
1

Automated Smart Fuzzing Vulnerability Testing
João Coutinho, j.afonso.coutinho@tecnico.ulisboa.pt, Instituto Superior Técnico

Abstract—Since web applications have become more and
more common throughout the internet, being able to test them
efficiently is crucial to their success. Fuzzing techniques have
always been relevant in testing software, even more so in web
applications. However, to make it more efficient, smart fuzzing
is an extremely important extension of this testing method. This
project proposes and tests an autonomous smart evolutionary
fuzzing tool paired with a web crawler dedicated to testing web
applications for vulnerabilities. To play into the strengths of
fuzzing, it specifically targets file upload endpoints in an attempt
to cause code execution. This work proves the validity of applying
genetic algorithms to testing file uploads while showcasing a
crawler as a possible auxiliary tool to increase autonomy.

Index Terms—Web Applications, Fuzzing, Vulnerability Test-
ing, Genetic Algorithms

I. INTRODUCTION

With the rapid rise of technology dependence, more and
more organizations move their core services onto software
applications to keep up with their competitors. Nowadays, it is
very hard to find a service that does not feature an app for its
customers to use. However, since the number of applications
increases, also does the number of possible attacks. When
trying to secure a system against malicious actors, it is very
easy to overlook simple things or forget to deploy the most
basic security measures. Frequently, these mishaps result in
vulnerabilities that are a direct consequence of not using
proper security testing other than static code analysis or in
some cases not testing at all. While web applications might
hide most of their code in a backend server, their high
availability still allows attackers to attempt to exploit them
with ease. Numerous vulnerabilities can be discovered in a
web application [1] and being able to identify them before
they are exploited is crucial for the success of an organization.
Furthermore, having third-party audits cannot only help in this
process but it is also an essential step for receiving ISO [2]
certifications, which go a long way in building a reputation.
As a result, incorporating security testing in the application
development process is very important to ensure its longevity
and reliability.

Security testing is a very common and effective way of
discovering bugs and vulnerabilities in an application. It allows
security professionals to perform an analysis from a different
perspective than the developers, which will often bring light
to issues and scenarios that were overlooked beforehand.
Application testing can be complex and requires a certain level
of knowledge about its internals and so fuzzing techniques can
be used to, not only find exposed application paths but also
trigger crashes that may result in a vulnerability. Although a
common practice, fuzzing is sometimes heavy, since it tries to
explore every possibility. As a result, smart fuzzing is key to
not only delivering faster results but also to do it in a way that

does not have a significant impact on the web server running
the application.

A. Work Objectives

The goal of this project is to develop a tool able to perform
security assessments on a web application. This tool considers
the use of fuzzing techniques to discover vulnerabilities in the
target application. It should be able to function autonomously
with very little manpower or maintenance, which would result
in the opportunity to perform periodic evaluations automati-
cally. The fuzzing algorithm falls in the smart fuzzing category,
which is explained in Section II-B. The tool should also be a
viable option in third-party testing with no access to source
code or application internals. As a result, it was developed
with a blackbox approach.

The final solution will target file upload endpoints of web
applications. It uses genetic algorithms [3] with a custom file
parser and is paired with a web crawler to provide a higher
level of autonomy. Two different versions were implemented
and evaluated as a means to determine which is more ap-
propriate to the given environment. The experimental results
show that this technique is a valid method for identifying
vulnerabilities in file upload endpoints, albeit with a few
limitations. Although the fuzzer itself is extremely successful,
rounding the necessary conditions for it to be applicable is not
trivial. These limitations are discussed in detail in the later
Chapters and serve as the basis for future work suggestions.

II. BACKGROUND

In the following sections, the concepts necessary for the
understanding of the proposed work are introduced. In Section
II-A, the concept of web applications is explained, their
advantages, architecture, and main vulnerabilities. Section II-B
explains fuzzing in a more detailed manner, namely what it is,
its various categories and parameters, and what distinguishes
different kinds of fuzzers. Finally, Section II-C introduces what
genetic algorithms are and how they work.

A. Web Applications

Web applications are a form of delivering software to
consumers via the internet [4]. Instead of having the consumer
use a program by downloading a binary, web applications host
their software on servers that are accessible via the internet.
The user connects to these servers by using the HTTP protocol
through a browser, such as Chrome, Firefox, or Safari. The
main benefits of using web applications include:

• Does not take space since it doe not need to be installed
• Updates can be rolled out more frequently as they do not

need to be downloaded by users

2

• It is much easier to develop software compatible with
a small set of browsers than it is with a large set of
hardware/operating system combinations

The overall architecture of web applications, depicted in
Figure 1, follows a client-server paradigm. This means that
the users interact with a dedicated client, named the frontend,
which performs operations by sending requests to the API
(application programming interface) running on a backend
server, through the HTTP protocol. An API specifies a set
of public endpoints that perform specific operations on the
internal application. These operations performed on the back-
end usually interact with a database that is not accessible via
the internet and the results are sent back by the API to the
frontend, again via the HTTP protocol. This usually results in
the frontend serving a web page to the user via a browser.

Fig. 1. Web application architecture

There are a lot of vulnerabilities that can exist in a web
application, due to its nature [1]. Two of the most impor-
tant ones are SQLi (SQL injection) [5] and XSS (cross-site
scripting) [6], which will be important later on. Both of them
are based on poor handling of user-supplied input and can
result in the application running malicious code, either in
the database (SQLi) or in the browser (XSS). SQLi occurs
when the backend performs some operation on the database
that includes user-supplied input. If the input itself contains
valid SQL code, this could be executed on the database and
allow a user to run arbitrary code, at will. XSS works in a
very similar way, but instead of targeting SQL running in
the database, it targets JavaScript running in the frontend. If
the web page served by the frontend includes user-supplied
input that contains valid code, it could be run by the browser.
Usually, this is exploited by sending a victim a malicious
link that will run the attacker’s crafted code on the victim’s
browser. Both of these vulnerabilities can be patched by
correctly sanitizing all user-supplied input.

