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Abstract 

In recent years, the need for health units has increased owing to the ongoing introduction of 

new health problems and the intensification of existing kinds of illnesses. As research on this area 

progresses, knowledge becomes the primary motivation for patients to adopt a better quality of life. 

Consequently, a number of health units have struggled to develop solutions to manage excessive 

demand while maintaining a high quality of service in order to enhance patient satisfaction and boost 

revenues. One of these tactics is the use of simulation models as a method of operational research to 

analyse the flow of patients and predict potential solutions to enhance resource efficiency while 

decreasing waiting time. 

The purpose of this work is to develop and demonstrate a simulation model that replicates the 

functioning of a hospital unit. For this purpose, data derived from the health services of the Imaging 

Department of Hospital da Luz, located in Lisbon, Portugal, were used. This model will be able to 

duplicate the daily flow that this department is subjected to by its patients and personnel, as well as 

depict how the system evolves as a result of the management of the department's number of 

resources and examination rooms. At the end of the analyses, several solutions are presented and 

discussed, from level to level, with regard to improvements in the level of performance of services, 

resources and patients, although it appears that only the increase in one unit of examination rooms 

translates into a huge positive impact on waiting times in the respective queues. 

Keywords: healthcare simulation, process improvement, simulation models, operational research 

methods, discrete event simulation. 
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Resumo 

Nos últimos anos, a procura por unidades de saúde aumentou devido ao aparecimento 

constante de novos problemas de saúde e intensificação de tipos de doenças já existentes. À medida 

que as investigações nesta área progridem, a informação torna-se a principal motivação para que os 

pacientes adotem um estilo de vida mais saudável. Consequentemente, várias unidades de saúde têm-

se esforçado para desenvolver estratégias de forma a gerir a alta procura, tentando manter uma boa 

qualidade de serviço para aumentar a satisfação dos pacientes e os lucros. Uma dessas estratégias é o 

uso de modelos de simulação como método de investigação operacional para analisar o fluxo de 

pacientes e prever possíveis soluções para combater tempos de espera mais elevados e aumentar a 

eficiência dos recursos.  

O objetivo deste estudo é construir e apresentar um modelo de simulação que traduza o 

funcionamento de uma unidade de saúde de um hospital real. Para este efeito, foram utilizados dados 

dos serviços de saúde do Departamento de Imagiologia do Hospital da Luz, situado em Lisboa, Portugal. 

Este modelo será capaz de reproduzir o fluxo a que este departamento está sujeito pelos seus 

pacientes e funcionários todos os dias durante o seu funcionamento e ainda demonstrar de que forma 

o sistema evoluiu provocado pela gestão do número de recursos e salas de exames através de várias 

experiências realizadas. No fim das análises, várias soluções são apresentadas e discutidas, de nível a 

nível, no que toca às melhorias do desempenho dos serviços, recursos e pacientes, ainda que se 

verifique que apenas o aumento numa unidade de salas de exame se traduza num enorme impacto 

positivo nos tempos de espera nas respetivas filas. 

Palavras-chave: simulação na saúde, melhoria de processos, modelos de simulação, métodos de 

investigação operacional, simulação por eventos discretos. 
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1. Introduction 

In this chapter, the dissertation is introduced, the issue is explained, the study's objectives are 

stated, the research methodology is presented, and the dissertation's structure is described. The 

backdrop of the subject under investigation is provided in section 1.1., the dissertation's objectives are 

presented in section 1.2., the research methodology is described in section 1.3., and the dissertation's 

structure is defined in section 1.4.. 

1.1. Problem Contextualization and Background 

Patients are increasingly curious and apprehensive about receiving healthcare due to global 

competitiveness in a rising industry (Li et al., 2015). Manzoor et al. (2019) correlate that increasing 

health consciousness and affluence in the contemporary world have dramatically increased the 

demand for healthcare and moved demographic trends toward a healthier way of life. As a 

consequence, it has been producing a demanding environment that has an impact on local businesses, 

including medical services. Due to the growing rivalry between hospitals, the healthcare relationship 

has evolved to emphasise the provision of outstanding healthcare services (Bleustein, Clifford et al., 

2014), leading patients to pick the most suitable healthcare unit.  

To contend with the competition, hospitals and healthcare units must provide patients with 

better healthcare services to meet their demands due to heightened consumer expectations and more 

demand for standard services (Zarei et al., 2015). As a result, hospitals confront significant obstacles. 

As the need for medical treatment develops, hospitals may dissatisfy patients with prolonged LOS 

caused by excessive wait times (Manzoor et al., 2019). Consequently, Wang et al. (2012) agree that a 

number of them have made substantial efforts to improve hospital efficiency to reduce LOS and other 

issues such as patient wait times, patient satisfaction, levels of spending, capacity, resource 

consumption, working conditions, staff morale, accessibility to error-free treatment, and medicines all 

need to be efficiently managed while the quality of care is continuously improved (Barjis, 2011). 

Hospitals and other healthcare institutions often base their continuous improvement activities 

on human experiences and qualitative notions. However, such strategies may not deliver the big 

improvement one would have hoped for, and it is impossible to make a quantitative forecast of the 

outcome of such an effort (Wang et al., 2012). 

A. R. Andersen & Plesner (2022) remark that governments often seek to alleviate the problem 

by raising the proportion of their gross domestic product allocated to healthcare while concurrently 

minimising the duration of patients' stays. For example, Portugal's public healthcare expenditures 

surpassed 15 billion euros in 2021.1 Healthcare executives and decision-makers are increasingly 

 
1 https://pt.countryeconomy.com/governo/despesa/saude/portugal 
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debating healthcare efficiency (Zeng et al., 2012), spending about 11% of its gross domestic product 

(GDP) on healthcare.2 To achieve this efficiency, computer simulation to aid in efficient decision-

making in the healthcare industry has become increasingly popular in recent years to enhance 

operations (Doğan & Unutulmaz, 2014). A simulation model may mimic the process and its dynamics 

under certain random distributions, show patient flow and care delivery techniques, and provide 

forecasts for performance evaluation (Gaba, 2004). With the support of such a tool, healthcare 

management can assess the effectiveness of existing procedures, enable the studying of potential 

modifications, experience circumstances that would not otherwise be possible without spending a 

significant amount of money on system development, training, and equipment acquisition, or look into 

the relationships or trade-offs among system variables (Manzoor et al., 2019). 

Furthermore, the typical functions of comparing situations or visualising processes may be 

expanded upon by using healthcare simulation. A simulation model may be used as a continuous 

initiative to assess and enhance performance and boost efficiency. 

1.2. Dissertation Purpose 

Motivated by the contextualisation described in the preceding section, the primary objective of 

this research is to develop a simulation model capable of portraying the functioning of an Imaging 

Department. This model will be used to test various combinations of internal factor changes, such as 

the number of personnel resources and facilities of a particular service, to examine the development 

of system performance under different scenarios. Thus, for each tested combination, it will be possible 

to predict how the unit will behave, determining the number of resources sufficient to reach a state 

that already reflects a good performance for the decision-maker. 

In addition, this study complements the evaluation of the effectiveness of human resources in 

each scenario, as assessed by the occupancy rate, which indicates the proportion of execution time 

that a particular resource was dedicated to an activity. It should be observed that the occupancy rate 

increases when the amount of a given resource allocated to a given number of activities decreases, 

but this does not equate to more excellent performance in terms of waiting times, thus indicating a 

trade-off. 

In conclusion, the constructed model should offer the department helpful information to 

enhance its resource management. This model's precision matches demand and supply, allowing for 

the optimal allocation of resources in time and space while reducing queueing times.  

 
2 https://www.pordata.pt/en/Portugal/Current+expenditure+on+healthcare+as+a+percentage+of+GDP-610 
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1.3. Methodology 

Figure 1 depicts a potential research methodology based on five phases to attain the objective 

outlined in the preceding section. 

Step 1 – Problem Contextualization 

The contextualisation of the problem guides the reader from a broad subject area to a specific 

topic of study. It outlines the study's scope, context, and importance by summarising existing 

knowledge and background information on the issue. It outlines the study's objective in the form of a 

research topic supported by a collection of questions or a hypothesis3. Additionally, it briefly explains 

the methodological approach used to investigate the research problem, highlights the potential 

outcomes the study may reveal, and outlines the remaining structure and organisation of the paper. It 

is inserted in chapter 1 of this document. 

Step 2 – Literature Review  

A literature review examines relevant sources pertinent to acquiring knowledge on healthcare 

simulation subjects. It gives a description, summary, and assessment of these works in connection to 

the explored research problem in a way that serves as a basis to develop it. It consists of chapters 2, 3, 

4 and 5 of this document.  

Step 3 – Problem Formulation  

This step consists of providing a concise description of the whole issue and emphasising the need 

for a more profound knowledge of the most crucial aspects to conduct a more thorough inquiry. In this 

 
3 https://libguides.usc.edu/writingguide/ 
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manner, the formulation of the problem brings the reader to the significance of developing the study 

to establish the research areas. In addition, it assures the research questions, hypotheses, or 

assumptions to be followed and presents the framework that will guide the whole process until the 

analysis of the results. This step entails chapter 6 of this document. 

Step 4 – Model Development 

This stage, described in depth in chapters 7 and 8, focuses on creating the model formulated in 

the previous step. It begins by examining the data given through papers and files to find trends and 

comprehend patient behaviour. Given the nature of the model, the dataset must be fitted several 

times as a probability distribution before it can be incorporated into the model. The final step is 

configuring the model within the SIMUL8 software, in which the model presented in the previous 

section will be reproduced by linking the activities to the queues, associating the required resources 

with each activity, and inserting the previously obtained inputs with each activity. 

Step 5 – Results Analysis  

This step involves analysing the results acquired from the preceding step to determine the 

influence of each testing scenario on the system's performance and the advantage of utilising such a 

combination of activities and resources to support the operations of the healthcare unit. The 

recommended configurations of the model are evaluated in terms of average queuing time, maximum 

queuing time, and efficiency in terms of resources' occupancy rate; a comparison analysis is 

undertaken to determine the benefits of each combination performed and produce recommendations. 

