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Abstract

The benefits of home hospitalization are well established in the literature and justify its growing demand.
Along with its rapid expansion, this model of care is also subject to higher uncertainty and variability compared to
other home-based services. Given the logistical specificities of a home hospitalization service network, operational
research tools that support decision-making become imperative, notably regarding the location and allocation of
resources.

This paper addresses a districting problem motivated by a real-world case study of a home hospitalization
service network in the district of Lisbon, Portugal. The problem is formulated as a multi-objective mixed integer
linear programming model by considering criteria of complete and exclusive assignment, compatibility, distance
and capacity limitations, compactness, and workload balance. The objective function combines the last three
criteria using the lexicographic method, seeking to minimize the deviation from the average workload, the distance
between basic units, and the use of under-capacity.

Computational results were presented for several generated instances representing increasing demand scenarios.
The model was further explored for three situations: the gradual opening of potential new home hospitalization
units, the districting plan when all units in the network are open, and the allocation of multiple teams within a
single unit. Sensitivity analyses were performed on the main parameters to obtain managerial insights, concluding
that it is possible to obtain both workload-balanced and compact districts with no expressive trade-off between
the two objectives.

Keywords: Home Hospitalization, Districting Problem, Multi-objective Optimization, Mixed-Integer Linear
Programming, Operational Research

1. Introduction
In order to address the growing growing global need for
hospital beds and rising healthcare costs, technological
and scientific innovation is becoming more and more
crucial. Catalysed by the COVID-19 pandemic and
aligned with today’s demographic and economic trends,
home hospitalization (HH) presents itself as an effective
alternative to traditional hospital inpatient care, provid-
ing acute health care in a patient’s home. It can replace
hospital care entirely or reduce hospital length of stay
through early discharge. The clinical results observed so
far are very favorable, with an overall reduction in hos-
pital days and a decrease in the risk of hospital readmis-
sion. In addition, HH has increased patient and family
satisfaction while reducing hospitalization costs [1].

Home hospitalization is included in the spectrum of
home care. Despite sharing several attributes with other
home care services, such as the need to travel between
patients’ homes and the multidisciplinarity of the teams,
the specific features of home hospitalization bring new
logistical challenges. Some of these challenges are the
need for greater proximity to the hospital, the possibil-
ity of sharing staff with other hospital services, and the
increased uncertainty experienced due to the acute ill-
ness profile of patients and consequent shorter lengths
of stay .

In Portugal, the Ministry of Health developed a strat-
egy aimed at expanding the delivery of HH services in
the National Health System, reaching 28 units at the

end of 2020. In the same year, home hospitalization
also became a reality in the portuguese private health
sector with the opening of Provider X’s HH unit. Cur-
rently, this unit is located in Hospital 1 and covers the
subregion of Greater Lisbon. More specifically, the unit
serves a 30-kilometer radius, a distance that allows the
HH teams to assist patients in about 30 minutes in case
their conditions deteriorate. In addition to Hospital
1, the region has three other Provider X hospitals for
which home hospitalization service expansion is planned
in the short term.

The environment of extreme uncertainty, variability,
and ongoing change in which health services operate
makes detailed information for decision-making strongly
desirable [2]. Analysis of the geographic organization
and distribution of health service capacity, from the lo-
cal hospital level to services provided throughout a re-
gion or country as a whole, is often required. In this
set, districting is a strategic-tactical planning decision
that involves clustering a set of demand points, i.e., a
group of patients aggregated according to their location,
into districts that satisfy relevant criteria. Adopting
a districting approach in a Home Hospitalization set-
ting leads to increased reactivity and efficiency of care-
givers. It also facilitates human resource management,
improving the quality of care and increasing patient and
provider satisfaction [3]. Despite the clear benefits of
mathematical decision support tools such as districting,
these issues have seldom been considered in the home
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hospitalization literature.

This paper aims to create a mathematical model ca-
pable of ensuring the optimal allocation of patients by a
set of HH units, taking into account some criteria that
will be discussed in the following chapters. As a case
study, the model will be applied to candidate Provider
X HH units in the Greater Lisbon region.

2. Literature Review

Districting aims at dividing a large geographical region
into sub-areas, referred to as districts, for organizational
or administrative purposes. It is the process of grouping
small geographic areas, called basic units, into larger ge-
ographic clusters (districts) to optimize certain criteria
and subject to some constraints [4, 5] and then assign-
ing each cluster to a set of resources [6]. According to
[6], districting encompasses three distinct strategic OR
problems: partitioning, assignment, and classification.

As home hospitalization is framed within home care,
it is assumed that the districting models for these two
types of care are similar overall. Thus, the remainder of
this section will look at districting solutions for health-
care and home care contexts.

2.1. Modeling approaches

There is a consensus in the field to model districting
as a mixed-integer programming (MIP) problem. MIP
models deal with problems where some decision vari-
ables are constrained to integer values at the optimal
solution. Capturing the discrete nature of some deci-
sions greatly expands the scope of practical optimiza-
tion problems that can be defined and solved. When
the models do not have quadratic characteristics, they
are called Mixed Integer Linear Programming (MILP)
problems. There are also non-linear formulations in the
literature, although far less frequent [7, 8, 9].

