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Abstract 
Cybersecurity has been evolving at an incredible speed in the last two decades, with the number of software 

vulnerabilities reported daily increasing at a fast pace. Creating secure software is so important that most 

companies changed from a DevOps model to a DevSecOps model where security experts are incorporated into 

the software development teams. 

But while securing the software itself is important, securing the underlying layers that run that software is 

also crucial. One such layer is the so-called network infrastructure, comprised of devices like routers and 

switches. The devices tend to be running protocols that were created decades ago, some of them having their 

first specifications as old as the Internet itself, meaning they were created in an era where security was not a 

primary concern. While many of these have had updates over the past years to bring them up to standards, many 

entities continue utilizing obsolete versions of them. 

While some small and simple tools exist as a proof-of-concept for these attacks, there is no single tool out 

there that combines all kinds of attacks that can be launched against the network infrastructure. 

In this MSc dissertation, we built a tool that provides a variety of attacks to test the security of the network 

infrastructure. The tool is built utilizing the Python programming language and one of its libraries, Scapy. It runs 

in a Docker container and therefore is easy to install and deploy in a variety of environments.  

The tool supports attacks against protocols related to the OSI model layer 2 (ARP, Switches, STP, VLAN, DHCP), 

IPv4 routing protocols (RIP, OSPF, BGP), and others like DNS and ICMP, while also maintaining extensibility for 

extra attacks and protocols to be easily added. 

This MSc dissertation was supported by Instituto de Telecomunicações.  
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1. Introduction 
1.1. Introduction 

Nowadays society is progressively increasingly dependent on Internet access to function properly. Be it in 

healthcare, finance, or entertainment, every business has a certain degree of reliance on the Internet to operate 

smoothly. As such, the need to secure systems and networks from unwanted access by external individuals has 

also increased, with security researchers having a crucial role in finding and reporting exploits that can lead to 

security breaches. 

However, most entities still focus on exploiting software vulnerabilities present on endpoint machines, such 

as desktops and servers, and forget that there’s another point of failure in the enormous organism that is the 

Internet: the network infrastructure, devices like routers and switches, which carry information from endpoint 

to endpoint, or services like DNS and DHCP, that simplify the overall experience of utilizing the Internet. Devices 

like these are vital for the Internet to function smoothly. 

While a lot of different tools exist to find and exploit software vulnerabilities in endpoints, the same cannot 

be said for the network infrastructure. In fact, the list of tools to test protocol vulnerabilities for this infrastructure 

is comparatively shorter, with each tool performing a much smaller number of tests than their endpoint 

counterparts. 

Tools like arpspoof and macof, part of the dsniff suite [1], which only perform one type of attack, or yersinia 

[2], which contains related layer 2 attacks on STP and VLANs, or even ettercap [3], which is utilized in DHCP 

attacks and all forms of MitM attacks performed in a local network, are examples of tools that can test network 

infrastructure.  

However, such tools are few and far between, and by looking at tools to perform route injection on various 

routing protocols one can conclude the list is even shorter, featuring names like vRIN [4], a route injection tool 

that performs the most basic of route injections, or OSV [5], an automated network testing tool that runs several 

fixed vulnerability checks on an OSPF network. 

Moreover, these tools often offer a limited number of attack options, making it hard to launch customizable 

attacks, and often run into problems when an uncommon option is needed to perform the attack. 

1.2. Objectives 

This MSc dissertation aims to compile a list of known vulnerabilities for the protocols running on devices 

considered part of the network infrastructure, and then create a tool that allows the infrastructure to be tested 

against all these vulnerabilities while allowing the user to chain different attacks to be either carried out in 

succession or stacked on top of each other. The created tool must provide an extensible interface for extra 

attacks to be added in the future, and any attack must be coded in a way where a user can extract the attack 

code from the program files and be able to run it with minimal modifications. 

1.3. Contributions 

The contributions of this project include the development of a tool in Python, leveraging the Scapy library, for 

performing extensive testing in the network infrastructure. The tool provides freedom for the user to decide 

what tests to perform and in what order they are executed, giving the user control over all the details for each 
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test in a user-friendly interface. The user also has the ability to write customizable tests for their target topologies 

and import their configurations. Our tool provides an extensive repertoire of tests across different protocols to 

test various services in the network. The attack list includes attacks on protocols like ARP, STP, VLANs, DTP, DHCP, 

RIP, OSPF, BGP, DNS, and ICMP, as well as the layer 2 switches’ CAM tables. 

1.4. Report Structure 

The report starts by exploring the developed user interface in Chapter 2, which also includes the installation 

procedure and explains some core concepts necessary for utilizing the tool. 

Chapter 3 describes the software architecture of the tool. This includes programming language and libraries, 

the directory structure, and a code overview for the different functions. 

Chapters 4 thru 8 describe the implemented attacks and include a description of the utilized topologies and 

how to reproduce the test. 

Finally, in Chapter 9 we present our conclusions about the tool and the performed work. 

 

 

 

2. User interface 
This section contains details related to usability, from installation to general instructions on utilization. 

2.1. Installation  

The developed software is publicly available on the tool’s GitHub repository [6], where it can be consulted. 

A Docker image containing the developed tool is publicly available for download from the docker hub 

repository. To download and install it on the GNS3 environment, we simply need to open the GNS3 VM shell and 

execute the command “docker pull dsm43/network-testing-tool:latest” to download the docker image. After the 

download finishes, we need to create the machine in GNS3. To do this, in the GUI, we select Edit -> Preferences 

-> Docker containers and select “New”. This will open the dialog to create the docker container. We can then 

select the docker image we just downloaded and select “next” until we reach the network adapters section, 

where we need to add an extra adapter for a total of two (this is necessary for some attacks). Every other 

configuration step can be skipped by selecting “next”. 

When connecting to the container, we are greeted by a terminal window. To start the tool from there, we use 

the command “python3 bin/main.py”. 

2.2. Core concepts 

Two core concepts need to be explained before moving on to the software implementation: the concept of a 

function’s category, layer, and type classification, and the concept of a “chain”. 

2.2.1. Function category, layer, and type 

The positive aspect of being able to import many attacks due to the plugin design pattern can cause some 

issues when dealing with menu sizes, mainly when selecting a function to perform an attack. To reduce the 
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potentially big menu size, functions are filtered by three distinct characteristics related to the attack they 

implement. 

First, a category, where they are separated into “Attacks” if their final goal is to affect a target or group of 

targets, or “Middleware” if they aim to serve as an enabler for more complex attacks to be conducted. 

Second, a layer, related to which part of the network infrastructure they influence the most: layer 2 for local 

network-related attacks, layer 3 for routing protocols, and layer 4 for TCP, UDP, and ICMP-related attacks. 

Finally, a type, where they are further divided by the type of effect they have on the infrastructure: for 

“Attacks” this can be a DoS, a MitM, or a Route Injection; while for “Middleware” this can only take the value 

“Wrapper”, as the currently implemented middleware only modify an existing packet by adding layers to it.  

2.2.2. Chain 

One of the initial ideas of the tool was to enable some attacks to be executed in succession: an example would 

be utilizing a layer 2 vulnerability to modify a packet’s structure to allow a routing protocol attack to be 

successful. This leads us to the concept of a “chain”. 

A chain is, as the name implies, a list of attacks that are “chained” together and thus are executed in a row. 

This further unlocks the potential of some layer two attacks which by themselves are nothing special and also 

enables some layer 3 and 4 attacks to target a larger number of machines than initially available. 

A prime example of this is the VLAN double tagging attack, a layer 2 VLAN attack whose full potential can only 

be unlocked when used in conjunction with other attacks: chain it with an ICMP flood and we can perform a DoS 

to a machine in a different VLAN, or chain it with a RIP Injection and we can inject routes if the domain routers 

are in a different VLAN.  

2.3. User Interface 

2.3.1. Starting the tool 

To run the tool, we navigate to the application root directory and issue the command “python3 bin/main.py” 

from the terminal. 

2.3.2. Main Menu 

Once the program starts, and after the initial setup is completed, the user is greeted with the main menu 

containing several options (Figure 1). Navigation is performed utilizing numbers, i.e., for a user to select the ‘Add 

Function’ option, it would need to first type the number ‘2’ and then press the ‘Enter’ key. 

 
Figure 1 – Main menu 

To perform an attack, the user first needs to perform a series of required steps to supply the necessary 

information for the attack to function properly. There is no strict order in which these steps need to be fulfilled. 
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However, before launching the attack all these steps need to be completed. Necessary steps vary on a case-by-

case basis and the steps for each of the implemented attacks are described in each attack’s testing section. 

2.3.3. Select Interface 

The recommended first step is to select an interface from which the attack should be launched. To do this the 

user can utilize the ‘Select interface’ menu, which will list and allow the user to select one of the available 

interfaces in the system (Figure 2). This sets the primary interface utilized by the program to carry on any attack. 

Any extra interface that might need to be used in, for example, a MitM attack, is configured in a separate 

prompt after the user has selected such an attack. 

 
Figure 2 – Select Interface submenu 

2.3.4. Import configurations 

Several attacks require additional parameters to function properly, namely route poisoning and injection 

attacks. These attacks not only may require enormous quantities of routing information, but they may also 

require other protocol-specific parameters. Thus, the Import Configurations submenu allows the user to browse 

and select a .yaml file to import from the configuration directory. Note that only routing information is imported 

this way, and any extra parameters like target IP addresses are input at a later stage, during the “Run Chain” 

phase. 

The user is first prompted to choose what type of configuration they want to import, i.e., configurations for 

RIP, OSPF, or BGP (Figure 3). Then, for each protocol, the user can select one of the available files to import 

(Figure 4), after which the program will import the configurations and store them for later usage

 

 
Figure 3 – Import configurations, protocol selection 

 
 

 
Figure 4 – Import configurations, file selection 

2.3.5. Show Current Chain 

While not necessary to run the attack, the user can consult which attacks are currently selected by accessing 

the ‘Show Current Chain’ submenu. This menu will list the attacks from first to last added, allowing the user to 

confirm the state of the chain. 

2.3.6. Add Function 

To add a function to the current chain, the user must navigate a series of menus to filter the available 

functions, first by category (Attack, Middleware, …), followed by the operating layer, and finally by type (DoS, 
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MitM, Wrapper function, …). In the end, the user is prompted to select the desired function from a filtered list. 

The selection will then be added to the last position of the chain. 

2.3.7.  Remove Function 

If a user wishes to remove a function from the chain, the ‘Remove Function’ submenu allows for that action 

to be conducted. The user simply selects the function from the presented list, and it gets removed from the 

chain. 

2.3.8. Run Chain 

The last step is to run the attack. This submenu launches the attack, first prompting the user for missing 

parameters, and running the function code responsible for crafting and sending packets.  

2.3.9. Function Help 

Every function can contain a docstring describing what its intended usage is. This submenu allows a user to 

select a function the same way the Add Function submenu does and will print the docstring to the user at the 

end. The docstring for attack functions has been formatted in a way that permits a user to understand what 

parameters are needed and which values they should have. Figure 5 shows an example of the help information 

for one of the implemented attacks, DHCP Spoofing. 

 
Figure 5 – Help string example 

 
 
 
 

3. Software Overview 
This section describes the details of the tool from a software standpoint.  

The tool was created with the programming language Python 3 [7], an open-source interpreted programming 

language that functions as a scripting language that also supports features like classes to create robust object-

oriented applications. With a vast selection of libraries, complex tasks can be performed with Python, from 

mathematical computations to network programming. 

One of the many available Python modules is Scapy [8], a packet manipulation library that supports a large list 

of networking protocols and that is popular for being able to perform a vast collection of network attacks. Scapy 

allows a python program to simplify the creation and dissection of network frames and packets, effectively 

enabling a programmer to abstract low-level concepts like packet fields and paddings, as well as the act of 

sending and receiving such frames or packets. 

A Docker version of our tool is available to facilitate the initial setup and remove any runtime differences that 

might cause problems. This also facilitates the distribution of the program since installation is reduced to a single 
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docker pull command from a remote repository, and it allows seamless integration with the GNS3 environment 

used for creating and simulating the test networks. 

One of the challenges faced when developing the tool was the speed at which vulnerabilities appear 

nowadays: to keep up with new vulnerabilities, the tool’s attack repertoire must be easily expandable, and as 

such a fitting program architecture must be chosen. One software design pattern that offers such a feature is the 

plugin design pattern, which has all implemented attacks defined in files separated from the main code. By 

utilizing this design pattern, the tool automatically finds and imports attack code, allowing a user to seamlessly 

interact with every loaded attack. The attacks themselves are all defined in files called “modules”, and they must 

implement a common interface for loading and execution to function properly. 

In order to allow a high number of attacks to be performed, a large number of different options must be 

included in the program. This can be done in one of two ways: by having the user specify how the program should 

behave before running it with command line arguments or by having the program present choices to the user in 

a menu-based application. 

While the former reduces user interaction with the program once it starts running and allows for easy 

automation, it also makes it more complicated to start complex attacks as a high number of input arguments 

would be needed for chaining various functions. 

The menu-based approach allows for less information to the presented to the user at the same time, leading 

to a less complicated interaction. However, automating the program becomes more complicated than with a 

command line argument approach and the amount of interaction between the user and the program also 

increases. 

In the end, the menu-based application was chosen, mostly to prevent overloading a user with a large quantity 

of information before the program is running. The python library ‘console-menu’ is used to simplify the creation 

and utilization of those menus in a CLI environment. 

In some cases, most notably in attacks against routing protocols, enormous quantities of routing information 

need to be sent to the tool. To prevent the user from having to manually input all the information, it was decided 

to utilize a data serialization language to store and import all the extra attack configurations. This language also 

needed to be human-readable since we wanted to avoid extra functions to manually import and serialize the 

data into a non-human-readable format. Out of the available choices, the decision was made to utilize the YAML 

[9] language. YAML is a minimalistic markup language often utilized to store program configurations and user 

data. It is similar to Python in the fact it utilizes indentation for variable nesting and hierarchy definition, and it 

also natively supports programming language concepts such as strings, floats, and dictionaries. YAML files are 

also easily converted to and from other data formats such as XML and JSON. 

Since the YAML format is utilized to import attack information then an appropriate library must also be chosen 

to perform the task. Thus, the program also utilizes the ‘pyyaml’ library to deal with importing YAML data and 

parsing it to a dictionary format utilized by Python. This dictionary can then be further parsed by the program to 

extract the necessary information for each and every attack that needs the information. 
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To keep a record of the program functioning, the python ‘logging’ library is used to register all types of 

debugging information to a log file. This can be useful for development and debugging, as python debugging is 

not easy to perform in the testing environment. 

Finally, and since some attacks require several parallel tasks to be run at the same time, the python ‘asyncio’ 

library is used to provide asynchronous and scheduled function execution. This allows different packets to be 

sent out via different interfaces at the same time (useful in some MitM scenarios) and even decouples packet 

sniffing from other tasks, allowing significant improvements in execution times. However, ‘asyncio’ won’t work 

in some scenarios where blocking IO is necessary to be done in parallel with other tasks. In these cases, the built-

in ‘multiprocessing’ library is utilized to create (‘fork’) a new process that will perform this blocking IO. Usage 

examples will be given in the appropriate attacks. 

This chapter contains sections about the directory structure of the program, formats for the “module” files 

containing attack definitions, and the code of all the core program functions. Auxiliary functions and data 

structures are discussed in Appendix D and Appendix E. 

3.1. Directory structure 

The directory structure of the developed tool can be seen in Figure 6. 

The root directory contains files related to git (.gitignore and 

.gitattributes), docker (Dockerfile), and python dependencies 

(dependencies.txt). 

The bin directory houses all the program code and importable 

configuration files, as well as the program log file. Configuration files can 

be found under conf-examples where they are further organized 

depending on the protocol they are utilized for. 

The bin directory also contains the program’s entry point, main.py. 

The other two folders contain auxiliary functions and libraries (libs) and 

every implemented attack (modules). The modules folder is further 

organized by attack layer, with every protocol having a dedicated file 

under the corresponding layer. 
 

Figure 6 – Directory structure overview 

 

3.2. Attack file structure 

This section describes the structure of a python file containing attack functions. Figure 7 shows part of an 

attack file, vlan.py.  

Every file containing functions to perform an attack starts with an import section, where all the necessary 

Scapy components are imported, as well as the necessary functions from aux_funcs.py, namely the 

‘type_wrapper’ function and the attack descriptor enums (‘attack_cat’,’attack_layer’ and ‘attack_type’), whose 

utilization is mandatory. 

Functions follow a naming convention where any function prefixed by an underscore character (‘_’) is 

considered as an auxiliary by the main program and thus not shown to the user as a selectable attack. 
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Every attack function is decorated by the ‘type_wrapper’ function, which adds several variables to the function 

which are then used by the main program to present its human-readable name, to sort it according to the type, 

layer, and category, and to prompt the user for any additional variables necessary for the function to run. 

 
Figure 7 – Example attack definition 

Furthermore, every attack function takes a single argument, ‘args’, a dictionary which in turn contains every 

variable utilized by the function, and returns the same ‘args’ dictionary, to both allow middleware functions to 

modify the packet structure and to remove the necessity for a user to re-introduce repeated parameter values, 

i.e., a target IP which might be necessary for two distinct functions that are to run in succession. 

3.3. YAML File structure 

Configuration files for various attacks contain information in the YAML format. While the specific keywords 

vary from protocol to protocol, the file itself follows a universal structure, where the top-level key is always the 

protocol name (‘ospf’ for OSPF, …) and defines a dictionary. 

Example files are provided for each protocol, containing all implemented keys and example values for them. 

They exist to allow a user to understand the process of creating a custom file for their scenario, with different 

addressing information and network topologies, as well as listing all the possible keys available for an attack type. 

These example files follow the naming convention of ‘protocol-example.yml’ and contain comments describing 

possible values for certain fields, such as the ‘type’ field in an OSPF Link. Information on these example files is 

not always coherent, as their main goal is to provide a complete list of available options and not to be used to 

perform an attack. For further details on key-value pairs utilized for OSPF, consult Appendix B. For details related 

to RIP and BGP, consult Appendix C. 

3.4. Program Code 

3.4.1. Main code 

3.4.1.1. main()  

The program flow starts in “main.py” by verifying the ‘__name__’ variable and launching the ‘main()’ function 

(Figure 8). The program then runs two configuration functions, seen in Figure 9: ‘parseArgs()’, which parses the 

command line arguments, and “setupVars()”, which configures the needed program variables. Both of these 

functions are analyzed in Appendix D. 
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Figure 8 – Program Start 

 
Figure 9 – main() function, first segment 

After the initial configuration, the program starts building the menu, the first step of which can still be seen in 

Figure 9, on the last line of code. The next step is creating and adding the necessary submenus depending on 

their function. This can be seen in Figure 10, where the different submenus are created as “FunctioItem” objects. 

These objects take two arguments on creation: the string by which the option is represented in the menu and 

the function which should be called when the option is selected. The second part of the figure shows the different 

submenus being appended, and thus associated with the main menu.  

 
Figure 10 – main() function, second segment 

The last segment of the main function, shown in Figure 11, contains the function call to show the main menu, 

and thus display it to the user in the terminal. This command corresponds to the display of the menu shown in 

Section 2.3.2 above. The menu display is encapsulated in the “try … except” statement so the main program can 

catch and deal with KeyboardInterrupts, which are used to terminate looping attacks, in an orderly manner. 

When catching such an exception, the main program sets an Event flag which is frequently checked in the 

implemented functions to determine whether the program continues or ends. Examples of this will be given in 

the appropriate sections. 

