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Abstract

Software Defined Networking (SDN) is an exciting technology that changed the way operators config-

ure and manage networks bringing much more space for innovation through network programmability.

This technology separates the Control Plane - where all rules are defined to decide how to handle the

traffic - from the Data Plane - where the packets are handled according to the Control Plane’s rules - to

have a centralized Control Plane (possibly in a cluster of servers or a single one) managing a group of

switches (Data Plane). To have this separation working correctly, we need a protocol that enables the

communication between the control and Data Planes. In 2008, the OpenFlow protocol materialized the

SDN paradigm, allowing the developers to bring many new tools to varied networking areas. However,

network processors fabricated at that time still had a downside. They were fixed-function. Thus, Data

Plane protocols had to be defined at fabrication time. In 2013, the first programmable chip was proto-

typed, enabling operators to change the Data Plane without modifying the hardware. These new chips

motivated the development of the P4 language to program the Data Plane. These tools made it possible

to implement new protocols in the Data Plane, running on programmable hardware, instead of waiting

for the long development cycles of chip manufacturing. These extraordinary advances have created an

opportunity to innovate in various areas in networking, namely in routing protocol design.

This space for innovation has brought the motivation to create new protocols and improve the existing

ones. For example, Hula [1], and Contra [2] are two protocols developed using this new programmable

hardware that came to improve some downsides of existing protocols. Similarly, we are proposing a new

improved version of the DSDV protocol [3].

DSDV [3] is a distributed distance vector protocol that came to address the looping issues of the

RIP [4] protocol. Essentially, in DSDV, each node maintains its routing table, which includes, for all

reachable destinations, their length, next hop, and sequence number. Each node updates its routing

table by receiving advertisements from its neighbours. Unfortunately, the DSDV update procedure leads

to route fluctuation due to its criteria on electing attributes. This means that, in some situations, a node

may change routes back and forth between different neighbours, even though there were no changes in

the topology.

In this thesis we propose an extension to this protocol which we call “promise”. Its main novelty is

that each node will not only elect its preferred routes, but will also keep other fallback routes (“promise”
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routes). A promise is a more recent route than the elected one, but with a worse metric (e.g., longer

path length). The promise can thus be thought as a backup route which will be elected when there are

changes in the topology.
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SDN; P4; Routing; Distance Vector; Promise
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Resumo

Software Defined Networking (SDN) é um novo conceito que veio facilitar o modo como gerimos e

configuramos as redes de computadores. A ideia principal reside na separação do Plano de Controlo

- onde são definidas as regras que ditam como deve ser tratado cada pacote - do Plano de Dados -

onde são tratados todos os pacotes consoante as regras definidas no Plano de Controlo - de modo a

que tenhamos o Plano de Controlo centralizado (possivelmente distribuı́do num cluster de servidores) a

orquestrar toda a rede. De modo a que esta separação seja possı́vel, é necessário termos um protocolo

que permita a comunicação entre o Plano de Controlo e o Plano de Dados. Foi então em 2008 que

o protocolo OpenFlow [5] materializou o paradigma das SDN, fazendo com que houvesse uma mais

rápida inovação nas variadas áreas das redes de computadores. No entanto, os processadores de

rede nessa altura ainda estavam presos a um conjunto fixo de protocolos que apenas podiam ser

definidos durante o seu fabrico. Só em 2013 é que foram criados os primeiros processadores de rede

programáveis. Com esta nova tecnologia tornou-se possı́vel alterar o Plano de Dados mesmo após o

fabrico do dispositivo.

Estes avanços tecnológicos fizeram com que houvesse uma evolução mais rápida na área das redes

de computadores. Mais concretamente, facilitou o desenvolvimento de novos protocolos de encamin-

hamento. O Hula [1] e o Contra [2] são excelentes exemplos. Estes são dois protocolos desenvolvi-

dos em hardware programável que vieram melhorar protocolos de encaminhamento já existentes. Da

mesma forma, vimos propor uma solução para o principal problema do protocolo DSDV [3].

O DSDV [3] é um protocolo distribuı́do do tipo distance vector que foi criado para melhorar os

problemas de looping existentes no protocolo RIP [4]. Resumidamente, cada nó da rede guarda na sua

tabela de encaminhamento, para cada destino, a distância da sua rota, o próximo salto, e o número de

sequência associado a essa rota. Estas tabelas são atualizadas através da informação partilhada pelos

vizinhos de cada nó. No entanto, devido aos critérios de otimalidade que este protocolo apresenta,

poderá acontecer um fenómeno ao qual denominamos de “route fluctuation”. Por outras palavras, em

certas topologias, alguns nós da rede poderão não receber a rota preferida em primeiro lugar, fazendo

com que, em cada instância, esses nós estejam a mudar continuamente entre as mesmas rotas, mesmo

não havendo quaisquer alterações na topologia da rede.

Nesta tese propomos estender o protocolo DSDV com uso da promessa. A principal ideia reside
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em ter cada nó a guardar, para além das rotas eleitas (ou preferidas), uma rota secundária para cada

destino (à qual denominamos de “promessa”). A promessa é uma rota mais recente que a eleita, anun-

ciada por um vizinho diferente, mas tem uma métrica pior (por exemplo uma distância maior). Podemos

pensar na promessa como uma rota de “backup” que poderá vir a ser eleita caso haja alterações na

topologia da rede.

Palavras Chave

SDN; P4; Encaminhamento; Distance Vector; Promessa
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Ideally, in a network, data packets are forwarded across optimal paths. The development of routing

protocols to this end is quite challenging since this requirement must be guaranteed in conjunction with

high-speed packet processing.

Unfortunately, innovation in this area was pretty slow for a long time. Conventional routers and

switches used to run complex software in a distributed way that was usually closed. Consequently,

because we used to have the control and forwarding planes intertwined in each device, whenever a new

feature or protocol had to be implemented, it meant a complicated, error-prone process to re-configure

a set of distributed network elements, one by one.

Around a decade ago, the Software Defined Networking (SDN) paradigm was proposed to address

this problem. The main idea behind this approach is to separate the Control Plane, which decides

how to handle the traffic, from the Data Plane, which forwards packets according to the Control Plane’s

rules. We will have a logically centralized controller (it may be one or several servers) managing a set of

switches. SDN made the network management and configuration much more straightforward since we

could program the software controller as a single program with a global view of the network. To make it

possible, a well-defined API between the Control Plane and Data Plane was proposed: OpenFlow [5].

Despite having the Control Plane programmable with SDN, the switches’ chips were still fixed-

function, processing only a fixed set of header fields defined at fabrication time. In order to add new

features to the Data Plane, the hardware had to be replaced. In 2013, RMT [11] chips introduced the

idea of Data Plane programmability. These new chips enabled switches to be programmed to change

how packets are processed. Later a language was proposed to program the Data Plane, P4 [12, 13],

which enabled the programmer to define how a switch should process incoming packets. These new

chips [11] finally made possible the implementation of new routing protocols in the Data Plane.

