of Intelligent & Robotic Systems 71.2
(Aug. 2013), pp. 231–253. DOI: 10.1007/s10846-012-9776-4.

[17] I.K. Nikolos, K.P.Valavanis, N.C. Tsourveloudis, A.N. Kostaras. “Evolutionary algorithm based of-
fline/online path planner for UAV navigation”. In: IEEE Transactions on Systems, Man, and Cyber-
netics, Part B (Cybernetics) 33.6 (2003), pp. 898–912. DOI: 10.1109/TSMCB.2002.804370.

[18] Yangguang Fu, Mingyue Ding, Chengping Zhou, and Hanping Hu, “Route Planning for Unmanned
Aerial Vehicle (UAV) on the Sea Using Hybrid Differential Evolution and Quantum-Behaved Particle
Swarm Optimization”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems 43.6
(2013), pp. 1451–1465. DOI: 10.1109/TSMC.2013.2248146.

[19] Chunfang Xu, Haibin Duan, and Fang Liu. “Chaotic artificial bee colony approach to Uninhabited
Combat Air Vehicle (UCAV) path planning”. In: Aerospace Science and Technology 14.8 (2010),
pp. 535–541. DOI: 10.1016/j.ast.2010.04.008.

[20] Jung-Woo Park, Hyon-Dong Oh, and Min-Jea Tahk. “UAV collision avoidance based on geometric
approach”. In: 2008 SICE Annual Conference. 2008, pp. 2122–2126. DOI: 10.1109/SICE.2008.
4655013.

[21] L. Pallottino, E.M. Feron, and A. Bicchi. “Conflict resolution problems for air traffic management
systems solved with mixed integer programming”. In: IEEE Transactions on Intelligent Transporta-
tion Systems 3.1 (2002), pp. 3–11. DOI: 10.1109/6979.994791.

[22] Jie Rong, Shijian Geng, J. Valasek, and T.R. Ioerger. “Air traffic conflict negotiation and resolu-
tion using an onboard multi-agent system”. In: Proceedings. The 21st Digital Avionics Systems
Conference. Vol. 2. 2002, 7B2–7B2. DOI: 10.1109/DASC.2002.1052919.

[23] S. Wollkind, J. Valasek, and T.R. Ioerger. “Automated Conflict Resolution for Air Traffic Manage-
ment Using Cooperative Multiagent Negotiation”. In: Session: GNC-15: Airborne Separation As-
surance Algorithms (2012). DOI: 10.2514/6.2004-4992.

72

https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/IIH-MSP.2014.236
https://doi.org/10.1109/3477.718522
https://doi.org/10.2514/1.55969
https://doi.org/10.2514/1.11168
https://doi.org/10.1007/s10846-012-9776-4
https://doi.org/10.1109/TSMCB.2002.804370
https://doi.org/10.1109/TSMC.2013.2248146
https://doi.org/10.1016/j.ast.2010.04.008
https://doi.org/10.1109/SICE.2008.4655013
https://doi.org/10.1109/SICE.2008.4655013
https://doi.org/10.1109/6979.994791
https://doi.org/10.1109/DASC.2002.1052919
https://doi.org/10.2514/6.2004-4992

[24] Lidia Rocha and Kelen Vivaldini. “Analysis and Contributions of Classical Techniques for Path
Planning”. In: 2021 Latin American Robotics Symposium (LARS), 2021 Brazilian Symposium on
Robotics (SBR), and 2021 Workshop on Robotics in Education (WRE). 2021, pp. 54–59. DOI:
10.1109/LARS/SBR/WRE54079.2021.9605425.

[25] Oussama Khatib. “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots”. In: The In-
ternational Journal of Robotics Research 5.1 (1986), pp. 90–98. DOI: 10.1177/027836498600500106.

[26] Alfian Ma’Arif, Wahyu Rahmaniar, Marco Antonio Márquez Vera, Aninditya Anggari Nuryono, Ra-
nia Majdoubi, and Abdullah Çakan. “Artificial Potential Field Algorithm for Obstacle Avoidance in
UAV Quadrotor for Dynamic Environment”. In: 2021 IEEE International Conference on Communi-
cation, Networks and Satellite (COMNETSAT). 2021, pp. 184–189. DOI: 10.1109/COMNETSAT53002.
2021.9530803.

[27] Thi Thoa Mac, Cosmin Copot, Andres Hernandez, and Robin De Keyser. “Improved potential field
method for unknown obstacle avoidance using UAV in indoor environment”. In: 2016 IEEE 14th
International Symposium on Applied Machine Intelligence and Informatics (SAMI). 2016, pp. 345–
350. DOI: 10.1109/SAMI.2016.7423032.

[28] Herath Mpc Jayaweera and Samer Hanoun. “Real-time Obstacle Avoidance for Unmanned Aerial
Vehicles (UAVs)”. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics
(SMC). 2021, pp. 2622–2627. DOI: 10.1109/SMC52423.2021.9659197.