B. Fuzzing

Fuzzing is a method of software testing that consists of
discovering bugs and vulnerabilities in a program by supplying
unexpected data in an automated way [7]. Fuzzing techniques
are a very effective method of discovering misconfigurations
and/or errors in code. When successful, often these result in
the disclosure of information, crashes, or unexpected behavior
that could compromise the application and the system it runs
on. However, there are many obstacles to overcome when it
comes to building a fuzzer [8]:

• Human intervention: Some fuzzers require knowledge
about the application they are testing and this must be
supplied by the user.

• Test case generation: Guiding the fuzzer when perform-
ing the tests to be more efficient, instead of using brute
force methods.

• Target interfacing: Allowing the fuzzer to interact with
the target program through whichever method it receives
its input.

• Outcome interpretation: Determining if the target pro-
gram handled the input well or had unexpected behav-
ior/crashed.

When they were first conceived, fuzzing programs generated
the data to be supplied as input completely at random [9]. Over
time, multiple techniques have been developed to improve
the efficiency of this process. The fuzzing programs available
today fall into one of these categories: generation, mutation
or evolutionary [8].

• Generation based fuzzers can generate input from scratch,
either completely at random or by following a user-
supplied model (e.g. network protocol, file format). These
two options are the distinction between a dumb and smart
fuzzer, which will be formally defined later on.

• Mutation based fuzzers apply transformations to a col-
lection of seeds supplied by the user. These may include
changing, adding, or removing bytes from the seed input
before supplying it to the target program.

• Evolutionary based fuzzers are a more advanced tech-
nique that allows fuzzers to learn from each test case by
measuring its success and adapting accordingly. It usually
relies on genetic algorithms and may require the need
of binary instrumentation to assess the target program’s
behavior.

The level of program structure awareness can also vary
through fuzzing programs. Some treat targets like a black-
box, having no knowledge of the application source code or
structure [10]. Others use a whitebox approach, which takes
advantage of knowing source code to track the fuzzer’s results
and progressively increase code coverage [11] [12]. Finally,
there are greybox fuzzers, which use partial application knowl-
edge such as binary instrumentation to assess code coverage,
without the dramatic increase in overhead that results from
analyzing source code [13] [14] [15].

Besides the conception of data, fuzzing programs are also
responsible for interfacing with the target program and inter-
preting the output of its test. The former can be as simple as
communicating through some network protocol or generating
command line arguments but can escalate to simulating key
presses or mouse movements. The latter refers to determining
whether or not the target program handled the input correctly
by parsing the response or detecting a crash.

Often the programs that are being tested perform sanity
checks on the data that they receive (e.g. testing if a supplied
number is not negative or if a picture is a valid PNG). As a
result, fuzzing programs must find the right balance between
“expected data” and “random data”. What this means is that
for a fuzzing program to work, the data it supplies must be

3

“valid enough” such that it passes initial sanity checks, but
also “invalid enough” such that it causes some unexpected
behavior in the program. Besides the conception of data,
fuzzing programs can also be categorized when it comes to
their input structure awareness. Those categories are dumb
fuzzers and smart fuzzers [8].

• Dumb fuzzing means that the fuzzer program is not aware
of the input structure and therefore the data it creates
is somewhat random. It might flip random bits or insert
“interesting bytes” in random locations. As a result, data
created from this sort of fuzzer might fail sanity checks
performed by the target program, e.g. it is unlikely for a
dumb fuzzer to create data that has a valid checksum.

• Smart fuzzing on the other hand is aware of the input
model and can create data that respects this model, such
as a file format or a formal grammar. It can generate data
from scratch or apply modifications to seed inputs while
still maintaining the desired structure. This method of
fuzzing allows for much better results since it can easily
bypass sanity checks performed by the target program.
However, it requires more human interaction to function,
since the input structure must be known from the start.

With the use of smart fuzzing, those initial sanity checks per-
formed by a target program become a much smaller obstacle, if
not eliminated. As a result, this type of fuzzer can immediately
start testing relevant program logic and will have a much
higher success rate than its counterpart. However, it does come
bearing some obstacles. Smart fuzzers are much more complex
than dumb fuzzers and require more human intervention.
Determining the input structure is not as straightforward as it
may seem. If it is too rigid then the fuzzer might not be able to
cause any damage, however, if it is too soft the data might get
caught by those sanity checks, beating the purpose of a smart
fuzzer. Finding the right balance is a complex task that must
be performed by the programmer when developing a fuzzing
program. Besides that, it also does not fix the main problem
behind fuzzing in general, which is the transformations applied
to the data. Being generation, mutation, or evolutionary based,
there are countless possibilities when it comes to the final piece
of data that is to be fed to the target program. Without some
sort of guidance, fuzzing programs become extremely close
to brute forcing programs, which can be very taxing on both
the fuzzing and the target machine’s processor. Furthermore,
most bugs will be caused due to known edge cases such as
null bytes or empty strings. If the transformations are random,
these known values might never be tested.

C. Genetic Algorithms

Genetic algorithms are a machine learning technique based
on the theory of evolution [3]. They rely on the concept that the
subjects who are most fit for completing a certain task survive
throughout the generations. This technique is used to find the
optimal solution for a problem by generating populations of
candidates, named chromosomes, and each generation selects
the most successful ones to “reproduce”. To generate new
chromosomes, first, a crossover operation is performed on two
other chromosomes, and then the offspring is mutated, so it

can introduce new behavior. As a result, with each passing
generation, the population is composed of increasingly optimal
chromosomes, and the success rate increases. An example
iteration of this process is depicted in Figure 2.