 
Figure 11 – main() function, third segment 

3.4.1.2. showChain() 

The “showChain()” function, shown in Figure 12, runs when the “Show Current Chain” option is selected. The 

function is simple: iterate the chain and for each function print the function name. In the end, the program awaits 

user input in order to continue. 



21 

 

 
Figure 12 – showChain() function 

3.4.1.3. addItemToChain() 

The “addItemToChain()” function, shown in Figure 13, runs when the “Add Function” option is selected from 

the main menu. The function first prompts the user to select an attack through the ‘selectAttack()’ function, 

which then returns the function to be appended to the chain. 

 
Figure 13 – addItemToChain() function 

3.4.1.4. removeFromChain() 

The “removeFromChain()” function, shown in Figure 14, is called when the “Remove Function” submenu is 

selected. The function lists the attacks in the chain and then prompts the user to select the attack to be removed.  

 
Figure 14 – removeFromChain() function 

3.4.1.5. runChain() 

The “runChain()” function, shown in Figure 15, is called when the “Run Chain” option is selected. This function 

will run each chain function one by one, prompting the user for any parameters necessary for the current 

function to execute. 

 
Figure 15 – runChain() function  

3.4.1.6. importData() 

The “importData()” function, shown in Figure 16, is called when the “Import Data” option is selected. The 

function performs three tasks: first, it prompts the user to select the configuration type to import. In this case, it 

can be either OSPF, RIP, or BGP configurations. 
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Figure 16 – importData() function 

The second task is to prompt the user for the file name. This is done using the ‘file_selector()’ function (Figure 

17), defined in the ‘aux_funcs.py’ file. This function allows the user to navigate the directory tree until a file is 

selected. It then returns the selected file.  

 
Figure 17 – file_selector() function 

Finally, the third task is to import the data and parse it from the YAML format to python’s dictionary format. 

To do so, the ‘import_confs()’ function (Figure 18) is used. This function, defined in the ‘import_funcs.py’ file, is 

responsible for opening the target file, loading it in the correct format for python, and storing it in the appropriate 

variable. The function uses the “pyyaml” library to perform the importing and parsing, utilizing it’s imported 

“load()” function. 

 
Figure 18 – import_confs() function 

3.4.1.7. selectInterface() 

The “selectInterface()” function, shown in Figure 19, is called when the “Select Interface” option is selected. 

This function will prompt the user to select one interface from the system’s interface list, and then store it under 

the ‘iface’ key in the ‘args’ dictionary.  

 
Figure 19 – selectInterface() function 
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3.4.1.8. showFunctionHelp() 

The “showFunctionHelp()” function, shown in Figure 20, is called when the “Show Function Help” option is 

selected. The function will prompt the user to select a function utilizing the ‘selectAttack()’ function, and then 

print the function’s attached docstring. 

 
Figure 20 – showFunctionHelp() function 

 

3.4.1.9. selectAttack() 

The “selectAttack()” function, shown in Figure 21 and Figure 22, is an auxiliary function utilized by both the 

“addFunction()” and “showFunctionHelp()” functions to prompt the user to filter and select a function from the 

imported attack modules.  

 
Figure 21 – selectAttack() function, section 1 

Figure 21 shows the initial prompting section of the function. Here, the user is prompted three times to select 

the attack category, layer, and type. User inputs are stored in the respective variables to be later used in filtering 

the function list. Figure 22 shows the filtering part of the function as well as the last prompt to select the function 

from the resulting filtered list. 

 
Figure 22 – selectAttack() function, section 2 
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4. Attacks to layer 2 
4.1. Introduction 

The Layer 2 section includes attacks that can only be realized within the attacker’s subnetwork. This includes 

attacks on protocols defined long ago, like ARP, STP, and DHCP, which are fundamental for a well-functioning 

local network environment. 

Attacks in this layer were categorized mostly based on whether they could serve as a base to enable other, 

more powerful attacks to take place or whether they would bring consequences. Thus, this section contains 

attacks under the category of both ‘Attack’ and ‘Middleware’. 

4.2. Attacks and Testing 

This section includes a description of common layer 2 attacks, a brief description of the protocols utilized, and 

the tests performed on the implemented code to verify if they are functional.  

Information about the testing environment can be found in Appendix A. 

Most of the attacks presented in this chapter are Python adaptations of attacks present in other tools: the 

macof and arpspoof tools, part of dsniff suite [1], implement the CAM overflow and ARP spoofing attacks, all 

presented STP attacks, DTP, VLAN double tagging, and DHCP starvation are available in Yersinia [2], and the DHCP 

spoofing attack can be executed with ettercap  [3]. 

4.2.1. CAM Overflow 

4.2.1.1. Attack Description 

The CAM Overflow attack is a powerful DoS that doubles as a MitM and targets a switch in the local network. 

Network switches learn and store the MAC addresses of the devices connected to their ports as they receive 

and forward frames. The MAC addresses, stored on the CAM table, can later be referenced in order to forward 

a specific frame through a single port. Such behavior helps reduce network traffic by avoiding sending out frames 

through every switch port. When the CAM table is empty after a cold start, the switch behaves like a hub, 

forwarding frames on every port until an entry is introduced in the CAM table. 

The CAM table itself, however, being a structure kept in memory, does not have infinite storage space for 

MAC addresses, meaning the CAM table can overflow. When such an overflow occurs, the switch cannot store 

any new MAC addresses and as such, if it receives a frame whose destination MAC isn’t present in the CAM table, 

the frame will be sent out of every port, effectively turning the switch into a network hub. While network 

operations remain largely undisrupted since every frame is sent out through every port then every machine 

connected to that switch will see the traffic sent by others and be able to eavesdrop the traffic. 

The attack itself is simple: the attacker broadcasts many Ethernet frames, where every frame contains a 

random source MAC address. After a certain time has passed the CAM table fills up and overflows, turning the 

switch into a hub and allowing the attacker to eavesdrop on communications in the local network. 

4.2.1.2. Attack Code 

The CAM Overflow attack is defined in the ‘layer2.py’ file, under the ‘layer2’ directory, in the function 

‘cam_overflow’. The function code can be seen in Figure 23. 
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Figure 23 – CAM Overflow attack code 

The code itself is simple: the program generates a packet with an Ethernet header, having the destination 

address set as the broadcast MAC, and containing a random MAC address as the source. This packet then gets 

sent in a loop, with the MAC address being randomized every time the packet is sent, leading to different source 

MAC addresses for every packet sent.  

4.2.1.3. Testing and Validation 

Figure 24 shows the topology used to test the CAM Overflow attack. The only necessary configuration is the 

IP address assignment to each of the machine’s interfaces. Table 1 shows the addressing scheme utilized. Both 

PC1 and PC2 and GNS3 VPCS machines, while R1 is a Cisco 3725 router and switch 1 is the built-in GNS3 switch. 

 
Figure 24 – CAM Overflow Test Topology 

 
 
 

Table 1 – CAM Overflow Test Addressing Scheme 

PC1 e0 192.168.0.101 

PC2 e0 192.168.0.102 

R1 f0/0 192.168.0.1 

Attacker eth0 192.168.0.2 

 

To launch the CAM Overflow attack, we first need to select the interface utilizing the “Select Interface” 

submenu. In this case, we select ‘eth0’. The next step is to select the CAM Overflow attack in the “Add Function” 

menu. To filter the desired function, we first select “Attack”, followed by “L2” and finally “DoS”. The last step is 

to launch the attack utilizing the “Run Chain” option. 

In order to check the attack effectiveness, we need to wait for the CAM table to overflow and then perform a 

ping from one PC to another: if the attack is effective then we should see ICMP packets being captured in the 

‘eth0’ interface of the attacker. Figure 25 shows such a packet being captured in the attacker’s interface, while 

Figure 26 shows the corresponding packet in PC2’s e0 interface, confirming that the attack is effective. 

 
Figure 25 – CAM Overflow packet capture in eth0 



26 

 

 
Figure 26 – CAM Overflow packet capture in PC2’s e0 

4.2.2. ARP Spoofing 

4.2.2.1. Attack Description 

ARP Spoofing is a popular form of MitM attack that allows an attacker to redirect traffic between two host 

machines to itself.  

ARP is a layer 2 protocol utilized in networks to bind layer 3 IP addresses to layer 2 MAC addresses. The 

protocol mainly works in a request-reply format, where a host broadcasts a request to obtain the MAC address 

for the host with a certain IP address and receives a reply containing the requested MAC. The requester then 

saves the received binding in an ARP cache, which can then be consulted instead of repeating the request-reply 

process. 

A host can also spontaneously update its MAC address in the ARP cache of other machines in the network by 

utilizing a Gratuitous ARP message. This message has the same format as an ARP reply. 

ARP Spoofing, or ARP Poisoning, occurs when an attacker spoofs ARP messages to poison the ARP cache of a 

certain host. By binding the IP address of a certain host to the MAC address of the attacker’s machine, frames 

are now delivered to the attacker’s machine instead of the destination. The attacker can then forward these 

frames to the intended destination, meaning no visible disturbance is caused. By poisoning the ARP caches of 

two different hosts, an attacker can have all traffic exchanged between the two machines redirected to itself, 

leading to a MitM attack.  

4.2.2.2. Attack Code 

The ARP Spoofing attack is defined in the ‘layer2.py’ file, under the ‘layer2’ directory, in the ‘arp_spoofing’ 

function. Figure 27 and Figure 29 show the function code for the attack. 

 

Figure 27 – ARP Spoofing function code, section 1 

The attack starts by having the host obtain the MAC addresses for the two target hosts utilizing the scapy 

function “getmacbyip()”: this function will send an ARP request from the provided IP address and return the 

obtained MAC address. Next, two key configuration changes need to be performed: the first is enabling IP 

forwarding in the operating system. This allows the attacker to forward received frames to the correct 

destination. The second change is disabling ICMP redirects. If not disabled, the attacker would send an ICMP 
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redirect to the host every time a frame is received, which would lead to the host choosing a different path for 

sending packets to the destination. Such an occurrence would effectively invalidate the attack, and as such ICMP 

redirects need to be disabled. 

The next step is to craft two ARP replies, ‘p1’ and ‘p2’, which contain the bogus ARP bindings to be sent to 

each of the target hosts.  

 
Figure 28 – ARP Spoofing function code, section 2 

Before we start the attack, we configure a sniffer to register all packets sent to our machine. This sniffer utilizes 

the Scapy object “AsyncSniffer” which sniffs packets and saves them to a list based on a filter function. In this 

case, we filter for source and destination MAC to match our interface’s MAC address and remove any ARP packets 

which don’t interest us.  

 
Figure 29 – ARP Spoofing function code, section 3 

Finally, the attacker sends the two crafted packets in a loop. Once the initial two packets are delivered, the 

attack is considered successful, and the packets are then sent periodically to ensure the fake bindings persist in 

the ARP tables of the target hosts.  

If the attack is interrupted by the user, we restore both the original ARP bindings and the original IP forwarding 

and ICMP redirect settings before exiting. 

4.2.2.3. Testing and Validation 

The test topology and IP addressing information are the same utilized in the CAM Overflow attack (refer to 

Figure 24 and Table 1 in Section 4.2.1.3). To test the attack, we utilize PC1 and PC2 as the target hosts. 

To perform the attack, we first select the ‘eth0’ interface. We then add the necessary function. The ARP 

Spoofing function can be found under ‘Attack’, ‘L2’, and ‘Man-in-the-Middle’. We can now launch the attack, and 

after supplying the IP addresses of PC1 as the 1st victim (192.168.0.101) and PC2 as the 2nd (192.168.0.102), we 

connect a probe to the attacker’s ‘eth0’ interface and immediately see ARP replies being sent by the attacker in 
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Figure 30. If we inspect one of the packets, we can see the bogus binding being sent to the target host. To 

comprehend which machine is receiving which packet, the MAC addresses for each machine are shown in Table 

2. 

Table 2 – ARP Spoofing, MAC addresses 

PC1 Private_66:68:00 

PC2 Private_66:68:01 

 
To further test effectiveness, we can perform a ping from PC2 to PC1 and check if the ICMP packets are being 

sent to the attacker. Figure 31 shows an ICMP echo request sent by PC2, with the destination IP of PC1 but the 

destination MAC of the attacker, and Figure 32 shows the same packet being redirected by the attacker with 

PC1’s MAC address on the destination field. We can thus conclude that the attack is successful. 

 
Figure 30 – ARP Spoofing, capture 1 on attacker’s eth0 interface 

 
Figure 31 – ARP Spoofing, capture 2, packet 23 on attacker’s eth0 interface 

 
Figure 32 – ARP Spoofing, capture 2, packet 26 on attacker’s eth0 interface 
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4.2.3. STP Root Bridge Hijacking 

4.2.3.1. Attack Description 

The STP Root Bridge Hijacking is a powerful MitM attack that targets the local network’s Spanning Tree. 

The Spanning Tree allows a packet-switching network to contain redundant links without having frames 

endlessly looping. The protocol achieves this by having each switch, called a bridge, set its port’s state according 

to whether a specific port will accept and forward frames or not. Such a port state is determined by comparing 

the bridge’s configurations with information received from other bridges via BPDU packets.  

In a Spanning Tree topology, a root bridge needs to be elected based on its Bridge ID, a numeric value that 

consists of a Priority value concatenated with the Bridge’s MAC address. This ID is sent in BPDUs. Other bridges 

will then calculate their root path cost and unblock the ports on the path with the least cost to the root bridge. 

This means the Spanning Tree can be arranged in a tree structure with the root bridge as the root of the tree. It 

also implies that, if the spanning tree is properly designed, a high number of packets should cross the root bridge 

whose links should have higher traffic capacity. This makes the root bridge a high-value target from an attacker’s 

viewpoint. 

The STP Root Bridge Hijack does exactly what the name implies: an attacker hijacks the role of the root bridge 

for itself. If the attacker can position itself between two high-traffic bridges, then the attacker will gain access to 

every frame forwarded by those bridges. This is not easy, however, as it would require the attacker to connect 

two distinct interfaces to two distinct bridges.  

An alternative consequence of this attack, in the case where an attacker can only connect to one bridge, would 

be traffic redirection due to a topology change in the spanning tree. By hijacking the root bridge role, an attacker 

can cause high-traffic links to become blocked by the STP protocol and diverge traffic to low-capacity links, 

causing network congestion.  

4.2.3.2. Attack Code 

The STP Root Bridge Hijack attack is defined in the ‘stp.py’ file, under the ‘layer2’ directory, in the 

‘stp_root_bridge_mitm’ function. 

This attack makes use of the “asyncio” library to schedule two different tasks for sending BPDU packets. It also 

utilizes the multiprocessing library to bridge the two interfaces utilized in this attack. The multiprocessing library 

is necessary since the bridge function utilized and supplied by Scapy (“bridge_and_sniff” function) is a blocking 

function, and the use of blocking functions with “asyncio” is discouraged by the developers of the library since 

all tasks end up waiting for this blocking function to finish. 

Several auxiliary functions are defined within the scope of this function.  

The code starts by sniffing a BPDU frame from the connected interface to obtain all necessary STP parameters, 

namely the root bridge MAC and a priority value. The code snippet for sniffing and selecting the packet is shown 

in Figure 33.  

After obtaining the packet, we obtain the root bridge ID and MAC address. The root MAC needs to be modified 

to be one less than the current root MAC so that the attacker can be elected as the root bridge. After modifying 

the root MAC, we pack the necessary parameters in a dictionary and use “asyncio” to run the main coroutine for 

launching the attack. Figure 34 shows the code for modifying the root MAC and calling the “asyncio” coroutine. 
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Figure 33 – STP Root Bridge MitM function, section 1 

 
Figure 34 – STP Root Bridge MitM function, section 2 

Figure 35 shows the code for the main “asyncio” coroutine. We start by setting up a process to run the 

“bridge_wrapper” function, which is a wrapper for the function responsible for bridging the two interfaces, and 

whose details are discussed further ahead. After starting the process, we create two “asyncio” tasks for sending 

BPDUs, one for each interface. Finally, we wait in a loop for the main program to set the “EXIT_SIGNAL” event, 

after which we cancel both tasks and wait for the bridge process to end before returning. 

 
Figure 35 – STP Root Bridge MitM function, main_coro() 

Our “bridge_wrapper” function, shown in Figure 36, is the function responsible for forwarding frames 

between the two attack interfaces. The function starts by creating and opening a packet capture file, which will 

later be utilized to record forwarded traffic, as is declared as a global variable within the process so it can later 

be accessed and written to. To forward the traffic itself, we utilize the Scapy “bridge_and_sniff” function, which 

will bridge the interfaces and apply a function to every packet, called the “bridge_func”, whose return value 

determines if the packet is forwarded (function returns True), dropped (function returns False or None), or 

manipulated in some way before being forwarded (function returns modified packet).  

Figure 37 shows the “bridge_func” function. This function will filter packets, removing all STP-related packets 

and any packet that contains an LLC layer, commonly utilized by protocols such as CDP, DTP, VTP, and others. 

This filtering is necessary since we don’t want these frames to be forwarded from one connected bridge to 
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another. The second step is to write the registered packet to the capture file we declared as a global variable 

before, and then forward the packet without manipulating it any further. 

 
Figure 36 – STP Root Bridge MitM function, bridge_wrapper () 

 

 
Figure 37 – STP Root Bridge MitM function, bridge_func() 

The last function is the “hijack_coro”, a coroutine that is responsible for sending out the fake BPDUs, as well 

as sending an acknowledgment BPDU to any topology change BPDU received. Figure 38 shows the code for the 

function. We first craft the BPDU from the parameters we obtained earlier, and after sending it from the interface 

we wait for any topology change BPDU that needs to be acknowledged. While this acknowledge might not be 

necessary for the attack to be successful, it is still the expected behavior of the root bridge and thus we chose to 

send the acknowledge. Afterward, we enter a loop, sending out fake BPDUs once per second. 

 
Figure 38 – STP Root Bridge MitM function, hijack_coro() 

4.2.3.3. Testing and Validation 

Figure 39 shows the topology used to test the attack. R1 and R2 are hosts configured with the IP addresses 

10.10.10.1/24 and 10.10.10.2/24, respectively. 

Sw1 is the root bridge by default. Traffic going between R1 and R2 is being sent from Sw2 to Sw1 directly, and 

the objective of this attack is to have all traffic between those two hosts sent to the attacker’s machine. 

 
Figure 39 – STP Root Bridge MitM test topology 

To launch the attack, we select the first interface like in every other attack, through the “Select Interface” 

menu. We add the attack to the chain by selecting “Add Function”, “Attack”, “L2”, “Man-in-the-Middle”, and 
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“STP Root Bridge Hijack MitM”. Next, we select “Run Chain”, after which we are prompted to introduce the value 

of the second interface. We introduce the value “eth1”, and from there the attack is launched. 

We can attack a probe to the “eth0” interface on the attacker to see the relevant packets. Figure 40 shows 

the overall packet exchange and the details of the first frame sent by the attacker, frame 24. While we can’t 

correlate the frame by looking at the source MAC address since our bridge function does not swap the MAC 

address of the forwarded frame, we can still check it was sent by the attacker by looking at the root bridge ID, 

which is set to be the lowest of the STP domain. Frame 25 is the topology change frame sent by Sw2 once it 

detects a new root bridge, and frame 26, shown in Figure 41, is the acknowledgment sent by the attacker which 

contains the acknowledgment bit from the BPDU flags field set. 

 
Figure 40 – STP Root Bridge MitM, capture at attacker’s eth0 

interface 

 
 
 

 
Figure 41 – STP Root Bridge MitM, capture packet nr. 26 

To test packet forwarding, we can issue a ping command from R1 to R2. Figure 42 shows the packets captured 

on the “eth0” interface. The presence of echo reply packets is proof enough that the traffic is being forwarded 

from one interface to the other. Once we terminate the attack, we can navigate to the “/captures” directory and 

confirm the presence of a capture file related to our MitM attack. 

