A Geometric Method for Static and Dynamic Collision
Avoidance for UAVs in a 3D Environment

Carolina Pereira Pinheiro
carolina.p.pinheiro@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Portugal

December 2022

Abstract

Generating real-time solutions to avoid dynamic threats that are on a collision course with an Un-
manned Aerial Vehicle (UAV) is a challenging task. This work presents the development of a framework
with three integrated main blocks - path generation, collision detection and cost estimation - to find an
adequate path in a 3D environment which safely avoids both the impending threat and other threats
present in the environment. The path generation block uses a cubic spline method to generate an
initial group of candidate paths that is then expanded to 3D space by using a rotation matrix. Next, this
group of candidate paths are evaluated for collision detection and any candidate paths that have the
possibility to collide with any threats are discarded. Lastly, a function that estimates a cost determines
the optimal solution for collision avoidance. The cost function takes into account the environment around
the candidate path and the performance of the UAV. The parameters selected were normalized according
to their distribution across a multitude of scenarios and their weights are tuned to ensure a well balanced
cost function. The results show that the framework is able to find solutions for most situations with
promising run-times, but several improvements, modifications to the implementation and tests still need
to made before field deployment.

Keywords: collision avoidance, static and dynamic obstacles, 3D environment, cost function, online

computation

1. Introduction

An UAV (Unmanned Aerial Vehicle) is an aircraft
with no on-board crew or passengers, that are con-
trolled by onboard computers and thus have au-
tonomous flight capabilities. They exist in sev-
eral sizes, weights, and configurations (fixed wing,
multi-rotors, hybrid, etc.) and are used in several
real life applications such as payload delivery, traf-
fic monitoring, surveillance, agriculture, military ap-
plications, construction industry, recreational uses,
etc. [1]. The use of UAVs in this context requires
not only offline path planning but also for them to be
equipped with systems capable of avoiding sudden
obstacles not planned for in the initial path plan-
ning phase. Moreover, the growth of the use of
UAVs should be highlighted; according to a report
by Precedence Research [1] the UAV market was
valued at US$ 14.3 billion in 2020 and is expected
to hit around US$ 53 billion by 2030.

The work developed is inserted into the con-
tinuous effort at CfAR (Centre for Aerospace Re-
search) to develop a SAA (Sense and Avoid) sys-
tem. A SAA system is a system composed of
two main components - the sense function and

the avoid function. The sense function is re-
sponsible for identifying and tracking surrounding
traffic whereas the avoid function is responsible
for detecting possible conflicts (namely collision
threats) and to instruct maneauvers capable of
safely avoiding these conflicts [2]. The work is in-
serted into the second function - the avoid func-
tion - and a system that, given information about
the environment where it is inserted, is capable of
avoiding that threat is developed.

1.1. Problem Statement

The UAV has to be equipped with a real-time sys-
tem capable of detecting the threat, calculating the
evading trajectory and executing the evading tra-
jectory. These threats can be both static (no ve-
locity and fixed position) or dynamic (moving but
with known trajectory).

Regarding the requirements for the framework
and algorithm developed, the system should be ca-
pable to, when provided with information of threats
present in the environment, detect if these en-
tail collision risk and if so, generate an avoidance
path that avoids not only the collision threat but

also other threats present in the environment. The
avoidance path should start along the initial trajec-
tory of the UAV and re-enter that trajectory after the
threat is avoided.

One of the biggest constraints when trying to
solve this problem is the computational time avail-
able. The solution must be simple enough that it
can be incorporated in an on-board flight computer
like the Raspberry Pi 4 Model B.

It is also assumed that adequate information
about the threats (position, size, velocity, etc.) and
UAV(position, velocity, physical variables like Cp,
A.y etc.) is available by either the sensing system
or the UAV’s sensors.

1.2. Project Overview and Objectives

The framework developed takes as input the cur-
rent attributes of the UAV, information about the
environment (number of threats, position, velocity,
size, etc.) and generates paths capable of avoid-
ing the main threat (path generation). After these
paths are generated, they are checked for colli-
sion detection and the paths that collide with any
threat in the environment are disregarded. For the
remaining paths, their quality is quantified using a
cost calculation procedure by means of a cost
function that takes into account several attributes
of the path and characteristics of the UAV. The
framework was mainly developed in Python 3.7.13
.Python was chosen due to its ease to quickly de-
velop and test different solutions, despite not be-
ing the fastest language in terms of runtime. The
main contributions of this work is the development
and testing of a new and different type of online
avoidance algorithm, that could hopefully improve
where the previous work lacked. The cost calcula-
tion section is also a good contribution that could
be implemented independently from this work with
other path generations approaches.