In this project, we leverage P4 and develop a protocol extension that overcomes the main drawback

of the DSDV protocol [3]. DSDV [3] is a distributed distance vector protocol that came to address the

poor looping properties of the RIP [4] protocol. In DSDV, each node keeps its routing table, with all

known destinations, and their corresponding length, next hop, and sequence number. The sequence

number is what prevents nodes from keeping outdated route, thus preventing the formation of routing

loops. Routes are always preferred if their sequence number is more recent, with older routes being

discarded. If two routes have the same sequence number, the one with the best metric is the preferred

one. However, because of DSDV’s criteria on deciding the elected route, some nodes may end up in a

route fluctuation state: changing routes from route A to route B every time a new computation starts,

even when there are no changes in the topology. For example, this may occur when the optimal path is

not the first one to be announced to a node. The DSDV protocol addresses this problem by setting up a

waiting timer every time a node announces an elected path. However, since topologies can vary widely,

the time difference between the arrival of the optimal path and the non optimal path is not constant. So,
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this timer would have to be set to a different value in order to be suitable to each topology.

In order to overcome the DSDV issue of route fluctuation and the need to set up a timer, which leads

to the disadvantages discussed before, we propose the introduction of the promise route. The idea is

that each node, besides keeping its routing table with all the elected routes, will also keep another table

with all promise routes. A promise is a route that is announced from a different neighbour than the

elected one, and is more recent (higher sequence number). However, it has a worse metric (longer path

length) than the elected route. This way, each node can keep as a secondary route this promise without

changing its state whenever a new computation starts. The promise is elected, for instance, when the

node realizes that the previously elected path got worse (e.g., longer length), or the link that connects to

the elected route fails.

1.1 Main Contribution

The main contribution of this thesis is the proposal of an extension to the DSDV protocol: the promise.

Our evaluation shows that the promise decreases route updates in the network, consequently improving

its scalibility.

We implemented two versions in this thesis: one version includes all the logic in the Control Plane,

and another in the Data Plane, with the Control Plane responsible to populate the match action tables

only.

1.2 Organization of the Document

This document is organized as follows: Chapter 2 describes research related to the project, including

SDN, and programmable data planes, recent routing protocols implemented on programmable hard-

ware, and the DSDV Protocol. In Chapter 3, we present the design and implementation of the promise

extension proposed here. Chapter 4 presents the evaluation of our solution. Finally, in Chapter 5, we

conclude.
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This section describes research related to the subject of this thesis. Section 2.1 describes the concept

of SDN. Section 2.2 introduces Data Plane programmability, and the language used to program the Data

Plane, P4. Finally, section 2.4 discusses routing, by introducing the two main classes of routing proto-

cols, the DSDV protocol [3], that is the subject of this thesis, and finally, some recent implementations of

routing protocols on programmable hardware.

2.1 SDN: Software-Defined Networking

Conventional routers and switches run complex, distributed control software that is typically closed.

Because such devices have their controller running in a distributed way, in order to configure and operate

their networks, network administrators have to use different configuration interfaces that vary across

vendors and even across different products from the same vendor. Thus, to define a new protocol or

feature, a new hardware had to be fabricated to have this new functionality integrated. This industry was

structured as a vertical market, resulting in a slow innovation process.

Software-Defined Networking (SDN) emerged as an innovative approach that changes the way oper-

ators run and configure networks enabling the programmability of a logically centralized controller. SDN

offers an architecture that separates the Control Plane (routing decisions) from the Data Plane (forward-

ing decisions). SDN does not directly address any technical challenges, such as routing, congestion

control, reliability, resilience, and security, but instead, it is an architectural approach that opens new

opportunities to develop new solutions to these and many other problems.

Control Plane The Control Plane runs centralized with a network-wide view. The centralized con-

troller is the main responsible component for managing a set of switches dealing with all packet process-

ing policies, determining the route packets should follow through the network. These routing policies are

conveyed to the switch (Data Plane) through a southbound API (for example, OpenFlow). ONOS [14]

(Open Network Operating System) is an example of an open-source SDN controller which follows the

design of Onix [15], the first distributed controller. Motivated by large operator networks’ performance,

scalability, and availability needs, these controllers use a distributed architecture for scale-out and fault

tolerance (being distributed across several servers), keeping a logically centralized global network view.

Data Plane The Data Plane is responsible for forwarding each packet according to the policies re-

ceived from the Control Plane, usually with extremely high performance requirements. In this layer,

several tables are maintained to allow for lookup upon receiving a packet that executes the correspond-

ing action in case of a match.

Figure 2.1 provides a view of the SDN architecture, where we have a logically centralized Control

Plane (Network OS) with a network-wide view that orchestrates the network’s Data Plane elements. The

logically centralized Control Plane is typically physically distributed across multiple servers. The SDN
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Figure 2.1: End-to-End Perspective of a Software Defined Networking. [6]

paradigm brings more flexibility to network management and configuration since it is now possible to

programmatically control the network from a centralized location that maintains a network-wide view.

The protocol that decouples the control and Data Planes is usually OpenFlow [5]. It was the first

SDN implementation well accepted in the network community and made the SDN paradigm present

on the networks of many cloud operators and service providers. Most commercial switches that used

proprietary interfaces could also implement the OpenFlow protocol without requiring hardware changes.

Devices supporting OpenFlow consist of three components:

1. One or more flow tables that determine how packets are processed and forwarded. An entry in

the flow table consists of three fields: a packet header that contains the bits to be matched in the

lookup, the action where it is determined how the packets should be processed, and statistics to

track the number of bytes and packets.

2. A secure channel that serves to connect the switch with the controller.

3. The OpenFlow protocol which is the API used for the communication between the controller and

the switch.

Upon receiving a packet at an OpenFlow switch, the packet header fields are extracted to be further

matched against the fields in the flow table entries. If a match is found, the switch applies the indicated

action associated with the matched entry, and the counter in the statistics field is incremented.

The first version of OpenFlow supported only a few sets of protocols, which means it could execute

actions to a specific set of header fields. With its popularization, it had to support more and more

protocols (reaching up to 50 different header fields and growing). This came to a point where it did not

make sense to keep adding more reconfiguration capacity to the controller because of its costs. There
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had to be an architectural change.

2.2 Data Plane Programmability

The adoption of the SDN paradigm started with Control Plane programmability, where, as stated before,

the operator establishes the packet processing policies centrally. However, in the Data Plane, the for-

warding pipeline was still restricted to match a fixed set of fields in the packet headers and to perform a

fixed set of actions.

RMT switching chips [11] enabled programmability in the Data Plane. RMT was the first prototype of

a programmable switch, allowing the Data Plane to be changed without modifying the hardware. With

this hardware, the programmer can now define new header fields, new actions, and new ways to process

packets. The main language to express this low level packet processing is P4.