 
Figure 42 – STP Root Bridge MitM, capture on attacker’s eth0 interface, filter by ICMP 

4.2.4. STP Conf BPDU DoS 

4.2.4.1. Attack Description 

The STP Conf BPDU DoS is an attack on the STP whose objective is to overload the connected bridge (or 

bridges) with Configuration BPDUs. 
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STP utilizes BPDUs to exchange information between bridges. Two types of BPDUs exist, and the Conf BPDU 

is one of those types. Conf BPDUs are multicast in the local network at least every HelloTime seconds and contain 

all the essential information for the STP algorithm to function. 

 A Conf BPDU DoS is an attack where an attacker overloads a switch with configuration BPDUs to make the 

switch unresponsive, causing failures on all links attached to that switch. The objective is to generate BPDUs with 

random root bridge MAC addresses to force the connected bridge to run the STP algorithm repeatedly. 

4.2.4.2. Attack Code 

The STP Conf BPDU DoS is defined in the “stp.py” file, under the “layer2” directory, by the 

“stp_conf_bpdu_dos” function. 

Figure 43 and Figure 44 show the function code for the attack. The first step, shown in the first figure, is to 

sniff a BPDU from the network to obtain the STP parameters, namely the root bridge priority value which is used 

later. This step is similar to the first step of the STP Root Bridge MitM attack. 

The second step, shown in the second figure, is generating and sending the fake BPDUs, each with a random 

MAC address. 

 
Figure 43 – STP Conf BPDU DoS function code, section 1 

 
Figure 44 – STP Conf BPDU DoS function code, section 2 

4.2.4.3.  Testing and Validation 

To test the attack, we utilize the same topology as in the STP Root Bridge MitM attack. 

To perform the attack, we first select the interface “eth0”. Then, we select “Add Function”, “Attack”, “L2”, 

“DoS”, and finally “STP Conf BPDU DoS”. We then select “Run Chain” to launch the attack.  
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The only way of confirming if the attack is successful is by inspecting the state of Sw2. Figure 46 shows a debug 

traceback that was printed on Sw2’s console while the attack was running, claiming CPU Hog by the STP process, 

and confirming the attack is successful.  

Figure 45 shows part of the BPDU packets sent by the attacker, all of them with randomized Root IDs and MAC 

addresses. 

 
Figure 45 – STP Conf BPDU DoS capture at attacker’s eth0 interface 

 
Figure 46 – STP Conf BPDU DoS, print of Sw2’s console during the attack 

4.2.5. STP TCN BPDU DoS 

4.2.5.1. Attack Description 

The STP TCN BPDU DoS attack is an attack on the STP whose objective is, like the Conf BPDU variant, to 

overload the connected bridges and links, but with TCN BPDUs. 

The second variant of the STP BPDU is the TCN BPDU. TCN BPDUs are utilized by bridges to signal changes in 

the STP topology. They are sent every time the topology changes due to link failures and port states need to be 

updated to conform with this failure. 

TCN BPDUs are propagated by every bridge on their designated port until they reach the root bridge, which 

acknowledges the change and propagates this information to every bridge in the topology. 

An STP TCN BPDU DoS is an attack where TCN BPDUs are sent in rapid succession, forcing the root bridge to 

acknowledge non-existing changes, and flooding the network with STP-related traffic. Such an attack has an 

impact on every bridge in the network, as it forces the STP algorithm to constantly run, leading to performance 

degeneration and switch failures. 
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4.2.5.2. Attack Code 

The STP TCN BPDU DoS attack is defined in the “stp.py” file, under the “layer2” directory, by the 

“stp_tcn_bpdu_dos” function. 

Figure 47 shows the function code for the attack. The code is simple. We generate a random source MAC 

address and then send an STP packet with type 0x80, which corresponds to the TCN BPDU. 

 
Figure 47 – STP TCN BPDU DoS function code 

4.2.5.3. Testing and Validation 

Testing was performed in the same topology as the previous STP attacks. 

To perform the attack, we first select the interface “eth0”. Then, we select “Add Function”, “Attack”, “L2”, 

“DoS”, and finally “STP TCN BPDU DoS”. We can then launch the attack by selecting “Run Chain”. 

As with the Conf BPDU variant, proving attack effectiveness is difficult. However, by once again inspecting 

Sw2, we can once again see the same error message as with the Conf BPDU DoS. We don’t see, however, any 

TCN BPDUs being forwarded to the root bridge, which is expected since Sw2 is in an unresponsive state where 

any STP-related operation is impossible to be done. 

We once again configure a probe on the attacker’s interface, where we can see all the TCN BPDUs being sent, 

all of them with random MAC addresses (Figure 48). 

 
Figure 48 – STP TCN BPDU DoS capture at attacker’s eth0 interface 
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4.2.6. STP Eternal Root Bridge Election 

4.2.6.1. Attack Description 

The STP Eternal Root Bridge Election is a DoS attack on the STP whose objective is to overload connected 

bridges by repeatedly changing the Root Bridge and causing network instability by having the STP algorithm 

constantly run. 

Every time the root bridge changes, the STP algorithm runs in order to recalculate the optimal root path. By 

forcing a repeated Root Bridge Election, the STP algorithm is constantly running, leading to performance 

degeneration in the network and even eventual bridge and link failures due to resource exhaustion. 

To perform such an attack, the attacker needs to repeatedly send Conf BPDUs with increasingly lower Root ID 

values, either through the priority value or by decreasing the root MAC by 1 unit every time. 

4.2.6.2. Attack Code 

The STP Eternal Root Bridge Election attack is defined in the “stp.py” file, under the “layer2” directory, by the 

“stp_eternal_root_election” function. 

 Figure 49 shows the function code for the attack. The initial part of sniffing the BPDU was omitted due to it 

being equal to the other STP attacks. We sniff the network for a BPDU to obtain the root MAC and priority values. 

The function manipulates the MAC address in its integer form to decrement it every iteration, sending the 

Conf BPDU with the update MAC value. The attack ends when the function either receives a termination signal 

or when the MAC address reaches 0, at which point the address pool is exhausted and the attack cannot continue. 

 
Figure 49 – STP Eternal Root Bridge Election function code 

4.2.6.3. Testing and Validation 

As with the previous STP attacks, we utilize the same test topology (Figure 39). 

To perform the attack, we first select interface “eth0”. Then, we select “Add Function”, “Attack”, “L2”, “DoS”, 

and finally “STP Eternal Root Election”. We can then launch the attack by selecting “Run Chain”. 

We can confirm the attack’s effectiveness by issuing the command “show spanning-tree” (or the shorter 

version, “sh span”) at Sw2 twice in a row and verifying if the Root MAC has changed. Figure 50 shows the result 

of running the command twice, allowing us to confirm that the root bridge has changed in the short period 
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between issuing the commands. Figure 53 shows a packet capture done on the attacker’s eth0 interface, which 

lets us confirm that the attacker is sending Conf BPDUs with increasingly lower root MAC addresses, thus leading 

to a constant root bridge re-election. No errors are shown on the Sw2’s terminal, most likely due to the delay 

between sending packets. 

 
Figure 50 – STP Eternal Root Bridge Election, spanning tree information  

at Sw2 from two distinct command executions 

 
Figure 51 – STP Eternal Root Bridge Election, capture at attacker’s eth0 interface 

4.2.7. STP Root Bridge Disappearance 

4.2.7.1. Attack Description 

The STP Root Bridge Disappearance attack is a DoS on the STP that functions similarly to the Eternal Root 

Bridge Election, except that instead of sending BPDUs repeatedly, the attacker now waits for the MaxAge time 

to elapse and the root bridge to be declared as down to re-send the BPDU and gain the root role again. The 
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objective this time is to cause network instability by having port states change frequently, but not too fast, due 

to repeated re-elections. 

4.2.7.2. Attack Code 

The STP Root Bridge Disappearance attack is defined in the “stp.py” file, under the “layer2” directory, by the 

“stp_root_disappearance” function. 

Figure 52 shows the function code. The attack structure is similar to that of the Eternal Root Bridge Election 

and the Root Bridge MitM. The code utilizes the same BPDU for gaining the root role every time, and there is a 

longer interval between BPDUs sent by the attacker in comparison to the Eternal Root Election. Compared to the 

Root Bridge MitM attack, we see the same TCN acknowledgment being sent by the attacker to finalize the root 

bridge election. 

 
Figure 52 – STP Root Bridge Disappearance function code 

4.2.7.3. Testing and Validation 

As with the other STP attacks, we used the test topology of Figure 39.  

To perform the attack, we first select interface “eth0”. Then, we select “Add Function”, “Attack”, “L2”, “DoS”, 

and finally “STP Root Disappearance”. We can then launch the attack by selecting “Run Chain”. 

The best way to confirm whether the attack is successful is by looking at the packets captured on the attacker’s 

“eth0” interface: when the attacker claims the root role, the first packet it receives must be a TCN BPDU sent to 

the attacker which it needs to acknowledge. In Figure 53 not only do we see the TCN BPDU right after the Conf 

BPDU sent by the attacker, but also we see a time interval of about 23 seconds between packets 47 and 50, 

showing that the MaxAge period of 20 seconds has already elapsed and the original root bridge was elected 

back. 
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Figure 53 – STP Root Bridge Disappearance, capture at attacker’s eth0 interface 

4.2.8. VLAN Double Tagging 

4.2.8.1. Attack description 

The VLAN Double Tagging attack is categorized as “Middleware” (since it inserts certain headers into a packet 

that is later used in other attacks) and allows an attacker to perform VLAN hopping, that is, sending packets from 

its VLAN to another one without requiring the frame to be sent to a multilayer switch. 

A VLAN, or Virtual LAN, is a form of network isolation utilized in local networks to separate traffic from 

different machines as if further segregating traffic within a subnetwork. Machines on one VLAN can’t 

communicate with another VLAN without utilizing a router.  

VLAN Double Tagging permits an attacker to circumvent the need for a router for sending packets to another 

VLAN. In order to perform the attack, frames must be sent with two distinct 802.1Q headers (responsible for 

carrying VLAN information), one with the VLAN ID of the attacker (the ‘outer tag’) and another one with the VLAN 

ID of the destination machine (the ‘inner tag’).  

When the frame arrives at the first switch, the switch strips the outer tag (as VLAN information coming from 

the user should be ignored) and then forwards the frame to the next switch while keeping the inner tag. When 

the frame arrives on the last switch before being delivered to the target, the switch will read the inner tag and 

forward the frame to the target’s VLAN, leading to the frame being delivered to the victim.  

During testing, we also found that in some Cisco IOS implementations (namely our version of the IOSv-L2 

multilayer switch) the Double Tagging attack functions with only a Single VLAN tag, as that tag does not get 

removed by the switch directly connected to the attacker and thus the packet can be forwarded to the 

destination VLAN.  

The major downside of this attack rests on the fact that it’s a unidirectional process: while the attacker can 

deliver packets to the target, the inverse is impossible as the target has no way of double tagging the response. 

In any case, it can still be used to perform DoS attacks that only require unidirectional communication. 

4.2.8.2. Attack Code 

The VLAN Double Tagging attack is defined in the ‘vlan.py’ file, under the ‘layer2’ directory, by the 

‘vlan_double_tagging’ function. 

As a middleware, the function’s objective is to insert the necessary headers in the packet which will then be 

further modified. As such, the function modifies the ‘pkt’ key in the ‘args’ variable, setting up the necessary 

headers with the information to carry the attack, and returning the ‘args’ variable with the updated packet. 
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Figure 54 – VLAN double tagging function code 

4.2.8.3. Testing and Validation 

Figure 55 shows the topology utilized to test the attack. Both R1 and R2 are c3725 routers fitted with an NM-

16ESW module. This module enables the router to behave like a switch, and with IP routing deactivated they 

only behave like switches (no inter-VLAN routing). R4 behaves like a host, having its ‘f0/0’ interface configured 

with the IP address 11.11.11.4/24. No IP configuration was performed on the attacker machine. 

 
Figure 55 – VLAN Double Tagging test topology 

To perform the attack, we first selected the interface ‘eth0’, and then chained two functions: first, by selecting 

“Middleware”, “L2” and “Wrapper” we can filter for the “Double Tagging” function; and second, selecting 

“Attack”, “L4” and “Ping Test” we can filter for the “Ping Test” function, which sends a single ICMP Echo Request 

to the target. We can then launch the attack by selecting the “Run Chain” option, where we are prompted for 

the missing parameters, i.e., the VLAN tags for outer and inner headers (for the Double Tagging attack) and the 

destination IP (for the Ping test), and after which we start sending attack packets. In this case, we set the outer 

VLAN to the value “2”, the inner VLAN to the value “3”, and the destination IP is the IP address of R4, “11.11.11.4”. 

The attack effectiveness can be confirmed by configuring a probe on R4’s ‘f0/0’ interface to observe received 

packets. The figures below show both the reception of the packet in R4 (Figure 56), without any of the associated 

VLAN tags, as well as the packet structure in the different links crossed. Figure 58 shows the packet with both 

802.1Q headers after being sent by the attacker, and Figure 57 shows the packet in the trunk link between R1 

and R2, with a single VLAN tag. We thus confirm that R1 removed the outer tag before forwarding the packet to 

R2, and R2 later removed the inner tag before forwarding the packet to R4. 

 
Figure 56 – VLAN Double Tagging, packet capture in R4’s f0/0 interface 

 
Figure 57 – VLAN Double Tagging, packet capture in R1’s f1/0 interface 
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Figure 58 – VLAN Double Tagging, packet capture in the attacker’s eth0 interface 

4.2.9. VLAN DTP Negotiation 

4.2.9.1. Attack Description 

The VLAN DTP Negotiation attack allows an attacker to turn a VLAN port into a Trunk port, allowing 

communication with every machine in the subnetwork without requiring a router, as per VLAN standards. Unlike 

the VLAN Double Tagging attack, the DTP negotiation is considered an “Attack” and not a “Middleware”, as it 

does not insert headers into a packet that will later be used by another attack.  

By default, VLAN ports connected to end equipment such as PCs should be configured in Access mode, 

therefore associating a certain VLAN ID with the port. On the other hand, most links between switches 

themselves and with routers should be configured as Trunk ports, allowing traffic from every VLAN to circulate 

in those links.  

DTP is a protocol that allows the negotiation of port states to be done automatically by each end of the link. 

This means a switch port can be configured to change state depending on the port on the other end of the link. 

This can largely simplify network configuration when redundancy is introduced, as the state of a switch’s port 

can change when links and nodes fail. 

Table 3 below is a matrix that shows the different outcomes of a DTP negotiation depending on the state of 

each port (dynamic auto, dynamic desirable, trunk, and access are the possible port states). As an example of 

how to read the table, if one of the interfaces is in dynamic auto mode and the other is in trunk mode, the 

outcome of the negotiation for both ports is trunk mode. When the outcome is “Limited Connectivity”, which 

happens when one port is in trunk mode and the other is in access mode, we have a case where not every packet 

sent out of the trunk port will be accepted by the access port (only those destined to the access port’s configured 

VLAN), and thus connectivity is limited on the link. 

Table 3 – DTP Negotiation outcomes 

 DYNAMIC 
AUTO 

DYNAMIC 
DESIRABLE 

TRUNK ACCESS 

DYNAMIC 
AUTO 

Access Trunk Trunk Access 

DYNAMIC 
DESIRABLE 

Trunk Trunk Trunk Access 

TRUNK Trunk Trunk Trunk Limited 
Connectivity 

ACCESS Access Access Limited 
Connectivity 

Access 

 
A DTP Negotiation attack occurs when an attacker abuses a switch port that can be placed in trunk mode in 

case a DTP packet is sent to the switch. Having access to a trunk port means the attacker now has access to every 
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VLAN in the subnetwork, allowing it to establish 2-way communications with any machine. From Table 3 above 

we can conclude that, if an attacker sends a DTP packet with its own port state set to ‘Dynamic Desirable’ then 

the link to the switch will be configured as Trunk as long as the switch’s port state isn’t set to Access. 

4.2.9.2. Attack Code 

The DTP Negotiation attack is defined in the ‘vlan.py’ file, under the ‘layer2’ directory, by the ‘vlan_dtp_attack’ 

function. 

Figure 59 shows the function code for the DTP Negotiation attack. The function simply creates the packet 

structure for a DTP packet with the relevant information to conduct the attack. In this case, the only parameter 

that should be changed from default values is the ‘neighbor’ parameter, which should be configured as the 

attacker’s MAC address. The packet then gets sent once with the destination set as the multicast address for this 

protocol (‘dst’ argument in the ‘Dot3’ header). MAC source for the ‘Dot3’ header should also match the attacker’s 

MAC address. 

 
Figure 59 – DTP Negotiation function code 

4.2.9.3. Testing and Validation 

Figure 61 shows the topology for testing the DTP Negotiation attack. All three switches, which are Cisco IOSv-

L2 devices, were configured to have the links between them as trunk links. R1 was placed in VLAN 2 and R2 in 

VLAN 3, while no VLAN was assigned to the port connected to the attacker. No further configurations were made 

except assigning IP addresses to R1 and R2’s f0/0 interfaces and the attacker’s eth0 interface. Connectivity was 

tested by issuing ping commands to and from R1, R2, and the attacker. None of the requests were successful, 

which was the expected behavior. We also check the state of Sw1’s Gi0/2 interface by issuing the command “sh 

int switchport”. The result of the command can be seen in Figure 60 below, where we can verify the DTP mode 

set as dynamic auto and the operational mode set as access. 

 
Figure 60 – DTP Negotiation, Sw1’s Gi0/2 state before the 

attack 

 

 

 
Figure 61 – DTP Negotiation Test Topology 
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To launch the DTP attack, we first started the tool, selected interface eth0 to launch the attack from, and then 

selected the DTP Trunk Negotiation under the “Attack” category, “L2” layer, and “Single Use” type. We then ran 

the attack. 

Figure 62 shows the captured packets at the attacker interface. The only relevant packet is number 268, the 

one utilizing the attacker’s MAC address as the source. Inspecting it we can see the trunk status value is set to 

“Access/Desirable”, which corresponds to the dynamic desirable configuration option. This allows the attacker 

to set Sw1’s Gi0/2 interface as a trunk port, which can be verified in Figure 63 where we see the operational 

mode is now “trunk”. To further test connectivity, we can exit the tool and run a ping command from the attacker 

to R1 and R2, which was successful and thus confirms the attack’s success. 

 
Figure 62 – DTP Negotiation capture at eth0 interface 

 
Figure 63 – DTP Negotiation, Sw1’s Gi0/2 state after the attack 

4.2.10. PVLAN Proxy 

4.2.10.1. Attack Description 

The PVLAN Proxy allows an attacker to communicate with other machines on the subnetwork when placed in 

a Private VLAN. Once again, this attack is considered “Middleware” since its purpose is to inject layers into a 

packet that is later used in another attack. 

A Private VLAN is a form of network isolation, where a switch’s ports can be configured in one of three states, 

each state offering a different level of connectivity. 

The first state is the promiscuous mode. Any machine connected to a port in this state can communicate with 

every machine in the network, independently of what state the other machine’s connected port is in. Usually, 
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the network gateway is the only machine connected to a port in this state, as every machine needs to 

communicate with the gateway in order to access the Internet. Ports in this state are referred to as P-ports. 

The second state is the host isolated mode. Ports in this state only allow communication with machines 

connected to P-ports. An example of a host isolated port configuration would be a server containing sensitive 

information, which should not be reachable from anywhere in the subnetwork. Ports in this state are referred to 

as I-ports. 