2. Theoretical Background
2.1. Path Generation
When the UAV is not remote controlled by a
crew/individual on the ground there is a need for
the aircraft to be able to fly on its own, this en-
tails path planning implementation. Path planning
is usually done offline and searches for the most
suitable path to connect a starting point to a goal
point. However, the environments where UAVs are
inserted in can, sometimes, be unpredictable, and
threats or other aircraft that were not initially con-
sidered on the offline path planning phase can ap-
pear. For this reason there is also a need for a
mechanism to avoid unexpected threats. This is
where the safety management approaches are in-
serted.
Safety
safety and

management guarantees the
integrity of the aircraft and the

airspace/environment. Zhang et al. (2018)[3]
provides a summary of safety management
approaches to UAVs, where different methods
are presented depending on the scale of safety.
The different scales of safety defined are Large,
Middle and Small and they are dependent on the
available time frame to find a solution (Large-Scale
pertains to a global path-planning problem and
Small-Scale to an imminent collision avoidance
problem). The distinction between global path
planning and local path planning should also
be made. Global path planning takes into account
the whole picture and plans a path from the
initial starting position until the goal position while
avoiding the known obstacles in the environment.
Local path planning (also referred as dynamic
path planning) works with the information that is
receiving while flying to avoid dynamic obstacles
[4] (small-scale safety). Since this work is mainly
focused on small-scale safety, this will be the type
that will be further discussed.

In an imminent collision, the UAV must be able
to handle it on its own even with lack of future infor-
mation on the obstacles presented. In these cases,
the reactive collision avoidance system, which is
inserted into the small-scale safety management,
is the last line of defence. The collision avoidance
system performs evasive manoeuvres on these
threats, although these manoeuvres may not be
the most efficient due to the urgency of the situ-
ation. When developing small-scale safety algo-
rithms there are two main constraints: UAV physi-
cal performance (velocity, acceleration, etc.) and
the runtime of the algorithm (how much time it
takes to run the algorithm). The solutions for small-
scale safety can be divided into coordinated al-
gorithms and non-coordinated algorithms. An
higher emphasis will be given to coordinated al-
gorithms, specifically geometric method, since the
method chosen in this work is of this type.

Coordinated algorithm are used when the
UAVs/aircraft in collision route share flight intention
with each other - so, there is opportunity to coordi-
nate between the different aircraft; or the UAV has
information or can get information on the obstacle.
In this type of algorithm, rule-based methods (like
TCAS - Traffic Collision and Avoidance System),
APF (Artificial Potential Field) methods and ge-
ometric methods are included.

Geometric methods, although complex, are
highly efficient, but it can be difficult to implement
to adapt to complex environments. Most of the ge-
ometric methods also try to avoid deviation from
the original path [3]. These methods use geomet-
ric relations between the obstacles and the UAV
to calculate a new path so as the UAV can avoid
these conflicts. One of the advantages is that they

require less processing power and thus can be
more easily implemented on on-board computers
[5]. These geometric-based methods can be cate-
gorized into four groups: those that use geometry
information, such as the motion or location of the
vehicle, to produce angle changes; those that use
velocity variation; those that combine these meth-
ods; and those that also take other types of infor-
mation into account (global and probabilistic) [5].
Geometric methods can handle both static and dy-
namic obstacles .

The algorithm developed in this work is an im-
provement/extension on the work developed by
Chen et al. (2020) [4] and falls into the geomet-
ric methods for small-scale safety category.

2.2, Collision Detection

The FCL [6] is a library, originally developed in
C++, for performing proximity queries on a pair
of geometric models . FCL supports both differ-
ent types of collision queries/distance computa-
tions as well as different types of objects shapes
(box, sphere, cylinder, etc.) which makes it a very
complete library and tool to use.

In this work Python-FCL, an unofficial Python in-
terface for the FCL, was used. This package sup-
ports most of the features of the original C++ li-
brary.

2.3. Cost Calculation
The final block on the framework is the cost calcu-
lation. The goal of the cost function is to numeri-
cally evaluate the quality of the candidate paths.
Analyzing different articles and cost functions
previously developed [4][7][8] , it can be concluded
that the most important factors when choosing cost
function parameters are: collision risk, aircraft
energy consumption, shape of the path, alti-
tude changes and path length. So, the different
parameters should measure a mix of these factors.
The parameters that will be studied to be imple-
mented in the final cost function are smoothness
(measures the shape of the path) , smoothness
with penalization(measures the shape of the path
and changes in altitude), closeness to moving
objects (measures collision risks), energy (mea-
sures energy consumption), time (measures en-
ergy consumption and path length) and hovering
power (measures energy consumption). The fi-
nal goal is not to use all of these parameters,
but to choose the ones that better (accurately and
quickly) represent a candidate path while also tak-
ing into account the factors mentioned above.