Depending on the specific application, location-
allocation and set partitioning are two common formula-
tions for districting problems [10]. A location-allocation
model takes a fixed set of district centers and assigns
each basic unit to exactly one district center. The ob-
jective is to minimize the total cost of assigning those
units to district centers whilst being subject to certain
constraints. This formulation is beneficial in situations
where the district center acts as a depot, being the start-
ing and finishing point for all routes within the district
[10]. In the Set Partitioning formulation, a set of poten-
tially feasible districts are heuristically generated and
then selected to optimize the overall balance of the dis-
trict plan [4]. The objective function minimizes the to-
tal cost of all selected districts while ensuring that each
unit is assigned to a single district and that a chosen
number of districts is generated [11]. This formulation
enables the modeler to design and evaluate the cost of
complex district restrictions within an auxiliary prob-
lem, outside of the core optimization problem. This
confers an advantage to the Set Partitioning formula-
tion since almost any criterion can be applied to the
generation of candidate districts [4].

2.2. Solution approaches
Ideally, it would be possible to solve districting mod-
els using exact methods that guarantee to find an opti-
mal solution. Exact methods are typically solved us-
ing solvers such as CPLEX [3, 12], Gurobi [13], or
Xpress [11]. However, most of the districting prob-
lems are NP-hard. Thus, large-scale instances are in-
tractable by exact optimization algorithms [4]. For that
reason, many papers in this field developed heuristics
and metaheuristics. These approaches have the flexi-
bility to include almost any practical criterion and can
handle complex constraints. Consider the case of [13],
where the authors started by solving the model using
the Gurobi Optimizer, which proved feasible for their
problem. However, they noted that the solver could
be time-consuming and suggested a greedy heuristic
method. Other authors implemented well-known meta-
heuristics, specifically Tabu Search [7, 8] and Genetic
Algorithms [14, 15, 9, 5].

2.3. Uncertainty in districting models
Mathematical models represent a simplified version of
a real system and should be able to explain previ-
ous observations, integrate current data, and antici-
pate the system’s response to planned stresses [16].
A deterministic model is one in which state variables
are determined solely by model parameters and sets
of previous states. The home-care deterministic dis-
tricting problem has a comprehensive literature base
[7, 8, 17, 3, 11, 13, 9]. These models do not account
for uncertainty, neglecting the effect of unpredictable
variables in the solution [16].

No stochastic work could be identified for home-care
districting. Within healthcare districting, [12] presents
an approach that, although not stochastic, uses a multi-
period model that allows for better planning adjustment
according to demand and supply changes and poten-
tially improves the efficiency and quality of the health
service. The authors’ districting model was applied to
the primary care scheme of Istanbul, Turkey.

[18] handles the allocation of patients and the facil-
ity location, employing a stochastic approach to LA
through a geographic simulation model using Delphi
programming. The incorporation of stochasticity in
their model allows for a better fit of variable factors
such as patient flows or transportation time. It also
makes the model more generic and easier to use by dif-
ferent users. The model was used in two case studies
at the district and regional levels in Eastern England.
There is no objective function in this work, and an op-
timal solution is not necessarily found. However, it en-
courages discussions between stakeholders and allows
for the rapid configuration of new scenarios. [5] is the
only paper in this literature review that estimates de-
mand, doing so through hedonic models. They use two
methods to deal with uncertainty, allowing the decision-
makers to adjust their results according to their attitude
toward risk. They obtain higher values for the original
objective when the worst-case scenario is not considered
and lower values when protection against it is increased.
This work was applied to residential areas in Iran with
positive results compared to the existing districting de-
cisions.
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Table 1: Key findings from the literature review on the districting problem.
Publication Application Uncertainty Model Approach Solution Case Study Location Stakeholders

(Blais et al., 2003) [7] Home Care D NLP MH TS
√

Canada
√

(Harper et al., 2005) [18] Healthcare S - - GS
√

England
√

(Lahrichi et al., 2006) [8] Home Care D NLP MH TS
√

Canada

(Sahin et al., 2010) [17] Home Care D MIP E - -

(Benzarti et al., 2013) [3] Home Care D MIP E CPLEX -

(Datta et al., 2013) [14] Healthcare D MIP MH GA
√

England

(Steiner et al., 2015) [15] Healthcare D MIP MH GA
√

Brazil

(Gutiérrez-Gutierrez and Vidal, 2015) [11] Home Care D MIP E Xpress-IVE
√

Colombia
√

(Lin et al., 2017) [13] Home Care D MIP E, H Gurobi, Greedy
√

China

(Yanik et al., 2019) [12] Healthcare D MIP E CPLEX
√

Istambul

(Lin et al., 2020) [9] Home Care D MINLP MH GA
√

China
√

(Darmian et al., 2021) [5] Healthcare S MIP MH GA
√

Iran
√

2.4. Districting Criteria
The vast majority of the reviewed papers consider multi-
objective optimization. This section describes the most
used criteria in the literature, distinguishing whether
they are formulated as a constraint or part of the ob-
jective function.

Accessibility : Also referred to as mobility, this crite-
rion measures the ease of moving from one location to
another within a district. It is necessary since caregivers
use public transportation in most home-care case stud-
ies. This criterion was incorporated as a constraint in
[7, 8, 17, 3, 13, 12].

Balance: Balance describes the desire for districts
of similar size concerning some performance measure.
The most common balance criterion concerns work-
load. Usually expressed in hours per year, the workload
corresponds to the sum of the service time, or “care”
workload, and of the average travel time between the
district center and the demand points [7, 17]. Work-
load balance is considered essential in district design,
hence being mentioned in most districting literature
[7, 8, 17, 3, 11, 12, 9, 5]. Other types of balance can
be looked for, such as population size [15, 14] or even
population characteristics such as age [14].

Capacity limitation: This criterion seeks to respect
the capacity limitations of each district, ensuring that
supply meets demand. Rarely mentioned in the litera-
ture, it was used as a constraint in [13, 12].