Fig. 2. Selection and crossover stages of a genetic algorithm [3]

Some parameters must be defined when implementing ge-
netic algorithms. The population size is usually determined
to be the same number across the entire execution of the
algorithm, although this is not always the case. Then, the
chromosomes must be defined in a way that their behavior is
easily mutable during runtime to effectively apply mutations.
Afterward, the fitness function must be established as an
efficient and effective way of calculating the success of a
chromosome. For the breeding phase, a crossover and mutation
probability must be defined and they will be applied after the
breeding chromosomes have been selected. The stop condition
for the algorithm can vary between finding a solution that
is considered optimal or defining a maximum number of
generations, after which the algorithm halts.

D. PNG

PNG, or Portable Network Graphics, is a file format that
allows lossless and portable storage of images [16]. Its specifi-
cation defines an image by splitting it into numerous structured
chunks, following an 8-byte signature at the start of the
file. Each of the chunks in the PNG format has a different
purpose and may have some sort of constraints, be it ordering,
cardinality, or whether or not they are optional. In the context
of this work, 4 chunks must be well understood: IHDR, IEND,
IDAT, and tEXt. The IHDR chunk is a critical chunk that
specifies details about the image, such as width, height, bit
depth, color type, compression method, filter method, and
interlace method. It can only be present once in the file and
must be at the very start, immediately following the signature.
The IEND chunk is another critical chunk that does not contain
any data and must be the last in the file. The IDAT chunk is
also critical but can be found multiple times in the file, as
long as they are consecutive, and contains the actual image
data. Finally, the tEXt chunk is an optional chunk that can be
found anywhere in the file any number of times, as long as it

4

does not break any of the other constraints, and contains text
information saved by the encoder.

E. JFIF

JFIF, or JPEG File Interchange Format, is another file format
that allows for the storage of images, in this case using the
JPEG compression method [17] [18]. Much like the previously
mentioned PNG format, a JFIF image is also defined with
a sequence of several similar blocks, named markers. Each
marker is composed of a type and optional data following
it. Similar to what was described in the previous section, 4
markers must be taken into account when manipulating a JFIF
image: SOI, EOI, SOS, and COM [19]. The SOI (Start of
Image) marker does not contain any data and must always be
at the very start of the file. Similarly, the EOI (End of Image)
marker also does not contain any data and must always be
at the very end of the file. The SOS (Start of Scan) marker
denotes the start of the actual image data. Finally, the COM
(Comment) marker includes textual data saved by the encoder.

III. IMPLEMENTATION

In this chapter, the implementation of the proposed solution,
depicted in Figure 3, is described in detail. Section III-A de-
scribes the web crawler used to provide the other components
with information necessary for their execution. Section III-B
specifies the file parser and how it operates on various file
types. And finally, Section III-D performs an overview of the
genetic algorithm and its various parameters, as well as a
comparison between two different variations of this technique.

Fig. 3. Architecture of implementation

A. Web Crawler

For the fuzzing algorithm to function properly, some aspects
of the web application must be known before its execution.
These are the file upload endpoint of the web application, any
default values present in the upload request, authentication
parameters like HTTP headers or cookies, and the web page
where the image will be displayed. Aside from the authenti-
cation parameters, all other artifacts are obtained through the
execution of a web crawler on the application. The implemen-
tation of the crawler relies on the scrapy framework [20] which
provides a lot of features, such as multithreading, request

queue management, repeated requests prevention, and parsing
of the web page’s source. This is accomplished by having the
crawler run in Scrapy’s runtime so that the framework can
have full control over the processes. As a result, the code for
the crawler focuses on methods that find information on the
returned web pages using XPath [21] and queue the following
requests, while all of the management of performing those
requests and creating new threads is handled by the framework.

In order to pass information in and out of the crawler’s
context, a NoSQL [22] database is used. This database is
implemented using the TinyDB [23] library. It is used to
provide the crawler with the necessary input and for the
crawler to write the artifacts that it found on the web page.
The input received from the user is the web page where the
file upload form is present and the authentication parameters.
With this information, the crawler begins by parsing the upload
form and saving any input fields that are filled by default in
the database. Then, it uploads a sample image with a unique
string embedded inside, saving the upload endpoint and the
file’s key within the form as well. Afterward, the crawling
process begins on the same page that includes the upload
form, checking all images on the page to verify if they include
the sample string embedded in the upload. This process is
repeated for all links that belong to the same domain until the
uploaded sample image is found. Finally, the link to the page
that displays the image is also saved. The reasoning behind
saving the page instead of the actual location of the image
on the web server is to account for a situation where the
server changes the image’s name on storage. There is also
the option for the user to provide a list of possible download
paths before execution. In this case, the crawler will only save
the upload form’s specification and will not search for the
uploaded image.

B. File parser
For the uploaded files to maintain their validity, they must be

maintained in a formal and well-defined manner such that they
can be manipulated without sacrificing their structure. This
is accomplished by the file parser component of the fuzzer.
It is responsible for reading the files from the file system,
parsing them into a tree-like structure, operating on said tree
(these operations are detailed in Section III-D) and writing
them into the file system to eventually be uploaded. This sort
of structure allows the images to be split into sections, which
themselves are composed of blocks. This way, by operating on
the blocks layer, there is a guarantee that the sections retain
their relative relationships, while operating on the sections
layer, guarantees that blocks within each section retain their
relative relationships. As a result, the overall layout of the
file remains unaltered throughout its manipulation. Since the
parser will be used with image files, the reading and writing
processes vary slightly depending on the image format that is
being worked on. However, the parser’s API must be the same
for all image formats.