3. Methodology

3.1. Path Generation

The first step in developing the collision avoidance
system is the path generation. The path genera-

tion method adopted (cubic spline method[4]) is a
geometric based method that was chosen due to
its simple and easy to understand implementation
and potential for low computational time. One of
the improvements that was made to the path gen-
eration algorithm is its expansion to the 3D space.

3.1.1

The initial group of candidate paths is generated
assuming that the UAV is flying a pre-defined path
when a threat (static or dynamic) is detected. It is
assumed that the position of the threat (in case of
a static threat) or the collision point of the dynamic
threat and its movement (velocity and its direction)
is known, as well as the size. Thus, the UAV needs
to avoid these sudden threats, that are assumed to
be circular. The corresponding cubic spline curve
equation is established as follows [4]:

Initial group of candidate paths

(1)

y= (l(ZL’ - xstart)g) + b(,CE - xstart)z“i’

-‘rC(I - xstart) + Ystart, T € (xsta'r'h 37end)

c=0 @
AT+ 2(Ystart — Ymid)
= Az3 @)
3(ymzd - ystart) — 2cAzx
= . 4
b N (4)

Ystarts Yend, Tstart aNd zonq are the starting posi-
tion and the ending point position of the candidate
path. x,,.q is the central abscissa of the threat and
AT = Tpmid — Tstare- 1he parameters a, b, and c are
the cubic spline parameters. Since ¢ = 0, ymiq IS
the variable that controls the a and b variables. So,
when N y.,,.4 values are set, N different sets of
a and b parameters will be calculated and conse-
quently N candidate paths will be generated.
Ymia 1S defined as [4]

(5)

The values of w are controlled by a step Aw. The
values of w were defined with trial and error and
were set as

Ymid = Ystart + W .

2Wmaz
W = [*32 X Rthrcata 3.2 X Rthrcat}y Aw = wl 5

(6)
and [is a variable that can be changed that controls
how many candidate paths are generated. Finally,
the end point is defined as [4]

(7)

Figure 1 shows an example of the candidate
paths generated with this implementation.

It should be taken into account that the paths can
only be generated if the UAV is far away enough

(xenda yend) = (15 x Ax + Tstart, ystart) .

Example of path generation in 2D

LAY

—— Candidate Path
Original Trajectory

= Threat

T
Figure 1: Paths generated for Ry eqr = 1,1 = 12

from the threat. With trial and error, it was found
that the minimum distance that should separate the
centre of the threat and the UAV is 2.5 X Rijreat-

3.1.2 Symmetric Candidate Paths

The candidates paths generated above have a dif-
ferent shape before and after crossing the threat
- after crossing the threat the aircraft returns to
the original trajectory in a more abrupt way than
the one that it leaves the original trajectory with.
These type of paths will be named simple candi-
date paths. A symmetry between the beginning of
the path and the ending could improve the smooth-
ness of the path and thus making it easier for the
UAV fly. So, after the initial group of simple candi-
date paths is generated, to generate the symmetric
group of candidate paths the highest absolute point
of the y coordinate is found and the symmetric can-
didate paths will be mirrored along this y axis in
the respective = coordinate. Figure 2 shows the
symmetric paths correspondent to the simple can-
didate paths of Figure 1.

Example of path generation in 2D

N R
N

x UAV
—— Candidate Path

Original Trajectory
—44 —— Threat

T T T T T T
-2 0 2 4 6 8

Figure 2: Symmetric candidate paths generated for Ripreqt =
1,1 =12.

3.1.3 Expansion to 3D Space

Having the equations for candidate paths defined,
expanding these to cover more of the 3D space
is crucial. This is done in order to have more op-
tions to evade the main threat and to reduce the
probability of colliding with other threats that may
be in the environment, thus making the algorithm
more versatile and adaptable. So, the initial group
of candidate paths will be generated in the UAV
reference frame and the candidate paths will be ro-
tated across the 3D space.

Reference frame

For the expansion to the 3D space, first a plane
needs to be chosen to generate the initial group of
candidate paths before rotating them. The refer-
ence frame of the UAV is used and the zy plane
in the UAV reference frame is the one chosen for
this task. For the purposes of simplifications, the
threat is considered to be centred in the trajectory
of the UAV and so the zy plane of the UAV has to
be a plane that slices the threat in half, with the «
axis in the direction of the trajectory and the ori-
gin of the reference frame is the current position of
the the UAV. In future work, the information for the
UAV reference frame should be taken as an input.
For now, only the x axis and the origin of the refer-
ence frame is considered and a "sample” reference
frame is created with this information.

To handle conversions from the global refer-
ence frame to the UAV reference frame, the
pytransform3d library is used [9] - a python library
for transformations in three dimensions. The ve-
locity of the UAV is given in the global reference
frame. The coordinates of the candidate paths are
originally generated in the UAV reference frame but
are then transformed to the global reference frame
with the use of this library.