Compactness: A geographically compact district
is somewhat round-shaped, undistorted, and without
holes [4, 5]. Different approaches can be used to mea-
sure compactness since its definition strongly depends
on the geometric representation of basic units. It can be
ensured by minimizing travel distances [14, 3, 15, 12] or
travel times [17, 11, 13, 9, 5], thus improving a provider’s
efficiency. Compactness is a consensual criterion, for-
mulated as an objective in [17, 14, 11, 15, 13, 9] and as a
constraint in [14, 12, 9]. In the case of [3], compactness
is integrated into the model first as a hard constraint
and then as subject to minimization.

Complete and Exclusive Assignment: Also referred
to as the indivisibility of basic units or integrity, this
criterion states that each basic unit must be assigned
to one and only one district, allowing the establishment
of long-term relationships with patients and avoiding
overlapping caregiver responsibilities. This is one of the
fundamental constraints of a districting problem, only
not included in the formulation of [12], that allowed
the gradual assignment of basic units to one or more
districts.

Contiguity: A contiguity or connectivity criterion
guarantees that one can travel between any two points
of a certain district without going through any other
district. It is a desirable property not only for adminis-
trative reasons but also because it facilitates the reduc-
tion of travel distances. It is possible to ensure contigu-
ity through both geometrical [7, 8, 11] and graph-based
measure constraints [14, 15, 5]. Only in [5], this crite-
rion is part of the objective function.

District number: The number of districts to create
can be predefined [14, 3, 15, 11], limited to a specific
range [5], or minimized as in [13, 9]. In the last two
papers, an upper bound is also established.

Respect for administrative boundaries: The districts
designed must conform to the administrative bound-
aries, either municipalities or civil parishes. This simpli-
fies the organization of health care delivery procedures
and indirectly assures district contiguity. It is consid-
ered a constraint in [7, 8, 17, 3, 11] and an objective in
[14].

2.5. Contributions
To date and the best of the author’s knowledge, no arti-
cle addresses the problem of districting considering the
specific characteristics of home hospitalization. Most
papers reviewed used real healthcare case studies, but
less than half of the authors explicitly refer to the in-
clusion of stakeholders in the decision-making process.
There is also a shortage of models that encompass the
uncertainty inherent to the healthcare setting. This dis-
sertation will tackle these three shortcomings.

Next section provides the description of the general
problem and the mathematical programming model.

3. Mathematical Model
The following chapter proposes a generic determinis-
tic multi-objective mixed-integer linear programming
(MILP) formulation to address the districting problem
for a home hospitalization unit network. Subsection 3.1
introduces the formal problem description along with
the underlying assumptions. The mathematical formu-
lation can be consulted in Subsection 3.2 .

3.1. Problem Statement
Given a set of d ∈ D demand points and a set of u ∈ U
home hospitalization units or supply points, the district-
ing problem consists of grouping the patients’ locations
into good districts according to relevant criteria. The
goal is to minimize the travel distances and travel times
within districts, thus making districts as compact as
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possible while assuring workload balance between the
region’s HH units. The districting plan must also guar-
antee that care is provided according to the different
capacities of the HH units. Thus, minimizing the pe-
riods in which the units cannot satisfy demand is also
part of the objective function. The time horizon of the
districting plan is an input of the model; for this disser-
tation, one year will be considered.

Each demand point represents the aggregate demand
of a particular civil parish or parish cluster. It is as-
sumed that these demand points have been defined a
priori. Demand points are described by a certain num-
ber of patients, about whom the month they were ad-
mitted to HH care and the number of days of hospital-
ization is known. The number of daily visits per month
needed to treat the patients of each demand point (given
by hm

d ) is an input of the problem. To obtain this num-
ber, the hospitalization days of each month’s patients
are summed. Assume that a daily visit represents the
complete daily care provided to a patient and may, in
practice, entail two trips to the patient’s home. HH
units are characterized by their capacity, meaning the
number of patients each unit can treat daily. Of the
supply points, only those that are open, denoted by
u ∈ Uopen, will be considered in the districting decision.
The number of districts to design is predetermined and
equal to the number of HH open facilities. Each demand
point is assigned to precisely one district.

The decisions to be made include the allocation of de-
mand points to HH units, given by the decision variable
xdu, the maximum workload deviation, the longest dis-
tance between two demand points, the longest distance
between a demand point and its assigned HH unit, and
the maximum under-capacity on which each HH unit
would operate on, denoted by ∆, Ω, Θ, and Ψ, re-
spectively. This formulation also quantifies each supply
point’s monthly and annual workload (wlmu and wlu),
that is, what percentage of its capacity is deployed in
those periods. In addition, the model identifies units
in under-capacity and in which months that occurs; the
auxiliary variable UnderCapmu represents the monthly
value of under-capacity for each HH unit.

3.1.1 Assumptions

Without losing generality, it is assumed that:

A.1 The districting is done once for a relatively long
time. The period of a common calendar year is
considered, totaling 365 days.

A.2 The HH structure can treat all patients, and all
the demand points are covered, meaning that all
the patients admitted to the HH must be assigned
to a district.

A.3 Each open HH unit serves exactly one district.

A.4 The number of patients admitted to the HH struc-
ture is known in advance and does not change while
considering the districting problem.

A.5 As there are no unallocated demand points and
supply is limited, under-capacity may occur in spe-
cific units in certain months.

A.6 Each demand point has a predefined monthly num-
ber of required daily visits, given by the sum of the
hospitalization days of the aggregate demand.

A.7 Patients admitted on any day of a particular month
are accounted as entering on the first day of that
month.

A.8 The coordinates of each demand point correspond
to the midpoint location of each parish.