C. Tree Structure
Keeping the structure described in Section II-D in mind, a

parsed PNG will form a tree with 3 sections: a “meta section”

5

containing all chunks between the signature and the first IDAT
chunk, a “data section” containing all IDAT chunks, and an
“end section” containing all chunks after the last IDAT chunk.
Since the signature cannot be altered or moved in any way,
it is stored in an extra node alongside the other sections. The
resulting tree allows chunks to be added, swapped, and deleted
from the Meta and End sections at will without sacrificing the
validity of the image, as long as the constraints related to the
IHDR and IEND chunks remain true. The file is parsed by
reading the signature and each of the chunks in their original
order, placing them in the correct sections. To save some
memory, only the Chunk Type and Chunk Data are saved.
Rewriting the file in the file system is accomplished by writing
the signature first, followed by each of the sections in order:
Meta, Data, and End. Writing a section is done by writing
each of the chunks in the order they are currently in, and
recalculating the Length and CRC fields in the process.

When it comes to JFIF images, the structural requirements,
described in Section II-E, are very similar to the ones for a
PNG image. Thus, the resulting tree follows the same orga-
nization as the one described previously. The one difference
between them is the lack of a signature in a JFIF image. The
reading and writing process is identical to the one described
before, with 2 key differences. The entropy-coded data is also
saved in the marker object, when present, and there is no
longer a need to recalculate a CRC during serialization.

D. Genetic algorithm

The final component of this project is the genetic algorithm
that drives the program. This is where the actual fuzzing
happens, where the various test cases are generated and
evaluated against the target application. By using an evolu-
tionary method, such as a genetic algorithm, the fuzzer can
dynamically manipulate the images in real-time, depending
on the results of the running tests. In the case of fuzzing file
uploads, the chromosomes are HTTP requests that upload a file
to a web application, while the genes for these chromosomes
are the content of the file, represented as described in Section
III-B, and its name represented as a string. It starts with a pop-
ulation of sample, unaltered, images and performs consecutive
manipulations to their content and name, to try and find the
correct combination of genes that trigger a vulnerability. There
are two variants of the genetic algorithm implemented for this
project, a generic GA and the Fuzzy-Based Age Extension of
Genetic Algorithms (FAexGA) [24][10], which are described
in Sections III-D1 and III-D2, respectively.

1) Generic GA: For the generic GA, there were no major
changes made to the overall workflow of the algorithm.
Therefore, it will remain very similar to what was described in
Section II-C. Starting with the initial population, the seeds for
the algorithm are a collection of PNG and JFIF images that
vary in resolution. Since there are no mutations applied to this
population, the first generation of tests will serve to detect any
filters that may be applied on the image level. For example,
if the application only accepts PNGs smaller than 512 by 512
pixels, any image that does not fill these criteria will fail to
upload, causing it to have lower fitness and therefore a lower

chance to reproduce. This is a result of the selection process,
which follows a standard roulette wheel method, where the
chromosomes that were assigned higher fitness values are more
likely to be selected to reproduce.

Chromosomes are selected in pairs, to perform the crossover
operation1. This is accomplished by cloning one of the parents,
and then passing genes from the second parent to the duplicate,
dubbed the ”offspring”.

After enough offspring have been generated to refill the pop-
ulation, the mutation phase can begin. Each new chromosome
has a 30% chance to perform a mutation operation on itself.
When this happens, there are three distinct actions taken. First,
the filename is mutated. There is a list of possible extensions
for the file to “choose” from, ranging from image extensions
to extensions that could cause some form of code execution.
These extensions are then randomly structured in one of seven
possible ways: double extension, null separated, neutral suffix,
casing change, semicolon separated, interpolated extension,
and regular extension. The second action is to inject a payload
into the file’s contents. A random payload is selected from a
predefined list and is inserted in the file as a comment block
at either the end of the “meta section” or the start of the “end
section”. The final action is to delete a random comment block
from the file. This only occurs with a 5% chance, as to not
constantly delete the algorithm’s progress but still prevent files
from increasing in size indefinitely.

The testing operation performed by the algorithm is the
upload of each file to the web application and subsequent
verification for any vulnerability that may have been triggered.
The uploaded file is obtained through the serialization of the
chromosome, while all other parameters required to fill the
upload request are read from the database that was previously
filled by the crawler. After the upload is complete, the fitness
value for the corresponding chromosome is calculated. This
is done by downloading the image back from the web server
and verifying if any vulnerability was triggered.

Executing all of these operations sequentially, as depicted
in Figure 4, will result in a guided search for a combination
of parameters that result in code execution through the upload
of a malicious file.

Fig. 4. Workflow of generic GA

2) FAexGA: The second variant of the genetic algorithm
that was implemented is the Fuzzy-Based Age Extension of
Genetic Algorithms (FAexGA) [24][10]. Since the evaluation
process described in the previous Section has a discrete
progression, it is highly likely for the algorithm to be “stuck”
between two of the steps that it measures. For example, the
search space between a file that is successfully re-downloaded

1The same chromosome can be selected twice and crossover with itself

6

and a file that triggers a vulnerability is still quite large, but
there are no verifications between these two scenarios. This
causes difficulty for the algorithm to find the correct path
onward. By implementing FAexGA [24][10], the likelihood
of surpassing this obstacle increases. Based on the findings
described in [10], this variation of the genetic algorithm has
a high success rate in blackbox scenarios.

To implement this extension, the concepts of lifetime and
reproduction ratio must be introduced into the algorithm.
Lifetime will determine the number of generations that a
chromosome lives for and is determined during the crossover,
using the bi-linear method described in [24]. When two
chromosomes are selected to crossover, the chances of it taking
place are determined by their lifetimes. Similar to the work
described in [24][10], these chances are higher with “middle-
aged” chromosomes. Finally, the method for selecting a parent
is a random choice, instead of the previously described roulette
wheel. The fitness of each chromosome is already reflected in
its lifetime, which directly results in higher-fit genes surviving
longer. Aside from the changes already mentioned, the rest of
the algorithm functions the same as described in the previous
Section. Its overall workflow is depicted in Figure 5.