Chapters 9 and 10 are responsible for addressing this stage. 

1.4. Dissertation Structure 

This dissertation consists of ten chapters. This first chapter attempts to explain the topic and the 

rationale for its research, as well as its goals, methodology, and structure of the document. 

The second chapter 2 starts with a concise description of what it means to be a system, 

identifying the variables that may affect it. The primary distinctions, benefits, and drawbacks of 

studying a system via various approaches are outlined, depending on the context of the problem: the 

first relates to the difference between studying a system through experiments and researching it in a 

real-world setting or by modelling. The second describes the nature of the models, whether they are 

physical or mathematical, providing an example of each. The third refers to the search for solutions, 

either by analytical methods or by simulation, with an emphasis on the latter, providing the 

categorisation of simulation models along three dimensions. 

The objective of the third chapter is to expose the reader to the three most common and widely 

used simulation techniques: discrete-event simulation, agent-based simulation, and dynamical 
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systems. As noted in the first chapter, this dissertation is based on the first method’s application. The 

whole internal functioning of this method is described in depth, including a description of all the 

system’s components and how they interact to transit the interstate system. This transition is governed 

by the simulation clock, which may move time to the next event in the list of events. In addition, a brief 

description of the other two techniques is given. 

The fourth chapter uses information from multiple case studies on the same issue to develop a 

simulation model for healthcare systems. This chapter groups the proposed methodology in several 

case studies, beginning with understanding the problem’s context, collecting data, debating the 

variables of interest, selecting the tool where the model will be developed, and concluding with the 

validation of the conceptual model and experiments with decision factors in order to find an optimal 

solution or set of solutions. Thus, this chapter is divided into four stages: understanding the problem 

scenario, determining the problem objectives, selecting the model content, and constructing the 

model. 

The fifth chapter is a continuation of the preceding chapter in which the actual case study of 

Wang et al. (2012) using DES at Central Baptist Hospital is presented. The purpose is for the reader to 

comprehend in practice the whole procedure described in the previous chapter. 

The sixth chapter presents all the knowledge about the problem. Here, the entire scope and 

functioning of the health unit are specified in great detail to be implemented in the same way during 

the model’s construction phase. 

The seventh chapter describes all operations performed on the data required to create the 

model, from its gathering through its inclusion. In addition, it represents the processes performed for 

each dataset and how they were categorised. This chapter begins by justifying the significance of the 

General Data Protection Regulation (GDPR) legislation and how it was considered in the dissertation. 

The eighth chapter focuses on model construction. Here, all software operations are specified 

to reproduce the conceptual model accurately. This chapter is, therefore, broken into two sections. 

The first section describes how each model object was defined, including the simulation clock, arrival 

shifts, resources, labels, and the list of activities and queues. Thus, all configurations essential for the 

system to function, as described in chapter 6, were adequately stated for each component. The second 

section presents four verifications necessary to validate the model and make it reliable for drawing 

conclusions. 

The ninth chapter discusses the whole set of results derived from running the system in the 

simulation tool. The initial conditions for running the system are provided first, followed by the 

termination conditions, i.e., when it is no longer essential to run the system to retrieve the data for 

analysis. Then, a technique for solution search is proposed based on the analysed values. The final step 

is the interpretation and presentation of the results to the decision-maker. 
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Chapter 10 focuses on finishing the process covered in the preceding chapters to summarise and 

emphasise each one’s major features. All limitations that had an effect on or impacted the 

interpretation of the findings or the design of the model are also provided. Finally, the modeller 

specifies certain recommendations and proposals for future work that were not evaluated or 

considered when the problem was formulated but which have the potential to further enhance the 

system’s performance. 
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2. Systems, Models and Simulation 

According to the definition proposed by Schmidt & Taylor (1970) a system is a “collection of 

entities, such as people or machines, that act and interact together toward the accomplishment of 

some logical end.”. For one research, collecting entities that constitute a system could only represent 

a portion of the whole system (Sinha et al., 2001). An example of that may be revealed through the 

development of a bank system that estimates the number of tellers required to give satisfactory 

service to customers who wish to cash a check or make a savings deposit. In this case, the system may 

be described as the portion of the bank, including the tellers and customers in line or being serviced. 

The concept of the system must be enlarged if, on the other hand, the loan officer and safe deposit 

boxes are to be included (Fishman, 1978). 

As per the research objectives, the set of variables required to characterise a system at a specific 

time is what is referred to as the system’s state. The number of busy tellers, the total number of clients, 

and the time each customer enters the bank are a few examples of state variables that may be used in 

bank research (Law, 2015). Following this example, the number of customers in the bank is constantly 

fluctuating, and the corresponding system state variable may vary across particular time samples. This 

number is explained by the flow of customers that enters or finishes being served and departs. This 

provides a precise definition of a discrete system. By the definition of Eriksson et al. (2022), discrete 

systems are characterised by state variables that change instantly at distinct points in time. Contrary, 

the state variables of a continuous system change continuously concerning time. Since state variables 

such as height and velocity may vary continuously for time, a continuous system is exemplified by an 

aeroplane travelling through the air. In actuality, few systems are entirely discrete or continuous; yet, 

because one form of change predominates for most systems, it is often viable to characterise a system 

as discrete or continuous. 

Law (2015) gives a variety of methods for studying a system expressed in the Figure 2. 
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Figure 2 – Ways of studying a system. Adapted from Law (2015). 
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2.1. Experiments with the Actual System and Experiments with a Model of the System 

In its majority, experiments with the actual system are rare possible since such an experiment 

would often be too expensive or disruptive to the system. Although, if it is feasible and cost-effective 

to physically modify the system and then allow it to run under the new circumstances (Morgan, 2005), 

it is likely preferable to do so since there will be no doubt about the validity of our research. For 

instance, a bank may consider lowering the number of teller positions to save expenses. Nevertheless, 

implementing this measure might result in lengthy client wait times and resentment. 

Guala (2002) remarks that when the system is graphically designed into a model, it may be 

examined in its different suggested alternative configurations to determine how it should be 

constructed. Due to some factors (e.g., a planned communications network or a strategic nuclear 

weapons system), it is typically required to construct a model to represent the system and analyse it 

in place of the natural system. When using a model, there is always the question of whether it 

adequately represents the system for decision-making purposes (validation). 

2.2. Physical Model and Mathematical Model 

Physical models permit the display of information about the entity they represent. A model may 

be a physical thing on a big scale, such as a building's architectural model or a small scale, such as a 

molecule (Law, 2015). These models have been primarily associated with architectural and engineering 

purposes once it brings advantages to constructing them for studies.  

According to Hidayat et al. (2020), mathematical models are represented through quantitative 

and logical relationships. They are then altered to see how the model responds and hence how the 

system would respond, considering that the mathematical model is valid. The relation between two 

variables, such as, represents a simple example of a mathematical model, where is the distance 

travelled,    is the velocity and is the time travelled. This may be a viable model in one case (e.g., to 

discover the velocity a car travels, on average, to reach a specific destination in a certain time interval) 

but a flawed model for other applications. 

2.3. Analytical Solution and Simulation 

After the mathematical model has been constructed, it must be evaluated to see how it may be 

utilised to answer questions about the system it is meant to represent. If the model is simple enough, 

it may get an accurate, analytical solution by manipulating its relationships and quantities (Steuben et 

al., 2019). In the last example, if the distance to be travelled and the velocity are known, one can use 

the model to calculate the needed time 𝑡 = 𝑑/𝑣. This is a straightforward, closed-form solution, but 

some analytical solutions can become extraordinarily complex and require vast computing resources; 

inverting a large non-sparse matrix is a well-known example of a situation in which an analytical 

formula is known in principle, but obtaining it numerically in a given instance is not trivial. If an 
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analytical solution to a mathematical model is available and computationally efficient, it is often 

preferable to examine the model in this manner rather than via simulation (Law, 2015). However, many 

systems are very complicated, such that accurate mathematical models are also complex, preventing 

an analytical solution. In this instance, the model must be investigated using simulation, i.e., 

numerically exercising the model for the relevant inputs to determine how they impact the output 

performance metrics (Schruben, 2008).  

A simulation model may be integrated as part of continuing efforts to assess and enhance 

performance and boost productivity. Darema (2004) defends that, in this capacity, a simulation model 

is created to perform tests and integrate with the organisation's operational information systems. This 

is done to examine the longitudinal behaviour of a system in order to recommend adjustments and 

adaptations while the system works, and dynamic data is generated. When simulation models are 

entirely incorporated into the ordinary fabric of healthcare delivery, i.e., the current information 

system applications that support the daily operations of the healthcare provider, the actual value of 

simulation may be realised (Gaba, 2004). The objective is not to use simulation as a tool for doing a 

one-time set of tests when a significant change is planned but rather to have simulation models 

operate concurrently with other programmes as a common element of the daily work environment. 

Given that the simulation-study mathematical model requires searching for the appropriate tools, it is 

helpful to categorise simulation models along three dimensions for this purpose. 

2.3.1. Static and Dynamic Simulation 

A static simulation is a simulation model that represents a system at a certain moment or one 

that may be used to describe a system in which time is irrelevant (Law, 2015). It has no internal history 

of previously applied output and input variables.4 In short, static simulation models are executed by 

specifying the parameters of the equations followed by adding the values of inputs necessary (Murray 

et al., 2012). This simulation is employed, for instance, when engineers compute the maximum weight 

a ship can carry. To determine the ship's maximum carrying capacity, a model based on the weight 

distribution will be constructed, disregarding any other factors (e.g., weather and strength of the 

tides). Since these elements that may impact the ship while carrying the load are not considered, it 

cannot offer correct findings for other situations that may arise while the ship is sailing.  

In contrast, a dynamic simulation model is one method for modelling the behaviour of systems 

across time that accounts for multiple components of a phenomenon and focuses on how the system 

and its components change through time (Cole & Yount, 1994). A dynamic model is distinguished from 

a static model in that it maintains an internal memory of earlier inputs, variables, and outputs, unlike 

the static model. A study to optimize bed capacity in a healthcare facility may be represented through 

 
4 https://study.com/academy/lesson/static-vs-dynamic-simulation-in-quantitative-analysis.html 
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a dynamic model. It depends on several key factors, such as the number of daily admissions, service 

level and occupancy level (Kokangul, 2008). 