The third state is the host community mode. Ports in this state allow communication with P-ports and other 

community ports on the same VLAN number. An example of a host community port would be a group of different 

workstations belonging to the same company department, where those workstations should be able to 

communicate with each other but not with the workstations of another department. Ports in this state are 

referred to as C-ports. 

A PVLAN Proxy attack allows an attacker connected to either an I-port or a C-port to communicate with 

machines connected to other I-ports or C-ports of another PVLAN by sending a packet with mismatching IP and 

MAC addresses: the IP address must be the destination machine’s while the MAC address must be the gateway’s 

address. The switch forwards the frame to the gateway based on the destination MAC address, and the gateway 

will then forward the packet to the destination utilizing the IP address and the correct MAC address. 

As with the VLAN Double Tagging attack, this attack is unidirectional as the target has no way of sending a 

response back to the attacker.  

4.2.10.2. Attack Code 

The PVLAN Proxy attack is defined in the ‘vlan.py’ file, under the ‘layer2’ directory, by the ‘vlan_pvlan_proxy’ 

function. 

Figure 64 shows the function code for the attack. Being a “Middleware”, the function’s objective is to insert 

the necessary headers for the attack to function. In this case, the two headers that need configuration are the 

Ethernet and IP headers: the packet’s destination MAC needs to be configured as the gateway MAC, while the IP 

destination field is the target’s IP address. The packet then gets returned through the ‘args’ variable. 

 
Figure 64 – PVLAN Proxy function code 

4.2.10.3. Testing and Validation 

Figure 65 shows the topology utilized to test the PVLAN attack. The switch, a Cisco ISOv-L2 device, was 

configured with three distinct VLANs, 500, 501, and 502. Out of these, VLAN 500 was considered the native VLAN 

and as such, every device connected to it was also connected to a P-port. In this case, we considered R1 the 

network gateway, and thus interface Gi0/0 was configured as a P-port. The remaining two VLANs, 501 and 502, 

were configured as Isolated VLANs, so the interfaces Gi0/1 and Gi0/2 were configured as I-Ports. To test the 

configuration, we issued a ping command from the attacker to R1 and R2 and verified that the ping reached R1 

but not R2. 
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Figure 65 – PVLAN Testing Topology 

The next step was launching the attack. To do so, we started the tool, selected interface ‘eth0’, and added 

two functions: filtering by “Middleware”, “L2” and “Wrapper”, the PVLAN Proxy itself, which was then chained 

with a Ping Test (“Attack”, “L4”, “Ping Test”) to send an ICMP echo request to the target. From the ping command 

performed previously, we can extract R1’s MAC address by, for example, inspecting our ARP table. When 

selecting “Run Chain”, we set the target MAC as R1’s MAC address (the gateway) and set the target IP as 10.10.0.2 

(R2’s IP) and run the attack. 

 
Figure 66 – PVLAN Proxy capture in eth0 interface 

 
Figure 67 – PVLAN Proxy capture in R2’s f0/0 interface 

Figure 66 and Figure 67 show the captured packets in each of the attacker’s and R2’s interfaces. In the first 

figure, we see the ICMP packet sent by the attacker, packet number 62. There we see the mismatched destination 

addresses of the IP and Ethernet layers. In the second figure we can see the forwarded packet being delivered to 

R2, number 207, with the source MAC address matching the original destination MAC address.  

Two interesting packets to observe are packet number 63 from the first capture and packet number 208 from 

the second one. Packet 63 is an ICMP redirect sent by R1 to the attacker due to the fact the destination IP is on 

the same subnet. However, the attacker has no way of directly sending the packet to the target due to the PVLAN 

configurations. Packet 208 is an ARP request sent by R2, trying to get the attacker’s MAC address. Again, due to 

the PVLAN restrictions, this packet is dropped at the switch and thus does not show up in R1’s capture. 

4.2.11. DHCP Starvation 

4.2.11.1. Attack Description 

DHCP Starvation is a DoS attack that targets a DHCP server in the local network, or, in case a DHCP relay is 

configured, can also target DHCP servers outside the local subnet. 

DHCP is a protocol that runs on a local subnet and is responsible for the dynamic allocation of IP addresses to 

hosts on the network. This protocol facilitates network configurations on endpoints, as a host can simply connect 

to the network, perform a short exchange with the DHCP server, and receive the necessary information to 
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configure various parameters. DHCP primarily allows the configuration of an IP address and subnet mask but can 

also include other parameters like the default gateway, DNS and NTP servers, domain name, and many others. 

DHCP runs over UDP, utilizing port 67 as the server listening port and port 68 as the client listening port. 

A DHCP Server will allocate IP addresses from an address pool that is manually configured. When the server 

receives the first DHCP packet from the DHCP exchange, a DHCP Discover, it will pick and pre-allocate an IP 

address from the pool for the host which sent the Discover packet. The server will keep this address pre-allocated 

for some time to accommodate slower hosts or busy network links which might delay the whole exchange. The 

server will not respond to any DHCP Discover packets if all IP addresses from the pool are already allocated or 

pre-allocated. 

A DHCP Starvation is a DoS attack that aims to exhaust the DHCP address pool from a server, effectively 

denying any new host that connects to the network from being able to obtain an IP address. It works by sending 

a stream of DHCP Discover packets, all with random source MAC addresses, to the DHCP server, leading to the 

pre-allocation and consequent exhaustion of the address pool. 

The DHCP Starvation attack is defined in the ‘dhcp.py’ file, under the ‘layer2’ directory, by the ‘dhcp_starve’ 

function. 

Figure 68 shows the function code for the attack. The attack code consists of a while loop, where in each cycle 

a random MAC address is generated (utilizing the scapy function ‘RandMAC’) and a DHCP Discover packet is 

created based on that source address.  

 
Figure 68 – DHCP Starvation function code 

4.2.11.2. Testing and validation 

Figure 69 shows the topology utilized to test the DHCP Starvation attack. R1 (Cisco 3725 router) is configured 

to function as a DHCP server, allocating addresses from the pool 192.168.0.0/24, excluding the addresses from 

the 192.168.0.1-192.168.0.101 range. No further parameters were configured on R1 as they are unnecessary for 

this attack. Only R1’s IP address was necessary to configure, as the attacker doesn’t need an IP address to carry 

out this attack, and PC1 is supposed to obtain an IP address through DHCP. As such, R1’s f0/0 interface was 

assigned the 192.168.0.1 IP address. 

To launch the attack, we first select interface ‘eth0’ in the respective submenu, and then select “Add 

Function”. By filtering for “Attack”, “L2”, and “DoS”, we can select DHCP Starvation from the list. Since the attack 

doesn’t require any additional arguments, we can simply launch it. 

 By attaching a probe to R1’s f0/0 interface, which can be seen in Figure 71, we can see the DHCP server being 

flooded by DHCP Discover messages. If we now try to obtain an IP address through DHCP in PC1, we get the error 

“Can’t find DHCP server” (seen in Figure 70). We can thus conclude the attack is successful. 



47 

 

 
Figure 69 – DHCP Starvation test topology 

 
 
 
 

 
Figure 70 – DHCP Starvation, error on PC

 
Figure 71 – DHCP Starvation capture at R1’s f0/0 interface 

4.2.12. DHCP Spoofing 

4.2.12.1. Attack Description 

DHCP Spoofing is a MitM attack where an attacker impersonates a DHCP server and injects malicious 

configurations to be used by network hosts. 

If two or more DHCP servers are available to answer DHCP Discover messages, then a host running a DHCP 

client will inevitably receive more than one DHCP Offer but will choose the offer which arrived first in most 

scenarios (i.e., unless the host is configured to wait for multiple offers and then choose one based on the offer’s 

parameters). 

An attacker can abuse this behavior by configuring a rogue DHCP server to inject its desirable set of parameters 

into the host configuration: if the first offer arriving at the host is the attacker’s offer, then the host will utilize 

whichever parameters the attacker offers in the DHCP exchange. This is called DHCP Spoofing.  

The consequences of this attack are large in scope: the attacker can supply IP addresses for a host that are 

outside of the addressing range of the subnet, or it can supply wrong IP addresses for the default gateway, DNS 

servers, NTP servers, and many others. 
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4.2.12.2. Attack Code 

The DHCP Spoofing attack is defined in the ‘dhcp.py’ file, under the ‘layer2’ directory, by the ‘dhcp_spoof’ 

function. 

Scapy contains various built-in functions to receive and automatically answer various kinds of requests, all of 

which inherit from the same base class “AnsweringMachine”. This class defines the base functions for listening 

and responding to various packets, and it then is inherited by other, more specialized classes which define 

protocol-specific parameters and behavior. DHCP is no exception, but the original “DHCP_am” code is limited in 

terms of configurable parameters. Thus, the code includes two classes, ‘BOOTP_am_en’ and ‘DHCP_am_en’, 

created by us, which replace the original scapy counterparts in our DHCP Spoofing attack.  

The first class, ‘BOOTP_am_en’, shown in Figure 72, overrides the original ‘BOOTP_am’ class to include extra 

parameters such as a DNS server IP and the DHCP server IP. The second class, ‘DHCP_am_en’, shown in Figure 

73, inherits from the ‘BOOTP_am_en’ class in the same way the original ‘DHCP_am’ class inherits from the 

‘BOOTP_am’ class. This class is necessary due to the introduction of extra parameters which also need to be 

included in the DHCP options field. With these two classes defined, we can initialize the server with the necessary 

parameters and start the attack (Figure 74), after which the attacker will start answering DHCP requests. 

 
Figure 72 – DHCP Spoofing, “BOOTP_am_en” class code 

 
Figure 73 – DHCP Spoofing, “DHCP_am_en” class code 

 
Figure 74 – DHCP Spoofing function code 
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4.2.12.3. Testing and Validation 

Figure 75 shows the network topology utilized to perform the attack. Only the attacker’s ‘eth0’ interface had 

an IP address assigned to it, 192.168.0.2/24.  

To run the attack, we first select the interface ‘eth0’ and then add the “DHCP Spoofing” attack by filtering by 

“Attack”, “L2”, and “Man-in-the-Middle”. After selecting “Run Chain”, we need to input a set of parameters 

through the command line. In this test, we utilized the parameters from Table 4. 

 

 

Figure 75 – DHCP Spoofing test topology 

 

Table 4 – DHCP Spoofing test attack parameters 

Parameter Name Parameter Value 
pool 192.168.0.128/25 
network 192.168.0.0/24 
domain Domain 
gw 192.168.0.2 
server_id 192.168.0.2 
dns 192.168.0.2 
lease_time 1800 
renewal_time 60 

 

By attaching a probe to the attacker’s ‘eth0’ 

interface, we can see what packets are sent 

and received. If we start the DHCP client on 

PC1, the packet exchange from Figure 76 

occurs. We can see the whole DHCP process 

happening, and by inspecting the attacker’s 

DHCP Offer we can verify the values for the 

DHCP options and confirm they match with the 

parameters defined before.  

 

 
Figure 76 – DHCP Spoofing, capture at attacker’s eth0 interface 

 

5. Attacks to RIP 
5.1. Introduction 

RIP was first standardized in RFC 1058 [10] (RIPv1) back in 1988, with later updates to the standard made by 

RFC 2453 [11] in 1998, introducing RIPv2, the newer standard which is often just called RIP. RIP is a distance-

vector routing protocol that runs over UDP on port 520, designed to allow small networks of routers to exchange 

routing information and automatically build their routing tables.  

Distance-vector protocols exchange information in the form of distance vectors, with each destination having 

an associated path cost. Selected routes are the ones with the lowest path cost. The RIP metric utilized for path 
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cost calculation is the number of hops, with the maximum cost being 16 which equals infinity from a router’s 

point of view. This effectively limits the size of a network running the RIP protocol. 

RIP implements split-horizon in order to prevent routing loops from happening, prohibiting any route learned 

from a certain interface to be advertised back through it.  

Another mechanism implemented is route removal in case of link or node failure, called trigger updates. This 

mechanism allows a router to update a route with a path cost of 16 to mark it unreachable. 

While authentication is available for RIP messages, it is only available in the form of plaintext passwords or 

MD5 hashes, both of which have obvious flaws from a security point of view. 

5.2. Attacks and Testing 

RIP attacks are simple in their implementation and rationale. The attacks presented below are all discussed in 

detail by T. Wan et. al. [12]. 

5.2.1. RIP Route Injection 

5.2.1.1. Attack Description 

RIP is an extremely simple protocol in terms of both packet structure and communication between routers: a 

router needs virtually no setup (i.e., neighbor discovery, authentication, authorization,) to take part in the routing 

information exchange, and as such injecting routes and poisoning routing tables is a trivial task. 

The RIP Route Injection attack allows an attacker to inject arbitrary routes into the network’s routing tables. 

Two variants of this attack are defined in our tool, and both function in the same way, with the only difference 

being that one is a targeted injection (performed to poison a single router) while the other injects the routes to 

every router in the RIP domain. 

5.2.1.2. Attack Code 

The RIP Route Injection attack is defined in the ‘RIP.py’ file, under the ‘layer3’ directory, by the 

‘RIP_route_injection’ function. 

Figure 77 shows the function code for the attack. The function starts by converting the imported routes (from 

the dedicated YAML import functions detailed beforehand) to the scapy packet format utilizing the 

“_RIP_parse_routes” auxiliary function, shown in Figure 78, and the proceeds to create the RIP packet that is to 

be sent out. The function then checks for existing layers and configures the necessary fields with the correct 

values, after which it decides which send function to utilize. 

The only difference between this attack and the targeted version is the destination IP address on the IP layer: 

in this one, it’s set as the RIP multicast address, while in the targeted version it’s set as a unicast address. 
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Figure 77 – RIP Route Injection function code 

 
Figure 78 – RIP Route Injection, “_RIP_parse_routes” auxiliary function 

5.2.1.3. Testing and Validation 

Figure 79 shows the topology utilized to test the RIP Route Injection attacks, and Table 5 shows the IP address 

assignment for this test. Both R1 and R2 are Cisco 3725 routers. We configure R1 to advertise the network 

1.1.1.1/32 through RIP, while R2 advertises the network 2.2.2.2/32. 

 The objective of the attack will be to inject a route to subnet ’10.10.10.10/32’ with our attacker’s machine as 

the next hop. To import the routing information, we use the file ‘rip_injection.yml’ shown in Figure 80. 

 
Figure 79 – RIP Route Injection test topology 

 
Figure 80 – RIP Route Injection, “rip_injection.yml” 

configuration file 

 
 
 
 

Table 5 – RIP Route Injection addressing information 

Host Interface IP address 

R1 f0/0 10.10.0.1 

R1 Lo0 1.1.1.1 
R2 f0/0 10.10.0.2 

R2 Lo0 2.2.2.2 

network-
testing-tool-1 

eth0 10.10.0.10 

 
 

To launch the attack, we select the interface ‘eth0’, and then import the configuration file for RIP. To do so, 

we select the option “Import Data”, followed by “RIP Confs”, and finally select the file named “rip_injection.yml”. 
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Once imported, we select “Add Function”, and filter by “Attack”, “L3 – RIP”, and “Route Poisoning” we can then 

select the “RIP Route Injection” attack. Finally, we launch the attack. 

We can attach a probe to the attacker’s ‘eth0’ interface to see what packets are being exchanged. In Figure 

81 we can see the RIP packet sent by the attacker with the injected route, and in Figure 82 we can verify the 

injected route is present in the routing tables of both R1 and R2. 

 
Figure 81 – RIP Route Injection, capture at attacker’s eth0 interface 

 
Figure 82 – RIP Route Injection, routing tables of R1 (top) and R2 (bottom) 

After restarting R1 and R2 to clear the routing table, we can follow the same steps to perform the targeted 

version of this attack. The only difference is that when choosing the attack, we select “RIP Route Injection 

(Targeted)”, and when selecting “Run Chain” we are prompted to select the target, which in this case will be R1’s 

IP address (10.10.0.1).  

Utilizing the same probe, we can check the packets being sent by the attacker. Figure 83 shows the first packet 

sent by the attacker, where we can see the destination address set to R1’s address as well as the injected route. 
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In Figure 84 we can also see the routing tables of R1 and R2, where we can verify that the injected route is present 

in R1’s table but not in R2’s 

 
Figure 83 – RIP Route Injection (Targeted) capture at attacker’s eth0 interface 

 

 

 
Figure 84 – RIP Route Injection (Targeted), routing tables of R1 (top) and R2 (bottom) 

5.2.2. RIP Request DoS 

5.2.2.1. Attack Description 

Due to the size of some routers’ routing tables, RIP response packets can potentially generate a lot of traffic 

and cause network congestion. 

A RIP Request DoS is a form of denial-of-service that utilizes a RIP Request packet to trigger a RIP Response. 

This response will contain all the routes present in the routing table. Furthermore, if an attacker spoofs its IP 

address to match that of a network host, all the traffic generated by the Request packet will be redirected to the 
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target host. This scenario is a typical reflection amplification denial-of-service attack, where the attacker will 

amplify the amount of traffic generated and point it to a target machine. 

5.2.2.2. Attack Code 

The RIP Request DoS is defined in the ‘RIP.py’ file, under the ‘layer3’ directory, by the ‘RIP_request_DoS’ 

function shown in Figure 85 below. 

 
Figure 85 – RIP_request_DoS function 

The code begins by obtaining any pre-existing layers injected by “Middlewares”, after which it consists of some 

packet manipulation on existing layers (checking IP fields like TTL, source, and destination addresses) and adding 

the RIP-related layers (UDP, RIP, and RIPEntry). 

5.2.2.3. Testing and Validation 

Figure 86 shows the topology used to test the RIP Request DoS attack, and Table 6 contains the IP addressing 

information for the machines. The network address is 10.10.0.0/24. RIP was configured to advertise the networks 

10.10.0.0/24 for both routers, as well as 1.1.1.1/32 for R1 and 2.2.2.2/32 for R2. 

 
Figure 86 – RIP Request DoS test topology 

 

 
Table 6 – RIP Request DoS test addressing information 

Host Interface IP address 

R1 f0/0 10.10.0.1 

R1 Lo0 1.1.1.1 

R2 f0/0 10.10.0.2 

R2 Lo0 2.2.2.2 

PC1 e0 10.10.0.100 
network-

testing-tool-1 
eth0 10.10.0.101 

To run the attack, we select the desired interface (‘eth0’) and then add the ‘RIP Request DoS’ function by 

filtering by ‘Attack’, ‘L3-RIP’, and ‘DoS’. We then select “Run Chain”, set the target address to that of PC1’s e0 

interface and the interval to 1 second (by inputting “1”), and run the attack. We can now connect a probe to the 

attacker’s eth0 interface and PC1’s e0 interface and verify what packets are being sent and received. 
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Below we can see the relevant packet captures. On the attacker’s side, in Figure 87, we see the RIP requests 

sent in multicast. Inspecting one of the packets, we can verify the source IP is spoofed to that of PC1’s and the 

RIP header command field is set to Request. 

On PC1’s side, in Figure 88, we can verify the RIP response packets arriving. Two distinct packets arrive per RIP 

Request sent by the attacker: one from R1, and another from R2. If we inspect one of the packets, we can verify 

the presence of routes from the corresponding route in the response header. In this capture, we can also see 

PC1 sending the received packets back (packets 137 and 139 for example). When later tested with other types 

of machines, like the GNS3 built-in “webterm”, the target machine only replied to the RIP packets with ICMP 

Destination Unreachable (Port Unreachable) packets, which is the expected behavior. We can thus assume that 

packets returned by PC1 are due to a software bug related to the limited functionality of VPCS. 

 
Figure 87 – RIP Request DoS, capture at attacker’s eth0 interface 

 

 
Figure 88 – RIP Request DoS, capture at PC1’s e0 interface 
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6. Attacks to OSPF 
6.1. Introduction 

OSPF, defined in RFC 2328 [13], is an intra-domain link-state routing protocol. OSPF router exchange topology 

information in the form of LSAs and build a topology from all the collected LSAs, which are utilized to calculate 

the routing tables. 