A.9 Given that the road networks are dense in urban
locations, geodesic distances can be utilized to ap-
proximate road distances and journey durations.

A.10 All patients are homogeneous in terms of care re-
quirements and service demand.

A.11 HH units and their teams are homogeneous regard-
ing skills, contracts, and workload capacity.

3.2. Mathematical Formulation
The following section introduces the model’s notation
and presents the objective functions and constraints.

Sets and Subsets
d ∈ D set of demand points
u ∈ U set of home hospitalization units
m ∈ M set of months in the planning horizon
(d, d′) ∈ E set of demand points pairs (d, d′) ∈ E where
(d, d′) ∈ E if and only if edd′ = 1
u ∈ Uopen subset of potential new home hospitalization
units

Parameters and weights
δdd′ : Distance between demand points d and d′

δdu : Distance between demand points d and home hos-
pitalization unit u
δDmax : Maximum distance allowed between 2 demand
points d, d′ ∈ D assigned to the same district u ∈ U
δUmax : Maximum distance allowed between a demand
point d ∈ D and its assigned home hospitalization unit
u ∈ U
τ : Time frame considered in the districting decision,
expressed in days
γm: Number of days of month m ∈ M
hm
d : Number of hospitalization days of demand point

d ∈ D in month m ∈ M
Capu: Daily capacity of each HH unit u ∈ U , expressed
in number of patients
MonthSupplym

u : Capacity of each HH unit u ∈ U for
month m ∈ M , MonthSupplym

u = Capu ∗ γm
Supplyu: Yearly capacity of each HH unit u ∈ U ,
Supplyu = Capu ∗ τ
edd′ = {0, 1}: Compatibility index, 1 if demand points
d and d′ are compatible; 0 otherwise
openu = {0, 1}: Potential open home hospitalization
units, 1 if u ∈ Uopen; 0 otherwise

Decision Variables
xdu = {0, 1}: 1 if demand point d is assigned to district
u; 0 otherwise
∆ : The maximum deviation, expressed as a percentage,
between the care workload associated to each HH unit
u ∈ U and the average care workload among all districts
Ω : The maximum distance between two demand points
d, d′ ∈ D assigned to the same unit u ∈ U
Θ : The maximum distance between a demand point
d ∈ D and it’s assigned HH unit u ∈ U
Ψ : The maximum undercapacity on which a HH unit
u ∈ U would operate
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wlu : Percentage of utilized care workload out of the
total annual supply of district u
wlmu : Percentage of utilized care workload out of the
total supply of district u in month m
wl : Average workload among all districts
MonthDemandmu : The number of required daily visits
attributed to district u ∈ U during month m ∈ M
Demandu: The total number of required daily visits
attributed to district u ∈ U
UnderCapmu : The number of extra daily visits that unit
u ∈ U would have to operate for there to be no under-
capacity in month m ∈ M

Mathematical Model

min∆ (1)

∆ ≥ wlu − wl, ∀u = 1, ..., U (2)

∆ ≥ wl − wlu,∀u = 1, ..., U (3)

Demandu =

D∑
d=1

M∑
m=1

xdu ∗ hm
d (4)

wlu =
Demandu
Supplyu

(5)

wl =

U∑
u=1

wlu
U

(6)

minΘ (7)

Θ ≥ δdu ∗ xdu, ∀d = 1, ..., D, u = 1, ..., U (8)

minΩ (9)

Ω ≥ δdd′(xdu + xd′u − 1), , ∀d, d′ ∈ D,u ∈ U (10)

minΨ (11)

Supplyu +Ψ ≥ Demandu (12)

MonthSupplym
u +Ψ ≥ MonthDemandmu ,∀u = 1, ..., U

(13)

MonthDemandmu =

D∑
d=0

xdu ∗ hm
d (14)

Subject to:

xdu ≤ openu,∀d = 1, ..., D, ∀u = 1, ..., U (15)

U∑
u=1

xdu = 1,∀d = 1, ..., D (16)

xdu ∈ {0, 1},∀d = 1, ..., D, u = 1, ..., U (17)

xd′u ≥ xdu, ∀(d, d′) ∈ E,∀u ∈ U (18)

δduxdu ≤ δUmax, ∀d ∈ D,u ∈ U (19)

δdd′(xdu + xd′u − 1) ≤ δDmax, ∀d, d′ ∈ D,u ∈ U (20)

The model considers four objective functions. The
workload balance objective is written in equations 1, 2,
and 3 that minimize the relative deviation of the district
workload from the mean district workload. Equations
7 and 8 minimize the distance between a given HH unit
and its’ assigned demand points, while equations 9 and
10 minimize the maximum distance between two de-
mand points assigned to the same HH unit. The fourth
objective ensures that the allocation is carried out with
minimum values of under-capacity and is defined in 11,
12, and 13 where the monthly demand is given by 14.

Constraint 15 defines if supply points are considered
open or not. Constraint 17 defines the binary and inte-
ger decision variables while 16 assures the complete and
exclusive assignment of demand points. Making use of
the set (d, d′) ∈ E containing all pairs of demand points
considered compatible, the constraint 18 ensures that if
the demand point d is assigned to the district u ∈ U ,
then the point d′ will also be. Finally, equations 19 and
20 regard distance limitations.

The suggested solution approach uses the lexico-
graphic method to obtain an exact solution. This ap-
proach considers the stakeholders’ preferences, guaran-
tees Pareto-efficient solutions, and does not require nor-
malization of the objective functions.