2.3.2. Deterministic and Stochastic Simulation 

Law (2015) assumes that a model is said to be deterministic if the variables that represent its 

state can be uniquely determined both by the parameters of the model and by the sets of states that 

these variables have held in the past. Deterministic models, as a result, always provide the same results 

when applied to the same set of parameters and beginning circumstances, and their solutions are 

always one and the same.5  

In queueing models, a stochastic process is a collection of time-ordered random variables with 

their parameters described by random variables or distributions of those variables. The primary 

property of a random number is that the number that follows is independent of all preceding numbers 

(Law, 2015). Similarly, probability distributions may be used to represent the values of state variables. 

Therefore, a stochastic model will provide a multitude of equally plausible solutions, enabling the 

modeller to assess the inherent unpredictability of the underlying system being modelled (Renard et 

al., 2013). These models depict all conceivable states and their transitions, transition rates, and 

probabilities. Frequently, Markov models are used to represent the probability of distinct states and 

the rates of their changes. Typically, the approach is used to model systems. Markov models may also 

identify trends, generate predictions, and learn sequential data statistics. In this case, it is assumed 

that patients belong to homogenous groups and move from one state to the next. The benefit of using 

these models is that once designed can be evaluated and executed very fast. They may be used 

exploratively to determine the impacts of demand and supply on resource consumption and other 

output indicators (Davies & Davies, 1994). 

2.3.3. Continuous and Discrete Simulation 

The definitions of discrete and continuous simulation models are equivalent to those of discrete 

and continuous systems. Section 3 provides more explicit definitions of discrete-event simulation, 

which will be the base of this research. Notably, a discrete model is not always used to represent a 

discrete system, and vice versa (Law, 2015). The selection of a discrete or continuous model for a given 

system relies on the study's specific aims. For instance, if the features and movement of individual 

automobiles are significant, a traffic flow model on a motorway would be discrete. Alternatively, the 

traffic flow may be represented by differential equations in a continuous model if automobiles can be 

addressed aggregated. 

 
5 https://bookdown.org/manuele_leonelli/SimBook/types-of-simulations.html 
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3. Simulation Techniques 

In addition to their effectiveness in designing, constructing, analysing, and developing physical 

systems, modelling and simulation methods are also frequently used in organisational and 

operational systems (Zhang et al., 2018). It entails designing a real-world or envisioned system 

model, such as a concept design, and then running tests with the model to understand the system's 

effectiveness under various operating conditions and evaluating possible management strategies and 

decision-making processes (Yin & McKay, 2018).  

Numerous scientists have contributed to the development of technologies for modelling and 

simulation. Klingstam & Gullander (1999), for instance, presented the Discrete-Event Simulation 

(DES) approach, Macal and North suggested an Agent-Based Simulation (ABS) (Siebers et al., 2017) 

while Forester provided a System Dynamics approach (Forrester, 2017).  

The following sections detail the functioning of each approach, with more emphasis on the 

DES as it will be the technique used to develop the work. 

3.1. Discrete-Event Simulation (DES) 

From the previously discussed models, Discrete-Event Simulation (DES) includes all dynamic, 

stochastic, and discrete properties combined in a system yet is an inexpensive, secure, and quick tool 

for analysing complicated systems, with the capacity to assess performance indicators (Mourtzis, 

2019). DES is a computer-based modelling technique for decision-making that offers an easy and 

adaptable way (Karnon et al., 2012) of simulating the dynamic behaviours of complex systems and the 

interactions between people, communities, and their surroundings (Alejandro Huerta-Torruco et al., 

2022). This model comprises the required properties and logic to reflect the system's actual behaviour 

(Urbani et al., 2020). Ideally, Law (2015) recommends DES to be conducted on a digital computer due 

to the number of data that must be saved and handled for the great majority of systems in the real 

world. However, depending on the volume of the data, it may also be performed by hand calculations.  

Compared to aggregate models without interaction (Brennan et al., 2006), such as decision trees 

or Markov models, DES is a more beneficial operational research approach for modelling complex 

systems at the individual level than the cohort level (X. Zhang, 2018). It portrays the flow of individual 

entities that move through a succession of discrete events (activities) in a system that evolves over 

time (Law, 2015).  

These events are defined at specific intervals, between which entities must wait in lines owing 

to the limited availability of resources. These situations are often seen as queuing networks (S. 

Brailsford & Hilton, 2000). For instance, in a hospital simulation, the entities are often patients who 

are transferred from one ward or institution to another. This simulation approach allows people to 

have traits that affect their progression in the system and resources to have limits (Alejandro Huerta-
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Torruco et al., 2022). Thus, it gives an accurate illustration of how patient characteristics affect the 

functioning of a given health system. Furthermore, (Ahmad et al., 2020) defend those minimal 

restrictions on the factors that may be used to determine how and when patients transfer from one 

state to another.  

Since each result from a DES is only a sample from a distribution, conducting several 

independent simulation runs may be necessary to get accurate measurements of the output 

parameters. This is especially problematic in unstable systems when the arrival rate is near the service 

rate or if activity time fluctuations are substantial (almost invariably accurate for activities representing 

treatment survival). An additional issue is a tendency to build systems more sophisticated than 

necessary, resulting in a rise in the need for data (Renard et al., 2013). 

The planning of medical services for acute and chronic patients may benefit from patient flow 

models (Vázquez-Serrano et al., 2021). Some models assume that subgroups of patients are all the 

same and that events occur at regular intervals that are evenly spaced in time. When investigating 

patient movement in huge population groups, these approaches are practical. (Manzoor et al., 2019) 

state that DES models make it possible for patients to have unique characteristics and to interact with 

the supply of resources. However, testing and running these models takes much more time. They are 

handy for modelling healthcare delivery systems, mainly when the limitations of available resources 

are critical (Forbus & Berleant, 2022). In addition, they may be utilised on unrestricted population 

models that include many thousands of patients.  

The ability to describe entities in such a way that they may participate in many activities 

simultaneously and interrupt one another is a huge step forward for simulation. The validity of any 

model depends on the availability of reliable data, which is only sometimes readily available (Davies & 

Davies, 1994). 

3.1.1. Time Advances and Simulation Clock 

Once the dynamic nature of DES models necessitates the continuous record of simulated time 

throughout the simulation process, it is essential to go forward in time from one value to another 

whenever desired (Law, 2015). The simulation clock is the variable responsible for determining the 

current simulation time, which is unrelated to the simulation's execution time on the computer. 

Law (2015) identifies two approaches to make the simulation clock advance in time: next-event 

time advance and fixed-increment time advance. With the next-event time advance method, the 

simulation clock is set to zero, and the timings of future events' occurrences are calculated based on 

the input data. The simulation clock is subsequently advanced to the moment of the earliest (first) of 

these upcoming occurrences (state transaction). At this moment, the system's state is changed to 

reflect the fact that an event has happened, and the knowledge of when future events will occur is 
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also updated. Since these state transitions may occur at any moment and all states remain constant 

from the present simulation time to the time of the earliest state transition, time can progress until 

the time of the subsequent earliest state change (Rowaei, 2011). At this point, the clock advances to 

the second occurrence (or first in the upcoming list of occurrences), the system's state is once again 

updated, and the future time event is determined. This procedure of advancing the simulation clock 

from one event time to the next is repeated until a predetermined stopping condition is met. This 

approach is far more prevalent than the fixed-increment time advance in DES models, although the 

latter is a particular instance of the former.6 The primary difference between these two is that fixed-

increment time advance allows periods of inactivity in the system. Contrary to the first approach, it 

does not skip over these inactive periods where no occurrences occur. The fixed-increment time 

advance is recognised for the equally spaced time intervals in which the simulation clock is advanced. 

After every clock update, the system determines whether any events should have occurred during the 

period.7 This can result in a more time-consuming process for the developer (or analyst).  

The next-event time advance method for a single-server queueing system is demonstrated 

through the following algorithm, adapted from Law (2015): 

𝑡𝑖 = time of arrival of the customer 𝑖 (𝑡0 = 0) 

𝐴𝑖 = 𝑡𝑖 − 𝑡𝑖−1 = time elapsed between two arrivals of consecutive customers 

𝑆𝑖 = time that the customer 𝑖 spends on server 𝑆 

𝐷𝑖 = time that customer 𝑖 spends on queue (delay) before going to server 𝑆 

𝑐𝑖 = 𝑡𝑖 + 𝐷𝑖 + 𝑆𝑖 = time at when customer 𝑖 completes the service and leaves the system 

𝑒𝑖 = time value that the simulation clock takes to occur the event 𝑖   

Assuming that the distributions of the interarrival and service times are explicit and have known 

cumulative distribution functions (obtained from the data available of the interest system and 

afterwards combined into distributions with these data using methodologies) all connected to the 

activities in the model, this simple simulation system is ready to run. The system begins at time 𝑒0 = 0 

(idle). Then, the system generates the value of 𝑡1 (time of the first arrival) from the interarrival time 

distribution through a random number generation technique from a specified distribution and adds it 

to 𝑒0. The simulation clock is now at instant 𝑒1 = 𝑒0 + 𝑡1 where the first arrival occurs. The first 

customer finds the service inactive when they first enter the system. This prompts the customer to 

quickly occupy the server without waiting in the queue (𝐷𝑖 = 0) before the server's status changes to 

occupied. Next, the time at which the customer spends on the server, 𝑆1, is randomly generated 

through a specific distribution from the service time distribution function and added to 𝑡1. The 

 
6 https://web.mit.edu/urban_or_book/www/book/chapter7/7.3.html 
7 https://rossetti.github.io/RossettiArenaBook/HowDEDSClockWorks.html 
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simulation clock is now at instant 𝑒2 = 𝑒1 + 𝑆1 or 𝑒2 = 𝑡1 + 𝑆1, which marks the time that the first 

customer finalizes and leaves the server. The time at when the customer finalizes the service and 

leaves the system is given by 𝑐1 = 𝑡1 + 0 + 𝑆1, which coincides with the instant 𝑒2 of the simulation 

clock. The time of the second arrival is randomly generated through the same process as 𝑡1 and added 

to it, 𝑡2. If 𝑡2 < 𝑐1, means that the second customer arrived before the first customer has left the 

server. In this case, the simulation clock, which at the instant 𝑒1, is advance to the time of the next 

arrival, 𝑒2 = 𝑡2 (otherwise, the simulation clock would be advanced to 𝑒2 = 𝑐1). When the second 

customer arrives, they are unable to instantly access the server since the server is currently serving the 

previous customer. The number of customers in the queue is increased to 1. The time at which this 

customer is going to spend on the server, 𝑆2, is determined as soon as the server is available, at the 

time instant of 𝑒3, which is also the instant at when the first customer finalizes the service, 𝑐1. 