OSPF LSA types vary depending on the type of information they carry.  

Type 1 LSAs are Router LSAs, which contain information about the originating router. This includes connected 

links and neighbors and the OSPF metric, as well as a set of flags that further help characterize the router. 

Type 2 LSAs are Network LSAs, which contain information about transit networks. These are networks that 

have two or more OSPF routers connected, and the LSA contains a list of those routers. Network LSAs are 

generated by the DR (explained below). 

Type 3 and Type 4 LSAs are called Summary LSAs and ASBR Summary LSAs respectively, and they are used to 

summarize topology information across different OSPF areas. OSPF areas are designed to reduce database size, 

and thus Types 1 and 2 LSAs are not propagated between different areas and are instead summarized by the 

ABR. Type 3 LSAs are Summary LSAs for Router and Network LSAs, while Type 4 LSAs are sent with Type 5 LSAs 

to summarize the associated Router LSA of the ASBR. 

Type 5 LSAs are called AS External LSAs and are used to advertise routes exterior to the domain, learn through 

another protocol such as BGP or RIP, or manually redistributed. Type 5 LSAs can only be originated by an ASBR, 

a router whose Router LSA has the “e” flag set. 

Finally, Type 7 LSAs are called NSSA External LSAs and are utilized to advertise Type 5 LSAs into NSSAs. NSSAs 

are a type of OSPF area that doesn’t permit the flooding of Type 5 LSAs and as such Type 7 LSAs are used to 

transmit this information. 

OSPF routers establish an adjacency relation between themselves, which allows them to exchange their 

database information and detect link failures, modifying the link’s state to reflect topology changes. This 

adjacency is established utilizing the Hello protocol. Routers will periodically send Hello messages from their 

interfaces which contain basic OSPF information, such as the list of connected OSPF routers in the local subnet.  

When two non-adjacent routers receive Hello packets from each other, they establish an adjacency relation 

between themselves and exchange the details of their databases in a process called LSDB synchronization. During 

this stage, also called DBD exchange, routers exchange the headers of LSAs present in their databases utilizing 

DBD packets. The exchange happens following a master-slave model, where the router with the highest priority 

or when the priority is the same, the highest OSPF router ID (manually configurable) is the master and is 

responsible for dictating the flow of the exchange: every packet sent by the slave must be an answer to the 

master, and the DBD only ends when both the master and slave have sent all the LSA headers in their databases. 

When the DBD exchange phase is finished, routers update existing LSAs to reflect the new topology. When an 

adjacency is established on a transit link, one of the OSPF routers is nominated the DR, which is the router 

responsible for generating the Network LSA for the newly created transit link. 



57 

 

OSPF LSAs are transmitted inside packets called Link State Updates, or LSUs, which allow more LSAs to be 

transmitted at once. The LSUs need to be acknowledged by the destination router, which will send an LSAck 

packet containing the headers of the received LSAs 

OSPF implements a natural fightback mechanism when incorrect information is present in an LSA. When a 

wrong LSA reaches the router which generated it, the router will correct the information in the LSA and flood it 

so all the domain routers can update its information. This mechanism makes it extremely hard for an attack to 

inject false information into an OSPF network, as LSAs are only accepted if they are either created or flooded by 

an adjacent router. 

OSPF links can also be secured with authentication on a link-by-link basis, with the protocol providing support 

for passwords in plaintext, MD5, and various HMAC-SHA algorithms. While the HMAC-SHA ciphers may be harder 

to break, brute forcing and dictionary attacks can be utilized to bypass authentication and access OSPF messages. 

6.2. Attacks and Testing 

This section contains a detailed description of OSPF attacks, their implementation and tests realized to validate 

their correct implementation, as well as situations where the attacks fail and the reason why they do so. Attack 

limitations are also included in case they exist. 

The tests were performed in the conditions described in Appendix A. 

OSPF attacks make extensive use of imported configurations. Details on the YAML file structure for those 

configurations can be found in Appendix B. The analysis of the auxiliary functions specific to OSPF can be found 

in Appendix F. 

6.2.1. Remote False Adjacency 

6.2.1.1. Attack Description 

The Remote False Adjacency, first described by G. Nakibly et. al. [14], is an OSPF route injection attack that 

injects LSAs utilizing a phantom router. 

In order for an LSA to be accepted, it must be sent by an active OSPF neighbor. This means a route injection 

such as the one described in the RIP chapter (RIP injection, Chapter 5, section 5.2.2) is not possible with OSPF. 

There are, however, alternatives. 

The concept of a phantom router was first explained by E. Jones et. al [15], and describes an OSPF neighbor 

that isn’t attached to a physical router. In other words, it’s a form of spoofing an adjacency relation with the 

Designated Router (DR) so that LSAs can be sent to the DR with a source IP address of a machine that doesn’t 

exist in the network. Configuring a phantom isn’t easy because, if an attacker isn’t in the local subnet, there is no 

access to the packets sent by the DR destined for the phantom.  

The Remote False Adjacency attack utilizes a phantom router to inject LSAs into the network. The point of the 

attack is to have an attacker configure a phantom router remotely, i.e., from a different subnetwork, and then 

send all LSAs in unicast to the DR. The difficult part of the attack is the lack of bi-directional communication 

between the DR and the attacker: packets sent by the attacker have their source IP address spoofed so that, from 

the DR’s point of view, the packets received come from the local subnetwork. Consequently, the attacker has no 

access to the packets sent by the DR to the phantom, as those will be destined to an IP address in the DR’s subnet, 

and not the attacker. 
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 However, there’s a workaround for this. Since most of the adjacency setup process is deterministic, it can be 

concluded without the attacker ever receiving a response from the DR. Every message sent by the attacker must 

be sent in unicast, and the interface on the DR that receives the packets must be connected to the local subnet 

where the phantom is created. As a visual aid, Figure 89 shows three possible positions for the attacker in the 

network. If we consider R1 as the DR and R3 as the position where the phantom should be created, this attack 

will only be successful if performed by attacker A2 or A3, since R1 will discard any packet received from A1 since 

the packets are arriving at an interface they should not be arriving from. 

 
Figure 89 – Remote False Adjacency, example attacker positions in the network 

The attack begins by having the attacker send a hello packet destined for the DR, containing the DR’s router 

ID in the neighbor list, with the source IP of the phantom. The authors note that the router ID for the phantom 

needs to be higher than that of the DR for the attack to be successful (explained below). These hello messages 

need to be re-sent periodically to keep the adjacency from being torn down. 

The next step is to send the DBD messages. Usually, the DR is the master in the database exchange phase. 

However, since the phantom’s ID is higher than the DR’s, the phantom can perform the whole exchange process 

as the master. This allows the attacker to set a custom value for the sequence number utilized in the DBD 

messages, which would be impossible to guess if the DR was the master as the attacker doesn’t have access to 

the DBD messages sent by the DR. The authors note that the number of DBD messages can be as high as the 

attacker wants, but it needs to at least cover the number of headers sent by the DR, meaning the attacker can 

send more DBD messages than needed for the exchange phase, but never less. The authors also note this number 

can be easily estimated if the attacker can see OSPF messages in the local network. Certain flags need to be set 

on the DBD messages: every message must have the master (MS) flag set, the first message needs to have both 

the I and M bits set, and every message after except for the last one must have the M bit set. Once the last DBD 

message arrives at the DR the adjacency is considered established, and routers can now exchange LSAs. 

The last step of the attack is to send fake LSAs with the source IP address and router ID of the phantom, also 

in unicast, to the DR. Once delivered, the DR immediately proceeds to flood the LSAs to every connected OSPF 

router. 

There is one extra step that can only be taken if the attacker can read OSPF LSU packets from the directly 

connected link, and that is acknowledging the newly generated network LSA. The DR will generate a new Network 

LSA for the local subnet to add the phantom to the list of attached routers. This LSA needs to be acknowledged 

by all routers, including the phantom, or the DR will tear down the adjacency relation created. Thus, if the 
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attacker can sniff LSUs from the connected network, it must obtain the new Network LSA and send an LSAck on 

behalf of the phantom. 

6.2.1.2. Attack Code 

The Remote False Adjacency attack is defined in the “OSPF.py” file, under the “layer3” directory, by the 

“ospf_remote_false_adjacency” function. 

The function code uses the “asyncio” library to perform two tasks in parallel: periodically sending Hello 

messages and performing the adjacency setup as well as sending the LSAs. To do so, two distinct auxiliary 

coroutines are defined, “_ospf_loop_hello” and “_dbd_coro”. Figure 90 shows the code responsible for creating 

and running both tasks.  

 
Figure 90 – OSPF Remote False Adjacency main function code 

Figure 91 shows the function code for the coroutine responsible for sending Hello messages. The Hello 

message is created from both values imported via the configuration file and from values input by the user before 

starting the attack. This is so the routing information in the configuration file can be detached from the attack’s 

target information, as the routing information can be re-utilized even when the DR changes. The function sends 

one Hello packet every 30 seconds. 

 
Figure 91 – OSPF Remote False Adjacency, _ospf_loop_hello coroutine code 

The “_dbd_coro” function is responsible for configuring the adjacency, sending the fake LSAs, and 

acknowledging the new Network LSA. Figure 92 shows the code for the first section. The routine needs to wait 

for the first Hello message to be sent. Afterward, it sends the first DBD message with the sequence number 1. 

The “dbdescr” field in the packet corresponds to the DBD flags, and the value 0x07 corresponds to the MS, M 

and I bits set.  
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Figure 92 – OSPF Remote False Adjacency, _dbd_coro section 1 

Figure 93 shows the continuation of the code. The function sends 8 DBD messages with the MS and M bits 

set, represented by the value 0x03. The number 8 was chosen so the total DBD packets sent is equal to 10. This 

number was chosen so the attack can be performed in medium-sized domains while keeping its performance on 

smaller topologies. In the figure we also see the last DBD message being sent with the MS bit set, represented 

by the value 0x01. 

 
Figure 93 – OSPF Remote False Adjacency, _dbd_coro section 2 

The next section, shown in Figure 94, involves configuring a Scapy asynchronous (non-blocking) sniffer which 

will sniff the Network LSA emitted by the DR. The “stop_func” function is used as a packet filter for the sniffer, 

only allowing for the specific Network LSA sent by the DR to be returned (“victim_id” corresponds to the DR’s 

OSPF router ID). After starting the sniffer, we can inject the attack’s imported LSA into the network, which will 

trigger the DR to update the Network LSA, after which we wait for the OSPF flooding process to occur and LSA 

transmission to stabilize before stopping the sniffer. 

 
Figure 94 – OSPF Remote False Adjacency, _dbd_coro section 3 
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Finally, in Figure 95 we see the creation of the LSAck packet for the Network LSA. The LSAck only needs the 

LSA Header, so the function creates a Header layer with the parameters from the Network LSA and inserts it in 

the LSAck. After sending this packet the function terminates and returns. 

 
Figure 95 – OSPF Remote False Adjacency, _dbd_coro section 4 

6.2.1.3. Testing and Validation 

Figure 96 shows the topology utilized to test the Remote False Adjacency attack. All routers are Cisco 7200 

devices, fitted with C7200-IO-2FE slots. Table 7 contains IP addressing information for the devices in the topology. 

All routers have OSPF configured to announce their directly connected subnets. R1 is made the DR for both 

subnets it is connected to utilizing a higher priority value. All router IDs are based on the router number, i.e., R1’s 

OSPF ID is 1.1.1.1, R2’s OSPF ID is 2.2.2.2, … 

The objective of this test is to create a phantom in the 10.10.10.0/24 subnet, connected to Switch3, with IP 

address 10.10.10.100 and router ID 10.10.10.10, which will then inject a fake route to a subnet 192.168.1.0/24, 

a transit network with two OSPF routers: the phantom and another non-existent router. 

The test utilized the data from the “ospf_rfa_test_1.yml” file, whose structure can be seen in Figure 97. 

Imported information contains the Router LSA for the phantom, which lists two connected links: one for the 

10.10.10.0/24 subnet, and another for the 192.168.1.0/24 subnet. The file contains another Router LSA for a 

router that is directly connected to the phantom through the 192.168.1.0/24 subnet, and whose interface has 

the IP address 192.168.1.100. Finally, and since two OSPF routers are connected to that subnet, the phantom 

also originates a Network LSA for the 192.168.1.0/24 subnet, turning it into a transit link. 

 
Figure 96 – OSPF Remote False Adjacency test topology 
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Table 7 – OSPF Remote False Adjacency IP addressing information 

Name Interface IP Address 

R1 
f0/0 10.10.14.1 

f0/1 10.10.10.1 

R2 
f0/0 10.10.10.2 

f0/1 10.10.11.2 

R3 
f0/0 10.10.11.3 

f0/1 10.10.12.3 

R4 
f0/0 10.10.12.4 

f0/1 10.10.13.4 

R5 f0/0 10.10.14.5 

R6 f0/0 10.10.13.6 

network-testing-tool-1 eth0 10.10.13.100 

 

  
Figure 97 – OSPF Remote False Adjacency imported routing information 

To launch the attack, we start by selecting interface “eth0”. We import the routing configurations from the 

YAML file by selecting “Import Data”, “OSPF LSU/LSA”, and “ospf_rfa_test_1.yml”. Then, we add the attack 

function by selecting “Add Function”, “Attack”, “L3- OSPF”, “Route Poisoning”, and “Remote False Adjacency”. 

Finally, we launch the attack by selecting “Run Chain” and, when prompted, introducing the values 10.10.10.1 

for the “victim_IP” and 1.1.1.1 for the “victim_id”, corresponding to the DR IP address and router ID. Having to 

know this information beforehand turns the attack from an outsider's point of view harder, however, this 

information can be obtained by having the attacker attach itself to a transit link and wait for the Router and 

Network LSAs of the DR to be naturally refreshed and flooded. 

By connecting a probe to R1’s f0/1 interface we can see the packets sent to and by this router. Figure 98 shows 

the entire packet exchange for the attack, where we can see the first Hello sent by the attacker in packet 419 

(Figure 99), followed by 10 DBD messages, and finally several LSU packets: 451 (Figure 100) containing the fake 

LSAs sent by the attacker, 453 (Figure 101) and 454 (Figure 102) contain the LSAs sent by the attacker that are 

being flooded by R1, and packet 455 (Figure 103) contains the updated Network LSA, which is later acknowledged 

by the attacker in packet 463 (Figure 104). 
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Figure 98 – OSPF Remote False Adjacency capture at R1’s f0/1 interface 

 
 
 
 

 
Figure 99 – OSPF Remote False Adjacency frame 419 

 
Figure 100 – OSPF Remote False Adjacency frame 451 

 
Figure 101 – OSPF Remote False Adjacency frame 453 

 
Figure 102 – OSPF Remote False Adjacency frame 454 
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Figure 103 – OSPF Remote False Adjacency frame 455 

 
 

 
Figure 104 – OSPF Remote False Adjacency frame 463 

While we can see the fake LSAs being flooded, we still need to verify whether they are being used by the SPF 

algorithm to calculate the best paths. Figure 105 shows the routing table of R1 with the attack running, and we 

can see an injected route to subnet 192.168.1.0/24, thus proving the attack’s effectiveness.  

 
Figure 105 – OSPF Remote False Adjacency routing table at R1 

There are some details on the attack which are not covered by this topology and test. One such detail is the 

behavior when the attacker is performing the attack in a different OSPF area than the DR is located on. This can 

bring problems with acknowledging the Network LSA generated by the DR when the adjacency relation is 

configured, as type 2 LSAs aren’t flooded across different OSPF areas and thus the attacker has no means of 

acknowledging such an LSA. 

Another point of concern is the attack duration. OSPF LSAs are refreshed every 30 minutes by default and 60 

minutes maximum. This means the attacker will need to acknowledge every LSA flooded into the network, and 

failure to do so will cause the adjacency relation to be torn down. It also means that any injected LSA needs to 

be re-injected every 60 minutes or else the LSAs will be purged due to them reaching their max age. The 

implemented attack doesn’t cover both of these points, as we concluded that such a situation wouldn’t occur in 

the cases where the tool is supposed to be used, i.e., network testing in simulated and real-world topologies that 

won’t last for an extended period. However, adapting the attack code for such a situation wouldn’t be too 

complicated, as the attacker has access to the LSAs flooded by the DR. 

6.2.2. Single Path Injection 

6.2.2.1. Attack Description 

The Single Path Injection attack, or SPI for short, described by Y. Song et. al. [16], is a route injection attack 

utilized to inject Bogus LSAs in the network by tricking a router into believing a received LSA was originated by a 

directly connected router. 



65 

 

During the LSA flooding process, routers keep a list of transmitted LSAs, called a retransmission list, which 

contains all LSA transmitted that have yet to be acknowledged by the connected neighbors. When the LSAck is 

received for a certain LSA then that LSA is removed from the list, but if the router received an LSAck for an LSA 

that is not in the retransmission list then the LSAck is discarded, and no action is taken by the router receiving 

the LSAck. 

The SPI attack utilizes the acknowledgment mechanism to make a fake LSA persist in the database of a domain 

router, which can then be flooded by that router. Two routers are involved in this attack, which the authors name 

as the “springboard” router and the “polluted” router.  

The attack consists of sending a false LSA to the “polluted” router, with the header’s fields configured in a way 

that from the “polluted” router’s perspective the LSA was originated by the “springboard” router. This means 

the source IP address must be that of the “springboard” router, and the Router ID field in the LSU must also 

match the “springboard” router’s router ID. The packet’s destination IP address must also be the “polluted” 

router’s IP address, instead of the OSPF multicast address. 

When the “polluted” router receives the LSA, it will be installed in the OSPF database, flood it from all its other 

interfaces, and an LSAck will be generated and sent to the “springboard”. The “springboard” router will receive 

the LSAck and since no LSA corresponding to the LSAck is present in the retransmission list, the LSAck will be 

discarded, and no fightback will occur. 

 This attack can be used to modify LSAs originated by the “springboard” and inject into the network false LSAs 

originated by non-existing routers connected to the “springboard”. 

 The authors also noted that the attack only works if the “polluted” and “springboard” routers are the only 

OSPF routers in the link that connects them. This is due to how the acknowledgment process functions when 

there are three of more OSPF routers in the network. The LSAck is always sent utilizing the multicast IP address. 

When a third router is present, the LSA received by the “polluted” router is flooded to the third router, which 

will acknowledge the LSA by sending an LSAck in multicast to the DR. When the DR receives this LSAck, it sends 

a fightback LSA to our injected LSA, resulting in the attack failing.  

6.2.2.2. Attack Code 

The Single Path Injection attack is defined in the “OSPF.py” file, under the “layer3” directory, by the 

“ospf_single_path_injection” function. 

Figure 106 shows the code for the attack. Function code is logically simple since no complex process is needed 

to perform the attack. After importing the LSA information from a configuration file, the LSA sequence number 

is modified so that it can be accepted by the “polluted” router in case the imported LSA corresponds to a 

modification to an existing LSA. 

The packet is then sent right after configuring the IP layer with the relevant IP address for the source and 

destination fields. 
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Figure 106 – OSPF SPI function code 

6.2.2.3. Testing and Validating 

Figure 107 shows the topology utilized to test the Single Path Injection attack, and Table 8 shows the IP 

addresses of the relevant interfaces. All routers are Cisco 7200 devices equipped with CISCO-IO-2FE slots. All 

routers are running OSPF and advertising their directly connected networks. OSPF router IDs are based on the 

router numbers (i.e., 1.1.1.1 for R1, 2.2.2.2 for R2, …).  