4. Results and Discussion
The present section discusses the application of the pro-
posed model to Provider X’s case study. The developed
model was applied to various instances that simulated
different demand scenarios. Subsection 4.1 describes
the test instances. Next, the computational results are
analysed for Provider X’s current HH unit and its three
potential new supply points in 4.2. Finally, some man-
agerial insights are presented in 4.3.

4.1. Growing demand scenarios and test in-
stances

Three demand scenarios were created to study the pos-
sible combinations between the upcoming HH units.
Later, a fourth scenario was created to analyze district-
ing with all units open. For each scenario, two data
frames were set: one for demand and one for supply.
The supply data frame contains the assessed hospitals’
list, location, daily capacity, and whether or not their
HH unit is open. The last two parameters were var-
ied for the different scenarios and discussed later in this
section.

Both the number of patients per parish per month
and the number of hospitalization days were randomly
generated following a triangular distribution (X ∼
triangular(a, c, b)). The number of hospital days per
patient followed X ∼ triangular(1, 7, 70), attempting to
represent the distribution observed in Provider X’s pa-
tients. In turn, the number of patients per month per
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parish was calculated based on the number of inhabi-
tants in each parish and an arbitrary monthly service
utilization rate. A symmetric distribution was consid-
ered, given by X ∼ triangular( 2p

3
, p, 4p

3
) where p is the

product of a monthly utilization rate by the number
of inhabitants in each parish. The same utilization rate
was used throughout all the municipalities. This simpli-
fication is not representative of reality and was corrected
in scenario 4, as discussed later.

The distance limit and planning horizon parameters
were defined and did not differ between scenarios. The
current Provider X hospitalization services’ catchment
area was studied for one year. Ideally, patients should
not be more than 30 kilometers away from the hospital.
However, as the feasible region should cover all demand
points, the value of parameter δUmax was increased to
45 kilometers for this case study.

4.1.1 Scenario 1

Scenario 1 (S1) is based on the demand for HH ser-
vices in the Hospital 1 unit in 2021 and the first quarter
of 2022. In this scenario, the population residing in all
parishes of the municipalities of Lisbon, Cascais, Sintra,
Odivelas, Loures, Mafra, and Oeiras was considered. A
service utilization rate of 0.014% generated an arbitrary
number of patients per parish, making the distribution
of patients proportional to the number of inhabitants
in each parish in 2021, obtained from the 2021 census
1. The rate was calculated to produce approximately
the same number of patients treated by Provider X in
2021, totaling 147 annual patients. Regarding supply,
each hospital can treat 12 patients simultaneously ex-
cept Hospital 2, where the capacity is expected to be 6
since the decision-makers reported that the unit would
always be smaller than the remainder.

4.1.2 Scenario 2

Scenario 2 (S2) assumes that demand will equal sup-
ply if the latter increases. Therefore, this scenario rep-
resents a demand proportional to that in Scenario 1,
where the number of patients in S2 roughly matches
the number of patients in S1 multiplied by the num-
ber of open HH units. This scenario’s effective demand
extends to the Amadora municipality, the only munici-
pality in the region that has not yet obtained Provider
X home hospitalization services. There are three sub-
scenarios within S2 whose utilization rates are commen-
surate to the number of units opened and adjusted con-
sidering the coverage of an additional city (Amadora).
By request of the stakeholders, the units’ capacity was
increased to 15 patients per day for all hospitals except
Hospital 2, where the capacity is assumed to be 8.

4.1.3 Scenario 3

Scenario 3 (S3) forecasts a 3-year high-demand scenario.
It considers the sub-scenarios described in S2 and Portu-
gal’s historical growth of Home Hospitalization services.
A growth rate of 16.5% per year was considered. This

1Provisional data from Instituto Nacional de Estat́ıstica, url:
https : //www.ine.pt/scripts/dbcensos2021.html

value accounted for the growth experienced between Au-
gust 2021 and the same month in 2022, as documented
by [19]. When running this scenario, the same supply as
in S2 was considered. In the discussion of the results, it
was evaluated how much additional capacity was needed
to meet the new demand figures.

4.1.4 Scenario 4

So far, the number of patients per parish has been
based solely on the number of inhabitants and consid-
ering a common utilization rate for all parishes. How-
ever, both potential and effective demand reflect sev-
eral other factors. To obtain a more accurate esti-
mate of the number of patients, it would be necessary
to comprehensively characterize the patient profiles for
this type of service and quantify them for each parish.
One could, for example, incorporate economic factors
or break down the demand by age group, given that
senior citizens are the most in need of HH services.
Scenario 4 seeks to approximate the proportion of pa-
tients per parish felt in Provider X’s reality observed
up to now to obtain districting solutions that are of
practical use for decision-makers. To this end, different
rates were considered for each parish instead of con-
sidering a single utilization rate. Patients were scaled
according to: demand[Lisboa] = 2∗demand[Cascais] =
4 ∗ demand[Sintra] = 8 ∗ demand[Oeiras] = 10 ∗
demand[Amadora, Loures,Mafra,Odivelas]. These
rates reflect a high-demand scenario, with a total of
773 patients per year, an intermediate number between
S2.3 and S3.3.