Therefore, at the instant 𝑒3 of the simulation clock, the second customer enters the service, the queue 

is decreased to 0, and they finalize the service at instant 𝑒4, considering that the third customer does 

not enter the system while the second one is being served. Then the time instant at when the second 

customer leaves the server at instant 𝑒4 is given by 𝑐2 =  𝑡2 + 𝐷2 + 𝑆2 or 𝑐2 = 𝑐1 + 𝐷2 + 𝑆2. 

3.1.2. Components of a DES 

Despite the wide range of real-world systems to which simulation has been applied, DES models 

all share several standard components (Law, 2015). These components are also logically organised to 

facilitate the programming, debugging, and future modification of a simulation model's computer 

programme (Karnon et al., 2012). The majority of DES models that use the next-event time-advance 

method and are written in a general-purpose language will typically have the following elements: 

 System State: the set of state variables required to depict the system at a certain moment. 

 Simulation Clock: a variable displaying the current simulation time value. 

 Event List: a list detailing the next occurrence of each event type. 

 Statistical Counters: variables for keeping track of statistical data concerning system 

performance. 

 Initialization Routine: an auxiliary programme to start the simulation model at time zero. 

 Timing Routine: a subprogram that selects the subsequent event from the list of events and 

then sets the simulation clock to the time at which that event will take place. 

 Event Routine: a subprogram that, whenever a specific type of event happens, changes the 

system state (there is one event routine for each event type). 

 Library Routines: a collection of subprograms that employ probability distributions found as 

part of the simulation model to produce random observations. 
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 Report Generator: a subprogram that, upon simulation completion, calculates the necessary 

performance metrics (from statistical counters) and generates a report. 

 Main Program: a subprogram that calls the timing routine to identify the next event and then 

passes control to the appropriate event routine to update the system state. When the simulation 

is complete, the main programme may check for termination and run the report generator. 

The whole of the preceding section's explanation of how the next-time advance technique works 

is accomplished by executing each routine as mentioned above associated with each step.  

According to Law (2015)’s description, the simulation begins at time zero when the primary 

programme calls the initialization routine. As a result, the system state, statistical counters, and event 

list are initialized. After returning control to the primary programme, the timing routine is invoked to 

decide which event is most imminent. For that event, the simulation clock is advanced to the time 

when that event will occur, and control is restored to the primary programme. Then, the primary 

programme invokes the event routine where typically three activities take place: (I) the system state 

is updated to reflect the fact that an event has occurred; (II) the statistics counters are updated to 

collect information about system performance and (III) the times at which future events will occur are 

produced and added to the event list. These future event timings are often determined by generating 

random observations from probability distributions.  

After everything has been processed, either in the event routine or the primary programme, a 

check is usually conducted to see whether the simulation should now be ended (relative to some 

ending condition). To calculate estimates of the necessary performance metrics from statistical 

counters and create a report when it is time to end the simulation, the report generator is called from 

the primary programme. Control is returned to the primary programme if it is not yet time to 

terminate, and the cycle is repeated until the halting condition is finally fulfilled. 

3.2. Agent Based Simulation (ABS) 

An agent is an autonomous "entity" (a concept or software abstraction comparable to common 

programming standards such as objects, methods, and procedures) that can perceive its surroundings, 

including other agents, and make choices based on this data (Abar et al., 2017). Agents' behaviours are 

determined by their qualities and a set of simple if/then rules (Singh et al., 2016). They will need some 

memory to learn (get a better grasp of the state of other agents and their surroundings) and adjust 

their behaviour (alter their decision rules) over time. Humans, animals, automobiles, and organisations 

are examples of conceivable agents. An ABS is a DES in which the entities (agents) interact significantly 

with one another and their environment (Siebers et al., 2017).  

ABS may be called a variation of DES because, in the vast majority of extant ABS, state changes 

occur at a countable number of time points (Law, 2015). Therefore, Agent-Based Modelling and 
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Simulation (ABMS) is a class of computer models that simulate the agents' dynamic actions, responses, 

and intercommunication protocols in a shared environment to assess their design, performance, and 

emergent behaviour and features (Singh et al., 2016). ABMS may be used to solve environmental, 

wildlife, healthcare, and financial challenges. These models have also been used to address epidemic 

concerns, benefiting humanity. It can mimic many features of actual disease outbreaks, and the 

forecasts are simple to understand, allowing disease control managers to intervene with pre-emptive 

vaccination measures. ABMS focuses on human diseases, acute inflammation, carcinogenic malignant 

tumours, wound healing, epidemiology and infection, and immunology (Robertson, 2005). 

3.3. System Dynamics (SD) 

SD, developed by Forrester (Forrester, 2017), is an effective method increasingly being used in 

a variety of domains, including the social, economic, and political sciences (Asif & Zeeshan, 2020; D. F. 

Andersen et al., 2009). SD models examine systems at a higher aggregate level and are used for more 

strategic decision-making than most DES models. The bulk of models of SD is deterministic. However, 

random components are conceivable (Law, 2015). It combines two unique features, qualitative and 

quantitative, to strengthen knowledge of a specific problem and enhance a grasp of the problem's 

structure and the connections between crucial variables (S. Brailsford & Hilton, 2000). Therefore, 

contrary to the ABS paradigm, this model focuses on simulating the system's behaviour as a whole 

instead of modelling the behaviours of system actors. Radzicki (2020) identifies three components for 

its structure: stocks, flows, and feedback loops. Stocks collect the data or material that flow into and 

out of them; they are sometimes referred to as "levels" or "states". The dynamics of a system are 

produced by the flows of information and material that enter and leave its stocks. The rate of change 

of a stock is determined by its net flow into or out of it. Finally, a feedback loop is created when 

information is sent from a stock back to its flow(s), either directly or indirectly. Feedback loops carry 

the amount of data (or material) gathered in a system's stocks that are sent and returned (Irwin & 

Wang, 2017).  

Due to their ability to connect observable patterns of behaviour of a system to micro-level 

structures and decision-making processes, SD models are appealing in analysing energy policy issues. 

SD models are causal models (Qudrat-Ullah, 2012). Barlas (1989) considers the crucial step in the SD 

modelling process to identify the structures and decision policies contributing to a system's observable 

behaviour patterns. 
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4. The GE-DES Framework for Developing a Conceptual Model for Healthcare Systems 

One of the most significant parts of a simulation project is conceptual modelling. It entails 

abstracting a model from a real-world system, determining what must be represented and how it will 

be depicted (Furian et al., 2018). Robinson (2008) provided a well-structured framework that 

incorporates the bulk of elements of conceptual models. It comprises the identification of objectives, 

input factors, responses or output measurements, and the content specification of a model 

(concerning its scope and the level of detail to be included). Therefore, the framework for 

Generalizable Discrete Event Simulation for Healthcare Systems consists of four sections: (I) 

understanding the issue scenario, (II) establishing the modelling objectives, (III) choosing the model 

content and (IV) developing the model. When applicable, the conceptual modelling components 

of sections (I) through (III) offer a connection to section (IV)'s preliminary and exploratory data analysis 

stages (Boyle et al., 2022). Understanding the issue scenario and identifying and determining the 

conceptual model's components are thoroughly crucial to the conceptual modelling process (Furian et 

al., 2018). 

4.1. Understanding the Issue Scenario 

Monks et al. (2017) identify four categories of situational knowledge: (I) study population, (II) 

current system performance; (III) process map of the status quo; and (IV) experimental decision 

factors. The information gathered for each of the four domains is intended to guide modelling 

operations about modelling objectives (section 4.2.), model content (section 4.3.) and model 

development (section 4.4.). For instance, investigating decision factors yields a list of possible model 

inputs. At the same time, the comprehensive process mapping provides a list of relevant components 

to help select model content. To construct an accurate model that adequately addresses the concerns 

posed, the modeller must thoroughly understand the topic (Robinson, 2008). This activity's method 

depends on how effectively consumers and subject matter experts comprehend and express the 

problem in determining whether DES is the best option (Boyle et al., 2022). 

4.1.1. Study Population 

An awareness of the types of patients treated by the emergency department (such as adults and 

children, as well as patients with varying degrees of urgency), as well as any particular services, should 

be formed (e.g., direct hospital admission for patients presenting with chest pain, resuscitation area, 

or long-stay observation area) (Boyle et al., 2022). All of this information should be captured in the 

data as a collection of characteristics, which may be used to educate patient flow paths and impact 

the duration of stay in the emergency department (LOS). According to Furian et al. (2018), nearly all 

EDs classify patients by acuity. This is often the responsibility of triage nurses, triage teams, or other 

medical personnel. The ESI, which consists of five stages, is the most used triage grading system in U.S. 
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hospitals.8 ES1 denotes patients who require immediate life-saving interventions; ES2 marks high-risk 

patients who should be seen immediately; ES3 includes patients who need numerous resources or 

exhibit potentially life-threatening vital signs; ES4 patients require one resource; and ES5 patients 

require no resources. Unlike simulation research, ESI tools include testing and expert consultations. 