[29] Pengwei Wang, Song Gao, Liang Li, Binbin Sun,and Shuo Cheng. “Obstacle Avoidance Path
Planning Design for Autonomous Driving Vehicles Based on an Improved Artificial Potential Field
Algorithm”. In: Energies 12.12 (2019). DOI: 10.3390/en12122342.

[30] Zijie Lin. “3D Fast Geometric Collision Avoidance Algorithm (FGA) and Decision-Making Approach
Based on the Balance of Safety and Cost for UAS”. PhD thesis. Faculty of the Graduate School of
the University of Maryland, College Park, 2021. DOI: https://doi.org/10.13016/kshr-d9nl.

[31] Jawad N. Yasin, Sherif A. S. Mohamed, Mohammad-Hashem Haghbayan, Jukka Heikkonen, Hannu
Tenhunen, and Juha Plosila. “Unmanned Aerial Vehicles (UAVs): Collision Avoidance Systems
and Approaches”. In: IEEE Access 8 (2020), pp. 105139–105155. DOI: 10.1109/ACCESS.2020.
3000064.

[32] Selim Temizer, Mykel J. Kochenderfer, Leslie P. Kaelbling, Tomas Lozano-Perez and James K.
Kuchar. “Collision Avoidance for Unmanned Aircraft using Markov Decision Processes.” In: AIAA
Guidance, Navigation, and Control Conference 2 - 5 August 2010 (2010). DOI: https://doi.org/
10.2514/6.2010-8040.

[33] Yucong Lin and Srikanth Saripalli. “Sampling-Based Path Planning for UAV Collision Avoidance”.
In: IEEE Transactions on Intelligent Transportation Systems 18.11 (2017), pp. 3179–3192. DOI:
10.1109/TITS.2017.2673778.

[34] Hao-Tien Chiang, Nick Malone, Kendra Lesser, Meeko Oishi, and Lydia Tapia. “Path-guided ar-
tificial potential fields with stochastic reachable sets for motion planning in highly dynamic envi-
ronments”. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). 2015,
pp. 2347–2354. DOI: 10.1109/ICRA.2015.7139511.

[35] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss and Wolfram Burgard. “Oc-
toMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees”. In: Autonomous
Robots (2013). Software available at https://octomap.github.io. DOI: 10.1007/s10514-012-
9321-0.

73

https://doi.org/10.1109/LARS/SBR/WRE54079.2021.9605425
https://doi.org/10.1177/027836498600500106
https://doi.org/10.1109/COMNETSAT53002.2021.9530803
https://doi.org/10.1109/COMNETSAT53002.2021.9530803
https://doi.org/10.1109/SAMI.2016.7423032
https://doi.org/10.1109/SMC52423.2021.9659197
https://doi.org/10.3390/en12122342
https://doi.org/https://doi.org/10.13016/kshr-d9nl
https://doi.org/10.1109/ACCESS.2020.3000064
https://doi.org/10.1109/ACCESS.2020.3000064
https://doi.org/https://doi.org/10.2514/6.2010-8040
https://doi.org/https://doi.org/10.2514/6.2010-8040
https://doi.org/10.1109/TITS.2017.2673778
https://doi.org/10.1109/ICRA.2015.7139511
https://octomap.github.io
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1007/s10514-012-9321-0

[36] Zhangjie Fu, Jingnan Yu, Guowu Xie, Yiming Chen, and Yuanhang Mao. “A Heuristic Evolutionary
Algorithm of UAV Path Planning”. In: Wireless Communications and Mobile Computing 2018 (Sept.
2018), p. 2851964. DOI: 10.1155/2018/2851964.

[37] Luca De Filippis, Giorgio Guglieri, and Fulvia Quagliotti. “A Minimum Risk Approach for Path Plan-
ning of UAVs”. In: Journal of Intelligent & Robotic Systems 61.1 (Jan. 2011), pp. 203–219. DOI:
10.1007/s10846-010-9493-9.

[38] Manh Duong Phung and Quang Phuc Ha. “Safety-enhanced UAV path planning with spherical
vector-based particle swarm optimization”. In: Applied Soft Computing 107 (2021), p. 107376.
DOI: 10.1016/j.asoc.2021.107376.

[39] David Lane. “Values of the Pearson Correlation”. In: Introduction to statistics. Open Textbook Li-
brary, 2003.

[40] Hélder Cristóvão. “Real-Time Onboard Path Planning for Quadrotors”. MA thesis. Instituto Supe-
rior Técnico, 2021.

[41] Mariana Tavares. “Real-Time Onboard Trajectory Planning for Quadrotors in Open Environments
with Moving Obstacles”. MA thesis. Instituto Superior Técnico, 2022.

[42] Alexander Fabisch. “pytransform3d: 3D Transformations for Python”. In: Journal of Open Source
Software 4.33 (2019), p. 1159. DOI: 10.21105/joss.01159.