2.3 P4

In 2014, a paper entitled “P4: Programming Protocol-Independent Packet Processors” [12] introduced

the programming language P4 as a suggestion for how OpenFlow “should evolve in the future.” In 2016,

a revision to the P4 language was announced, culminating in the language specification for P4-16 [13].

P4 is a language for describing how packets are processed by the Data Plane of a programmable

switch. This language was motivated by the limitations of OpenFlow, which only allowed a limited set

of header fields and actions, and by the advances in the field of reconfigurable switches [11]. The Data

Plane is no longer fixed. It is defined by a P4 program. In this paper, Bosshart et al. defined three design

goals for P4:

1. Reconfigurability in the field. Programmers should be able to change the way switches process

packets once they are deployed.

2. Protocol independence. Switches should not be tied to any specific network protocol. Instead, it

should be possible to implement and integrate new protocols’ formats whenever desired.

3. Target independence. Programmers should not be tied to the specifics of the underlying hardware.

Processing of the incoming packets is done by performing actions according to the values within

its header. Just like OpenFlow, P4 also uses the abstraction of match-action tables. However, they

can be programmed. From an architectural perspective, the programmable pipeline is often referred

to as Protocol Independent Switching Architecture (PISA). As shown in Figure 2.2, this architecture

is composed of three main blocks: parser, match-action pipeline, and deparser. It also shows two

P4 programs: arch.p4 and forward.p4. The arch.p4 represents a contract between the P4 program

9



Figure 2.2: High-level overview of PISA’s programmable pipeline.

and the P4 compiler, where each programmable block and their Data Plane interfaces are identified.

The forward.p4 is where the developers can define the Data Plane functionality using the previously

established architecture.

Parser - Arriving packets are first handled by the parser. The parser is based on a finite state

machine built from the P4 program, where each field from the header is extracted and identified so that

the next block can process it.

Match-action pipeline - The extracted header fields are then passed to the match-action tables.

The match-action tables first construct a lookup key from packet fields or computed metadata, then

perform the table lookup using the key, choosing an action to execute (in case there is a match), and

finally execute the selected action. These tables are divided between ingress and egress. Ingress

pipelines determine the egress port into which the packet is forwarded and the operations to be applied

in it. Egress pipelines perform actions based on the egress port, which might not be known during

ingress processing, such as traffic shaping policies. Packets can also carry additional information, called

metadata, which is treated similarly to header fields.

Deparser - The deparser reconstructs the outgoing packet by combining each field extracted and

processed in the pipeline, making it compatible to be sent via the outgoing port.

P4 programs can also use other objects and functions provided by the architecture. Such objects are

described using the extern construct. An extern object describes a set of methods that are executed by
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an object, but it does not describe their implementation (it is similar to an abstract in an object-oriented-

language). An example of such objects is the checksum unit.

Metadata rides along with the packet, so it only survives with the packet. There are two types of state

across packets: a) match action tables (already mentioned) and b) stateful objects (registers, counters,

or meters). Match action tables can only be updated by the controller, having the Data Plane permission

to read only. On the other hand, stateful objects, such as registers, are updated by the Data Plane, with

the constraint that it can only execute one operation (read, write, or modify) per packet in each stage.

2.4 Routing

Now that we have a solid background on the architecture of programmable networks, which enable

innovation on new protocols, we will be focusing on routing.

Whenever a data packet arrives at a switch, the switch has to look at the packet’s header fields and

determine which port is better to forward the packet to. This decision shall be reached according to

the routing rules. Routing is the process by which forwarding tables are built (i.e., it is a Control Plane

process). On the other hand, forwarding consists of looking up the received header parameters in the

table and forwarding the packet to the corresponding port, a Data Plane process.

The primary goal of routing is to find out the optimal path between any two nodes. To achieve this

goal, two operations on attributes are needed: election and extension. Attributes are the set of metrics

that a given protocol may consider. Such metrics can be hop-count, capacity, available bandwidth,

delay, and so forth. The Election operation consists in ranking two attributes and deciding which is the

preferred one. Finally, “an extension operation composes two attributes into a third one, modeling how

the attribute of a path is obtained from the attributes of concatenated sub-paths” [16]. For example, lets

consider a node receiving an announced attribute containing a delay. The extension operation in this

case consists in getting the maximum value of the received delay and the delay in the link that connects

the node and the neighbour that announced this attribute. The operation to execute depends on the

metric in use.

The main goal of routing protocols is to forward packets across the optimal path between two given

nodes. The two main classes of routing protocols are distance-vector and link state.

Distance-Vector - Distance-vector protocols have at their core the distributed Bellman Ford algo-

rithm. It begins with the assumption that every node only knows how to reach its neighbours. Each

node announces its subnet. Nodes extend the attributes advertised by their out-neighbors for each des-

tination with the attribute link that connects them to their out-neighbor, resulting in candidate attributes.

Then, an attribute is elected from among the candidates and advertised to the in-neighbors. In the end,

each node ends up with a complete routing table, reaching convergence. It is important to point that
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each node only knows about the content of its routing table. We can differentiate two sub-classes of

distance-vector protocols: non-restarting and restarting [16]. In non-restarting vectoring protocols, the

destination only initiates one computation process. On the other hand, in restarting vectoring protocols,

the destination repeatedly initiates independent computation processes where the older attributes are

always discarded. DSDV [3] is a good example of a restarting distance-vector protocol. In this proto-

col, each routing table contains a destination and the number of hops to reach it. Also, each entry of

the routing table has a sequence number attached. Nodes advertise their routing table periodically to

all neighbors and advertise whenever a change in the network is detected (in that case, the sequence

number is updated). Finally, routes with a more recent sequence number, compared to the node’s stored

information, are always preferred. If a node receives a route with an older sequence number, it discards

it immediately. Moreover, if the route has an equal sequence number, the one with the smallest metric

is used.

Link State - The starting assumption for link-state routing is pretty similar to the one from distance-

vector, every node knows the state of its neighbors and the cost of the link to reach them. The idea

behind link state is that each node will forward all the information it knows to all nodes in the network

(instead of just its neighbors like distance-vector). This means that every node will have enough informa-

tion to have a complete vision of the network topology. The process that makes sure that the link-state

information gets to every node is reliable flooding. The messages exchanged between all nodes are

called link-state packets (LSP). Once a node receives the LSP from every node, it can construct a com-

plete map for the network’s topology. Then, it typically runs the Dijkstra algorithm to find all shortest

paths. OSPF is one of the most widely used link-state protocols. Besides the essential characteristics of

a link-state, OSPF also has some more features, such as authentication of routing messages, additional

hierarchy, and load balancing.

2.4.1 DSDV Protocol

As stated before, DSDV [3] is a distributed distance vector protocol. It was developed to overcome the

looping issues that the RIP protocol [4] has when running on dynamic topologies that constantly suffer

changes. The main contribution to address this problem is the use of the sequence number, which

makes each node being able to label a route as updated or outdated.