Additionally, the MTS (immediate, urgent, urgent, standard, and non-urgent) is widely the most used 

system for emergencies in Portugal, and the CTAS (resuscitation, emergent, emergent, urgent, less 

urgent, and non-urgent) is also five-grade triage systems. Various approaches use triage scales 

depending on the maximum time a patient should wait before seeing a physician (ATP) (Facchin et al., 

2010; Duguay & Chetouane, 2007). First, there is never a miss-triage, i.e., a patient's triage category is 

always correct; and second, a patient's triage grade stays the same throughout their ED stay. Even 

though it is rare, mimicking a change in triage grade is essential for patients who destabilise and 

become critical. Modelling requires defining differentiated patient groups and treatment routes 

(Furian et al., 2018). 

4.1.2. Current System Performance 

Abo-Hamad & Arisha, 2013) state that the best method to determine how well things are 

currently doing is to consult with specialists in the area and examine the facts. For instance, domain 

specialists might demonstrate how well they comprehend challenges in the ED, such as when there 

are insufficient beds to accommodate (Boyle et al., 2022). KPIs, or Key Performance Indicators, consist 

of statistics derived from simulation experiment data and ought to be utilised to evaluate and interpret 

the current performance of the ED system. For instance, the LOS is the most popular KPI for EDs, which 

reflects the length of total patient stay in the ED once, including time spent in all stages (Furian et al., 

2018). More specifically, it can be denoted independently for admitted patients (time elapsed between 

the arrival and conversion), discharged patients (arrival time to unleash time), and transferred patients 

(arrival time to transfer conversion time). 

Furthermore, they compare and assess system performance and behaviour across various 

scenarios (Baesler et al., 2003). KPIs may be categorised as time-based, limit-based, state-based, 

financial, and combined (Welch et al., 2011). Time-based measures include summary statistics 

variables (e.g., mean, standard deviation (or variance) or risk measure) on durations that entities are 

in specific stages. This may include aggregate measurements that indicate the total durations in 

numerous phases and single time-based metrics that capture data only in a particular condition, such 

as the wait for triage and the previously discussed LOS. Other measurements commonly used are ATT 

which is the time that elapses until a patient is placed in a bed or room; ATP, which denotes the time 

between the arrival of the patient and the first time seen by a doctor; PD, which accounts for the whole 

 
8 https://epmonthly.com/article/on-your-mark-get-set-triage/ 
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duration of the service provided by a physician and WT which reflects system-wide or individual 

waiting times (Furian et al., 2018). 

Limit-based measurements track the number or percentage of patients who complete specific 

tasks within a specified time limit. An example could be stabilising a four-hour LOS time limit threshold 

for EDs, the analogous limit-based metric of the proportion of patients who leave the ED within this 

time frame. (Ashour & Okudan Kremer, 2013) identifies tardiness as an indicator of the ATS, i.e., if a 

patient’s waiting to be allotted to a bed or room exceeds a specific predetermined limit. Also, LWBS 

(Leave Without Being Seen) represents a patient whose departure predates the triage or any 

uncompleted treatment procedure. Typically, this occurs while awaiting a resource, such as a bed, or 

being seen by a physician or a nurse. The departure may be triggered by a time restriction (from the 

patient’s side), the model’s status (such as many patients in the waiting room), or other variables. 

On the other hand, state-based metrics are statistics based on the status of the model’s variables 

across time, such as queue lengths or resource usage (Facchin et al., 2010). In addition, a typical issue 

often in EDs is ambulance diversion, a reasonably usual indicator indicating an overloaded model 

condition where no new patients are taken. Welch et al. (2011) describe it as a limit measure, i.e., the 

number of hours (threshold) the ambulance is in the diversion in ED. However, it may be calculated as 

the ratio of diversion hours to ED operational hours. Financial measures represent the cost or profit 

associated with a particular situation. In addition to being a meaningful KPI, it is not the primary 

objective of many EDs. (Paul et al., 2010) explore that several issues in EDs are based on resource 

utilisation and waiting times (as seen by the case studies described in the following sections). Hence 

performance metrics will be more focused on times and rates. Finally, as combined measures, it is 

possible to utilise multiple KPIs aggregated into a single KPI. 

For instance, Bair et al. (2010) utilised The National Emergency Department Crowding Scale 

(NEDOCS), which, at any given point, combines any KPI measurement previously mentioned, such as 

bed occupancy; the time spent for patients to be seen by a physician upon arrival; The ratio of the 

number of patients in the waiting room to the total number of hospital beds for inpatients and the 

maximum boarding time of patients. Eskandari et al. (2011) integrated WT, resource usage, and 

expenditure into a KPI, which is then ranked using a technique known as the Technique for Order 

Preference by Similarity to the Ideal Solution (TOPSIS). Abo-Hamad & Arisha (2013) integrated WT, 

LOS, resource usage and layout efficiency using a balanced scorecard method. Azadeh et al. (2016) 

proposed the incidence of human mistakes as a KPI and examined scenarios using Stochastic Data 

Envelopment Analysis (SDEA). Lin et al. (2015) quantify ED performance using a crowdedness index 

(Furian et al., 2018). 
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4.1.3. Process Map of the Status Quo 

This section examines a map of the healthcare processes applicable to model development. 

There are three phases of patient flow in healthcare: waiting room time, treatment time, and extended 

time (Kovalchuk et al., 2018). These data may be easily accessible from most medical information 

systems. They may be rendered with varying degrees of detail based on the study's aims (e.g., they can 

be combined as a set of particular times corresponding to different patients in a probabilistic 

distribution) (Abo-Hamad & Arisha, 2013). At this stage in the model's evolution, the LOS data could 

be divided into three portions. The first portion is the time measured between the patient's arrival at 

the hospital and the first time seen by a doctor. The period between the treatment commencement 

and the treatment completion time follows. It involves consultations with other physicians and nurses, 

x-rays, diagnostic testing, and further forms of treatment. The subsequent and last portion addresses 

the swift admissions decision, which can be dominated by extended time. The patient may then be 

discharged from the unit or admitted to another service (Boyle et al., 2022). 

Beyond the three-phase patient flow, in the case of an ED, identifying separate functional areas, 

such as triage, treatment, and diagnostics, is a fundamental approach to organise an ED. With the 

emergence of functional areas, it is essential to establish structural and organisational areas, which are 

sometimes confused (Azadeh et al., 2016). Structural areas are defined as sub-units of the model that 

aggregate non-movable resources, such as fixed beds, cubicles, rooms, and static diagnostic 

equipment. Consequently, resource allocation does not alter over time. Conversely, organisational 

areas include temporarily aggregate resources, such as staff availability, temporary assignment to 

streams, and movable resources (Furian et al., 2018). This is not always the case, despite how linear 

and straightforward it may seem. Occasionally, structural and organisational areas may be connected 

with the same resources but from contrasting perspectives. For example, Saghafian et al. (2012) 

describe virtual streams for admitting and discharging patients who may belong to the same structural 

area (e.g., general ED) but are managed in separate organisational units with temporarily allotted 

resources.  

A well-defined difference between organisational and structural areas is important to represent 

the complete variety of conceivable ED layouts and structures. First, published models were screened 

for devoted resources (beds, spaces, cubicles, registration desks, etc.) through textual descriptions, 

symbolic images, tabular structure, and floor layouts which changed greatly from published models. 

Each model's resource groupings were then assessed. The objective was to identify groupings of 

resources that fulfil a defined purpose or share of operations. In a subsequent phase, the authors 

analysed whether such resource groups constitute a particular area or be seen as diverse resources 

within an area (e.g., doctors with different specialities or multiple bed types within surgery) (Furian et 

al., 2018). Due to the modellers' degree of detail, this was not always achievable due lack of detail. 
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4.1.4. Experimental Decision Factors 

Experimental decision factors (test analysis) involve domain expertise and primary data. 

Discussions could establish decision variables that can be handled (or controlled) within the system 

(e.g., number of physicians, nurses available, beds or room capacity). Examining resources, processes, 

and environmental circumstances as variables subject to change (Paul et al., 2010) is viable. 

(Eskandari et al., 2011) comment that regarding the resource variables, an experiment may 

involve altering the number of beds, machinery or the rate at which patients are admitted. Process 

scenarios may be considered to introduce new approaches to enhance service quality, such as fast-

track pathways or a new route for a specific patient type. The environmental changes may modify 

patient demand. As the studies progress, it may be convenient to acquire more information to 

complement those variables collected (Boyle et al., 2022). For example, to explore the improvement 

of a suggested novel route for fractured bones, it would be necessary to identify which patients in the 

historical data were classed as fractured bones. 

4.2. Establishing the Modelling Objectives 

For Monks et al. (2017), modelling goals specify how simulation research is intended to help 

client decision-making by analysing alternative system configurations based on a predetermined 

performance metric. Here, system configurations refer to alternate stroke route setups. Typically, 

configuration options are constrained by hospital money, physical space, and laws. Gunal (2012) 

states that modelling objectives, level of detail, and generality may be interrelated. Over a certain 

level of detail, further information may render a model less generic. According to Furian et al. (2018), 

objectives may be categorised as either general (run-time and visualisation needs, development 

effort and re-use flexibility) or modelling (answering the question: “what are the most important 

issues to be addressed by experimenting with the model?”). The general objectives are essentially 

associated with the model’s scope, i.e., the generic and reusable content for the ED model. In 

contrast, the modelling objectives of chosen models may be categorised according to their primary 

function. 

4.2.1. Identifying the Model Outputs (Responses) 

Define the model outputs that are relevant to the modelling objectives. KPIs are often used as 

results in ED DES research (X. Zhang, 2018). Waiting time, LOS, patient throughput, bed occupancy, 

and the proportion of patients released without being seen are examples of KPIs. As previously 

mentioned, LOS is the most often used model output in ED DES models. It is employed in calculating a 

large number of time-based KPIs (Furian et al., 2018), such as the number of patients seen within a 

particular time frame. 
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4.2.2. Identifying the Model Inputs (Experimental Factors) 

Input variables indicate many possibilities that the model may assess during experimentation. 

Four broad potential scenarios exist: resource-related, process-design-related, policy-related, and 

stochastic distribution or duration-related (Robinson, 2008). Specifically, input factor changes may be 

applied to the model's structure (e.g., number of resources), individual behaviour (e.g., process 

design), system behaviour or control (policy design), and model parameters (e.g., data-related 

scenarios). The succeeding terms follow a comprehensive explanation of the words and categories 

used, as Furian et al. (2018) define. 