Rotation of candidate paths

The original plane where the initial group of can-
didate paths are generated can be seen in Figure
3 in pink. Then, the rotation axis - the line that con-
nects the evading point and the centre of the threat
- is chosen (yellow in Figure 3). Next, by rotating
the original plane along the defined rotation axis
according to a certain angle 6, target planes will be
obtained where new candidate paths will be gen-
erated. The goal is to cover the 3D space in the
most efficient way, so all the target planes need
to be equally spaced out from each other. Since
the original group of candidate paths are generated
both at the left and right of the threat, 6 only needs
to be defined between [0, 180 °]. To equally space
out the planes according to the number of target
planes to be generated n, equation (8) is defined
that describes 6;, the rotation angle for the i-th tar-
get plane. An example target plane is represented
in green in Figure 3.

180° o
;= Xi,t=1,...,n
n+1

Initial Test - Splines.

Figure 3: Expansion to 3D space process. Pink - plane of the
initial group of candidate paths. Yellow - rotation axis. Green -
target plane. 6; - rotation angle.

With all of this information, a rotation matrix that
rotates points from the original plane to the target
plane based on the angle 6; can be defined us-
ing the pytransform3d library. The final group of
candidate paths are written in the global reference
system. When generating new target planes where
to project new candidate paths, computational lim-
its have to be taken into account. Thus, the impact
of the number of target planes generated is impor-
tant. In environments with few threats (1 to 3) it was
found that a reasonable amount of target planes is
n = 3. With more threats, more target planes can
be added.

3.2. Collision Detection
After all the paths are generated, each one is first
classified as either "Available” or "Unavailable” tak-
ing into account its static security and dynamic
security. The static security describes whether
there was a collision with a static object, whereas
the dynamic security describes whether there was
a collision with a dynamic object.

Static security

If there is not a known collision between the
UAV and static threat the path is considered to be
statically secure and will be checked for dynamic
security. This implementation is done using the
FCL, and assumes that the position and the size of
threats are known or estimated. For the static colli-
sion detection, first, a collision object on the form of
a box, more specifically a cube, with a side equal to
the collision radius defined in the configuration files
to account for uncertainty is created. For each seg-
ment (line between two consecutive waypoints) of
the candidate path, the collision box is considered
to start in the coordinates of the first waypoint of the

segment and moving to the second waypoint of the
segment in a straight line. The collision object for
the static threat is already defined when the threat
is created and is modelled as a sphere. Finally, a
continuous collide request between the UAV mov-
ing from the first waypoint of the segment to the
second and the threat is made, and if there is a
collision, the candidate path is marked as unavail-
able.

Dynamic Security

Dynamic security takes into account the moving
objects/threats present in the environment. An es-
timation of the time that the UAV will take to evade
the main threat has also to be known in order to
calculate how much movement is expected from
the moving threats/objects while the UAV is evad-
ing the main threat. For the collision detection with
dynamic threats, firstly the end point of the threat
given its trajectory is calculated. This is done as-
suming a straight line trajectory from the threat for
simplification purposes. Each candidate path is as-
sociated with the aircraft , and the maximum time
that the threat is possibly going to be interfering
with the aircraft is defined as the maximum time
that any of the candidate paths would take to fly by
the aircraft. So, the end point of the trajectory of
the threat is defined based on this maximum time,
and on the threat’s velocity. The dynamic security
was implemented with the FCL [6]. The collision
query is done similarly to the static security.

3.3. Cost Function

Next, a cost function is defined to evaluate the
candidate paths generated. Firstly, the six differ-
ent cost function parameters are defined and de-
scribed (Smoothness, Smoothness with penaliza-
tion (SWP), Energy, Hovering Power, Time and
Closeness to MO (CMQO)). Secondly, thousands of
candidate paths are generated and the value of
each cost function parameter is calculated for that
given candidate path; the results are analyzed in
order to choose the most relevant parameters and
normalized so they can be comparable. Finally, the
weights for the cost function are chosen and tuned.

3.3.1 Parameters

Energy

The model chosen was developed by Marins et
al. (2018) [10]. This model had been previously
used in work developed at CfAR and it takes into
account the factors that affect energy consumption
described by Thibbotuwawa (2020) [11].

In this model, the power related to the accelera-
tion/deceleration can be calculated as the variation
of kinetic energy.

Ei =||Em(i+1) — Ex(7)]| (9)

1
En (i) = ml|v;||* + mgp; - (10)

2
In this set of equations, F; is the consumed en-
ergy, F (i) the mechanical energy at state 4, m is
the mass of the UAV, g is the gravitational acceler-
ation, v; the speed of the UAV at state 4, and p; .
the position of the UAV along the z axis.
The work done by the drag forces is proportional
to the distance between waypoint, times the aver-
age speed squared.

i1 + vil?