In DSDV, we have each node keeping its routing table which lists all the reachable destinations and

their corresponding lengths, next hops, and sequence numbers. The way that the network converges is

by having each node receiving advertisements from their neighbours and electing the preferred adver-

tised routes. The metric used to evaluate a preferred path is the length, which is the same as hop count.

So, a computation starts having a node advertising its subnet to its neighbours with a value length of

one, which means that this node is one hop away from its neighbours. As the following nodes elect the
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preferred path to this node and advertise it to their neighbours, the length is continuously incremented

at every new hop.

The criteria used in the DSDV protocol is as follows:

• First of all, the routes with more recent sequence number are always elected.

• If the sequence numbers are the same between multiple routes, the one with the lowest length is

preferred.

This protocol has some drawbacks. For some topologies, the fact that a node blindly elects a route

just because it has a more recent sequence number, may lead to route fluctuation. That is, for different

reasons, the preferred route may not be the first one to be announced at some nodes. As a conse-

quence, whenever a new computation starts, these nodes change routes back and forth, changing their

states frequently. As a result, a flood of broadcast messages is caused, increasing the chance for packet

reordering during transmission of data packets. This limitation is the main motivation to our thesis.

2.4.2 Routing using programmable hardware

In this project we propose an extension to the DSDV protocol and, crucially, implement it in P4, with the

goal to run it in programmable switches. There are already a few implementations of routing protocols us-

ing programmable data planes. The first was HULA [1], a protocol motivated by ECMP and CONGA [17],

that combines distributed network routing with congestion-aware load balancing. HULA only uses the

best next hop, which belongs to the best path to a destination 1, for load balancing decisions, maintain-

ing the congestion state only for the next best hop per destination. HULA uses special probes to get

global link utilization information. These probes are forwarded across the network periodically, updating

each network switch with the best path to a given destination. This behavior is similar to how traditional

distance-vector routing uses periodic messages set through the network to update the routing tables.

By contrast, CONGA uses a piggyback technique to get congestion feedback, which means that in a

flow, the destination sends back to the source packets with information about the congestion of the path

taken by this flow, using the same path but with the reverse direction. HULA proposed that probes are

sent separately from the data packets, using different paths. This way, switches do not have to explore

congested paths, being able to pick one much faster. Also, in order to achieve fine-grained load balanc-

ing, switches break their flows into flowlets, which can be defined as a burst of packets from the same

flow separated by a time interval. As a result, the traffic is split across multiple paths but arrives in order

at the destination. A limitation of HULA is that it only operates under specific assumptions about the

network’s topology and routing constraints.

1The best path is the one that minimizes the maximum link utilization across all links of the path
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Contra [2] has emerged as a solution to these constraints. It is a system for performance-aware

routing that can adapt to traffic changes, such as different network topologies and routing policies. Con-

tra uses a high-level language to describe the network topology as well as policies that define routing

constraints and performance issues. Then it generates P4 programs for the switches that operate in a

fully distributed manner based on the previously defined policies. This protocol also works by generating

periodic probes that cross policy-compliant paths and gather performance information. Switches eval-

uate the incoming probes storing the best next-hop to get to a given destination. Probes have version

numbers that make this protocol work on arbitrary topologies since the outdated probes are discarded.

When deciding the best path, a switch only elects and propagates the most preferred probe (the one

with the best metric) to its neighbors. As such, this local decision does not always result in a globally

optimal result. This could only be possible if the policy were isotonic. Isotonicity is an algebraic prop-

erty that assures optimal convergence results. It means that the relative preference between any two

candidate attributes remains intact when each of them is extended by a third attribute. Thus, to prevent

this situation, Contra decomposes the non-isotonic policy into multiple isotonic sub-policies. These sub-

policies are sent into separate probes chosen locally by each switch to make the protocol converge onto

an optimal path.

2.4.3 Summary

Table3.11 gives an overview of the routing protocols we discussed in this chapter and here they are

compared against our work.

The HULA procotol [1] overcomes the limitations of CONGA, namely the overload of information that

each node takes when discovering the best paths. In HULA, only the best paths are announced. Hula

was implemented in P4, contrary to CONGA.

A limitation of HULA was that it is only possible to converge the network onto optimal paths under

specific assumptions about the topology and routing constraints. What Contra [2] did to overcome this

issue was to always assure Isotonicity, no matter what the topology or policy used.

The DSDV protocol [3] was designed to overcome the looping issues with the RIP protocol. It in-

troduced the idea of using sequence numbers, which avoid the nodes from electing outdated routes.

There is also no P4 implementation of DSDV. The protocol extension we propose in this thesis aims to

overcome one of the main issues of the DSDV protocol: route fluctuation. The key idea is to introduce

the promise route, a more recent route than the elected one, but with worse metric.
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Table 2.1: Our work (Promise) vs state-of-the-art routing protocols
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This chapter will describe the details of the Promise Extension of the DSDV Protocol we propose in this

thesis. After presenting the key idea in section3.1 and describe the development environment in section

3.2, we give an overview of the design in section 3.3. In sections 3.4 and 3.5, we detail the protocol’s

implementations. First, the implementation in the Control Plane. Then in the Data Plane.

3.1 The Promise Extension: key idea

As mentioned before, the DSDV protocol has one limitation: route fluctuation. The fact that a node will

always prefer a most recent route, or a route that has the same sequence number but a better metric,

may cause changing the same routes back and forth every time a new computation is started.

In this chapter, we present a new solution to this problem by introducing the use of the promise. The

idea is that instead of just electing the optimal path, we will also elect a promise. A promise can be

thought of as a spare route, which will be elected in case there are some changes in the network that

affect the optimal paths. For example, suppose there was a failure in the port that the elected path was

announced from. In that case, the node could immediately elect the promise, never losing reachability

to the announced destination. A promise has a more recent sequence number than the elected path but

a worse metric. It also must come from a different neighbour than the elected one.

Figure 3.1: Example Network.

Let us consider the network from Figure 3.1. We assume between S4 and S2 we have fourteen

nodes, and between S3 and S4, we have thirteen. Node S4 advertises its network to its neighbours for

the second time (observe that the sequence number in S1 routing table is 1). As is clear, the best path

from node S1 to reach S4 is to send data packets to node S3, which has a length of fifteen (smaller than

routing via S2 with a hop length of 16). This information is kept in S1 routing table.
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Supose S1 receives first this second announcement from node S2. In DSDV, we would have S1

electing this route. Thus, when the optimal route arrives (through node S3), it would elect again this

better path. This behaviour would occur in every single computation if the network conditions remained

the same. On the other hand, with our Promise Extension, node S1 would treat the first announcement

that comes from S2 as a promise: it is more recent than the path in the forwarding table but has worse

metric. Once the announcement from S3 arrives, node S1 realizes that this is still the best route to reach

S4.