Human and physical resource scenarios may be further divided about resources. Physical 

resources include space-related resources (beds, rooms, and more) and diagnostic equipment, while 

human resources might vary according to employee rosters and skill levels (Bair et al., 2010). 

In process-design scenarios, the introduction of new patient pathways is evaluated. Note that 

this does not contain alternative techniques for dispatching resources in response to activity requests 

if the route stays identical; policy scenarios handle these. Moreover, since they are considered data 

scenarios, they do not contain changes to process-step durations (e.g., shorter assessment periods). 

Changes in resource allocation, such as dispatching and control rules, focus on policy-related 

scenarios. These include assigning personnel with varying levels of expertise and experience to jobs 

and patient selection procedures, such as dynamic priority (Hay et al., 2006 & Tan et al., 2012) or 

sophisticated triage approaches (Ashour & Okudan Kremer, 2013). 

Data-related situations are those in which the input data varies throughout simulation runs, such 

as varying patient arrival rates and average treatment durations (Furian et al., 2018). In addition, they 

may be quantitative (e.g., arrival rate, number of resources or activity duration) (Mohiuddin et al., 

2017) or qualitative (e.g., patient satisfaction). Following this definition, the experimental factors are 

a subset of the overall input data necessary for model realisation. As with the responses, the observed 

elements are supposed to be the mechanism by which the modelling goals will be attained. 

Alternatively, they may be gathered by asking the patients and domain experts how they propose to 

implement the required system enhancement a priori (Kuo et al., 2016). Occasionally, it is 

advantageous to experiment with parameters over which there is little or no control, such as the 

patient arrival rate. Such testing may benefit system comprehension and future event planning. In 

addition to identifying the experimental variables, it is helpful to specify the range within which those 

factors may be altered, for example, the minimum and the maximum number of staff on a shift 

(Robinson, 2008).  

These metrics are used to represent the simulation model's output. Therefore, the simulation 

model will produce quantitative values of the specified performance metrics. Qualitative variables 
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such as patient satisfaction may be connected to quantifiable indicators such as average waiting time 

and LOS (Abo-Hamad & Arisha, 2013). 

4.3. Choosing the Model Content 

In selecting model content, the framework separates a difference between (I) model scope, 

which identifies model boundaries by including or omitting a representation of parts of the system 

under investigation as model components, (II) model detail (or depth of the model) which focus on 

characteristics (Monks et al., 2017) and (III) identifying model assumptions and simplifications (Boyle 

et al., 2022). Before evaluating the extent and amount of complexity of the suggested simulation 

model, Robinson (2008) argues that its use should be questioned. The simulation selection is based on 

three key considerations: variability, interconnectedness, and complexity of the being-modelled 

system. Robinson (2008) also cites the use of queuing systems as the majority of operational systems 

may be seen as one, henceforth the primary rationale for the applicability of DES. In addition to an 

awareness of these reasons, the description of the issue scenario, the modelling objectives, 

experimental factors, and responses will guide the judgement as to whether simulation is the 

appropriate method. Most of the debate up to this point has yet to be particular to conceptual models 

for simulation. It is conceivable that a different modelling strategy will be used. The conceptual model 

becomes simulation-specific from this point forward. 

4.3.1. Model Scope 

Model scope consists of (i) stablishing the model boundaries, (ii) listing all relevant model 

components and determining whether each of the listed components should be included (Robinson, 

2008). 

Boundaries of the Model 

The boundaries of the model may be experienced by changing the experimental factors of the 

model and analysing the responses. However, a better practice of stabilising the edges is acting with 

the same behaviour as the system does. As unit and facility-specific ED studies are frequently impacted 

by unscheduled patient arrivals and congestion in inpatient beds (Richardson & Mountain, 2009), it is 

convenient to model inpatient admission as a line that would not underestimate boarding times. The 

reason is that boarding times are affected by other attributes other than the availability of inpatient 

beds (Bair et al., 2010). This leads to significant uncertainty in ED operations. Levin et al. (2008) and S. 

Levin et al. (2011) designed an alternative approach that successfully modelled boarding times. They 

used the “Cox PH” model, which enabled them to work with covariances, including variables associated 

with competing bed demand from several sources. General ED-DES demonstrates how to model 

boarding times as a function of inpatient hospital characteristics using survival analysis approaches. 
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Different degrees of information may be employed as covariates based on the available data (Boyle et 

al., 2022). 

Relevant Model Components 

Adapting from Robinson’s framework (Robinson, 2008), four categories of a component may be 

used to conceptualise simulation models: entities, activities (active states), queues (dead states), and 

resources.  

Entities are presented by objects with attributes and consume resources in an activity. They are 

considered passive entities because they do not have the autonomy to make decisions independently. 

The entity has the role of moving through the system, waiting for the next activity to take place. In this 

case, a patient is considered an entity in the system. 

Activities (or events) affect the system’s state, more precisely, the entities and resources. It 

provokes the movement of entities along the flow and resources to cooperate. It has a finite duration 

at happens at a specific time. The check-in at a healthcare facility, the triage or the treatment are 

examples of activities in the system. 

Usually, queues are passive activities that are put between two active activities. A queuing 

system generally exists whenever patients demand services from a facility. The duration of the queue 

cannot be determined a priori. 

Resources are the objects in the system that provide a service to the entities. It includes staff or 

equipment. Instead of being depicted separately, resources are countable items. Some replacement is 

possible between resources and other specific components. For example, a machine might be 

modelled as an activity or as a piece of equipment (resource) needed to support another activity. 

With more detail, human resources can be separated into four fundamental categories: doctors 

(or physicians); mid-level care providers (such as nurse practitioners or physician extenders); nurses 

and supplementary employees (such as clerks, technicians, or laboratory staff). Medical staff 

employees may be categorised based on their fields of specialisation and/or responsibilities, as well as 

their degrees of experience and proficiency (Bair et al., 2010). Typically, the range of available domains 

of specialisation corresponds to defining structural areas and/or patient categories, such as 

surgical/medical and paediatric/general. Indeed, areas such as internal medicine/surgical medicine 

and paediatrics need personnel with specialised training. However, they seldom are portrayed as their 

abilities but rather as domains of responsibility (Tan et al., 2012). Possible fields of responsibility 

include virtual streams for admitting and discharging patients in distinct medical and surgical areas. 

The model’s control mechanism assigns workers to duties (temporarily or permanently). Physicians are 

the most prevalent sort of human resource represented in models. Most models consist of a single 

physician (Furian et al., 2018). However, the names of these resources may vary (e.g., emergency 
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physician, general practitioner, or simply physician, these models are characterised by a lack of 

distinction between the experience and skill levels of the respective group. Mid-level care providers 

include physician extenders, assistants, and nurse practitioners. Special training enables them to 

execute minor treatments or operations that transcend nurses’ competence but need doctors’ 

supervision (not necessarily concurrently) (Robinson, 2008).  

Most publications only investigated one kind of nurse in general and triage departments, 

although some models have floating or emergency nurses. Abo-Hamad & Arisha (2013) describes many 

types of nurses. However, it is still being determined whether the model differentiates them. 

Administrative employees consist of clerks and receptionists (they may theoretically be nurses 

but do not have medical tasks in the models), paramedics, laboratory staff, technicians, and diagnostic 

staff are often not the heaviest burden on emergency services. Internal/surgical medicine and 

paediatrics demand qualified professionals (Furian et al., 2018). 

The most frequent physical resource discovered models are accommodations for patients 

throughout their stay. Except for waiting rooms, they consist of rooms, cubicles, and hallway beds 

(sometimes referred to as trolley beds, stretchers or gurneys). Gurneys indicate a resource that may 

be shared since they relate to beds that are not allocated to rooms (even if temporarily removed from 

the rooms). Types of beds often correspond to distinct sections indicated in the model, such as 

standard and FT beds. To reduce duplication, the models only evaluated different bed types if they 

occurred in the same organisational area and summarised all other kinds as general or per-area beds. 

Triage facilities (rooms, cubicles, spaces), recliners, inpatient beds, and diagnostic equipment were 

also designed. Due to the absence of specific information, however, the difference between regions 

and resources within a region was only sometimes crystal clear. Takakuwa & Shiozaki (2004) give a 

floor layout that depicts a multipurpose room that is shared by several areas, while Connelly & Bair 

(2004) specifies the presence of ordinary beds and trauma bays within multiple sites, i.e., high and 

medium-acuity regions include both. 

Robinson (2008) remarks that each component’s influence on the model as validity, credibility, 

utility, and feasibility must be evaluated. If they are not required to fulfil these requirements, they 

should be discarded from the model without compromising its accuracy and damaging its credibility. 

(Robinson, 2008) advises retaining components in the model whose influence on the model’s validity 

is uncertain. 

4.3.2. Model Level of Detail 

This pertains to the simulation model's depth, especially the needed degree of information for 

each component (Boyle et al., 2022). Determining the level of detail, i.e., the level of detail for each 

entity, activity, queue, and resource to be included in the model (Robinson, 2008), demands judgments 
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on the level of detail for each component within the model scope. Unless there are trustworthy facts 

to guide the model parameters, it is inappropriate to incorporate specific detail (Monks et al., 2017). 

In terms of its properties, each component may be modelled at varying degrees of specificity. Keeping 

this in mind, one example is treatment time, which is an amalgamation of diagnostic tests, evaluations, 

therapy, and the time necessary to organise this work (i.e., waiting) (Boyle et al., 2022). This 

demonstrates that in certain instances, a specific activity may be subdivided into sub-activities, each 

of which may use resources that the others do not. Or they may use distinct experimental factors. The 

modeller, clients, and domain experts may go through the specifics for each component in the model 

scope, selecting whether the detail should be included or removed and how each detail should be 

modelled. 

Similarly to the model scope, the choice to include or exclude a particular feature should be 

based on its perceived impact on the model's validity, credibility, utility, and feasibility (Robinson, 

2008). Nevertheless, the possibility of having adequate data to produce reliable estimates of such 

parameters is minimal, necessitating an additional effort to quantify model performance uncertainty. 