Table 2: Characterization of the scenarios and instances
used for the case study districting

Scenario S1 S2.1 S2.2 S2.3
Utilization rate 0.014% 0.018% 0.027% 0.036%

Patients 147 273 513 677
Binary variables 276 300 88 88
Continuous variables 109 109 109 109
Constraints 39144 46136 4321 4323
Scenario S3.1 S3.2 S3.3 S4

Utilization rate 0.028% 0.042% 0.056% variable
Patients 486 803 1068 773
Binary variables 300 88 88 88
Continuous variables 109 109 109 109
Constraints 46136 4321 4323 4323

4.2. Computational Experiments Results

The model was implemented in a Python script us-
ing the library docplex - IBM Decision Optimization
CPLEX. All tests were run on a Macbook Pro com-
puter with an Apple M1 processor and 16 GB of RAM,
running macOS Monterey (version 12.2.1). This section
presents the results of the model implementation. Ob-
jectives were ranked according to their priority for the
stakeholders in decreasing order of importance: Ψ, ∆,
Θ, and Ω. Note that this order was maintained for all
studies. An analysis of potential trade-offs when vary-
ing the order of preference was later conducted.
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4.2.1 Optimal launch order for the upcoming
Provider X HH units

The possible combinations of 2 and 3 HH units within
the four units under study were explored to sustain the
best launch order decision. The review considered three
scenarios (S1, S2, and S3) to ensure that decisions were
appropriate to current and future demand. Figures 1
and 2 provide a comparison between the objective values
for the different districting decisions. In the figures, the
values for each objective were normalized to facilitate
comparison.

Districting between two HH units

The first decision concerns the location for the second
HH unit to be opened. Three pairs of units were an-
alyzed: H1 and H3, H1 and H2, H1 and H4 2. It is
assumed that H3 and H4 units are similar in everything
except their location, having the same capacity and no
preference on the part of the decision-makers to choose
one unit over the other. The H2 unit, on the other hand,
is a smaller unit that historically serves fewer people.
Hence it is assumed that this unit has half the installed
capacity of the other facilities. Furthermore, if the dis-
tricting performance is equally satisfactory for all three
cases, it would be preferable to open the Hospital 3 or
Hospital 4 unit rather than Hospital 2.

Overall, when running the model for the three scenar-
ios, the results for the three combinations are somewhat
balanced. H2 would have some advantage in terms of
location for the first two instances run, managing to be
more central for patients from Loures, Mafra, and Sin-
tra. There are, however, two reasons to discard the H1
+ H2 pair. On the one hand, the instances’ demand
is based solely on population density in the municipali-
ties covered by Provider X. While this is a fair measure
to represent potential demand, it does not represent ef-
fective demand. The effective demand is impacted by
several other drivers that were not considered when cre-
ating the test instances. When looking at the actual dis-
tribution of Provider X’s patients in 2021 and 2022, the
number of patients in Sintra’s surroundings is less than
that observed in, for example, Cascais. On the other
hand, the fact that the H2 hospital is smaller than the
others and is equipped to serve fewer people makes it a
less evident alternative for high-demand scenarios.

When looking at the two other options, Hospital 3 or
Hospital 4, it is more advantageous to open Hospital 3
first. Although the difference is not substantial, opening
H3 allows the patient furthest from their HH unit to be
3 kilometers closer than if H4 had opened. The fact
that the effective demand for Provider X in 2021/2022
in Cascais was proportionally higher than in the test
instances reinforces the choice of opening the H3 unit
first.

Districting between three HH units

The trios behave similarly concerning workload balance
for the first two scenarios, not exceeding a 2.5% differ-
ence between them. The difference in compactness ob-

2H3: Hospital Hospital 3, H4: Hospital Hospital 4, H1: Hos-
pital Hospital 1, H2: Hospital Hospital 2

Figure 1: Comparison of districting outcomes between
potential pairs of HH units.

jectives is quite significant in the first scenario, where
opening the Hospital 2 unit would be advantageous.
However, this difference is attenuated in scenarios S2
and S3, and the Θ value differs in less than 2 kilome-
tres.

When looking at the overcapacity values, they grow
in tandem with the increase in demand. Again, as it
is assumed that the Hospital 2 unit has about half the
capacity of the others, the value of Ψ worsens when
this unit is considered open. Considering scenario S2.2,
for all patients to be served, it would be necessary to
treat three more patients per day and per hospital when
opening H2. For the case of opening Hospital 4, in-
creasing the capacity by only one patient in one of the
hospitals would be sufficient. In addition, the workload
balance value in the higher demand scenario is substan-
tially worse for the trio that includes Hospital 2.

This analysis shows that opening H4 is increasingly
beneficial as demand rises. However, this decision is
based on a higher overcapacity and worse workload bal-
ance for high-demand scenarios, which both derive from
Hospital 2’s capacity limitation.

Figure 2: Comparison of districting outcomes between
potential trios of HH units.

4.2.2 Districting solution for four HH units

After studying the sequential opening of three Provider
X units, the districting decisions were analysed consid-
ering all units were open. For scenario S2.3, despite the
annual workload value of the HH units varying between
80% and 90%, there were months of under-capacity. It
would be necessary to increase capacity by two patients
in the Hospital 3 and Hospital 4 units and one in the
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remaining units to meet this demand scenario. In sce-
nario S3.3, all four units were under-capacity in most
months, with more than double the capacity at Hospi-
tal 1 and Hospital 3 needed to meet demand. Given the
high demand and the reduced capacity at Hospital 2, it
was more challenging to ensure workload balance: the
other three units had a 123% capacity, while the annual
workload at Hospital 2 was around 145%. Regarding
compactness, the results suggest that it is nearly indif-
ferent if 3 or 4 units are open since the values of Θ and
Ω are not better than those observed in the districting
for three units.

It is prominent how different the districting decisions
for these two scenarios are: very few clusters are served
by the same unit. The model does not promote sta-
ble allocation areas, which is important at the strate-
gic planning level. Compared to the districting mod-
els found in literature, of the 11 studied papers, only
two explicitly mentioned incorporating capacity into the
constraints. Furthermore, although most try to ensure
workload balance, this is done annually. Incorporating
a monthly capacity constraint is a novelty considering
the literature studied and justifies that the solution is
sensitive to fluctuations in demand.