The objective of this test is to inject a bogus network LSA, originating from R2 (which is also the DR), into R1 

and R5, limiting connectivity on R5. The network LSA structure can be seen in Figure 108, which shows the 

structure of the YAML file utilized for this attack, “ospf_spi_test_1.yml”. This network LSA is structured in a way 

such that it mimics the LSA originated by R2, but it removes R1 from the attached router's list, which will lead to 

limited connectivity for any router that wants to utilize R1 to reach R2 or any other router beyond R2. 

Utilizing this attack’s nomenclature, R1 is the “polluted” router while “R2” is the “springboard” router. 

 
Figure 107 – OSPF SPI test topology 

 
Figure 108 – OSPF SPI YAML config 
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Table 8 – OSPF SPI IP addressing information 

Name Interface IP Address 

R1 
f0/0 10.10.14.1 

f0/1 10.10.10.1 

R2 
f0/0 10.10.10.2 

f0/1 10.10.11.2 

R3 
f0/0 10.10.11.3 

f0/1 10.10.12.3 

R4 
f0/0 10.10.12.4 

f0/1 10.10.13.4 

R5 f0/0 10.10.14.5 

network-testing-tool-1 eth0 10.10.13.100 

 
To launch the attack, we start by selecting interface “eth0”. We import the routing configurations from the 

YAML file by selecting “Import Data”, “OSPF LSU/LSA”, and “ospf_spi_test_1.yml”. Then, we add the attack 

function by selecting “Add Function”, “Attack”, “L3- OSPF”, “Route Poisoning”, and “Single Path Injection”. 

Finally, we launch the attack by selecting “Run Chain” and, when prompted, introducing the values 10.10.10.1 

for the “polluted_ip” and 10.10.10.2 for the “springb_ip”, corresponding to the DR IP address and router ID. 

By attaching a probe to R1’s f0/1 interface we can see the LSA being received by R1, shown in Figure 109, 

which then sends an acknowledgment. No more packets are exchanged between R1 and R2 related to the attack. 

We also inspected R5’s routing table, shown in Figure 110, where we can observe the absence of OSPF-learned 

routes due to the modification done to the network LSA.  

 
Figure 109 – OSPF SPI capture at R1’s f0/1 interface 

 
Figure 110 – OSPF SPI R5’s routing table 
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6.2.3. Max Age LSA 

6.2.3.1. Attack Description 

A Max Age LSA attack is a DoS attack whose objective is to consistently purge one or more LSAs from the 

network. This attack is described by E. Jones et. al. [15]. 

The LSA Age field is utilized by OSPF routers to control an LSA's freshness. The age field symbolizes the number 

of seconds elapsed since the LSA was created and sent by the originating router. Each router will increase the 

age field of the LSAs present in their database at the rate of 1 unit per second. Once the age field reaches the 

maximum value of 3600 seconds the LSA is removed from the database and any routes that were generated from 

it are removed from the routing table.  

The Max Age LSA attack utilizes the purging mechanism associated with a max age value to remove LSAs from 

the network, causing performance issues for the OSPF routers, which need to constantly run the SPF algorithm, 

and rapidly-changing link states repeatedly. 

The attacker has two distinct ways of realizing the attack: the first is by sniffing an LSA from the network, 

modifying the relevant fields (age and sequence number), and injecting the resulting LSA: this approach is the 

most reliable since the attacker doesn’t have to guess the current LSA sequence number (which is needed to 

install the LSA in the OSPF databases), but it requires the attacker to wait for the target LSA to the flooded in 

some way to gain access to it. 

The second is to simply forge a fake LSA with the age field set to max and an arbitrarily large sequence number: 

this approach allows to eliminate the wait for an LSA to be sniffed off the network but introduces the problem 

of guessing a sufficiently high sequence number for the LSA to be accepted by the network’s routers. In this case, 

the injected LSA doesn’t need to be an exact match of the original: only the important fields need to match so 

the LSA gets recognized as a valid successor to the existing one. For example, for a router LSA, the link list can be 

empty if the advertising router and link state ID fields, as well as the router ID and area ID in the OSPF Header, 

are filled with the relevant values. 

This attack will cause a fightback response by the router which originates the injected LSA, however, this is 

not relevant as the final objective is to leverage that fightback to cause instability in the network. 

6.2.3.2. Attack Code 

The Max Age LSA attack is defined in the “OSPF.py” file, under the “layer3” directory, by the 

“ospf_max_age_import” function for the import variant, and “ospf_max_age_sniff” function for the sniff variant. 

Both functions are similar in the overall logic, thus we will only focus on the import variant from here on as it’s 

the easiest to test. 

Figure 111 shows the code for the attack function. After obtaining the LSU packet from the auxiliary function 

“_ospf_parse_lsu”, the code immediately modifies both the age and sequence number to appropriate values. 

The next step is to enter a cycle and, in each iteration, send the packet, further incrementing the sequence 

number to account for a fightback LSA issued by the legitimate router. 
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Figure 111 – OSPF Max Age LSA function code 

6.2.3.3. Testing and Validation 

Figure 112 shows the topology utilized to test the attack, while Table 9 contains the IP addressing information 

for the relevant machines. All routers are Cisco 7200 devices. All subnets are /24 subnets, and all routers are 

running OSPF, advertise their connected networks, and have their router ID based on their router number (i.e., 

R1’s ID is 1.1.1.1, R2’s ID is 2.2.2.2, …). 

The objective of this test is to inject a bogus LSA from the attacker which will result in R1’s router LSA being 

purged. To import the LSA parameters, we utilize the “ospf_seq_age_test.yml” file, whose contents are shown 

in Figure 113 and explained below. Since OSPF-speaking routers only accept LSUs if they are generated by an 

active neighbor, we need to have the attacker’s machine utilize R4’s IP address to inject the LSA into the network. 

 
Figure 112 – OSPF Max Age LSA test topology  

Figure 113 – OSPF Max Age LSA 
configuration file 

 
Table 9 – OSPF Max Age LSA test addressing information 

Name Interface IP Address 

R1 f0/0 10.10.1.1 

R2 
f0/0 10.10.1.2 

f0/1 10.10.2.2 

R3 
f0/0 10.10.2.3 

f1/0 10.10.3.3 

R4 f0/0 10.10.3.4 

Network-testing-tool-1 eth0 10.10.3.4 

 
While the bogus LSA content is largely irrelevant since the objective is to purge the legitimate LSA, some 

parameters from the configuration file are still important. Most notably, the “router_id”, “area_id”, 
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“interface_addr”, and “interface_netmask”. These parameters need to match those of R4 so the emitted LSA is 

accepted by R3, which will then forward the packet.  

To perform the attack, we first need to select interface “eth0”. We import the necessary configurations by 

selecting “Import Data”, “OSPF LSU/LSA”, and “ospf_seq_age_test.yml”. Then, we add the attack by selecting 

“Add Function”, “Attack”, “L3 – OSPF”, “DoS”, and finally “Max Age LSA (Import)”. In the end, we select “Run 

Chain” to run the attack. 

We can attach a probe to both the attacker’s “eth0” interface and R1’s “f0/0” interface in order to observe 

the packets crossing the links.  Figure 114 shows the packet capture from the attacker’s interface, while Figure 

115 shows the corresponding packets on R1’s interface. In both figures, we also see the details of the initial 

packet sent by the attacker, with the bogus LSA containing the Max Age value in the age field, and an arbitrarily 

high sequence number. Figure 116 shows the first fightback LSA issued by R1, which is sent with a higher 

sequence number than the bogus LSA. The cycle of sending fightback LSAs repeats itself, thus proving the attack’s 

effectiveness. 

 
Figure 114 – OSPF Max Age LSA capture at attacker’s eth0 interface 
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Figure 115 – OSPF Max Age LSA capture at R1’s f0/0 interface 

 
 
 
 

 
Figure 116 – OSPF Max Age LSA, fightback LSA sent by R1 

One extra confirmation to perform is checking the OSPF database of a domain’s router to verify what LSA is 

present in the database. With precise timing, we can issue a command to show the OSPF database in quick 

succession and check if the database state is different. Figure 117 shows the result of issuing those commands 

on R3’s database, and thus we confirm that the bogus LSA is being accepted and purged from the database. 

 
Figure 117 – OSPF Max Age LSA, OSPF database at R3 

6.2.4. Sequence Increment Attack / Seq++ Attack 

6.2.4.1. Attack Description 

The Sequence Increment attack, or Seq++ attack, is a DoS attack whose objective is to cause instability in the 

network by forcing a constant fightback response from OSPF routers. 

OSPF utilizes LSA sequence numbers to track updates to LSA information. Starting from the hexadecimal value 

0x8000 0001, the sequence number of an LSA is incremented by 1 unit every time the originating router issues 
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an update on the LSA, either to update the LSA information or for the periodic refresh defined by the LSA refresh 

interval parameter. 

A Seq++ Attack, first described by [17], provides a method of temporarily injecting LSAs into a network by 

constantly incrementing the sequence number of the LSA. Such an increment triggers a fightback, but since the 

attacker is constantly flooding the network then the routing tables end up unstable, oscillating between the 

correct information and the bogus information provided by the attacker, introducing network instability. 

6.2.4.2. Attack Code 

The Seq++ Attack is defined in the “OSPF.py” file, under the “layer3” directory, by the “ospf_seq_increment” 

function.  

Figure 118 shows the function code for the Seq++ attack. The function code consists of a while loop where we 

increment the imported LSA’s sequence number and send the packet. An interval between packets sent was 

included to avoid overloading a router with a high volume of packets, as that is not the objective of the attack. 

 
Figure 118 – OSPF Seq++ function code 

6.2.4.3. Testing and Validation 

To test the Seq++ attack, we utilize the topology from the Max Age attack, whose details are shown in Figure 

112 and Table 9. The objective of the test is to create instability by injecting a bogus LSA into the OSPF domain. 

We utilize the same configuration file as the Max Age attack, shown in Figure 113, and once again we don’t need 

to pay attention to the routing details since the objective is to force path recalculation. 

To launch the attack, we perform the same steps as the Max Age attack. First, we select the interface “eth0”. 

We import the relevant information by selecting “Import Data”, “OSPF LSU/LSA”, and “ospf_seq_age_test.yml”. 

We add the attack by selecting “Add Function”, “Attack”, “L3 – OSPF”, “DoS”, and “Seq++ Attack”. Finally, we 

launch the attack by selecting “Run Chain”. 

We can observe the OSPF traffic by connecting a probe to the attacker’s “eth0” interface and R1’s “f0/0” 

interface. Figure 119 shows the attack packets on the attacker’s interface, and Figure 120 shows the OSPF packets 

sent and received by R1. In the first figure, we see the details of the attack packet, where we can see our bogus 

LSA. In the second figure, we see the same LSA being sent from R2 to R1. R1 then proceeds to send a fightback 

LSA to R2, whose details can be seen in Figure 121. 
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Figure 119 – OSPF Seq++ capture at attacker’s eth0 interface 

 

 
Figure 120 – OSPF Seq++ capture at R1’s f0/0 interface 

 
 
 
 
 

 
Figure 121 – OSPF Seq++ first fightback LSA from R1 

Furthermore, by inspecting the OSPF database twice in a row, we can see the sequence number of the stored 

LSA changing, which also proves the attack is working as intended. Figure 122 shows the database of R3, where 

we can see the sequence number of the injected LSA increasing from one command to the other. 
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Figure 122 – OSPF Seq++, R3’s OSPF database 

6.2.5. Max Sequence Number LSA / Max Seq# Attack 

6.2.5.1. Attack Description 

The Max Sequence Number LSA, or Max Seq# Attack, is a DoS attack that can also function as a route injection 

attack when certain conditions are met. 

Being a numeric value, OSPF sequence numbers have a theoretical maximum value of 0x7fff ffff, and after 

such a number is reached, the OSPF algorithm skips sequence number 0x8000 0000 and returns to the initial 

sequence number of 0x8000 0001. The entire process of resetting an LSA’s sequence number requires a Max Age 

LSA to be sent by the LSA originator to purge this LSA with the maximum sequence number since the OSPF 

algorithm considers the initial sequence number to be lower than the maximum value and will thus reject such 

an LSA. 

A Max Seq# Attack, first described by [17], makes use of a software bug present in some OSPF 

implementations where the max sequence number LSA is not purged from the OSPF database, and will thus 

persist in the database for 1 hour (Max Age equivalent) before the LSA originator can reset the sequence number.  

By abusing such a vulnerability, an attacker can inject a bogus LSA which will persist in the network and will 

be used in the SPF path calculation. Fightback will still occur, but the fightback LSA will never be accepted by the 

other OSPF routers since it contains a lower sequence number than the bogus LSA. In cases where the software 

is not vulnerable, the attack has the same consequences as a Seq++ attack. 

6.2.5.2. Attack Code 

The Max Seq# attack is defined in the “OSPF.py” file, under the “layer3” directory, by the 

“ospf_max_seq_num” function. 

Figure 123 shows the code for the attack. The code itself is similar to that of the Seq++ attack, where in this 

case we set the sequence number to the maximum possible value and only need to send the LSA once. 
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Figure 123 – OSPF Max Seq# function code 

6.2.5.3. Testing and Validation 

To test the Max Seq# attack, we utilize the topology from the Max Age attack, whose details are shown in 

Figure 112 and Table 9. The test objective is to inject the LSA from the Max Age attack test and verify whether it 

persists in the database or not.  

To launch the attack, we perform the same steps as the Max Age attack. First, we select the interface “eth0”. 

We import the relevant information by selecting “Import Data”, “OSPF LSU/LSA”, and “ospf_seq_age_test.yml”. 

We add the attack by selecting “Add Function”, “Attack”, “L3 – OSPF”, “DoS”, and “Max Seq# Attack”. Finally, we 

launch the attack by selecting “Run Chain”. 

By observing R2’s database, shown in Figure 124, we can see that not only is the injected LSA present there, 

but it is also aging correctly. By further connecting a probe to R1’s interface, we can see the router’s attempts at 

reinstating the correct LSA and all the failed attempts at resetting the sequence number. 

This attack is deadly for vulnerable router models, and as such the injected LSAs can be used to modify the 

topology at the attacker’s will. 

 
 
 
 

 
Figure 124 – OSPF Max Seq# attack, OSPF database at R2 

 
Figure 125 – OSPF Max Seq#, capture at R1’s f0/0 interface 

6.2.6. Disguised LSA 

6.2.6.1. Attack Description 

The Disguised LSA, first described by [14], is a route injection attack utilized to inject LSAs into a network by 

abusing LSA checksum collisions. This attack makes use of both the checksum calculation and the criteria OSPF 

utilizes to judge two LSAs as equal. 
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Two LSAs are considered equal by a router when they have the same sequence number, age, and checksum. 

The age field can differ up to 15 minutes and is still considered equal. This also means the contents of the LSA 

aren’t relevant when comparing two LSAs. 

The LSA checksum is utilized by OSPF routers to check for errors in received LSAs. When an LSA is received, 

the router calculates the checksum and in case it doesn’t match the value in the LSA header then the LSA is 

rejected and not installed by the router. Checksum calculation utilizes every field in the LSA except for the age 

field. 

The Disguised LSA attack injects an LSA by first triggering a fightback response from a router, and then sending 

an LSA, called the disguised LSA, that is considered equal to the future fightback LSA and will thus be installed 

before that fightback LSA is installed.  

The first obvious step is obtaining a copy of the LSA that we plan to manipulate to get the value for the 

sequence number. We then need to craft the necessary packets. Two packets need to be crafted: the trigger LSA 

and the disguised LSA. 

The trigger LSA is the LSA that will trigger the fightback response. This means having a higher sequence number 

than the current LSA sequence number and containing modified values in the LSA fields to trigger said fightback. 

The disguised LSA is more complicated. This LSA needs to be equal to the fightback LSA (using the OSPF criteria 

for equality) while containing injected data in the relevant LSA fields. This means that the sequence number and 

checksum need to be equal to the future fightback, and since the age field can differ up to 15 minutes it can just 

be set to 0. 

The difficult step is finding a collision in the checksum for it to be equal to the future fightback LSA’s checksum. 

In order to do this for a Router LSA an extra dummy link needs to be added to the LSA, containing bogus data 

that makes the checksum of the disguised LSA equal to the future LSA’s checksum.  

The authors note that not every router in the OSPF domain will be affected by this attack, as it is effectively a 

race condition: if the disguised LSA arrives at a router before the fightback LSA, then the disguised LSA will be 

installed. Otherwise, the fightback LSA is the one that is installed. 

6.2.6.2. Attack Code 

The Disguised LSA attack is defined in the “OSPF.py” file, under the “layer3” directory, by the 

“ospf_disguised_lsa” function. 

The function code starts with the code shown in Figure 126, where we have a call to the function responsible 

for sniffing and selecting the LSU which will be modified, followed by resetting the necessary fields from that 

packet and then creating three different packet objects. This is necessary so that modifications in one packet 

aren’t propagated to the others. Finally, the code prompts the user to select the LSA which will be modified.  

The next step is to create the future fightback LSA, shown in Figure 127. This packet allows the extraction of 

the future LSA checksum, which will be utilized when creating the disguised LSA. Immediately after, the code 

creates the trigger LSA by tampering with the metric of the LSA and incrementing the sequence number, shown 

in Figure 128. 
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Figure 126 – OSPF Disguised LSA function code, section 1 

 
Figure 127 – OSPF Disguised LSA function code, section 2 

 

 
Figure 128 – OSPF Disguised LSA function code, section 3 

The second to last step is to create the disguised LSA, shown in Figure 129. The code prompts the user to 

modify the values in the LSA, increments the sequence number by 2 units, and then sends to LSA to the 

“_ospf_bruteforce_checksum” function, which will return the modified LSA with the dummy link containing the 

values to match the LSA checksum with the fightback packet’s checksum. 

 
Figure 129 – OSPF Disguised LSA function code, section 4 

The final step, shown in Figure 130, is to add the missing IP and Ethernet layers to both the trigger and 

disguised LSAs and send them with a delay so they get accepted by the OSPF routers. 

 
Figure 130 – OSPF Disguised LSA function code, section 5 

We now look at the auxiliary functions utilized in the code presented above. The “ospf_sniff_sel_lsa” (Figure 

131) and “_ospf_sniff” (Figure 132) functions are responsible for sniffing an LSU from the local network and 

obtaining the selected LSA. 

 
Figure 131 – OSPF Disguised LSA function code, 

_ospf_sniff_sel_lsa function 

 

 
Figure 132 – OSPF Disguised LSA function code, _ospf_sniff function 
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The “_ospf_reset_lsu_chksum” function (Figure 133) resets the checksum and length fields for the LSA header, 

OSPF header, and, if applicable, the IP header. 

Finally, the “_ospf_bruteforce_checksum” function (Figure 134) is responsible for introducing the dummy link 

in the LSA and brute-forcing the checksum value utilizing the Link ID field. 

 
 
 
 

 
Figure 133 – OSPF Disguised LSA function code, 

_ospf_reset_lsu_checksum function 

 
Figure 134 – OSPF Disguised LSA function code, _ospf_bruteforce_checksum 

function 

6.2.6.3. Testing and Validation 

Figure 135 shows the topology utilized to test the Disguised LSA attack, and Table 10 shows the IP addresses 

for each interface. All routers are Cisco 7200 devices equipped with a CISCO-IO-FE slot if the router only has one 

interface, or a CISCO-IO-2FE slot if it has two interfaces. All routers are running OSPF and announcing their 

connected networks. OSPF router IDs are based on the router’s number (i.e., 1.1.1.1 for R1, 2.2.2.2 for R2, …). 