. 1
Ep(i) = 5CppAclpen — o D a4

and

B =Y Ep(i), (12)
=0
where Cp, is the drag coefficient, p the air den-
sity, A the effective area of the aircraft, p; the po-
sition at state ¢ and v, the velocity at state i.
The total energy throughout the path is the sum
of the two components (E(i) = Fy + Es).
Smoothness
Another factor that is used to evaluate the quality
of the paths generated is the ability of the UAV to fly
stably and without sudden changes of movement.
The smoothness will be evaluated by the curvature
of the candidate path, defined as
|xl/yl _ x/y//|
N CIEEIREE)
and so, smoothness is written as [4]

S(i):/ - k2 dx

Tstart

(14)

The smoothness is calculated from the coordinates
(x and y) of the shape of the candidate path. The
shape of a candidate path is the 2D representation
of the path in the plane where it is defined. The less
curvature a path has, the more smooth the path will
be which means that the smoothness cost will be
lower.

Smoothness with Penalization (SWP)

Since the smoothness only evaluates the shape
of the curve and thus does not distinguish paths
with the same shape in the 3D space, a penaliza-
tion term for situations where the path is rotated
from the horizontal plane and thus the UAV would
have to climb/descend is added. SWP is defined
as

S(@)rp = S()(1 + kp|sinay]) , (15)

where «; is the angle of elevation of the candi-
date path, the angle between the candidate path
plane and the ground plane.

Closeness to Moving Objects (CMO)

The closeness to moving objects (CMO) takes
into account both the minimum distance between
the waypoints of the two paths (the threat path, and
the candidate path) (c...») as well as the average
distance between the two paths (¢). For each can-
didate path and MO pair, the CMO is defined as

fe(i) = (0.5¢ + 0.5¢min) ", (16)

the expression is inverted since a lower distance
means more danger which in consequence should
mean more cost.

In the situation that there is more than one mov-
ing object in the environment, the cost CMO is cal-
culated individually for all the MOs present in the
environment. Then, the final value (M (7)) is the
average between the maximum value of f.(¢) and
the average of all the f.(4) values .

M (i) = 0.5max(f.(2)) + 0.5f.(7) (17)

Time

The time (7') that it takes for the UAV to fly the
path is another useful parameter. Knowing the ve-
locity (v) in each waypoint and the coordinates for
each waypoint (so the distance d between way-
points can be calculated) makes this calculation
trivial, as 7' = 4.

Hovering Power

Hovering power allows to distinguish between
paths that climb/descend based on the amount and
velocity that they do so. Three different methods
are used depending on which phase of flight the
UAV is at (Hovering, Vertical Climb and Vertical De-
scent Flight), which is determined in each segment
between two waypoints and then added for the en-
tire path.

For hovering flight, hovering power is calculated
as [12]

3/2
V2pA

P; r is the real induced power, P, the rotor’s pro-
file power, W the weight, A the rotor disk area, V4,
the velocity at the tip of the blade (V;;, = 0.8M;
otherwise, the blades would enter the transonic
regime), Cy is the average blade drag coefficient.

For vertical climb flight, the power is defined [12]

C
P=Pip+P =k +pAV? (”) . (18)

8

ks ks

2w

V2 +) + (19)

pA
oC

For vertical descent flight, if V, /v; , < —2[12]

ki / 2DL
P=W (Vy =5Vt [V = p) + (20)

oC,
+pA‘/;fip3 <8d> .

As for —2v;;, <V, <0, v; 4 is approximated by
the quartic equation

2
Vi, d = vi,h(ki —1.125 <‘/y> —1.372 (‘/y) +
Vi,h Vi,h
(21)

v, \? v, *
—1.718(y) —0.655(y))
Vi, h Vi, h

vi,h = \/ 2.4 IS the induced velocity at the rotor

in hover.

The rotor solidity, o = %, where N is the ro-
tor's number of blades, ¢ is the chord, and R is
the blade’s radius. The rotor disk area A = nmR?,
where n is the number of rotors and R is the rotor’s
blade radius. The disk loading is calculated by di-
viding the total weight of the aircraft by the rotor
area DL = %. The drag coefficient C; and the air
density p are imported from the configuration file
and are set by the user .

3.3.2 Normalization

To normalize the parameters, 16200 environments
were created in different scenarios, in order to an-
alyze the distribution of each cost function param-
eter. From the parameter distribution, hovering
power is disregarded as a cost function parameter
due to its atypical behaviour, with data points being
concentrated within a certain range and with sim-
ilar frequencies throughout (which means it won’t
be good to distinguish between paths). The re-
maining cost function parameters are normalized:
time & energy depend on characteristics of the
UAV so their min and max values pre min-max
normalization and feature clipping are calculated
by measuring its values in the lowest and high-
est time-consuming/energy-consuming candidate
path. The three remaining parameters (smooth-
ness, SWP, CMO) are normalized with log scaling,
min-max normalization and feature clipping. Log
scaling is used due to the parameters distribution -
since they have a handful of values that have many
points and other values that have few points.