Fig. 5. Workflow of FAexGA

IV. EVALUATION AND RESULTS

Following the development of the tool, it is important to
determine whether or not the requirements and work objectives
were met. In order to assess this, the tool must be tested
against various environments. For evaluation purposes, the tool
was tested against 14 different scenarios spanning a custom
web server, lab exercises provided by PortSwigger [25][26], a
purposefully vulnerable web application known as Damn Vul-
nerable Web Application (DVWA) [27] and a set of production
web applications with known vulnerabilities. These scenarios
are listed in Table I.

The following sections describe the outcomes of these
tests, as well as an analysis of the results and their impli-
cations. First, the functionality of the tool will be evaluated,
to determine whether or not it is successful in discovering
vulnerabilities. Afterward, the results are compared to those
of an existing tool designed to discover vulnerabilities in file
upload endpoints.

A. Test Results

In this section, an analysis is performed on the efficacy of
the developed tool. The crawler and the fuzzer are evaluated
separately before a complete analysis is performed. Further-
more, the applicability of FAexGA [24][10] is discussed to
determine whether or not its implementation improved upon
the results with a generic GA.

Test
1 Custom PHP Web Server
2 PortSwigger Lab - Web Shell Upload
3 PortSwigger Lab - Content-Type bypass
4 PortSwigger Lab - Path Traversal
5 PortSwigger Lab - Extension Blacklist
6 PortSwigger Lab - Obfuscated Extension
7 PortSwigger Lab - Polyglot Web Shell
8 PortSwigger Lab - Race Condition
9 DVWA - Low Difficulty
10 DVWA - Medium Difficulty
11 DVWA - High Difficulty
12 Crater [28] - CVE-2021-4080
13 CMS Made Simple [29] - CVE-2022-23906
14 WikiDocs [30] - CVE-2022-23375

TABLE I
LIST OF TEST SCENARIOS

1) Crawler: The purpose of implementing the web crawler
is twofold: parsing the upload form’s specification and finding
where the uploaded image is reflected on the web application.
In terms of parsing the form, the crawler was extremely
successful, being able to correctly collect all necessary in-
formation regarding the upload forms in all tests, except for
test #12. As a result, the fuzzer was able to correctly perform
upload requests to tested applications in all but one of the
tested scenarios, as depicted in Table II. Test #12 represents
a subset of web applications that caused all modules to fail,
thus the results for this test will be fully discussed in Section
IV-A4, instead of one module at a time like the other tests.

Test Success
1 Custom PHP Web Server Yes
2 PortSwigger Lab - Web Shell Upload Yes
3 PortSwigger Lab - Content-Type bypass Yes
4 PortSwigger Lab - Path Traversal Yes
5 PortSwigger Lab - Extension Blacklist Yes
6 PortSwigger Lab - Obfuscated Extension Yes
7 PortSwigger Lab - Polyglot Web Shell Yes
8 PortSwigger Lab - Race Condition Yes
9 DVWA - Low Difficulty Yes
10 DVWA - Medium Difficulty Yes
11 DVWA - High Difficulty Yes
12 Crater [28] - CVE-2021-4080 No
13 CMS Made Simple [29] - CVE-2022-23906 Yes
14 WikiDocs [30] - CVE-2022-23375 Yes

TABLE II
PERFORMANCE OF CRAWLER IN PARSING UPLOAD FORMS

The second purpose of the crawler is much more challeng-
ing than the first. As such, the results are not as positive.
Tests #1-8 and #13-14 were successful, as the crawler was
able to correctly locate the uploaded image reflected on the
web application. Tests #9-11 represent the scenarios for the
application DVWA [27]. This application does not reflect
uploaded images back on the web page and instead only
shows a link pointing to the location where the image was
stored. Since the location of the image is reflected, the user
may provide this link to the crawler beforehand, bypassing
this limitation at the cost of extra actions by the user. These
results show that the crawler’s implementations proved to

7

be very effective, being able to complete its objectives in
most of the test cases. In the cases where the image is not
reflected, it was expected for the crawler to fail, since its
goal, a page reflecting the uploaded image, does not exist.
The implemented alternative of supplying a link to the uploads
directory before the crawler’s execution also proved to be an
effective method to circumvent this limitation with minimal
cost.

The reasoning behind implementing a web crawler instead
of using a model inference technique to model the web
application, was due to the assumption that uploaded images
are reflected on web pages “near” the upload page. In all
the tests where the crawler was able to identify the reflected
image, the uploaded image was reflected on the same page
that contained the upload form. As such, this assumption
remained true and the computational cost of the crawler can
be determined as extremely reduced since it only needs to visit
one page, and thus performed a minimal number of requests,
as depicted in Figure 6.

Fig. 6. Number of requests performed by the crawler

2) Fuzzer: The data depicted in Figures 7 and 8 was
collected by running the fuzzer 5 times against each test. This
data shows that the fuzzer module powered by the genetic
algorithm was able to successfully identify and report back
to the user, vulnerabilities present in tests #1-4, #6-7, #9-10,
and #14 with high success rates. While for most of the tests
the algorithm was able to converge on a solution within 10
generations, for test #6 it took around 15 to 20 generations
to even generate a chromosome that represented a solution,
with a few more generations to converge afterward. Examples
of these progressions are also depicted in Figures 7 and 8. It
is not usual for genetic algorithms to converge this quickly,
however, this result can be attributed to the small search space
that the problem presents. As explained in Section III-D, each
chromosome only has two genes with limited possibilities
and due to the nature of genetic algorithms, continuously
eliminating bad combinations will cause it to converge quickly.
A problematic result would be if even with a genetic algorithm

a brute force approach would be more efficient, which is not
the case. When it comes to test #6, this particular case requires
the algorithm to generate a filename with a very specific
extension. Since there is no way to calculate progress on this
gene, as the extension can either be right or wrong with no in-
between, after figuring out the other parameters, the algorithm
has to randomly guess the extension. This is not the case for
the other tests, since their solution did not require one specific
extension. When it comes to the injection of payloads in the
files, the parser showed no problems at all and the algorithm
was able to inject and transfer payloads between files without
sacrificing their validity.