Including many patient characteristics also presents dependency concerns (Monks et al., 2017). 

4.3.3. Model Assumptions and Simplifications 

According to Ranjkesh et al. (2019), assumptions are made when there are uncertainties or 

beliefs about the actual world being modelled, while simplifications are used to simplify the analysis 

as much as possible. The assumptions and simplifications may be detected mainly by referencing the 

model's previously excluded details and particulars. In addition to eliminating specifics, aggregating 

model components and substituting model components with random variables are other effective 

simplification techniques (Robinson, 2008). Darema (2004) & Furian et al. (2018) remark that once all 

assumptions and simplifications have been identified, the modeller, customers, and subject matter 

experts must assess their impact, based on judgement, on the model's answers (whether they are high, 

medium, or low) and the degree of trust that can be placed in them. Those assumptions and 

simplifications deemed to have a significant effect but for which confidence is low should get special 

consideration. The conceptual model might be modified if required to alleviate concerns over any 

underlying assumptions and simplifications (Vázquez-Serrano et al., 2021). The discovery of 

simplification options is primarily dependent on the expertise of the modeller; however, discussions 

between the modeller, customers, and subject matter experts may also provide simplification 

suggestions. Too many simplifying assumptions have been made when a simplified model can no 

longer accurately predict the behaviour of the actual object. In addition, it is helpful to refer to a 

standard set of simplifications (Robinson, 2008). 
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4.4. Model Development 

Complex social interactions are prevalent in healthcare systems, especially at decision points. 

Therefore, healthcare service delivery and patient flow management issues are often difficult to 

characterise. Abo-Hamad & Arisha (2013)d & Arisha (2013) suggest that a deeper comprehension of 

the healthcare process is crucial for making proper, defensible choices and delivering successful 

solutions. Therefore, it is vital to develop the highlighted issue from the perspective of those directly 

engaged in the service delivery process.  

The process of developing the model may start after formulating the problem, identifying inputs, 

outputs, assumptions, and entities, and after reviewing the preceding parts. (Steuben et al., 2019) 

defends that the quantitative data (observations) are either saved in databases or recorded on any 

form of storage media (in the form of records), whilst the qualitative data may be gathered by direct 

observation of the system and expert interviews. In healthcare, experts are hospital employees such 

as physicians, nurses, consultants, administrators, and managers (Baesler et al., 2003). 

The hospital information system collects patient records, including information on the patient's 

treatment route, method of arrival, referral type, and discharge or admission time (Abo-Hamad & 

Arisha, 2013). Different personnel enter patient data (e.g., administrators, doctors, and nurses through 

the stages of patient care). Due to the stringent limits imposed on healthcare systems, hospital records 

often lack precision and uniformity. Therefore, data mining procedures are required to extract the 

most dedicated group of documents from them before extracting any data. 

In the data-gathering phase, expert and clinician observations and interviews are combined to 

produce the inputs for the model. This offered a comprehensive understanding of numerous system 

problems and facets. 

4.4.1. Conceptualization 

After collecting data using one of the well-established modelling languages, the identified 

business processes are mapped into a conceptual model in which subprocesses and activities are 

described (Khanna et al., 2016). The control flow specification is created by defining the elements that 

move through the system (such as patients, personnel, and medical resources) and detailing the links 

between the different process phases. Finally, the resources are identified and, if necessary, assigned 

to the activities.  

Abo-Hamad & Arisha (2013) state that the conceptual model serves two purposes in the 

simulation model: first, it serves as guidance for the actual simulation model, which contains and 

accounts for a greater level of detail, and second, it serves as a communication platform with the 

experts working in the existing system to validate the model. 
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4.4.2. Verification and Validation 

Throughout healthcare simulation mode's development stages, verification and validation are 

part of extensive research. They should be performed to build trust and credibility in the simulation 

model outputs. Without them, it would be dangerous, if not catastrophic, to rely on choices or 

projections (Kleijnen, 1995). After each stage of model development, Abo-Hamad & Arisha (2013) 

argue that the model should be verified and validated in connection with the completed phases. 

The model logic is verified during the verification phase to guarantee that patients follow the 

predicted correct treatment route. This was accomplished by using animation and monitoring 

intermediate output data, such as queue lengths, average processing times, number of entities that 

have completed the activity, number of resources available at a specific time and others. The 

verification methodology is much more straightforward than validation (S. C. Brailsford et al., 2019). 

In the verification, the analyst only requires knowing the developer's conceptual description and 

specifications and then confronts them with model implementation, associated data and simulation 

results. In validation, the analyst needs to assess the degree to which a simulation model and its related 

data accurately replicate the actual world from the viewpoint of the model's intended applications.9  

4.4.3. Decision-Making 

After model validation and verification, decision-makers can use the model to study the 

consequences of alternatives and prospective outcomes (also known as "what-if scenarios") (Abo-

Hamad & Arisha, 2013). Experts and decision-makers may then evaluate and comprehend the results, 

which guide implementing recommended options and strategies and asset standards that represent 

the most outstanding performance feasible with the available resources and personnel levels (Facchin 

et al., 2010). Consequently, more realistic ideas and methods may be proposed and assessed using the 

simulation model. In addition, the simulation's capabilities may provide fascinating information on 

cause-and-effect relationships in performance (Paul et al., 2010). However, the sheer amount of 

performance indicators impedes evaluating and interpreting the simulation's results. This is because 

some of these needs are incompatible and violate natural laws. (Jain et al., 2011) identify that by using 

multicriteria decision analysis, one may evaluate the trade-off between many goals. 

 

 

 
9 https://www.mitre.org/publications/systems-engineering-guide/se-lifecycle-building-blocks/other-se-
lifecycle-building-blocks-articles/verification-and-validation-of-simulation-models 
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5. The use of DES in the ED of Central Baptist Hospital 

This section describes a case study developed by Wang et al. (2012) in which DES was used to 

enhance the performance of resources whose primary goal was to minimise the LOS of patients' stays 

in the unit. This was accomplished by decreasing queue wait times, increasing the number of 

resources, and exploring the system in a manner that could study the impact of improving these. 

Although the research was conducted in an ED, therefore at a different department of a healthcare 

unit, the whole process of preparation and analysis was comparable to what would be executed in the 

Imaging Department. In addition, the aims of interest are identical in minimising queue waiting times 

to boost patient satisfaction and demand for this research. This case study uses SIMUL8 for analysis 

and model development, the same software used in this research. 

5.1. Problem Context 

Lexington's Central Baptist Hospital (CBH) has served Bluegrass communities for over 50 years. 

CBH aims to reduce ED LOS to improve treatment. As one of the primary activities, a DES model is 

built to analyse patient outcomes, identify crucial resources and processes, perform "what-if" 

analysis for alternative staffing and operational situations, and provide suggestions to hospital 

management. Wang et al. (2012) provide a model and explain its results and insights. It is shown that 

adding a floating nurse, allocating varied nursing workload, combining registration and triage, 

concentrating on certain essential operations (e.g., IV/Med, triage, nurse access, and disposition), 

and requiring a physician visit in 30 minutes should drastically decrease ED LOS. The system patient 

flow model is presented below, in Figure 3. 

5.2. Simulation Model 

Figure 3 – Patient movement flows in pre-bed and in-room services. Taken from Wang et al. (2012). 
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This case study simulates CBH ED patient flow and suggests LOS reductions. The model should 

analyse resource constraints (e.g., staff and diagnostic equipment), critical operations, and 

management choices to reduce LOS. This requires a thorough patient flow process analysis. 

A simulation model is constructed using SIMUL8 and the patient flow sketch designed above. 

Each procedure or operation is handled as a "machine" in this paradigm, complete with processing 

time, necessary resources, and routing in/out logics. The resources include patient rooms/beds, 

nurses, doctors, and radiological diagnostic equipment. Each part of the model was introduced, as 

shown below. 

Patient Arrival 

There are two sorts of patient arrivals: walk-ins and those brought in by ambulance. Among all 

patients, 0.44% of the walk-in patients and 1.8% of the ambulance arrivals represent urgent patients, 

all of whom have CP symptoms. The ratios relative to the acuity level of the patients are given in Table 

1A and 2A. 

Resources 

The current schedule for work shifts for both physicians and nurses are presented in Table 

3A and 4A, respectively. The nurses are responsible for managing a total of 21 rooms/beds. The nurses 

are split into a charge nurse responsible for the urgent bed, five primary nurses who supervise four 

regular beds, and a float nurse accountable for caring for patients in any bed when the primary nurse 

is occupied. A rotating schedule among the nurses ensures that such an assignment is available at any 

moment (i.e., the nurse number in Table 4A indicates job function as opposed to a particular 

individual). Tables 3 and 4 include information on doctors and diagnostic equipment, respectively. The 

information about the quantity of diagnostic equipment is presented in Table 5A. 

Operation Times 

The operation timings of service procedures are gathered by ED personnel by direct 

measurement or estimate. Table 6A provides the typical operation times associated with ED 

personnel. For operation times in SIMUL8, the average distribution (normal with a coefficient of 

variance equal to one-fourth) is employed. According to Reynolds et al. (2010), the LOS and other 

performance metrics are influenced mainly by the coefficient of variance rather than the distribution 

type. 

Control Logistics  

The acquired patient information determines the patient routing logic. Each patient is allocated 

a label that describes the patient type, acuity level, potential laboratory and radiation testing, and 

more, which governs the patient’s course through the ED. Visual control logic is implemented to 

https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
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determine whether or not criteria are met and to regulate patient flow. For instance, in inpatient 

testing processes, loops confirm that all relevant tests have been performed until they are done. In 

addition, visual logic is used to gather all required data and analyse it. 

Complete Model  

Using the previously stated facts, an exhaustive simulation model is constructed. The pre-bed 

service process is modelled to generate patient arrivals (walk-in or ambulance and arrival times), assign 

labels to define patient identification (acuity, CP or non-CP, urgent or not, and more), and route 

patients to triage and bed assignment. After pre-bed service, the patients move to the in-room service, 

which is composed of a set of activities, such as the nurse’s initial service, physician’s first visit, lab and 

radiological tests (as determined by patient labelling), waiting for the results, IV/Med, physician and 

nurse depositions, discharge, and room cleaning. 