3.3.3 Parameter Selection

Understanding how each parameters interacts and
varies with each of the different aspects of the

candidate path is also relevant. By understand-
ing these relations, the final cost function param-
eters can be chosen so as they don’t overlap and
are all measuring different aspects of the quality
of the path. The different aspects of the path that
are considered are geometry of the path - if the
shape of the candidate path is influential, variance
in altitude - if a change in altitude is influential;
imminent danger - if moving objects and its prox-
imity is influential; performance while flying the
path - if the performance of the UAV while flying
the candidate path is measured by this parameter.

Analyzing Table 1, smoothness and SWP de-
pend on the shape of the candidate path, but
whereas smoothness does not, SWP introduces a
penalization factor that takes into account the vari-
ance in altitude. Time and energy also both mea-
sure the performance of the UAV while flying the
candidate path and CMO is the only one that takes
into account threats other than the main threat.

Since SWP and smoothness both take into ac-
count the geometry of the path, only one of them is
needed as a final cost function parameter, and due
to the additional information it provides, SWP is
chosen. CMO is the only parameter that measures
the imminent danger associated with the path. For
this reason it must be included, despite the higher
computational time. The final choice is between
the time and energy parameters, since they both
measure the performance. An analysis was made
and it was concluded that time and energy have a
correlation coefficient of p = 0.9120 and thus, since
time is quicker to compute, it was chosen over en-
ergy. The final 3 cost function parameters chosen
are SWP, CMO and time.

3.3.4 Weight Tuning

All of the candidate paths that will be evaluated by
the cost function are already considered adequate
candidate paths that have no collisions and that,
baring any unexpected changes, would be safe for
the UAV to fly. So, the goal of the weight tuning
of the cost function is to choose the most desir-
able path between the available solutions. What is
considered the most adequate path or which fac-
tors have more importance can be interpreted dif-
ferently by each user. In this work, a qualitative
approach was taken; however, this can be argued
and changed by future users. So, different weight
combinations are tried in a variety of scenarios in
order to choose an adequate combination. It is as-
sumed that CMO is the most important parameter,
followed by SWP and time. After evaluating all of
the scenarios, the final cost function is defined as

C(i) = 0.305(i),p + 0.20T(i) + 0.50M (i) (22)

Table 1: Properties of the path - analysis.

Parameter Geometry of the path ~ Variance in altitude Imminent danger Performance
Smoothness (.5) X
Smoothness w/penalization(S;) X X
Time (T) X
Energy (E) X

Closeness w/MO (M)

4. Results & discussion

The time it takes for the code to execute (runtime)
is one of the most important factors when dealing
with online collision avoidance - the fastest a solu-
tion is found, the better it is. The framework devel-
oped will be tested in different scenarios in order
to comprehend its strengths, vulnerabilities and fu-
ture improvements.

4.1. Runtime

The runtime is analyzed for 3 different types for
environments, that vary in the amount of threats
considered in the environment (N = 1: 1 static
threat; N = 2: 1 static threat and 1 dynamic threat;
N = 3: 1 static threat, 2 dynamic threats). CMO
is only calculated for N = 2 and N = 3. Fig-
ure 4 shows the total runtime distribution. Table
2 shows the runtime for each parameter and the
total time. Looking at both the table and the figure
it can be stated that, as expected most results are
concentrated within a certain range, with some out-
liers on the upper scale. The fastest cost function
parameter to compute was time, followed by SWP
and finally CMO. These results also confirm that,
along with the number of candidate paths gener-
ated, the number of moving threats in the environ-
ment is the other factor that greatly influences the
total runtime. As expected, when moving from 1
to 2 MOs in the environment, the mean average
time approximately doubles - this shows that there
needs to be an effort to either optimize the calcula-
tion of the CMO parameter or to limit the number of
MOs considered when calculating the CMO value.
To better understand the computational limitations,
these times are then extrapolated to the time that
would take in a Raspberry Pi CPU. According to
the PassMark Software CPU bench-marking tool
[13], from the desktop CPU to the Raspberry Pi
CPU the loss of performance expected is of 83
%. The last line of table 2 shows these results.
These times can be bettered by either a code op-
timization (mainly in the CMO calculation process)
or by porting the work to a faster language, like
C++.

Finally, the effect of the calculation time has to
be discussed. While the avoidance manoeuvre is
being computed, the UAV is still flying and thus,
changing position. This shift in position has to be
taken into account when generating the candidate

path, and the starting point should be adjusted ac-
cordingly. This shift has to be cruise velocity de-
pendent and adds another restriction to the prob-
lem.