Fig. 7. Fuzzer success rate

Fig. 8. Evolution of Generic Algorithm

The remaining tests (#5, #8, #11, #12 and #13) were not
successful. As mentioned before, test #12 will be discussed
in Section IV-A4. Tests #5, #8, #11, and #13 all failed for

8

the same reason. To trigger the vulnerability present in these
cases it is necessary to perform an additional action in the web
application after uploading the malicious image, like renaming
the file for example. Since this action is unpredictable and
cannot be automated, it is considered to be out of scope for
the developed tool to attempt to trigger these vulnerabilities, as
stated in the requirements that the tool should be autonomous.
As a result, the developed tool cannot trigger these vulnera-
bilities and thus cannot report them back to the user.

As of now, all of these results were obtained by running
the fuzzer with the generic version of the genetic algorithm.
The FAexGA [24][10] version of the algorithm, unfortunately,
presented worse results than its counterpart. Since this version
allows the size of the population to vary over time, when the
algorithm converges, the population starts to decrease until one
final solution is all that remains. When running this algorithm
against test #2, it showed that a solution was discovered as
fast, or faster, than the generic version in most executions.
However, the solving combination of genes would quickly
die out before the population converged, resulting in a non-
solving chromosome being deemed the “solution”, as depicted
in Figure 9. After repeating this test multiple times, it showed
that the solving chromosome only survived to the end of the
algorithm in 20% of the runs. This outcome did not change
when running against other tests. As a result, the generic
version of the algorithm is considered more appropriate to
this problem and the agreed-upon solution.

Fig. 9. Evolution of FAexGA in Test #2

These results showed the pairing of a genetic algorithm
with a custom file parser as a valid method for identify-
ing vulnerabilities in file upload endpoints. The blackbox
approach did not prevent the genetic algorithm from func-
tioning properly. Furthermore, it was extremely fast in its
execution. The reasoning behind the disappointing results of
the FAexGA [24][10] implementation can be attributed to
either an inappropriate application of this technique or a
misconfiguration of its parameters. Since this version was

implemented as a method to combat the difficulty of running
a generic GA in a blackbox environment, the cause of its
failure was not further researched, as the generic GA did show
positive results.

3) Full Stack: When the modules are combined, there are
two important results to be addressed. First, there are two test
cases where the fuzzer succeeds, but the crawler does not, such
as tests #9 and #10. For the tool to fully function against tests
of this nature, the crawler needs to be dismissed, which means
the user must supply the tool with possible download paths
before execution. With this method, the tool works properly.
Secondly, for tests #6 and #14, each of the modules works
properly when separated, but not when run in tandem. These
two tests showcase an interesting scenario that causes this
behavior, as the web applications allow for the upload of
malicious images, but only reflect on the page images that are
not malicious. As a result, the crawler can successfully identify
the page that reflects the initial upload, as it is a safe image,
but the fuzzer cannot download any of its uploaded images
because it will keep checking the page returned by the crawler.
To prevent this outcome, the user must once again supply the
download paths themselves. However, in tests #9 and #10, it
is trivial to note that the application does not reflect any of the
uploaded images, and thus it is easier for the user to adjust
their use of the tool. In the case where only malicious images
are not reflected, it is much harder to identify this behavior,
as the user must monitor the tool and notice that it is failing
all of its downloads, and even then it might just be a case
where the application is not vulnerable. Even though it goes
against the requirement for autonomy to monitor the results in
real-time, it is unlikely for this specification to change in an
application, and thus it can be seen as a one-time adjustment.

The coupling of the web crawler and the fuzzer also
proved to be very effective. The use of a shared database to
transfer information showed no complications and proved to
be appropriate for this scenario. Once again, although there
are some cases where this pairing was unable to function,
the alternative methodology of providing download links was
able to counteract these cases with minimal cost. The most
important takeaway from these results is the case where
malicious images are not reflected on the application since
the identification of this scenario is in itself a challenge for
the user. However, after being identified, adjusting the tool is
just as simple as the other cases.

4) Overview: Overall, the tool showed positive results, as
it was able to identify vulnerabilities in most of the test cases.
Even when one of the modules does not function properly for
a certain application, it is possible to adjust the workflow to
bypass this limitation, aside from the test cases that fell out
of scope. The exception to this statement is test #12. Unlike
all of the other tests, this scenario presented a single page
application, with dynamic pages rendered by the browser. This
immediately caused the crawler to fail, as the page returned by
the backend of the application does not represent what a user
interacts with in the browser. A possible way to bypass this
would be to couple the crawler with the Selenium [31] library,
to access the source code of the fully rendered page. However,
this effort would not have solved the overall issue. As a

9

dynamic page, the method for uploading a file to the backend
can be designed in any way imaginable by the programmer,
creating unpredictability. In this situation, there is no upload
form to parse. Furthermore, the format of the upload request
is also unpredictable, as the request and file can be arranged in
numerous ways, such as a straight PUT request to the server
or even JSON [32] with the file encoded in Base64 [33] or
even hexadecimal form. The only method that could adapt to
this scenario would be to intercept the upload request with a
proxy, in a workflow similar to that of BurpSuite [34]. This
methodology, however, would require a big sacrifice in the
autonomy of the tool, as will be discussed in the following
Section.

B. Comparison

The tool that was selected to compare the results with is the
PortSwigger Upload Scanner [35]. This tool is an extension
for the BurpSuite [34] program and as mentioned before, some
of the problems portrayed in the testing process could be ad-
dressed with a workflow similar to the one of BurpSuite [34].
Furthermore, the tool is developed by PortSwigger [25], which
provides some of the used test cases. As a result, this upload
scanner appeared as an appropriate counterpart to perform this
comparison. It contains a variety of modules, some of which
aim to detect XSS and PHP code execution, just like the tool
developed in this work. Unlike the developed tool, however,
it does not automatically download uploaded files. There is
a way to enable this feature by either providing a download
link beforehand or sending a “preflight” request and adding
markers to the response to dictate where the download link is.
Furthermore, there is a feature named “FlexInjector”, which
when configured correctly allows the scanner to function with
single page applications. It is also not powered by a genetic
algorithm and follows instead a predetermined sequence of
upload requests, depending on the enabled modules.