Because the proposed districts in S2.3 and S3.3 were
not congruent with each other and were not representa-
tive of the distribution of effective demand at Provider
X, few conclusions could be drawn regarding the op-
timal catchment areas for each HH unit. To address
these shortcomings, scenario S4 was created, and the
model was tested. The objectives related to compact-
ness again show similar values, as the geographic con-
figuration of the demand points was maintained. It is
important to note that this scenario contemplates a sig-
nificantly lower demand in the municipality of Sintra
and that it is, therefore, possible to obtain quite bal-
anced districts in terms of workload, with the value of
∆ being around 3%. Again, there are few similarities
between the newly obtained districts and the two pre-
vious district sets.

Since S4 reflects the current effective demand and this
study only covers a three-year horizon where significant
changes in demand are not expected, the districting out-
comes for this scenario are the most valuable to Provider
X.

Figure 3: Districting solution considering all four HH
units are open for scenario S4.

Sensitivity analysis: The potential trade-offs when

optimizing one objective over the others were evaluated.
It was assumed that the objective of minimizing under-
capacity should always be solved first: only the six pos-
sible permutations among the remaining three objec-
tives were evaluated. In the case of scenario S2.3, by
varying the order in which the objectives are solved, the
same solution is always obtained, indicating that there
is a global optimal solution and that there is no compro-
mise in minimizing one objective before any other. The
same does not apply to scenarios S3.3 and S4, though
the improvement of a given objective over the detriment
of the others is minimal. Regarding ∆, the differences
are negligible: in S4, the value does not vary, and in
S3.3, it varies less than 1%. The only notable trade-off
is between Θ and Ω. Still, the variation of the values
of these two objectives on the Pareto frontier is mini-
mal. By minimizing Ω first, the value of Θ increases
by less than 2 kilometers for both scenarios. In the
case of optimizing Θ first, the value of Ω increases by
about 3.5 kilometers in scenario S3.3 and 2.7 kilometers
in scenario S4. Overall, there are no notable trade-offs
between the optimized variables.

The compatibility constraint, which imposes respect
for administrative boundaries and also forces contiguity,
was not used so far because it was not considered nec-
essary for this case study. Note that this constraint is
adaptable to various circumstances and the needs of the
decision-makers since it starts from a list of compatible
parishes and imposes that these are attributed to the
same district. The results of districting for scenario S4
were tested, considering that demand points from the
same municipality had to be allocated to the same HH
unit. It was verified that imposing this constraint wors-
ens the optimization significantly, leading to a workload
imbalance of 50.8% and an increase in under-capacity
from 234 to 3025.

4.2.3 Districting solution for two HH teams

The model’s volatility regarding demand makes it more
useful at the tactical level than the strategic level. It
is possible, for example, to use the model considering
only one unit at a time but dividing it into different
teams. Consider the as is demand scenario and the sole
operation of the Hospital 1 unit. Since each team treats
an average of 6 patients daily, the supply was separated
into two teams departing from the same location.

Solving the model obtains the optimal patient alloca-
tion between the two teams, represented in Figure 4. It
is possible to balance the workload (∆ is approximately
0), guaranteeing that within the same unit, no team is
overloaded. Furthermore, it is possible to ensure greater
intra-district compactness, reducing the travel distances
of each team. If one prioritizes the optimization of Ω
over ∆, it is possible to reduce the intra-district distance
by about 3 kilometers without causing a significant im-
balance in workload, with ∆ increasing to 3.3%.

Not straying from the tactical realm, this decision
precedes and facilitates routing problems since it helps
establish which area each team should cover. Since this
analysis represents a novel application for a districting
model, the decision-makers examined these results and
validated their pertinence and importance.
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Table 3: Districting results considering all four HH units open in different demand scenarios. Outcomes for the
tactical districting of the Hospital 1 unit.

S1 S2.3 S3.3 S4 S4 (C) S1 (T)

Ψ 0.000 35.000 1264.000 234.000 3025.000 0.000
∆ 0.011 6.425 15.125 3.149 50.804 0.023
Θ 28.609 28.583 26.744 26.744 25.503 41.785
Ω 37.110 34.601 34.601 34.237 31.597 36.366
CPU time 0:00:01.90 0:00:01.06 0:03:50.37 0:00:00.63 0:00:00.17 0:00:00.88

Figure 4: Tactical districting solution with two HH
teams at the Hospital 1 facility for scenario S1.

4.3. General recommendations
Note that, contrary to other studies, it is impossible to
compare the obtained results with previous district con-
figurations since these do not exist for this setting. Also,
when assuming full coverage of the seven assessed mu-
nicipalities, it was not always possible to comply with
the maximum distance restriction, where all patients
should be less than 30 kilometers from the hospital.
Even for the scenario as is and considering all hospi-
tals were open, the most distant demand point was 31.5
km away.

With concerns to the sequential launch of the new
Provider X HH units, the expansion should begin with
the opening of the Hospital 3 unit, followed by Hospital
4, and lastly, Hospital 2. Nonetheless, according to the
districting objectives, the results for the different units’
combinations are similar, meaning that if a different or-
der were to be adopted, comparable outcomes could be
obtained.

The achieved districting decisions are quite sensitive
to monthly demand oscillations. Thus, they reflect the
specific demands of the scenarios studied and may not
accurately represent different realities. For this reason,
the model is most useful when run annually with in-
stances generated through accurate demand forecasting.
From the examined scenarios, S4 was the one to reflect
best Provider X’s effective demand over a three-year
horizon. For the case of S4, the districting would allow
for highly balanced districts in terms of workload. Dis-
tricts would also be relatively compact: the maximum
distance between demand points and their respective
units would be 26.7 kilometers, and the longest distance
between two points allocated to the same unit would be
34.2 kilometers.