Wiolin Plots for total runtime
0.40

035

030

0.25

020

Time (s)

0.13

0.10

+

1 2 3
Number of Threats

Figure 4: Total time runtime .

0.05

0.00

4.2. Performance
To evaluate the performance of the framework de-
veloped, 3 scenarios will be created. Scenario 1
will test increasing collision angles, Scenario 2 will
have two threats moving in parallel with the UAV’s
original trajectory, Scenario 3 will test the frame-
work’s behaviour by having two dynamic obstacles
in very close proximity to most of the candidate
paths.

Scenario 1

Figure 5 shows the behaviour with a collision an-
gle (the angle from which the main threat is ap-
proaching the collision point from) of 160 °. The
threat is successfully avoided; however, for a big-
ger threat a wider path would have to be chosen.
With increasing collision angles, eventually all of
the candidate paths will be unavailable. This oc-
curs since all of the candidate paths have the same
end point, and so, a big enough threat for a big
enough collision angle would have its collision path
overlapping the end points. This shows that con-
sidering the entirety of the threat’s collision paths
to increase collision security may have been an
over-correction, and a collision detection method
that also considers the threat’s trajectory (path with
time associated) may be necessary. It is also not
possible to define a concrete limit to the collision
angle for which the framework can find a solution.
Nonetheless, it can be stated that the collision an-
gle limit for smaller threats will be bigger than for

Table 2: Minimum, Maximum and Mean time values for the parameters calculated in different number of threats in the environment.
N is the number of threats in the environment: 1 static and N — 1 dynamic. SWP: Smoothness with Penalization, CMO: Closeness

with Moving Obstacles, RBPi - Raspberry Pi.

Min Max Mean
Parameter
N=1 N=2 N=3 N=1 N=2 N=3 N=1 N=2 N=3

Time (us) 37.50 37.20 35.80 249.8 355.0 230.80 62.90 59.54 56.897
SWP (us) 159.7 173.9 173.5 698.9 867.2 735.6 214.8 222.8 224.0
CMO (us) - 646.0 1226.2 - 3347.8 54733 - 802.64 1537.4
Total (s) 0.05547 0.1165 0.1842 0.1292 0.3414 0.3247 0.0837 0.1527 0.2319
Total RBPi (s) 0.1015 0.2132 0.3371 0.2364 0.6248 0.5942 0.1532 0.2794 0.4244

bigger threats.

Collision Avoidance (config_files/env_files_scenariol.yaml)

Legend
=== Chosen Candidate Path
® UAV

Original Trajectory

Figure 5: Solution found for a collision angle of 160 ° (Scenario
1) Rihreat = 1.

Scenario 2

In the second scenario, the UAV is climbing
when a moving threat approaches from below with
two other threats moving in parallel with the UAV’s
original trajectory. Figure 6 shows the results. The
candidate path chosen avoids the threat by climb-
ing over the collision point. Analyzing it, it is evident
that there should be some consideration about the
collision path of the main threat after the collision
point. If there were unexpected variations on the
velocity of the main threat, it could have reached
the collision point before expected and may have
collided when the UAV was climbing over it. Thus,
adding an extra layer of security by either extend-
ing the collision path to after the predicted collision
point or to also consider the collision angle as a
cost function parameter can be an improvement.
Nonetheless, the chosen candidate path success-
fully avoids the incoming threats.

Scenario 3

In the last scenario, there are two threats moving
diagonally above the collision point . These threats
and its collision paths either collide or are in close
proximity to most of the candidate paths. Firstly,
the main threat is considered to be static,(Figure
7). In this situation, the solution found shows the
prioritization of the CMO, as the candidate path
that descends first and then climbs is chosen due

Collision Avoidance (config_files/env_files_scenario2.yaml)
Weights: k_s= 0.3, k_c= 0.5, k_t=0.2
Legend
—— Chosen Candidate Path
o uav
Original Trajectory

Figure 6: Solution found for Scenario 2 - Zoomed in.

to its distance from the collision paths, despite the
higher energy it takes. This is evidenced when the
main threat is changed and now considered dy-
namic (Figure 8), the final cost of the chosen path
of the first version is 0.355 and 0.405 in the second
version. In the second scenario, since it is now not
possible to choose the path previously chosen, the
chosen one avoids the main threat by going to the
left.

Collision Avoidance (config_files/env_files_scenario3.yaml)
Weights: k_s= 0.3, k_c= 0.5, k_t=0.2

Legend
—— Chose
e uav

Original Trajectory

n Candidate Path

Figure 7: Solution found for Scenario 3-1, zoomed in.