The scanner was run against the same tests that were listed
at the start of the Chapter, with the download feature enabled.
It was unable to identify vulnerabilities in tests #5, #8, #11,
and #13-14. For tests #5, #8, #11, and #13 it was determined
that they were out of scope due to the necessity of an extra
action besides the upload and it is therefore expected for these
tests to fail. There is, however, an interesting result. In test
#5, the extra action required was to override a configuration
file on the web server before uploading the malicious file.
Observing the logs of the scanner shows that it did attempt
this action, but was unable to do it in a particular manner
that this server was vulnerable to. This demonstrates that
attempting to automate an extra action besides the upload is in
itself not a trivial task, further proving why these tests should
be out of the scope of automated tools. Test #14 fails for
a different reason. Although the download link is provided
to the scanner beforehand, the redownload request does not
account for changes to the uploaded filename. In this particular
case, all uploaded filenames are changed to lowercase by the
web server, causing the redownload to fail. The developed
tool is unaffected by this particular case because all uploaded
filenames are already lowercase, however, it does showcase a

limitation. If the images are not reflected and the filenames
are changed, there is no way to guess where it was stored,
and thus, no way to automate its download. It is important
to note that the scanner was able to identify vulnerabilities
in test #12. The way it circumvents the limitations described
in Section IV-A4 is through its “FlexInjector” feature. When
correctly configured, the scanner can identify where in the
upload request the file is, and how it is encoded, allowing it
to function properly with single page applications.

Although the scanner presented results very similar to the
developed tool, with the added ability to test single page ap-
plications, there is one big limitation. Due to BurpSuite’s [34]
proxy workflow, it lacks the autonomy to be run unsupervised.
The user must capture the upload request and configure the
scan in real-time. Furthermore, there is no real “report” back
to the user. While the developed tool explicitly reports which
requests caused which vulnerabilities, the scanner presents a
list of request/response pairs and it’s up to the user to interpret
whether or not a vulnerability was detected. With multiple
modules enabled, this list of pairs easily increases to the
hundreds, which is quite cumbersome to analyze. It is also
important to note that when applicable, the ability to have the
crawler replace providing a download link further decreases
the configuration necessary for the developed tool to run. The
upload scanner does not perform downloads by default and
always requires the extra configuration to enable this feature.

V. CONCLUSIONS

After researching the topic, applying fuzzing techniques to
web application testing is the most appropriate method, since
it performs testing from the perspective of the user. Smart
fuzzing will allow test case generation to be more efficient by
eliminating invalid inputs from the start. Pairing this technique
with genetic algorithms means that the fuzzer will be self-
guiding and will not require input models such as formal
grammars. Finally applying this methodology to the generation
and manipulation of files will play to the strengths of fuzzing
algorithms, taking advantage of its full potential. The purpose
of this project was to assess the viability of applying smart
evolutionary fuzzing on testing file upload endpoints while
minimizing user interaction to increase autonomy. Whether or
not this was successful and within the requirements will be
discussed in the following Sections.

A. Achievements

The fuzzing module proved to be not only effective but
also efficient in detecting vulnerabilities within the defined
scope. Aside from single page applications, all obstacles
were able to be overcome with minimal sacrifice or change
in the requirements. The application of genetic algorithms
for testing file uploads is valid and yielded positive results.
However, implementing the Fuzzy-Based Age Extension of
Genetic Algorithms (FAexGA) [24][10] ended up decreasing
performance and thus, file uploads are not a proper scenario for
implementing this idea. Furthermore, the file parser was very
effective in injecting files with malicious payloads while main-
taining their structure and validity, and since this technique

10

did not depend on the injected payloads, extending the tool to
detect more vulnerabilities requires minimal code changes.

The implemented crawler was able to serve its various
purposes in most of the tested scenarios. Once again, aside
from single page applications, the parsing of the upload
forms worked well to provide the fuzzer with the necessary
parameters. The search for uploaded images also proved to be
effective when it is applicable, although a simple alternative
was provided that was able to bypass this issue.

B. Future Work
It remains an open problem to apply these methods in a way

that can test single page applications. Their unpredictability in
the use of dynamic pages poses a challenge for any attempt
at generically automating user interaction. Although tools like
BurpSuite [34] are viable in these scenarios, the sacrifice in
autonomy and increase in user interaction and configuration
means that the process cannot be automated. A tool that can
apply the methods described in this work with a high level of
autonomy and the ability to target single page applications
would mean a step forward in the realm of fuzzing and
web application testing. This can only be achieved with the
use of techniques that could analyze a dynamic page and
accurately determine the upload method (backend endpoint,
request format, file encoding, etc).

REFERENCES

[1] “Owasp top ten web application security risks — owasp,”
[Accessed Dec 27th, 2021]. [Online]. Available: https://owasp.org/
www-project-top-ten/

[2] “Iso - international organization for standardization,” [Accessed Dec
30th, 2021]. [Online]. Available: https://www.iso.org/home.html

[3] D. Whitley, “A genetic algorithm tutorial,” Statistics and Computing
1994 4:2, vol. 4, pp. 65–85, 6 1994. [Online]. Available: https:
//link.springer.com/article/10.1007/BF00175354

[4] “What is a web application? how it works, benefits and
examples — indeed.com,” [Accessed Jan 12th, 2022]. [Online].
Available: https://www.indeed.com/career-advice/career-development/
what-is-web-application

[5] “What is sql injection? tutorial examples — web security
academy,” [Accessed Dec 27th, 2021]. [Online]. Available: https:
//portswigger.net/web-security/sql-injection

[6] “Cross site scripting (xss) software attack — owasp foundation,”
[Accessed Dec 27th, 2021]. [Online]. Available: https://owasp.org/
www-community/attacks/xss/

[7] “Fuzzing — owasp foundation,” [Accessed Nov 17th, 2021]. [Online].
Available: https://owasp.org/www-community/Fuzzing

[8] “Our guide to fuzzing — f-secure,” [Accessed Jan 12th,
2022]. [Online]. Available: https://www.f-secure.com/us-en/consulting/
our-thinking/15-minute-guide-to-fuzzing

[9] B. Miller, “Computer sciences department university of wisconsin-
madison cs 736 bart miller fall 1988 project list,” 1988.