So, in this example, we can see that the Promise Extension enabled S1 not to change the state of the

next hop. In DSDV, node S1 would first elect the route that was announced by node S2, and then, would

change again to the optimal route announced by node S4. Besides avoiding these route fluctuations,

the promise can be used immediately in case the connection to S3 fails, thus avoiding S4 from being

unreachable. The only update was to keep the promise as backup.

3.2 Development Environment

This section will describe all tools used to implement the Promise Extension to DSDV.

3.2.1 P4Runtime

P4Runtime [18] is an open source API developed to enable the Control Plane software to control the

Data Plane. An important aspect of this tool is that it is possible to control any Data Plane, from fixed-

function or programmable switch ASIC to software switches running in a virtualized environment.

Regardless of what protocols or features the Data Plane is running, the framework of the P4Runtime

remains unchanged, meaning that a wide variety of controllers can use this API. When programming

the Data Plane by adding new protocols and features to the P4 switch, the P4Runtime API automatically

updates, leaving no changes in the Control Plane.

This framework may be used in remote controllers and local controllers. Since our protocol is dis-

tributed, we will have one local control plane managing every P4 switch. Figure 3.2 illustrates the way in

which we use the P4Runtime API as our local control plane.
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Figure 3.2: Using P4Runtime with local Control Plane. [7]

3.2.2 Behavioral Model (BMv2)

The Behavioral Model [19] is the refered P4 software switch. There are two versions of the Simple

Switch that run different Control Plane interfaces:

• simple switch

• simple switch grpc

We use the simple switch grpc, which is the one that is compatible with the P4Runtime controller.

P4C [20] is the compiler we use to compile P4 programs to this switch.

3.2.3 Mininet

Mininet [21] is a network emulator designed to run on Linux. It can be configured via a CLI or with a

Python API. The developer is free to customize its network and design the topology. We can create

hosts, links, assign IPs to the interfaces, and define link bandwitdh and delays to emulate any network.

Mininet is a powerful tool for testing and evaluating network protocols as ours. We can simulate link

failures and visualize how this action affects the network by checking the reachability to every node, for

instance. We can create BMv2 switches programmed with P4 and emulate them in a virtualized network.
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3.3 Promise Design

The Promise Protocol is a distributed distance vector protocol based on DSDV. Each switch has its local

P4Runtime control plane that applies all the policy rules to the Data Plane. This means that the network

nodes do not have a complete view of the network, and there is no centralized controller orchestrating

these nodes. The only information they keep is the hop length and the next hop to reach to each

destination. In addition, we also maintain the promise.

When a new computation starts, we have each switch1 announcing its subnet to its neighbours, as

Figure 3.3 suggests. Then, switches that receive probes from their neighbours will evaluate whether the

probe is to elect or not, according to their policy. If they elect it, they will announce it to their neighbours

again (except the neighbour that sent the newly elected probe). Finally, the protocol converges when we

have connectivity among every node in the network.

Every forwarding rule must be populated in the match-action table. Since it is only possible to pop-

ulate the match-action table from the Control Plane, we use the controller when we intend to add or

update a new entry in the match-action table.

Every probe will always be firstly processed in the Data Plane. If the switch elects a new probe it

sends it to the Control Plane to be further processed and populated in the match-action table.

In addition, we maintain another table with the promise, a backup route used only when the primary

fails.

1We could also call it router as the P4 switch is performing both routing and forwarding.
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Figure 3.3: High-level Promise Protocol design.

3.4 Implementation in the Control Plane

This section describes the implementation of the Promise Protocol with its entire logic implemented in

the Control Plane. The main goal is to find the shortest path for each destination in the network. The

metric we use is the length, which can be thought of as “hop count”.

This is a distance vector protocol and uses particular messages, called probes, that keep global

information about the length to get to each destination. Each destination broadcasts these probes

periodically so that every switch in the network can compute the shortest path to reach every destination.

Each switch gathers the information provided by the probes and stores the best path in a table which

will tell, for each destination, the next best hop to send data packets to.

Thus, when a switch receives a new probe, it checks if it contains a better path than the one stored in

its table. A better path is one with a higher sequence number and a better metric. If the switch elects this

probe, it will announce the newly elected probe to all its neighbours. Alongside the length, each probe

thus also includes a sequence number. This variable is useful because it guarantees that the switch will

not use outdated information.

Besides storing the elected route, each switch will also store a promise. This promise is from a more

recent computation than the elected path, but it has a longer length to reach the destination.
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We will start by describing all our state variables used in the protocol and their invariants in Section

3.4.1. Section 3.4.2 will explain in detail the protocol behavior, and every table used. Finally, in Section

3.4.3 we describe the core algorithm for decision.

3.4.1 State Variables and their Invariants

This section describes every state variable used in the protocol and its invariants.

State Variables - We define the following state variables:

• t - Represents the destination that started the computation.

• Elect u[t] - Represents the elected route. It is composed of: length, sequence number, and

next hop.

• Elect u[t].length - Elected route’s length to get to the destination t from u.

• Elect u[t].seq num - Elected route’s sequence number.

• Elect u[t].next hop - Elected route’s next-hop. It is the port to which node u will send packets to

match to.

• Promise u[t] - Represents the promise. Like the elected one, it is composed of a length, sequence

number, and next-hop.

• Promise u[t].length - Promise’s length.

• Promise u[t].seq num - Promise’s sequence number.

• Promise u[t].next hop - Promise’s next hop.

Invariants - The previously described variables have the following invariants:

• Promise u[t].seq num > Elected u[t].seq num

• Elect u[t].length < Promise u[t].length (Because this metric is a length, < means that it is a better

metric)

• Elect u[t].next hop 6= Promise u[t].next-hop

Assumptions - We assume that the probes will not arrive at the switches in a different order. In

other words, if a switch receives a probe from port p and with sequence number = n, we assume that it

will not receive later a probe with a sequence number = n-1 from the same port.
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3.4.2 Convergence Process Described

In this section, we start by identifying every table required by the protocol, and then we describe in detail

all the steps for protocol convergence.

In this protocol, we will have three tables:

• Forwarding Table - This table keeps the destination t and Elect u[t].next hop. This table is used

to forward the data packets through the shortest path. The best next-hop is decided by the routing

process (the decision process will be described later).

• Elected Routes - This table keeps the destination t and the route Elect u[t]. As this table’s name

suggests, it will store every elected routes. It can be thought of as the Routing Table that will

populate the Forwarding Table.

• Promise Routes - This table is similar to the previous one. The only difference is that it stores the

promises instead. It keeps the destination t and the route Promise u[t].

Our protocol starts with every network destination broadcasting a new probe to all their neighbours.

This probe has the following format:

Figure 3.4: format of the probe in the Data Plane’s version.