In summary, the framework developed can find
solutions for most situations, however some im-
provements and adjustments should be made to
improve the robustness and security of the work
developed. These adjustments mainly pertain to
the collision detection block, by either expanding
the collision path considered beyond the collision

Collision Avoidance (config_files/env_files_scenario3.yaml)
Weights: k_s= 0.3 , k_c= 0.5, k_t=0.

Legend
= Chosen Candidate Path
® uAv
Original Trajectory

Figure 8: Solution found for Scenario 3-2, zoomed in.

point or by changing how the collision detection is
made - i.e. not considering all of the collision path
for collision detection. In addition, the collision an-
gle should also be taken into account when choos-
ing a candidate path.

5. Conclusions

In this work, a framework was developed in Python
that, given adequate information about either a dy-
namic or static threat that is in collision course with
the UAV and other threats present in a 3D envi-
ronment, generates two types of candidate paths
(based on a cubic spline method) capable of safely
avoiding the main threat. A candidate path is cho-
sen based on a cost function that was developed
to take into account several aspects of the envi-
ronment and UAV performance parameters. Six
parameters were studied and compared in order
to find the three most suitable ones (time, SWP
and CMO). Next, these parameters were normal-
ized by an analysis of their distribution and weights
in the cost function and were tuned using a qual-
itative approach. The framework is also equipped
with collision detection for both static and dynamic
obstacles, where the uncertainties associated with
the movement of the UAV are considered.

The framework finds a solution most times but
fails to find one when the end point of the candidate
paths is in collision route with any threat present in
the environment (which happens for collision an-
gles > 160°, but the collision angle limit depends
on the size of the threat) - in these situations the
UAV is only given a message to stop. Nonetheless,
the results obtained are promising, with adequate
runtimes that could be greatly improved by port-
ing the framework to C++ or by code optimization,
specially in the CMO calculation. Moreover, sev-
eral modifications still need to be made to make
the work reliable, robust and secure. These modifi-

10

cations would still need to be followed by software
and hardware-in-the-Loop testing before a poten-
tial flight test.

References
[1] Precedence Research. Unmanned aerial vehicle
(uav) market - global industry analysis, size, share,
growth, trends analysis, regional outlook and fore-
casts, 2021 - 2030.

Martina Orefice, Vittorio Di Vito, and Giulia Torrano.
Sense and Avoid: Systems and Methods. 12 2015.

Xuejun Zhang, Yanshuang Du, Bo Gu, Guogiang
Xu, and Yongxiang Xia. Survey of safety manage-
ment approaches to unmanned aerial vehicles and
enabling technologies. Journal of Communications
and Information Networks, 3(4):1—-14, 12 2018.

Xia Chen, Miaoyan Zhao, and Liyuan Yin. Dynamic
path planning of the uav avoiding static and moving
obstacles. Journal of Intelligent & Robotic Systems,
99(3):909-931, 09 2020.

Zijie Lin. 3D Fast Geometric Collision Avoidance
Algorithm (FGA) and Decision-Making Approach
Based on the Balance of Safety and Cost for UAS.
PhD thesis, Faculty of the Graduate School of the
University of Maryland, College Park, 2021.

Jia Pan, Sachin Chitta, and Dinesh Manocha. Fcl:
A general purpose library for collision and proximity
queries. In 2012 IEEE International Conference on
Robotics and Automation, pages 3859-3866, 2012.

Luca De Filippis, Giorgio Guglieri, and Fulvia
Quagliotti. A minimum risk approach for path plan-
ning of uavs. Journal of Intelligent & Robotic Sys-
tems, 61(1):203-219, 01 2011.

Manh Duong Phung and Quang Phuc Ha. Safety-
enhanced uav path planning with spherical vector-
based particle swarm optimization. Applied Soft
Computing, 107:107376, 2021.

Alexander Fabisch. pytransform3d: 3d transforma-
tions for python. Journal of Open Source Software,
4(33):1159, 2019.

Jodo L. Marins, Taud M. Cabreira, Kristofer S.
Kappel, and Paulo Roberto Ferreira. A closed-
form energy model for multi-rotors based on the
dynamic of the movement. In 2018 VIl Brazil-
ian Symposium on Computing Systems Engineer-
ing (SBESC), pages 256261, 2018.

Amila Thibbotuwawa, Grzegorz Bocewicz, Peter
Nielsen, and Zbigniew Banaszak. Unmanned aerial
vehicle routing problems: A literature review. Ap-
plied Sciences, 10(13), 2020.

Afzal Suleman. Lecture 5b: Vtol design
point. https://fenix.tecnico.ulisboa.pt/
disciplinas/PEAer/2021-2022/1-semestre/
lectures, 2022. Accessed: 2022—17-08.

PassMark Software. Intel Xeon E5-1620 v3 @
3.50GHz vs ARM Cortex-A72 6 Core 1512 MHz.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

(13]