The objective of the test is to sniff and modify one of the link metrics in R6’s Router LSA and verify which 

routers had their OSPF databases affected by the disguised LSA. Thus, we chose a complex topology in order to 

verify which routers were affected by the attack and where they were located in relation to the attacker. The 

topology positions both the attacker and R6 at the same number of hops from R4, and by inspecting R4’s 

database after the attack we could conclude which LSA was installed. 

 

Figure 135 – OSPF Disguised LSA test topology 

 

Table 10 – OSPF Disguised LSA IP addressing information 

Name Interface IP Address 

R1 f0/0 10.10.11.1 

R2 
f0/0 10.10.11.2 

f0/1 10.10.10.2 

R3 
f0/0 10.10.12.3 

f0/1 10.10.10.3 

R4 
f0/0 10.10.13.4 

f0/1 10.10.10.4 

R5 f0/0 10.10.13.5 

R6 f0/0 10.10.12.6 

R7 f0/0 10.10.13.7 

network-
testing-
tool-1 

eth0 10.10.11.1 
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The first step to performing the attack is selecting interface “eth0”. We can then add the attack function by 

selecting “Add Function”, “Attack”, “L3 – OSPF”, “Route Poisoning”, and “Disguised LSA”. When launching the 

attack via the “Run Chain” menu, we are prompted for two extra values: “alt_router_id” is utilized to replace the 

LS ID in the originally sniffed LSU, which is necessary so that R2 accepts both our trigger and disguised LSAs, as 

the LSU needs to originate from an adjacent neighbor or else it is discarded, and the “timeout” parameter allows 

us to set a timeout for the sniff function when capturing an LSA. In this test, we utilized “1.1.1.1” for the 

“alt_router_id” and “30” for the timeout. 

Immediately after starting the attack, we also restart R6’s OSPF process utilizing the command “clear ip ospf 

process” for R6 to retransmit the relevant LSAs. This helps by skipping a potentially long wait period for the LSAs 

to be refreshed. After the sniffing is done, we are presented with some extra selections: first, from the sniffed 

LSUs, we have to select both the LSU which contains the LSA we want to modify and the most recent version of 

the LSA (highest sequence number). We then select the LSA within the LSU, and finally when prompted which 

field to modify we select metric. After setting the metric to 20, we wait for the attack to finalize. 

We configured two probes, one on the attacker’s “eth0” interface (Figure 136) and the other on R6’s “f0/0” 

interface (Figure 137). In the first figure, we can see the details of the disguised LSA sent by the attacker, which 

contains the inserted dummy link, while in the latter we can see the details of the fightback LSA sent by R6. We 

also noticed that, in this implementation of OSPF and due to the minimum retransmission timer of 2 seconds, R3 

didn’t install R6’s fightback LSA even though it arrived before the disguised LSA. This is further cemented by the 

fact that R3 flooded the disguised LSA to R6, which should only occur if R3 installs the disguised LSA. To further 

verify the attack’s success, we observed the OSPF database of R4, shown in Figure 138, where we can see the 

installed LSA corresponds to the disguised LSA. When inspecting the routing tables of other domain routers, we 

verified the presence of the disguised LSA in all of them except for R6 (which is the router that originated the 

LSA), and R1 (since it didn’t receive the LSA sent by the attacker as it was sent in unicast to R2).  

 
Figure 136 – OSPF Disguised LSA, capture at attacker’s eth0 interface 
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Figure 137 – OSPF Disguised LSA, capture at R6’s f0/0 interface showing 

the fightback LSA 

 

 
Figure 138 – OSPF Disguised LSA, OSPF database at R4 

7. Attacks to BGP 
7.1. Introduction 

The current implementation of BGP, BGP-4, was initially defined in RFC 4271 [18] in 2006. It functions as an 

inter-Autonomous System routing protocol, sharing routes with connected neighbors, called BGP peers, and 

building routing tables. Routing decisions are made based on paths and policies configured manually. It is no 

exaggeration to call BGP the heart of the internet, as it is the protocol behind the routing between different 

domains.  

BGP Peers communicate by establishing a TCP session and exchanging a set of messages on top of that session. 

A BGP exchange starts with an OPEN message, where parameters such as AS number and different timeouts are 

shared between peers. Then, peers usually send UPDATE messages containing their announced routes and any 

routes learned from other connected peers. Once this phase is over, peers send KEEPALIVE messages periodically 

to prevent the BGP session from timing out. 

Two distinct types of BGP connections exist: connections between two peers in the same AS, called iBGP 

connections, and connections between two peers in a different AS, called eBGP. The main difference is the way 

a BGP router treats the routes received from different peers: iBGP routes are only advertised to eBGP peers, 

while eBGP routes are announced to all peers.  

Attacks on BGP can cause widespread Internet outages due to traffic blackholing or lead to MitM scenarios 

where traffic is redirected to a specific AS instead of taking a more direct route. While there exist several ways 

to secure BGP, such as cryptographic authentication of BGP peers, large-scale implementation is difficult due to 

the high number of entities involved. 

7.2. Attacks and Testing 

This section contains all implemented BGP attacks, as well as the test made to validate them. Test 

environment information is available in Appendix A, and details on the key-value pairs that can be utilized for 

the YAML configuration files are available in Appendix C. 
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7.2.1. BGP Route Injection 

7.2.1.1. Attack Description 

BGP Route Injection, or BGP Hijacking, is a common form of route injection or prefix hijacking that occurs 

when a rogue BGP router manages to inject malicious BGP paths into the routing tables of a legitimate BGP 

router. There are many forms of prefix hijack, depending on what prefix is stolen or if there is a traffic redirection 

due to a shorter path being announced by modifying the “AS_PATH” attribute. Hijacking BGP routes lead to 

connectivity loss for entire ASs, or potential MitM attacks if there is traffic redirection included.  

BGP peer connections are not secure by default: all the steps from initializing the TCP connection to sending 

and receiving routes are done without any authentication. This means an attacker can configure itself as a BGP 

peer and start sending, modifying, and withdrawing routes. 

While in a real-world scenario several steps need to be taken to successfully configure a rogue host as a BGP 

peer, such as canceling an existing TCP session between two peers or spoofing the IP address to match that of 

an existing BGP router, this attack skips over such preparation tasks and focuses only on performing the BGP-

related configuration: setup a TCP session with the peer, send the relevant BGP packets to configure the BGP 

connection and send routing data while periodically sending KEEPALIVE messages to avoid the connection getting 

reset. 

The BGP route injection, like the RIP and OSPF variants, utilizes an external configuration file to import a list 

of routes to both announce and withdraw, as well as all the BGP path attributes related to those routes. The 

YAML file structure for this attack is explained in detail at the end of this section. 

7.2.1.2. Attack Code 

The BGP route injection attack is defined in the “BGP.py” file, under the “layer3” directory, by the 

“bgp_route_injection” function.  

Figure 139 through Figure 142 show the function code for the attack. The BGP route injection is different from 

other attacks since this one doesn’t need the attacker to specify which interface to launch the attack from. 

To exchange BGP packets with a peer, we first need to establish a TCP session. The way of doing this with 

Scapy is to first create an IP socket, establish the TCP session with the destination (the socket code takes care of 

all TCP-related setup and operation, including the 3-way handshake, sequence number increment, and sending 

acknowledgment packets), and then utilize the Scapy “StreamSocket” function to turn the created socket into a 

socket that can be directly utilized with the Scapy send functions. The “StreamSocket” object offers a class to 

abstract all the low-level functions and necessary variables to utilize Scapy functions with the Python socket 

objects. This effectively means the code is giving up control over the IP and TCP layers of the packets, instead 

leaving the task of creating and operating those layers to the OS network stack. The code for this process is shown 

in Figure 139. 
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Figure 139 – BGP Route Injection function code, socket creation 

 
Figure 140 – BGP Route Injection function code, BGP OPEN 

The function then utilizes the created “StreamSocket” to send and receive the necessary BGP packets. The 

first packet we send is an OPEN message, containing our ASN and BGP router ID, followed by a KEEPALIVE packet, 

shown in Figure 140.

 
Figure 141 – BGP Route Injection function code, BGP UPDATEs 

 
 
 

 
Figure 142 – BGP Route Injection function 

code, idle after injection 

We then proceed to send BGP UPDATE packets, each of them containing a different set of routes with their 

associated path attributes, shown in Figure 141. Both route information and path attributes are parsed from the 

imported YAML configuration by the “_BGP_parse_nlri” and “_BGP_parse_path_attr” functions. After sending 

the final UPDATE packet, the function enters a loop, shown in Figure 142, sending a KEEPALIVE packet every 60 

seconds to ensure the BGP connection persists. 

The function utilizes a YAML file to import the contents of the BGP UPDATE messages. Figure 143 shows an 

example of such a file. The file contains configuration variables such as the attacker’s ASN, the attacker’s BGP 

router ID, the BGP peer IP address, and the destination port for the TCP connection.  

Routing information is defined under the “update-list” variable: each list entry contains three obligatory 

keywords, one for withdrawn routes, one for path attributes, and one for announced routes (“nlri”). Figure 143 
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contains two entries, each of them for a different UPDATE message. In case a parameter is empty, like the 

withdrawn routes field in the second entry, an empty list (“[]”) is instead utilized to convey the absence of routes.  

 
Figure 143 – BGP YAML file example 

All parameters are parsed to Scapy packets by the “_BGP_parse_path_attr” (Figure 144) and the 

“_BGP_parse_nlri” (Figure 145) functions. Both functions take the parameters from the imported dictionary 

format and create the corresponding BGP packet types. 

Due to a relatively considerable number of existing path attributes, the “_BGP_parse_path_attr” function only 

covers a small number of path attributes utilized in most scenarios, those being the ORIGIN, AS_PATH, 

NEXT_HOP, and MED attributes. These attributes cover most use cases for both eBGP and iBGP. Furthermore, 

the function itself can be expanded to parse extra attributes utilized in various BGP extensions. 

Both functions return a list of the created BGP packets that can be directly introduced in the BGP UPDATE 

message. 

 
Figure 144 – BGP Route Injection function code, “_BGP_parse_path_attr” 

 
Figure 145 – BGP Route Injection function code, “_BGP_parse_nlri” 
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7.2.1.3. Testing and Validation 

Figure 146 shows the topology utilized to test the attack. R1 is a Cisco 7200 router running BGP on AS 11, with 

IP address 10.10.0.1/24 on the f0/0 interface, and IP address 1.1.1.1/32 in the Lo0 interface. R1 is configured to 

accept BGP connections from a peer with the IP address 10.10.0.2/24 and AS number 12. The attacker’s machine 

is configured with the IP address 10.10.0.2/24 to fake itself as a legitimate BGP peer. 

The test objective is to inject routing information into R1. The injected routes should include a route to subnet 

2.2.2.0/24, supposedly announced by AS 12, and pair of routes to subnets 10.10.10.0/24 and 11.11.11.0/24, 

which are supposedly connected to AS 13 via AS 12, and whose next hop from R1 should be the attacker’s 

machine. The YAML file utilized is the file “bgp_route_injection.yml”, which can be found in the “bgp” directory 

under “conf-examples” and is also shown in Figure 147. 

 
 

 
Figure 146 – BGP Route Injection test topology 

  
Figure 147 – BGP Route Inject test, UPDATE message parameters 

To perform the attack, we first need to import the routing configurations from the YAML file. To do so, we 

select “Import Data”, “BGP Confs”, and “bgp_route_injection.yml”. This will import the data from the 

configuration file to later be used in the attack.  

The next step is to select the attack. To do so, we first select “Add Function”, “Attack”, “L3 – BGP”, “Route 

Poisoning”, and “BGP Route Injection”. We then select “Run Chain” to start the attack.  

A capture probe was attached to R1’s interface to see which packets are exchanged. Figure 148 shows the 

overall message exchange from the first TCP SYN sent by the attacker and the packet structure of the first UPDATE 

message, while Figure 149 shows the structure of the second UPDATE message sent by the attacker. To further 

conclude the attack is successful, we can inspect the routing table of R1, shown in Figure 150, where we can 

observe the injected routes. 
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Figure 148 – BGP Route Injection, capture at R1’s f0/0 interface 

 
Figure 149 – BGP Route Injection, second UPDATE message sent 

by the attacker 

 
Figure 150 – BGP Route Injection, R1’s routing table after the attack 

 

 

8. Attacks on other protocols 
8.1. ICMP 

ICMP is a protocol, part of the IP suite, which is used by IP devices to transmit operational information 

between themselves. Defined in RFC 792 [19], ICMP is the protocol behind the ping and traceroute commands, 

as well as informing a host that a certain destination is unreachable.  

Although considered part of the internet layer in the TCP/IP model, ICMP messages are always sent within an 

IP packet. ICMP headers have three fixed elements: the ICMP type, code, and checksum. The remainder of the 

header is dependent on the type and code. Common ICMP messages include Echo Requests (type 8, code 0) and 

Echo Replies (type 0, code 0) utilized by ping and traceroute commands, and Destination Unreachable (type 3, 

variable code). ICMP attacks covered by our tool include ICMP Flood and ICMP Redirection. 
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8.1.1. ICMP Flood 

8.1.1.1. Attack Description 

ICMP is a DoS attack whose objective is to flood a target with ICMP Echo Request packets. 

ICMP Echo Request and Reply messages are utilized by ping and traceroute commands to test network routing 

and host reachability, and as such the vast majority of hosts will answer Echo Request messages.  

An ICMP Flood attack consists of an attacker flooding a target with ICMP Echo Request messages. Since the 

host needs to answer these messages with Echo Replies, if too many Requests are sent in a short time interval 

the destination host will end up overloaded and unable to answer them all. 

8.1.1.2. Attack Code 

The ICMP Flood is defined in the ‘icmp.py’ file, under the ‘layer4’ directory, by the ‘icmp_flood’ function. 

Figure 151 shows the function code for the ‘icmp_flood’ function, where we can see the added layers by the 

function before the packets get sent. 

 
Figure 151 – ICMP Flood function code 

Individual testing was not done on the ICMP flood attack as it is a simple DoS attack. There were, however, 

several tests where a variant of this function, the “Ping Test”, was utilized (tests on VLAN double tagging and 

PVLAN proxy). Due to both of them having the same implementation, with the only difference being in the 

number of packets sent, we consider the test results of the “Ping Test” function to validate the correct 

functioning of the ICMP flood attack code. 

8.1.2. ICMP Redirection 

8.1.2.1. Attack Description 

ICMP Redirection is a MitM attack, similar in principle to ARP Spoofing, which works on a local network. 

ICMP Redirect packets are traditionally utilized by routers to notify hosts of existing alternate routes and 

update their routing information. They are usually sent when a more direct route to a destination exists than the 

one currently being used. 

An ICMP Redirection attack utilizes ICMP Redirect messages to redirect traffic in the local network from the 

default gateway to the attacker’s machine. To launch this attack, the attacker needs to send an ICMP packet with 

the following characteristics: IP Source is the default gateway IP address; IP Destination is the victim’s IP address; 

ICMP Type 5; ICMP Code 1; the gateway address is the IP address of the attacker; inner IP Header with the victim’s 
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source IP address; inner IP Header with the target’s destination IP address. An example of this packet’s structure 

is shown in the test section below. 

Before sending the packet, the attacker needs to enable IP forwarding on its machine, disable ICMP redirects, 

and configure a NAT rule to switch the source and destination IP addresses on packets sent to the attacker from 

the victim.  

8.1.2.2. Attack Code 

The ICMP Redirection is defined in the ‘icmp.py’ file, under the ‘layer4’ directory, by the ‘icmp_redirect’ 

function. 

Figure 152 shows the function code for the ICMP Redirection attack, where we see the ICMP packet creation, 

enabling of IP forward, disabling sending ICMP redirects, and adding an iptables rule to the NAT table.  

 
Figure 152 – ICMP Redirection function code, section 1 

Figure 153 shows the second part of the code, where we configure the functions responsible for saving the 

data captured during the MitM attack (Scapy’s “AsyncSniffer” and “pcap_dump” from “aux_funcs.py”) and also 

undo the setup done when the attack is stopped by the user. 

 
Figure 153 – ICMP Redirection function code, section 2 

8.1.2.3. Testing and Validation 

Figure 154 shows the topology utilized to test the ICMP Redirection attack. Table 11 contains the addressing 

information (both MAC and IP) for the devices utilized. 

PC1 is a VPCS host, while R2 and R3 are Cisco 3725 routers. R3 is configured as a host by both disabling IP 

routing (“no ip routing” command) and configuring a default route (“ip route 0.0.0.0 0.0.0.0 192.168.1.1” 
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command). The objective is to set up a MitM attack between the victim R3 and the target PC1, with R2 as the 

default gateway. 

 
Figure 154 – ICMP Redirection test topology 

 
Table 11 – ICMP Redirection addressing information 

Device Interface IP Address MAC Address 

R2 
f0/0 192.168.1.1 c2:01:05:10:00:00 

f0/1 192.168.10.1 - 

R3 f0/0 192.168.1.103 c2:02:06:35.00:00 

PC1 e0 192.168.10.101 - 

network-testing-tool-1 eth0 192.168.1.102 d2:ca:e9:47:3a:ee 

 
To run the attack, we select the interface ‘eth0’ in the tool, and then we select “Add Function”, “Attack”, 

“L4”, “Man-in-the-Middle”, and finally “ICMP Redirection”. We now select “Run Chain”, and we input 

“192.168.1.103” as the “victim_IP”, “192.168.1.1” as the “gateway_IP”, “192.168.10.101” as the “target_IP”, and 

“192.168.1.0/24” as the “network”. 

We can connect a probe to the attacker’s ‘eth0’ interface to see what packets are being sent and received. 

Figure 155 shows the packet capture of the attack running and a ping command from R3 to PC1, while Figure 

156 thru Figure 160 shows the dissected packets for the attack and the ping command. 

 
Figure 155 – ICMP Redirection packet capture at attacker’s eth0 interface 

 
Figure 156 – ICMP Redirection capture packet 9 

Figure 156 shows the ICMP Redirect generated by the attacker, with the relevant fields set: the outer IP 

header has the source IP address of the gateway and the destination IP address of the victim, the ICMP header 

has ICMP type 5, code 1, and gateway is set as the attacker’s IP address, while the inner IP header has the source 

IP address of the victim and the destination IP address of the target. 



89 

 

Figure 157 shows the ICMP echo request sent by the victim. While the IP header contains the destination IP 

of the target, by inspecting the Ethernet header we can see the source MAC address of the victim and the 

destination MAC address is that of the attacker.  

Figure 158 shows that the ICMP echo request is forwarded by the attacker to the gateway. By inspecting the 

IP header, we see the packet’s source IP address is that of the attacker, and by looking at the Ethernet header 

we can verify the destination is the gateway by checking the destination MAC field. We can also assume the NAT 

is working since the source address in the IP header is no longer that of R3.

 
Figure 157 – ICMP Redirection capture packet 14 

 
Figure 158 – ICMP Redirection capture packet 17 

Figure 159 shows the ICMP echo reply sent by PC1. By looking at the IP header we can check the reply is sent 

to the attacker, which is expected since the request arrived at PC1 with the source IP address of the attacker. 

Finally, Figure 160 shows the ICMP reply being sent from the attacker to R3. We can assert the NAT is fully 

functional by noticing how the attacker switched the destination address on the IP header from its IP address to 

that of R3. 

 
Figure 159 – ICMP Redirection packet capture 18 

 
Figure 160 – ICMP Redirection packet capture 19 

8.2. DNS 

DNS is a domain name resolution protocol utilized to map user-friendly domain names to IP addresses for 

machines on the internet. It runs over the UDP protocol on port 53 and is therefore part of the application layer 

in the TCP/IP suite. 