These probes are IP packets with the value of 254 in their protocol header field. This value is used

to identify the packet as a probe. Since we will have all the decision logic of the election in the Control

Plane, all the information needed will be inside the payload.
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When one of the neighbours receives the probe from port p, it starts the decision process (next

section). The outcome is to elect the probe, a new promise, or just discard the probe. If the probe’s

route is elected, the Forwarding and Elected Route tables are updated with this newly elected path. The

switch then announces it, sending it to all other ports except port p. A similar action occurs if the promise

is updated (with the difference that the Promise Route table is the one updated).

In more detail, when a switch receives a packet with a similar format to the packet from Figure 3.4,

it will have defined in its Data Plane a match-action table that will match the header field IP.protocol =

254, and execute the action of sending the packet to the controller. Finally, it is in the Control Plane

all the decisions are made. If the probe’s route is elected, the packet is sent back to the switch’s Data

Plane, which will match another table that executes the action of sending this probe to all the switch’s

ports except the one where it received the probe previously.

This process is done until the protocol converges.

3.4.3 Decision Process

In this section, we describe in detail the decision process. As a running example, consider that we

have node u receiving a new probe from one of its neighbours. Figure 3.5 represents node u and its

neighbours. Node v, in blue, represents the next-hop of the elected route. Node y, in green, is the

next-hop of the promise, and finally, node x, in red, is another neighbour, different from the elected and

promise next-hops.

Figure 3.5: Node u and its neighbours

Lets consider an example where node u receives a new probe with the following parameters: des-

tination = t, length = a, seq num = n and next hop = p. To make our decision process, we will use the

following functions and consider the state variables described previously in section 3.4.1.
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Algorithm 3.1 Function elect()

Elect u[t].length← 1 + a
Elect u[t].seq num← n
Elect u[t].next hop← p
Promise u[t]←∞ . Deletes the current promise

Algorithm 3.2 Function change promise()

Promise u[t].length← 1 + a
Promise u[t].seq num← n
Promise u[t].next hop← p

Algorithm 3.3 Function elect promise()

Elect u[t].length← Promise u[t].length
Elect u[t].seq num← Promise u[t].seq num
Elect u[t].next hop← Promise u[t].next hop
Promise u[t]←∞ . Deletes the current promise

Function 3.1 will be called whenever we want to elect the new probe received; Function 3.2 will be

called when the new probe received becomes the new promise; Function 3.3 will be called when we

want to elect the promise.

The decision process will address different conditions and actions depending on which port the switch

received the probe from. So, we have three different cases: when u receives a probe from node v, when

it receives from node y, or when it receives from node x.

In every case, the logic is to wait only for probes with an equal or more recent sequence number

than the promise. All other probes we may receive with an older sequence number are discarded. Even

if they have a more recent sequence number than the elected but older than the promise, they will be

discarded because we know that a more recent computation has been sent, and we just have to wait for

it to arrive.

So, first of all, we will verify if the probe received came from the same node as the one that announced

the elected route (node v). If so, it means that we received the elected route but in a more recent

computation than the one stored in the switch, which means there will be changes, and a new route will

be elected. What we have to do now is verify if we will elect the new route received in this new probe or

if we elect the promise, which will mean that there were changes in the network and the elected route

got worse than the promise. This is the case presented in Algorithm 3.4.
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Algorithm 3.4 When the probe comes from port v

1: if p == Elect u[t].next hop then
2: if n > Promise u[t].seq num then
3: elect()
4: else if n == Promise u[t].seq num then
5: if 1 + a ≤ Promise u[t].length then
6: elect()
7: else
8: elect promise()
9: end if

10: else
11: discard()
12: end if
13: end if

In this case, when the probe comes from node v, there were changes in the elected route because

we received a more recent route that is replacing the current elected route. In line 2 of Algorithm 3.4,

the first verification we do is to check if this new probe’s route has a higher sequence number than the

promise. If so, we will elect this probe and delete the promise. Otherwise, we check if the sequence

number is equal to the promise’s sequence number. In that case, we compare the length of this new

probe to the destination with our promise’s length. The switch will elect the one with smaller length.

Either way, the promise will always be cleared.

Figure 3.6 shows all the possible scenarios for this first case. We do not need to compare the probe

with the elected route because we know that this probe will replace the elected route.

Figure 3.6: All possible scenarios when the probe comes from node v

If the new probe received did not come from port v but came from port y, which means that it came

from the same port as the promise, we have fewer conditions to go through. See Algorithm 3.5.
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Algorithm 3.5 When the probe comes from port y

1: if p == Promise u[t].next hop then
2: if 1 + a < Elect u[t] then
3: elect()
4: else
5: change promise
6: end if
7: end if

In this case, we know that the promise will be changed or cleaned. What we check first is whether

the promise is better than the elected route or not. So, in Algorithm 3.5, the switch compares the length

of the probe’s route with the elected attribute’s route. If it is smaller, the switch will elect and announce

this new attribute. Otherwise, it updates the promise.

Figure 3.7 shows all the possible scenarios for the second case. Here, because we know that the

probe is more recent than the promise, we only have to compare it with the elected route’s length.

Figure 3.7: All possible scenarios when the probe comes from node y

Finally, if the probe comes from a different port (in this example, port x), it may be a new promise, a

new elected, or simply be discarded. Consider Algorithm 3.6.
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Algorithm 3.6 When the probe comes from port x

1: if p == x then
2: if n > Promise u[t].seq num then
3: if 1 + a < Elect u[t].length then
4: elect()
5: else
6: change promise()
7: end if
8: else if n == Promise u[t].seq num then
9: if 1 + a < Elect u[t].length then

10: elect()
11: else if 1 + a < Promise u[t].length then
12: change promise()
13: else
14: discard()
15: end if
16: else
17: discard()
18: end if
19: end if

In this last case, we first check if the probe is more recent than the promise. If it is, we already have

a new temporary promise, we only need to compare its length with the elected route’s length to decide

whether this new route is to be elected, or the new promise (lines 2-8). Otherwise, if it has the same

sequence number as the promise, we compare its length with the elected route’s length, and elect it if

it is smaller. If not, we compare its length again with the promise’s length to decide which one is the

promise: the one with a smaller length. If none of the conditions above are true, the switch discards this

probe.

Figure 3.8 shows all the possible scenarios for the third case. In this case, we have more scenarios

to check as explained.

Figure 3.8: All possible scenarios when the probe comes from node x
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3.4.4 Practical example

Figure 3.9: Network topology for practical example.

Consider again the topology from section 3.1, with S4 starting the first computation. Again, between S2

and S4 the best path has 14 nodes, and between S3 and S4 the best path has 13 nodes. We will go

step by step until the protocol converges.

First of all, this process starts with node S4 announcing its subnet to all its neighbours. So we have

S4 sending probes with the following format:

Figure 3.10: Probe sent by S4.

Because it is the first computation, we have the sequence number with value 1, and since S4 is
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directly connected to subnet 10.0.4.0/24 we have length = 0. When S4’s neighbours receive this probe,

they update the length incrementing it by one, since they are one hop away from S4.