[43] Amila Thibbotuwawa, Grzegorz Bocewicz, Peter Nielsen, and Zbigniew Banaszak. “Unmanned
Aerial Vehicle Routing Problems: A Literature Review”. In: Applied Sciences 10.13 (2020). DOI:
10.3390/app10134504.

[44] Juan Zhang, James F. Campbell, Donald C. Sweeney II, and Andrea C. Hupman. “Energy con-
sumption models for delivery drones: A comparison and assessment”. In: Transportation Research
Part D: Transport and Environment 90 (2021), p. 102668. DOI: https://doi.org/10.1016/j.
trd.2020.102668.

[45] João L. Marins, Tauã M. Cabreira, Kristofer S. Kappel, and Paulo Roberto Ferreira. “A Closed-
Form Energy Model for Multi-rotors Based on the Dynamic of the Movement”. In: 2018 VIII Brazil-
ian Symposium on Computing Systems Engineering (SBESC). 2018, pp. 256–261. DOI: 10.1109/
SBESC.2018.00047.

[46] António Ramalho. “Real-Time Trajectory Planning for UAVs in Environments with Moving Obsta-
cles”. MA thesis. Instituto Superior Técnico, 2020.

[47] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”. In:
Nature Methods 17 (2020), pp. 261–272. DOI: 10.1038/s41592-019-0686-2.

[48] Afzal Suleman. Lecture 5b: VTOL Design Point. https://fenix.tecnico.ulisboa.pt/disciplinas/
PEAer/2021-2022/1-semestre/lectures. Accessed: 2022–17-08. 2022.

[49] MATLAB. version 9.9.0.1592791 (R2020b) Update 5. Natick, Massachusetts: The MathWorks Inc.,
2020.

[50] Joel McQuaid. “Early On-Set Prediction Of Vortex-Ring State Of Quadrotors”. In: (Oct. 2021). DOI:
10.32920/16811278.v1.

[51] David Lion, Adrian Chiu, Michael Stumm and Ding Yuan. “Investigating Managed Language Run-
time Performance: Why JavaScript and Python are 8x and 29x slower than C++, yet Java and Go
can be Faster?” In: 2022 USENIX Annual Technical Conference (USENIX ATC 22). Carlsbad, CA:
USENIX Association, July 2022, pp. 835–852. ISBN: 978-1-939133-29-40.

https://doi.org/10.1155/2018/2851964
https://doi.org/10.1007/s10846-010-9493-9
https://doi.org/10.1016/j.asoc.2021.107376
https://doi.org/10.21105/joss.01159
https://doi.org/10.3390/app10134504
https://doi.org/https://doi.org/10.1016/j.trd.2020.102668
https://doi.org/https://doi.org/10.1016/j.trd.2020.102668
https://doi.org/10.1109/SBESC.2018.00047
https://doi.org/10.1109/SBESC.2018.00047
https://doi.org/10.1038/s41592-019-0686-2
https://fenix.tecnico.ulisboa.pt/disciplinas/PEAer/2021-2022/1-semestre/lectures
https://fenix.tecnico.ulisboa.pt/disciplinas/PEAer/2021-2022/1-semestre/lectures
https://doi.org/10.32920/16811278.v1

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Context and Motivation
	Definitions
	Problem Statement
	Assumptions

	Project Overview and Objectives
	Path Generation
	Collision Detection
	Cost Calculation

	Contributions
	Thesis Outline

	Theoretical Background
	State of the Art
	Path Generation
	Safety Management Approaches

	Collision Detection
	Cost Calculation

	Theoretical Concepts
	Types of Normalization
	Correlation

	Previous work

	Methodology - Path Generation & Collision Detection
	Generation of Candidate Paths
	Initial group of candidate paths
	Symmetric Candidate Paths
	Expansion to 3D space
	UAV reference frame
	Rotation of the candidate paths

	Uncertainty
	Velocity
	Collision Detection
	Static Security
	Dynamic Security

	Methodology - Cost Function
	Cost Function Parameters
	Energy Consumption
	Smoothness
	Curvature
	Standard Deviation
	Second Derivative
	Comparison and Selection

	Smoothness with Rotation Penalization
	Closeness to Moving Objects
	Time
	Hovering Power

	Final Cost Function
	Results
	Parameters Distribution
	Runtime results

	Normalization
	Time & Energy
	Smoothness, Smoothness with penalization & Closeness to Moving Objects

	Results analysis
	Correlation Analysis between Time & Energy

	Implementation
	Weight Tuning

	Code Architecture
	Overall review
	Main Classes
	UAV
	Threat
	Candidate Path

	Configuration Files

	Evaluation - Results
	Runtime analysis
	Results
	Desktop results vs. Onboard flight results
	Discussion

	Performance in different Scenarios
	Results & Discussion

	Conclusion
	Future Work

	Bibliography