DNS servers store information in DNS records. While originally planned for IP address translation, DNS has 

evolved to contain a variety of record types for different information: “A” and “AAAA” records for IPv4 and IPv6 

addresses respectively, “MX” records for email servers and “TXT” records for human-readable text are some 

examples of the different types of DNS records. 

DNS queries are resolved recursively, which means that to fully resolve a domain name the client needs to 

query different domain name servers. To avoid implementing recursive resolution in all machines queries are 

sent to resolvers, which manage the entire process. The first name server contacted by the resolver is the DNS 

root domain, the “.” domain. This domain points to the second level of domains, called TLDs. TLDs are then 
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queried and will answer with a pointer to the second-level domain. This process repeats itself until the record 

for the requested host is reached, at which point the resolver will answer back to the client with the DNS record 

for the requested host. 

In order to speed up the entire process and minimize traffic, resolvers implement DNS caches which allow 

them to immediately answer a query with a stored record, provided it’s been requested in the recent past. 

Recently an effort has been made to secure DNS queries, with DNSSEC and DNS-over-TLS becoming options 

to authenticate and encrypt queries, respectively. However, plain DNS queries are still utilized mostly for 

backward compatibility with older machines. Attacks on DNS are mostly done through DNS Spoofing. 

8.2.1. DNS Spoofing 

8.2.1.1. Attack Description 

DNS Spoofing is a MitM attack where an attacker spoofs a DNS server in order to send fake records to a victim 

and redirect victims to other hosts.  

In order to perform this attack, the attacker needs to redirect DNS queries to itself, either through ARP 

Spoofing, DHCP Spoofing, or IP Spoofing. Once done, the attacker needs to set up a DNS server to answer DNS 

queries utilizing a list of fake bindings. 

8.2.1.2. Attack Code 

The DNS Spoofing attack is defined in the “dns.py” file, under the “layer4” directory, by the “dns_spoof” 

function. 

Figure 161 shows the main code for the attack. The first step is to set the value for the “host_map” dictionary, 

which is utilized later, and create an “iptables” rule to disable sending ICMP destination-unreachable packets. 

This ensures the attacker doesn’t accidentally stop the victim’s DNS client when receiving DNS queries, as the 

attacker’s port 53 (utilized for DNS) isn’t open. The next step is to configure a Scapy “AsyncSniffer” which will 

sniff packets from the connected interface, filter for DNS packets on port 53, and execute a handler function 

utilizing those packets. The code then idles until the exit condition is met, at which point the sniffer is stopped 

and the rule is removed from “iptables”. 

 
Figure 161 – DNS Spoofing function code 

Figure 162 shows the code for the handler function called when a DNS query is sniffed. This function obtains 

the queried hostname from the sniffed packet and performs a lookup in the “host_map” dictionary, which 

contains all attacker-defined bindings. If either the requested hostname or a wildcard value is defined, the 

function builds a DNS reply utilizing the addressing information present in the sniffed packet. 
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Figure 162 – DNS Spoofing, packet_handler function code 

8.2.1.3. Testing and Validation 

Figure 163 shows the topology utilized to test the attack. The attacker’s machine has the IP address 

192.168.0.2/24, while PC1 has the IP address 192.168.0.128/24 and points to the attacker’s machine for DNS 

resolution since the attack doesn’t take care of redirecting queries from the legitimate server and the purpose 

of the test is verifying that the attacker is answering queries as intended. This attack utilizes imported information 

from a YAML file. For this test, we utilize the “match-file.yml” file, located under the “dns” folder in the “conf-

examples” directory. The contents of this file can be seen in Figure 164. 

 
Figure 163 – DNS Spoofing test topology 

 
 
 
 

 
Figure 164 – DNS Spoofing YAML config file 

To perform this attack, we select interface “eth0” and import the DNS bindings by selecting “Import Data”, 

“DNS Confs”, and “match-file.yml”. Next, we add the attack function by selecting “Add Function”, “L4”, “Man-in-

the-Middle”, and “DNS Spoofing”. Finally, we launch the attack by selecting “Run Chain”. 

We can perform a ping from PC1 to “hostname.com” in order to see if the DNS resolution process works. 

Figure 165 shows the packets corresponding to the process, where we can also see the details of the response 

sent by the attacker. We can thus mark the attack as successful since the rogue DNS server is functional. 

 

Figure 165 – DNS Spoofing capture at attacker’s eth0 interface  
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9. Conclusion and further work 
In this report, we describe our tool for testing attacks on the network infrastructure. This tool includes a wide 

range of already implemented attacks for different protocols across many layers of the TCP/IP model, while also 

supplying a developer with an interface to add more attacks and protocols. We have effectively created a 

framework for a penetration testing tool that is easy to expand, providing a way to chain many different attacks 

on different protocols to test the most robust and complex network topologies. The program is also easily 

deployable in any environment due to its Docker image, which permits professionals and students alike to spend 

less time installing and more time testing and learning. The tool includes all the attacks described in the previous 

sections, as well as the configuration files utilized to test the attacks in their corresponding test topologies. 

Further work includes the expansion of the attack list. While we tried to include as many attacks on as many 

protocols as possible, new attacks are always being published and thus can also be added to the collection. The 

protocol list can also be expanded to include other network protocols, such as IS-IS for intra-domain routing, 

GRE, IPSEC, and VPNs for tunneling protocols, or even other protocols such as PPP and IGMP, to name a few. 

This also includes the modification of existing attacks. Attacks on protocols that implement security measures 

like authentication and encryption can be modified to include support for such measures. An example of this is 

the attacks on OSPF, which can be modified to include an authentication header in the crafted packets. 

Some attacks have limitations related to the way they are implemented. Attacks like DHCP spoofing, DNS 

spoofing, and some OSPF route injection attacks like the Disguised LSA attack can be modified to provide more 

customization by adding extra options to the created in the attack code. 

One more interesting option for further work would be the inclusion of IPv6-compatible attacks. Some attacks 

described in this report already work for IPv6 if modified, and thus exploring these options would be valuable. 

This would also include the addition of IPv6-exclusive protocols like NDP, for example. 

Finally, the inclusion of “Middleware” functions that provide firewall and IDS evasion would also be beneficial 

for network testing, as they allow an administrator to better understand the flaws of the current configurations. 
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Appendix A. Testing Environment 

To test the developed tool, we use the network simulation program GNS3 [20] in conjunction with software 

images of Cisco IOS 3725 and 7200 Routers, and the Cisco IOSv-L2 multilayer switch. Additionally, the packet 

capture tool Wireshark was used to observe network traffic and confirm the attack’s effectiveness. Both Cisco 

IOS 3725 and 7200 are run on Dynamips, while the IOSv-L2 switch runs on QEMU. Table 12 lists the software 

images used for the Cisco devices during testing. 

Table 12 – Cisco Software Images 

Appliance Name Software Image Name 

Cisco IOS 3725 c3725-adventerprisek9-mz.124-15.T14.image 

Cisco IOS 7200 c7200-adventerprisek9-mz.124-24.T5.image 

Cisco IOSv-L2 vios_l2-adventerprisek9-m.03.2017.qcow2 
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Appendix B. OSPF YAML File Options 

This appendix contains a compilated list of all OSPF options that can be passed to the tool via YAML files. This 

appendix is separated into two different sections: the first is for top-level key-value pairs, and the second is for 

LSA-related key-value pairs. 

Top-level Key-value Pairs 

Top-level Key-value pairs give the ability to pass general OSPF parameters which are used in the LSU header, 

i.e., the router ID and area ID, for example. 

Table 13 – OSPF Main YAML keys 

Key Description Value type Example Value 

router_id OSPF Router ID string 1.1.1.1 

area_id OSPF Area ID string 0.0.0.0 

interface_addr IP address for the IP header (when applicable) and 
OSPF headers 

sting 10.10.10.1 

interface_netmask Network mask for OSPF Headers (i.e., Hello packets,)  string 255.255.255.0 

 

LSA Key-value Pairs 

Key-value pairs in this section are utilized to detail all types of LSAs.  

Table 14 – OSPF LSA YAML keys 

Key  Description Value type Example Value 

type LSA type string router_lsa, network_lsa, 
summary_lsa, external_lsa, nssa_lsa 

ls_id LSA LS ID field (meaning changes 
depending on type) 

string 1.1.1.1 

v1 V bit  int 0 or 1 

e1,4 E bit / Ext route type int 0 or 1 

b1 B bit int 0 or 1 

links1 LSA Link list list N/A 

adv_router2 Advertising router ID string 1.1.1.1 

attached_router2 List of attached router’s IDs list - 1.1.1.1 
- 2.2.2.2 

lsa_type3 LSA type numeric field int 3 or 4 

mask3 Subnet Mask string 255.255.255.0 

metric3,4 Metric value int 10 

fwd_addr4 Forward address string 1.1.1.1 

ext_rt_tag4 External route tag int 0 
1 For Router LSAs   2 For Network LSAs   3 For Summary LSAs   4 For External and NSSA LSAs 

 

For describing OSPF Links in Router LSAs we use the key-value pairs presented below. 

Table 15 – OSPF Router LSA Link keys 

Key Description Value type Example value 

link_id Link ID field string 10.10.10.1 

link_data Link Data filed string 255.255.255.0 

type Link type int 3 

metric Link metric int 10 
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Appendix C. RIP and BGP YAML File Options 

This appendix contains a compilated list of all options that can be passed to the tool via YAML files for RIP and 

BGP attacks. This appendix is separated into two different sections: the first for RIP and the second for BGP. 

RIP Key-value Pairs 

Configuration files for RIP files only contain a list of routes under the “routes” key. Key-value pairs for each list 

entry are presented below. 

Key Description Value type Example value 

AF Address Family 
Identifier (2 for IP) 

int 2 

routeTag1 Route Tag int 0 

addr IP Address string 10.10.10.0 

mask1 Subnet Mask string 255.255.255.0 

nextHop1 Next hop string 0.0.0.0 

metric Metric int 1 
1  Must be zero for RIPv1 

BGP Key-value Pairs 

Configuration files for BGP contain both high-level keys and keys utilized for describing routing information. 

The table below shows the high-level keys for BGP. 

Key Description Value type Example value 

asn ASN int 12 

bgp_id BGP router ID (self) string 10.10.10.2 

target_ip BGP peer IP address string 10.10.10.1 

dest_port BGP destination port int 179 

update-list 
BGP routes and 
attributes 

list N/A 

 
Routing information appears as entries in the “update-list”. All entries must contain the three keys 

“withdrawn_routes”, “path_attributes”, and “nlri” in order to be considered valid, and each entry corresponds 

to a distinct BGP UPDATE message. The table below presents the options that appear under the three mandatory 

keys for each entry. Currently, only attribute types 1 to 4 are implemented. 

Key Description Value type Example value 

prefix1 IP network prefix string 3.3.3.0/24 

flags2 Flag field int 0x40 

type2 Path attribute type* int 1 

attribute2,3 Attribute field int 0 

seg_type2,4 Segment type field int 2 

seg_len2,4 Segment len field int 2 

seg_val2,4 Segment value field list - 12 
- 13 

next_hop2,5 Next hop field string 10.10.10.2 

med2,6 MED field int 0 
1 for withdrawn_routes and nrli only;  2 for path_attributes only;  3 for type 1 attribute;  4 for type 2 attribute; 
5 for type 3 attribute;  6 for type 4 attribute 
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Appendix D. Main program auxiliary functions 

This Appendix contains the function code for auxiliary functions utilized in the main program, as well as a short 

description. 

parseArgs() 

The “parseArgs()” function, shown below in Figure 166, serves the purpose of parsing any command line 

arguments supplied by the user. It does so by using the “argparse” library, which adds an argument parser that 

can be customized to include any desired arguments, while also parsing all arguments and storing them in a 

variable. The latter section of the function also acts according to the parsed values, either storing the values in 

variables or running a specific function.  

 
Figure 166 – parseArgs() function 

setupVars() 

The “setupVars()” function serves the purpose of configuring logging to a log file and importing a dynamic list 

of modules. 

The first step is configuring the log file. The first section of the function, shown in Figure 167, contains the 

code necessary for this, setting the file name, configuring the logger to add text to the file by appending it 

(“filemode” argument), and setting the log level to debug. 

 
Figure 167 – setupVars() function, first section 

The logical second step is to list and import the attack modules. This second section is shown in Figure 168, 

where we have an initial attack module listing utilizing a regular expression to obtain every ‘.py’ file in the 

‘module_path’ directory, followed by importing each listed module. 
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Figure 168 – setupVars() function, second section 

Each module name is first stripped of its ‘.py’ suffix, followed by the replacing of ‘/’ and ‘\’ characters in the 

path name with the ‘.’ character, used in the python module name. Then the necessary steps for importing each 

module are conducted in succession. 

The last step is listing every imported function, removing every function imported by the imported modules 

themselves (i.e., scapy functions utilized in each module), any global variable, and any auxiliary function 

(symbolized by the initial ‘_’ character), so that at the end we are left only with top-level functions that are used 

to execute attacks. 

 
Figure 169 – setupVars() function, third section 
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Appendix E. Auxiliary Functions and Data Structures 

This section contains auxiliary functions and data structures defined outside the ‘main.py’ file which aren’t 

directly called by the functions defined within the main program. The functions and data structures defined 

within this appendix are utilized in the attack functions to allow integration with the main program or perform 

repetitive tasks common across a different number of protocols. 

EXIT_SIGNAL 

The “EXIT_SIGNAL” global variable is an “Event” object defined in the “aux_funcs.py” file. Events are thread-

safe flags utilized by the threading module to share a state between different threads. In this case, our menu 

display runs in a thread, meaning any function executed by the menu will also run in the same thread.  

Python threads don’t catch exceptions like KeyboardInterrupts (Ctrl+C in the keyboard) in threads other than 

the main thread, which means that if we want other threads to perform cleanup and gracefully exit the program 

on a KeyboardInterrupt, we need to catch the exception in the main thread and then set this flag, which also 

needs to be periodically verified in worker threads for them to know when to stop and return.  

type_wrapper() 

The “type_wrapper()” function, shown in Figure 170, is a python decorator function used to wrap every attack 

function. This function allows additional variables to be added to the wrapped function. Added variables include 

the function’s type, category, and layer, which are used when filtering the function list, as well as a human-

readable function name and a list of input arguments necessary for the wrapped function to run. 

This function is defined in the ‘aux_funcs.py’ file. It is used in every implemented attack function, as it provides 

the necessary information for the main program to run and execute the attacks. 

 
Figure 170 – type_wrapper() function 

Attack type, category, and layer enums 

Related to the “type_wrapper()” function are the Enum data structures for the type, category, and layer 

variables, shown in Figure 171. These enums present a limited list of values these variables can take, as well as 

the human-readable string form they should have when displayed to the user. In order to add additional types, 

categories, or layers, a programmer simply needs to modify these data structures to include the new values. 

These classes are defined in the ‘aux_funcs.py’ file. 
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Figure 171 – Attack type, category, and layer enums 

Send and receive functions 

Several wrapper functions for the standard scapy send function are also defined in ‘aux_funcs.py’. They serve 

the main purpose of fixing fields not included in the packets just before they are sent out, like a missing IP 

source address, and also serve as a wrapper for blocking IO functions, i.e., send functions that are called to 

send packets in an infinite loop. 

A prime example is the layer 3 send functions, ‘send_l3_single’ and ‘send_l3_loop’. These functions are 

executed with a packet that contains no layer 2 headers, such as Ethernet, Dot3, 802.1q, and others. When 

passed to the layer 3 scapy send functions, the relevant layer 2 headers are later injected by the operating 

system. This works well for most cases, except for multicast IP addresses.  

When testing attacks on protocols that utilize IP multicast addresses, we discovered that, if presented with 

such an address in the IP destination field, the operating system fails to insert the appropriate multicast MAC 

address in the layer 2 destination address. This leads to multicast packets not being delivered and is particularly 

harmful to attacks on routing protocols such as RIP and OSPF, which mostly use multicast addresses for sending 

packets.  

The way to solve this is by manually obtaining the MAC address for the presented multicast IP address. 

Conversion of a multicast IP address to the corresponding MAC address is well documented, and after some 

manipulation, we can obtain the multicast MAC address. Figure 172 shows the code for such conversion in the 

‘send_l3_single’ function: the IP address first gets split into octets, and after applying a bit mask to the second 

octet we can obtain the multicast MAC address by concatenating the hexadecimal form of the octets with the 

’01:00:5e:’ prefix. 

All of the send functions utilize a mix of the scapy “send()” and “sendp()” functions for sending packets on 

layers 2 and 3 respectively. In the case where a packet needs to be sniffed from the network, the “sniff()” 
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function was utilized with the appropriate protocol filter. Any other function that was utilized in a specific attack 

will be analyzed on a case-by-case basis. 

 
Figure 172 – Multicast IP to MAC address conversion in send_l3_single() function 

For looping functions, instead of calling the traditional scapy function with the argument “loop” set to 1, we 

instead wrap the send function in a while loop, checking for the “EXIT_SIGNAL” event in each iteration. This 

allows the main program to interrupt the send functions and perform any cleanup needed by the attacks. Figure 

173 shows that send function is inside a while loop, where in each cycle the “EXIT_SIGNAL” state is checked. If 

not set, the packet is sent before waiting for the interval, else the function returns. This example is from the 

“send_l3_loop” function, but a similar structure is utilized in the other functions. 

 
Figure 173 – Exit Signal flag verification 

pcap_dump() 

The “pcap_dump()” function is called by any function that needs to write a packet list to a .pcap file. This 

function is mainly utilized by MitM attacks, where sniffed packets are recorded by a Scapy sniffer and then need 

to be dumped in a file. 

Figure 174 shows the function code. The function utilizes a “PcapWriter” object to create and open a file with 

the specified name. The packets are then written with the “write” function and finally, the file is closed. 

Capture files created this way are stored in the “/captures” directory of the docker container, which can then 

be accessed via the GNS3 VM under “/opt/gns3/projects/{project-id}/docker/{container-id}”. The full path can 

be consulted by, on the GNS3 topology, right-clicking the container node and selecting “Show in file manager”.  

The file name is based on a base name, represented by the argument “bname”, followed by the date and time 

in a “Day-Month-Year-HourMinuteSecond” format. 
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Figure 174 – pcap_dump function  
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Appendix F. OSPF Auxiliary Function Code 

While not as necessary for other protocols, auxiliary functions play a big part in OSPF attacks. All these 

functions are defined in the “OSPF.py” file, and they perform several tasks which are common to many of the 

attacks. This section provides an overview of the code for those functions. 

_ospf_parse_lsu() 

Responsible for transforming the imported information from Python data structures to Scapy packet objects, 

the “_ospf_parse_lsu” function is utilized by every OSPF attack that utilizes imported routes. Figure 175 shows 

the code for the function. 

 
Figure 175 – _ospf_parse_lsu function code 

The function code consists of a loop that parses and appends individual LSAs to a list. The information utilized 

to create the LSU comes from YAML files, which were imported beforehand and are stored in the “args” 

dictionary in the “lsu_info” key. LSAs are parsed individually by the “_parse_lsa” function. After every LSA is 

parsed, the list is utilized to create the LSU packet which is then returned to the caller function.  

_parse_lsa 

The “_parse_lsa” function is responsible for parsing individual LSAs from the Python format to Scapy LSA 

objects. The function is mainly called by the “_ospf_parse_lsu” function but can also be called independently 

from any other OSPF function that only needs a single LSA to be converted. 

Figure 176 and Figure 177 show the code for the function. The caller function will invoke this function and 

supply the LSA information in the imported YAML format. The function then parses the LSAs independently of 

their type, from type 1 to type 7, which are then returned to the caller function.  



104 

 

 
Figure 176 – _parse_lsa function code, section 1 

 
Figure 177 – _parse_lsa function code, section 2 

 