We assume in this example that the probes announced by S4 will always arrive first in S2 than in S3.

As mentioned before, this may happen due to link delays, processing time, etc.

Some hops later, the probe arrives at S2 first with length = 14. Again, first of all, S2 increments the

length by one, and, since it does not have any entry in its Elected Routes table for the subnet 10.0.4.0/24,

it will immediately elect the route announced and send a probe to S1.

Then, S3 receives the probe sent by S4. As S2, it elects the announced route because it is a new

entry to the Elected Routes table, forwarding the probe to S1 as well.

Since S2 was the first node to send the probe, S1 first receives this probe. In this first computation,

S1 does not have an entry for the destination 10.0.4.0/24 in its Elected Routes table. So, once it receives

the probe from S2, elects its route: the route to S4 has next hop S2 and length = 16. When the probe

sent from S3 arrives to S1, with a better length = 15, we get to the condition in Algorithm 3.6 line 9/10.

The new route is from the same computation as the elected one but with smaller length. S1 thus elects

the new route for 10.0.4.0/24 subnet.

The protocol has converged. Each switch’s Elected Routes table is now correctly populated, and it

is shown in Figure 3.11 (this table is only for destination 10.0.4.0/24). At this point, every switch in the

topology can send data packets to any device in subnet 10.0.4.0/24.

Figure 3.11: Elected Routes table for destination 10.0.4.0 for each switch.

Now we assume node S4 starts a new computation with sequence number = 2. So, we have S4

announcing 10.0.4.0 subnet again to its neighbours. S2, being the first one to receive the probe, elects

its route since it is the elected route but from a more recent computation (Algorithm 3.4, line 2/3), and

announces it to S1. Then, the same goes to S3, which receives the elected route in a more recent

computation and so it announces it to S1.

Once node S1 receives the probe from S2, it matches the condition showed in Algorithm 3.6 line

5/6. Since the route announced by S2 is from a more recent computation than the elected one but with

higher length and comes from a different port, node S1 keeps this route as a promise route. Note that
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S1 doesn’t change its elected routes! Finnaly, S1 receives the probe sent from S3 and elects it, since it

is the same route as the elected one but with a higher sequence number. The protocol converged again.

Summarizing, as we can observe, the promise prevented S1 from changing routes between S2 and

S3. Once it elected the optimal route in the first computation, in the following computations S1 kept S2’s

route as a promise since it is a non optimal route, despite being announced to S1 first.

3.5 Implementation in Data Plane

In this section, we will address the implementation of the protocol with its decision logic migrated into

the Data Plane. This version can apply all the possible scenarios and the logic behind the pseudocode

shown earlier. Also, all the state variables, invariants, and assumptions are the same as the ones stated

in the last section.

The main difference from the previous version resides in the communication between the Data Plane

and the Control Plane. The switch will not access the Control Plane so often, thus improving the net-

work’s convergence time since there will be much fewer calls to the Control Plane.

We will describe the roles of the control and data planes in subsection 3.5.1. Finally, we describe the

convergence process in subsection 3.5.2.

3.5.1 Roles of the Control Plane and Data Plane

To program the Data Plane, we need to consider the many computational constraints it has: the memory

these programmable chips is very limited, as well as its access, and the fact that we cannot use any

kind of loops or pointers. On the other side, they work at very high performance, so we expect a better

convergence time if we move the protocol logic to the Data Plane.

The key point is that in this version, the switch will not forward every probe it receives to the Control

Plane.

Data Plane - As we mentioned earlier, in this version, we have all the decision process implemented

on the Data Plane. Therefore, we had to add some new actions to elect or save as promise.

Switches have stateful memory, in the form of registers, meters, and counters. In this case, we kept

all information about the elected and promise in registers. Specifically we keep this data structure:

Destination→ [length, seq no, next hop]

These registers use the destination IP as its index, and the length, seq no, and next hop as the

values stored. So, whenever we elect a route or save it as a promise, we update the values on those

registers. Figure 3.12 shows all registers used:
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Figure 3.12: All registers used

In P4, we can only keep one value per index in each register. That is why we have three registers

for the elected and the promise routes. Since we can save the elected and promise routes in the Data

Plane, we only need to access the Control Plane whenever we need to make changes in the match-

action tables.

When a switch receives a new probe, it first checks whether the destination IP that announced this

probe already exists in the registers or not. If it does not exist, the switch will simply elect the route

by saving it in the registers, cloning it to the Control Plane to populate the match action table, and

broadcast the probe to all neighbours. On the contrary, if this destination is already known, the switch

will go through the decision process where it will check all the scenarios described in section 3.4, ending

up electing the probe, saving it as a promise, or just discarding it.

Control Plane - In this version, the Control Plane will be used more occasionally. First, we install

some pre-configured rules on the match action tables that are required for the switches to converge

when the probes are announced. Such rules are the broadcast rules, forwarding rules to get to their

local subnet, and the clone rule, which will redirect every cloned packet to the switch’s Control Plane.

After populating the tables, the Control Plane will just wait for packets to arrive from the Data Plane.

This happens in these cases:

• A route was elected for an unknown destination, and the switch will have to add a new entry to the

forwarding table indicating the destination announced and the next hop to reach that subnet.

• A route was elected for an existing destination where the next hop differs from the last elected

route. The switch will need to update its forwarding table, replacing the next hop with this new one.

• Informative packet, to register statistics (for debugging and evaluation).
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3.5.2 Convergence process

As with the Control Plane’s version, the protocol starts with each switch announcing its subnet to all its

neighbours, sending a probe with the format illustrated in Figure 3.4. Once one of the switch’s neigh-

bours receives a new probe, it first checks if the destination announced already exists in the registers of

the elected routes or not, and updates its metrics. If this destination does exist, we go through the three

cases of the decision process described in section 3.4.3, but this time being processed in the data plane.

Otherwise, if it does not exist, the route is immediately elected. Once we finish the decision process, the

switch will broadcast the probe to all neighbours if the new route is elected. If there is a change to be

done to the forwarding table, the switch will also clone the packet to the Control Plane providing all the

information needed to populate the tables.

3.5.3 Summary

We have implemented two versions of the Promise Extension, both on programmable switches. These

two versions differ on the place where the decision logic is implemented. The Control Plane implemen-

tation forwards every probe to the Control Plane, where all decisions reside. On the other hand, the

Data Plane version only forwards the probes to the Control Plane under specific situations, decreasing

significantly the number of calls on the Control Plane.

These two versions were implemented to compare their performance. The results are presented in

Section 4.3.2.
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In this chapter we present the evaluation of the Promise Protocol. It is organized as follows: Section

4.1 states the questions we aim to answer in our evaluation; The following, Section 4.2 describes the

methodology and setup. Finally, in section 4.3, we present and discuss the results.

4.1 Objectives

We aim to answer the following questions:

• Does the Promise Extension improve the stability of the DSDV protocol?