[10] M. Last, S. Eyal, and A. Kandel, “Effective black-box testing
with genetic algorithms,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 3875 LNCS, pp. 134–148,
2006. [Online]. Available: https://www.researchgate.net/publication/
221471850 Effective Black-Box Testing with Genetic Algorithms

[11] V. T. Pham, M. Böhme, and A. Roychoudhury, “Model-
based whitebox fuzzing for program binaries,” ASE 2016 -
Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, pp. 543–553, 8 2016. [On-
line]. Available: https://www.researchgate.net/publication/310819146
Model-based whitebox fuzzing for program binaries

[12] L. K. Shar, T. N. B. Duong, L. Jiang, D. Lo, W. Minn, G. K. Y. Yeo, and
E. Kim, “Smartfuzz: An automated smart fuzzing approach for testing
smartthings apps,” Proceedings - Asia-Pacific Software Engineering
Conference, APSEC, vol. 2020-December, pp. 365–374, 12 2020.

[13] V. T. Pham, M. Bohme, A. E. Santosa, A. R. Caciulescu, and
A. Roychoudhury, “Smart greybox fuzzing,” IEEE Transactions on
Software Engineering, vol. 47, pp. 1980–1997, 11 2018. [Online].
Available: https://arxiv.org/abs/1811.09447v1

[14] “american fuzzy lop,” [Accessed Dec 15th, 2021]. [Online]. Available:
https://lcamtuf.coredump.cx/afl/

[15] Y. Li, S. Ji, C. Lv, Y. Chen, J. Chen, Q. Gu, and C. Wu,
“V-fuzz: Vulnerability-oriented evolutionary fuzzing,” 1 2019. [Online].
Available: https://arxiv.org/abs/1901.01142v1

[16] “Rfc 2083 - png (portable network graphics) specification version 1.0,”
[Accessed Jul 28th, 2022]. [Online]. Available: https://datatracker.ietf.
org/doc/html/rfc2083#section-3

[17] E. Hamilton, “Jpeg file interchange format,” 1992.
[18] “Terminal equipment and protocols for telematic services information

technology-digital compression and coding of continuous-tone still
images-requirements and guidelines recommendation t.81,” 1993.

[19] “Iso - iso/iec 10918-1:1994 - information technology — digital
compression and coding of continuous-tone still images: Requirements
and guidelines,” [Accessed Jul 29th, 2022]. [Online]. Available:
https://www.iso.org/standard/18902.html

[20] “Github - scrapy/scrapy: Scrapy, a fast high-level web crawling
scraping framework for python.” [Accessed Jul 29th, 2022]. [Online].
Available: https://github.com/scrapy/scrapy

[21] “Xpath — mdn,” [Accessed Jul 29th, 2022]. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/XPath

[22] “What is nosql? nosql databases explained — mongodb,” [Accessed
Jul 21st, 2022]. [Online]. Available: https://www.mongodb.com/
nosql-explained

[23] “Github - msiemens/tinydb: Tinydb is a lightweight document oriented
database optimized for your happiness :),” [Accessed Jul 21st, 2022].
[Online]. Available: https://github.com/msiemens/tinydb

[24] M. Last and S. Eyal, “A fuzzy-based lifetime extension of genetic
algorithms,” Fuzzy Sets and Systems, vol. 149, pp. 131–147, 1
2005. [Online]. Available: https://dlnext.acm.org/doi/abs/10.1016/j.fss.
2004.07.011

[25] “Web application security, testing, scanning - portswigger,” [Accessed
Dec 26th, 2021]. [Online]. Available: https://portswigger.net/

[26] “File uploads — web security academy,” [Accessed Sep 16th, 2022].
[Online]. Available: https://portswigger.net/web-security/file-upload

[27] “digininja/dvwa: Damn vulnerable web application (dvwa),” [Accessed
Sep 16th, 2022]. [Online]. Available: https://github.com/digininja/
DVWA

[28] “crater-invoice/crater: Open source invoicing solution for individuals
businesses,” [Accessed Sep 16th, 2022]. [Online]. Available: https:
//github.com/crater-invoice/crater

[29] “Open source content management system : : Cms made
simple,” [Accessed Sep 16th, 2022]. [Online]. Available:
http://www.cmsmadesimple.org/

[30] “Wiki—docs,” [Accessed Sep 16th, 2022]. [Online]. Available:
https://www.wikidocs.it/

[31] “Selenium,” [Accessed Dec 15th, 2021]. [Online]. Available: https:
//www.selenium.dev/

[32] “Json,” [Accessed Sep 19th, 2022]. [Online]. Available: https:
//www.json.org/json-en.html

[33] “Base64 - mdn web docs glossary: Definitions of web-related
terms — mdn,” [Accessed Sep 19th, 2022]. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Glossary/Base64

[34] “Burp suite - application security testing software - portswigger,”
[Accessed Dec 26th, 2021]. [Online]. Available: https://portswigger.net/
burp

[35] “Portswigger/upload-scanner: Http file upload scanner for burp
proxy,” [Accessed Sep 30th, 2022]. [Online]. Available: https:
//github.com/PortSwigger/upload-scanner