Despite being less explored in this dissertation, an-
other application for this model was discussed. It is
possible to run the model more periodically to draw the

optimal catchment areas of the multiple teams within an
HH unit. The model was applied to the current Provider
X paradigm: the H1 unit was divided into two teams,
and the proposed districting allowed for minimal intra-
district distances and a balanced workload between the
two teams.

5. Conclusions and Future Work
This paper proposes a generic multi-objective MILP
model for a districting problem applied to a home hos-
pitalization service network. The proposed approach
considers four objective functions: balancing workload
among districts, maximizing the compactness of dis-
tricts, both between supply points and their allocated
demand points and between demand points within the
same district, and minimizing the number of months in
which HH units are in under-capacity. The objectives
are also subject to constraints related to the complete
and exclusive assignment of demand points, compatibil-
ity between demand points, and the maximum distance
between basic units.

The model application sought to illustrate the two
types of results that can be obtained. The primary so-
lution achieved was the optimal partition of a service
region composed of home hospitalization units and ag-
gregate demand points. Although less addressed in the
literature, it is also possible to use the same model to
evaluate which teams should serve which patients within
the same HH unit.

To evaluate how the districting would vary for differ-
ent demand distributions, computational results were
presented for several randomly generated instances
based on the real-world case study data. The instances
incorporated uncertainty at two levels: the number of
patients per civil parish and hospitalization days per
patient.

The proposed solution approach included a lexico-
graphic ordering that allowed the efficient frontier and
trade-offs between objectives to be identified. However,
for this case study, no sharp trade-off was identified, as
improvements to a particular objective never resulted in
significant deterioration of the others. For most of the
tested instances, the compatibility constraint, which en-
sures respect for municipal boundaries and contiguity of
the created districts, was not used. When testing the
model with this set of constraints, it was found that it
significantly worsened the results, leading to an increase
in workload imbalance of more than 47% and an under-
capacity value almost 13 times higher. Thus, the com-
patibility constraints should only be employed to meet
specific situations such as past partnerships, historical
reasons, or other administrative situations.

To date, this is the first study to address the model
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in the context of home hospitalization explicitly. Com-
pared to the literature handling districting in home care,
there are mainly two noteworthy differences. On the
one hand, the parameter values inserted into the model
differ, particularly the maximum distance between the
hospital and the patient. On the other hand, concern-
ing the model formulation, it is imperative to consider
the monthly capacity, given the seasonality of demand,
and the scarcity of skilled medical personnel, especially
in the Portuguese context.

Ensuring that supply meets demand and, when it
does not, minimizing overcapacity is a novelty of this
work. It allows the model to provide insights into which
months and units there is a capacity shortage and thus
can help decision-makers select which HH units are in
greatest need of expansion.

This study benefited from contact with HH service
managers, an essential interaction for adequately char-
acterizing the problem and validating the results. In
addition, it confirmed that operational research tech-
niques can help healthcare providers improve service
delivery. Lastly, although the proposed model and solu-
tion have been implemented and validated for the Por-
tuguese case, the approach can be easily extended to
other HH providers in any territory.

Future research opportunities can take several direc-
tions. The current model’s computation tractability is
limited for small and medium-sized instances. There-
fore, future work can explore efficient approaches to
multi-objective optimization for bigger cases through
exact methods or heuristics and meta-heuristics. The
performance of these new approaches should be com-
pared in terms of objective function values and compu-
tational time.

There is still very diminutive research that addresses
the problem of healthcare districting, considering the
substantial uncertainty inherent to this sector and its
impact on all levels of decision-making. This disserta-
tion focused on uncertainty in demand by simulating
the results for varying demand scenarios. It is possi-
ble to identify two potential points for improvement in
addressing uncertainty. Firstly, very dissimilar district-
ing plans were obtained when testing the model for the
different demand scenarios. It would be relevant to in-
vestigate other robust ways of inserting uncertainty in
the optimization. Secondly, demand forecasting greatly
influences districting results, so it would be valuable to
have used regression methods that would allow demand
to be estimated more accurately.

Further objectives can also be considered for the
problem. It could be explored, for instance, the inser-
tion of economic criteria to assess and compare expendi-
tures or savings between districting plans. Additionally,
it may be relevant to investigate further the use of the
proposed model by fixing a single HH unit and address-
ing the districting of several teams within that unit. It
would be necessary to review the specific constraints
and objectives of this problem.

It would be interesting to diversify the stakehold-
ers’ involvement, complementing the model with inputs
from medical staff and other practitioners, patients, and
their families. Creating a graphical user interface that
allows a simplified interaction between the decision-

makers and the model would also be of added value.
Finally, it would be insightful to evaluate the impact of
districting on the tactical and operational decisions of
managing a home hospitalization service network.
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agosto e poupa 7,6 milhões de euros ao estado. Expresso, septem-
ber 2022.

10


	Introduction
	Literature Review
	Modeling approaches
	Solution approaches
	Uncertainty in districting models
	Districting Criteria
	Contributions

	Mathematical Model
	Problem Statement
	Assumptions

	Mathematical Formulation

	Results and Discussion
	Growing demand scenarios and test instances
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4

	Computational Experiments Results
	Optimal launch order for the upcoming Provider X HH units
	Districting solution for four HH units
	Districting solution for two HH teams

	General recommendations

	Conclusions and Future Work