• What is the performance gain of moving part of the decision logic to the Data Plane?

As mentioned before, the Promise Protocol uses the DSDV protocol as baseline to search for optimal

paths. So the difference to the DSDV Protocol is just the use of the promise. As such, we will evaluate

four implementations:

• Promise Protocol with all its logic implemented in the Control Plane.

• Promise Protocol with all the decision logic implemented in the Data Plane.

• DSDV Protocol with all its logic implemented in the Control Plane.

• DSDV Protocol with all the decision logic implemented in the Data Plane.

In summary, our tests aim to achieve the following goals:

• Check connectivity within the network, to make sure the protocol is behaving correctly.

• Observe a smaller convergence time when the decision logic is entirely implemented in the Data

Plane.

• Show that the Promise Protocol reduces route instability by decreasing unnecessary state changes.

• Show that the Promise Protocol is fault tolerant.

4.2 Methodology and experimental setup

We evaluated our protocol in real network topologies. For this purpose we averaged the Topology

Zoo [22], a source of real network topologies. We selected three networks with different sizes:
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• Abilene Network [8], this is the smallest network, with eleven nodes:

Figure 4.1: Abilene Network [8].

• Bell South Network [9], a fifty one node network:

Figure 4.2: Bell South Network [9].

• GTS CE Network. This is the largest network with one hundred and forty nine nodes:
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Figure 4.3: GTS CE Network [10].

We considered realistic link delays based on empirical data [23].

To have statistical confidence in our results, we run our test, for each topology a thousand times. In

each trial, we retrieve the time to converge, we send a random link down to emulate link failure, and

retrieve the convergence time after the link failure.

To run the GTSCE Network, we had to create a Virtual Machine on a server to be able to have a

better computational power than a personal computer has. Our Virtual Machine has 8 cores and a RAM

with 20GB.
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4.3 Results

In a networking environment, performance is everything. Therefore it is important, for a routing protocol,

to assure that it converges in the smallest time possible.

In this section we present and discuss results on the stability of the Promise Protocol, in terms of

routing changes, and performance, in terms of convergence time.

4.3.1 Stability

In this section we ask if the Promise Protocol improves the stability of the network compared with the

DSDV protocol. To this goal, we measure how much each protocol change their routes states. We thus

count the number of changed states, that is, the total number of times that every switch in the network

had to change its forwarding table.

We compare the Promise Protocol with the baseline DSDV protocol.

(a) Abilene Network (b) Bell South Network.

(c) GTSCE Network.

Figure 4.4: Comparison of the routing stability between the Promise Protocol and the DSDV baseline.
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Figure 4.4 shows the results on the number of changes without link failures. We can observe that

the Promise Protocol is more stable. However, the difference between the baseline and the Promise

Protocol is not significant for small networks. For smaller networks, the probes do not traverse many

nodes, so there will not be too much delay. For that reason the optimal path is commonly the first path

to be announced to the nodes for most of the times. For larger networks, like GTSCE, we can see that

the difference is much higher and protocol stability becomes more relevant.

The second test includes failing a random link, and check the convergence time again. In Figures

4.5-4.7 we present, for each network, the number of changed states, after link failure.

Figure 4.5: Comparison of the routing stability after one link failure on the Abilene Network.

Figure 4.6: Comparison of the routing stability after one link failure on the Bell South Network.
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Figure 4.7: Comparison of the routing stability after one link failure on the GTSCE Network.

In the Abilene network we observe a reduction of around 10% of the number of changed states when

using the Promise Extension. For the Bell South network we got approximately a 22% reduction, and

finally for the GTSCE network we got a 40% reduction.

4.3.2 Impact on merging the decision logic into the Data Plane

In this section, our main goal is to understand the performance gain of moving packet processing to the

Data Plane.

As mentioned before, the Control Plane versions need to forward every probe to the Control Plane to

be further processed. On the other side, the Data Plane versions have their decision logic offloaded to

the Data Plane, which means that the switch is able to act on the received probes without accessing the

Control Plane. Thus, the Data Plane versions will only forward the elected probes to the Control Plane,

if there are changes to be done on the forwarding table.

In figures 4.8 - 4.10 we present the results as a box plot showing the median and the first and third

quartiles.

The main conclusion is that by offloading part of the protocol computation to the switch data plane

we clearly improve convergence time. In addition, if the target is a hardware switch, we also save CPU

cycles.

Also note that our evaluations were made on a software switch running in the CPU of a server. If

it were made to run on real hardware (e.g., Intel Tofino [24]), the performance and scalability gains

would be orders of magnitude higher. However, it is not clear whether we would need to take additional

adaptations to the protocol to fit its capabilities to a real hardware pipeline.
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(a) Convergence time of both Promise Pro-
tocol’s versions.

(b) Convergence time of both DSDV Proto-
col’s versions.

Figure 4.8: Comparison of the Data Plane and Control Plane performances on the Abilene Network.

(a) Convergence time of both Promise Pro-
tocol’s versions.

(b) Convergence time of both DSDV Proto-
col’s versions.

Figure 4.9: Comparison of the Data Plane and Control Plane performances on the Bell South Network.

(a) Convergence time of both Promise Pro-
tocol’s versions.

(b) Convergence time of both DSDV Proto-
col’s versions.

Figure 4.10: Comparison of the Data Plane and Control Plane performances on the GTSCE Network.
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4.3.3 Summary

With these tests, we have shown that the Promise Extension solves the issue of the DSDV Protocol:

route fluctuation. As Figures 4.5-4.7 suggests, the Promise Protocol is more scalable than the DSDV

Protocol. We keep observing a bigger reduction on the changed states as we use larger networks.

We can also conclude that processing packets in the Data Plane reduces the convergence time, no

matter what the size of the network.
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5.1 Summary

Data Plane programmability has brought us the freedom to innovate and create new routing protocols.

Thanks to these advances, we are able to create new protocols that run in high rate in real networks.

In this paper, we have shown that the use of the promise makes network protocols more stable,

improving the scalibility of large networks. Protocols like DSDV, that can cause route fluctuation, can

thus benefit with the use of the Promise Extension. Since the nodes will not change routes so often,

we will notice a decrease on broadcast traffic flooding through the network, leaving more free bandwidth

to actually use it to send user data. Also, it can prevent packet reordering, so the users will get better

network experience.

5.2 Future Work

For future research, we plan to integrate this solution on real hardware. Using the Tofino switch [24], we

would get more realistic results and a protocol ready to be launched to real networks.

We also believe that the Promise Extension has great potential to be extended on other distributed

vectoring protocols that may suffer from route fluctuation.

Finally, it would be interesting to further investigate on the gains from having the policy implemented

on the Data Plane. Besides the performance gains during the convergence of the network, how many

resources are we actually using from the volatile memory that the switches’ chips have? Since we have

much more data packets floating through the internet than probes, is it worth gaining this extra time

during the convergence time, having the necessary resources into account?
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