5.3. Model Validation 

This section contrasts the simulation results with the accurate (practical) data. The key 

performance measures used are the period at bed assignment, the physician’s first visit, decision, and 

deposition. All these activities’ time added gives the patient’s length of stay in this block of activities. 

Checking these time frames will be beneficial for future efforts to enhance the model and invalidate 

it. Table 7A displays the accuracy of these estimations. As one can see, all other results result in 

reasonably good accuracy, except for the duration from bed assignment to physician appointment 

(Bed to Physician). The physician may explain why they may not record the time right away after 

entering the patient’s room. This model used simulations to simulate patient flow in the ED and 

conduct sensitivity and what-if analyses. Although the simulation model can provide information for 

single patients with varying acuity and variability, the study focuses primarily on the mean 

performance of operations for all patients, treating all patients the same way. 

5.4. Sensitivity Analysis 

In addition to simulating the patient flow in the ED, the simulation model will allow analysis and 

forecasting of possible opportunities for improvement. Using the previously mentioned model, we do 

sensitivity analysis, which enables to find the most crucial resource or method whose improvement 

may result in the most significant increase in system performance, i.e., a decrease in LOS. 

5.4.1. Sensitivity to Operation Times 

Wang et al. (2012) assess the possibility for improvement whether a procedure's operating time 

may be lowered by 10%. As indicated in Table 8A, Nurse IV/Med improvement might lead to the most 

significant decrease in LOS. Other processes, such as Triage, Nurse Access, and Nurse Discharge to 

Home, might also reduce LOS. Therefore, these procedures should be the focal point of the endeavour 

https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
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to enhance. The model assumes that, if available, the physician will visit the patient promptly following 

the first nurse access. 

The study above addresses the sensitivity to the mean operation times for all patients. In ED, 

not only the mean but also the variance is significant. Due to the variety of patient types, syndromes, 

ages, medication records and histories, and other factors, it is normal for operation timeframes to vary 

significantly. Consequently, it is essential to investigate the sensitivity to various operation times. 

Therefore, the paper examines the effect of more significant variances (i.e., standard deviations raised 

by 100%, 200%, and 300%). As seen in Table 9A, the LOS will grow significantly when the variability is 

high. Consequently, regulating the variation in operating times is crucial. 

5.4.2. Sensitivity to Resources 

In addition to examining the sensitivity of operating times, the number of available resources is 

also significant. Distributing the investment to the essential resource is essential for hospital 

administration. Should extra physicians and nurses be hired? Should additional laboratory/radiology 

testing equipment be acquired? To address these concerns, sensitivity tests involving human and 

equipment resources are conducted to examine the effect of increasing each resource. As 

demonstrated in Table 10A, adding one extra float nurse may shorten the length of stay by more than 

17%. However, more physicians or radiological test equipment do not give a good advantage. 

5.4.3. Sensitivity to Patient Volume 

In recent years, the number of patients attending the ED has increased. In addition, disruptive 

events may contribute to a rise in the number of patients. Consequently, it is essential to consider how 

an ED can operate with a high patient load. Table 11A illustrates that even with a 5% increase in patient 

volume, the length of stay will increase by 11%. The length of stay will increase by more than 60% for 

every 10% increase in patient volume. If more patients attend the ED, the number of patients will 

increase exponentially, making the ED untenable. It is essential to plan for enough ED capacity and 

personnel to address this issue. 

5.5. What-If Analysis 

In addition to determining the target processes or the essential resource for improvement, 

what-if analysis is conducted to analyse the proposed new operation management rules to provide 

predictable outcomes before deployment. Some possibilities are discussed below, and all of them 

could decrease the LOS in the ED significantly. 

Wang et al. (2012) reorganise nursing positions such that the float nurse may function as a 

primary nurse with a more extended shift to oversee three regular beds. This makes one primary nurse 

continue to care for four beds while the other nurses handle three regular beds, and the charge nurse 

https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link


33 
 

cares for one regular bed and one urgent bed. Implementing the modified timetable for nurses might 

lower the LOS by 24.03%. Additionally, dividing the number of beds equally among all nurses (other 

than the charge nurse) may reduce the usage of each nurse, which gives greater responsiveness to 

patients. 

The study also conducts an experiment combining registration and triage, given that registration 

and triage always need overlapping paperwork. During triage, patients are asked to complete 

registration under the supervision of the triage nurse so that repetitive inquiries and paperwork may 

be prevented. The simulation findings indicate that such an activity might reduce the LOS by over 5%, 

making it a realistic means of improvement. 

The delay between bed assignment and the first physician visit feels too lengthy. The model 

anticipates that the physician will only visit the patient after the nurses have completed their initial 

service. However, such a delay may be optional. It is suggested that the physician see the patient within 

thirty minutes (even if the nurse still needs to finish her first service). According to the simulation 

model, enacting such a strategy might reduce LOS by as much as 7.43%, making a significant impact. 

From Table 8A, the four most sensitive nursing operations to improve LOS are Nurse IV/Med, 

Triage, Nurse Access, and Nurse Disposition to Home, showing that every 10% reduction in operation 

time will result in a 3% to 4% reduction in LOS. Consequently, a 10% decrease in all four procedures 

simultaneously indicates that it will result in a 17.37% reduction in total LOS. Wang et al. (2012) also 

note that combining the addition of a float nurse with the simultaneous reduction of the operating 

periods of the top four most sensitive operations results in a substantial 32.82% drop in LOS.  

Lastly, Wang et al. (2012) find that the existing ED capacity is insufficient to react to a larger 

patient volume, as shown in Table 9A, which can be explained through the variability of patients in the 

ED. Therefore, the article investigates the possibility of employing a float nurse. Observations suggest 

that LOS is reduced by 28.25% when one float nurse (working from 08:00 PM to 00:00 AM) is added 

for every 10% increase in patient load. An additional 9.35% may lower LOS if the float nurse's shift is 

prolonged from 9:00 AM – 12:00 PM, for a total reduction of 37.6%. As a result, adding a float nurse 

to respond to the surge may be possible. 
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6. Problem Formulation, System Analysis and Conceptual Model Presentation  

This chapter explains all of the information provided by the Imaging Department management 

at Hospital da Luz regarding the unit under study for developing the plan and subsequent conceptual 

model. 

6.1. Imaging and Ultrasound Services Functioning 

The Imaging Department of Hospital da Luz now offers approximately ten types of examinations. 

Mammography, X-Ray, Magnetic Resonance Imaging (MRI), Computerized Axial Tomography (CAT), 

and Ultrasound were cited by the decision-maker as five exams that could improve the quality of 

service in terms of waiting times. Currently, the department has two pieces of mammography 

equipment, allowing up to two patients to get an examination simultaneously. Additionally, the 

department has four pieces of X-ray equipment, allowing for the same number of patients, six pieces 

of MRI equipment, three pieces of CAT equipment, and eight pieces of Ultrasound equipment. It was 

stated that each piece of examination equipment is designated for a single office. Therefore the 

number of offices equals the number of examination equipment available. Regarding the health 

personnel assigned to supervise and conduct each examination, it is necessary to have one technician 

in Mammography, X-Ray, MRI and CAT; one assistant in X-Ray, MRI, CAT and Ultrasound; and a 

physician in Ultrasound. 

The journey begins when the patient retrieves a ticket from one of the check-in locations. In the 

context of the problem, the unit has two entrances, with a check-in counter at each one. Ideally, zones 

A (Imaging) and B (Ultrasound) are stipulated by the examinations. The first zone, A, is characterised 

by Mammography, X-Ray, MRI, and CAT examinations, while the second zone, B, is determined by an 

Ultrasound examination. Patients are instructed to enter the area where they have exams scheduled. 

For example, suppose a patient is scheduled for a Mammography examination. In that case, they will 

enter through the entrance of A, whereas for an Ultrasound examination, they will enter through the 

entrance of B. A patient who has both zone A and zone B examinations scheduled will enter through 

one of the zones being directed to one of the waiting rooms immediately following the check-in 

service. Due to the particularity of the patient entering through zone A but having an examination 

scheduled in zone B, or vice versa, the check-in service is usually performed in the location where the 

patient entered. However, in this instance, the patient will move to the waiting room in the opposite 

area after the service.  

The patient must then wait until they are summoned to the office for the examination. The 

duration of each examination is predetermined and corresponds to the time slot provided for each 

patient. This period will include completing the examination and all associated activities (preparation 

of equipment, instructing the patient, and filling out the medical report, if necessary, among others). 
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By the end of this period, the patient will have left the office to make way for the next one. For all 

exams besides MRI, the prescribed duration is maintained regardless of the number of examinations 

performed by the patient. For the second case, the specified period is relative to a single examination, 

and the time will be duplicated if, for instance, the patient undergoes two MRI examinations.  

When the patient leaves the office, they have the option of moving to a different waiting area 

for another examination or leaving the unit. In the first scenario, they will proceed to the waiting area 

associated with the other planned examination, and the process will be repeated. As all scheduled 

exams of the same type are done inside the same time slot, the patient does not return to the queue 

they were in previously. 

6.2. Objectives 

Understanding the problem's objectives is crucial for the formulation phase and the simulation's 

direction since they will drive the whole procedure. 

In this context, it is desired to identify decision-supporting solutions that reduce the average 

wait time of patients. This may be accomplished by increasing the number facilities under 

consideration while considering each resource's occupancy rate. 

As stated before, the decision-maker's primary objective is to decrease patients' general average 

waiting time in the examination queue. However, it is possible to specify additional sub-goals that 

serve as a method to achieve the primary purpose and function as a kind of intermediary stage. The 

sub-objectives may consist in reducing the average queueing and maximum time for both check-in and 

examination activities separately; increasing the number of facilities inside the unit to have a more 

significant patient flow (fewer patients in queues) so that they may be treated more promptly to boost 

patient satisfaction and enhance the occupancy rate of each resource to increase their profitability. 

6.3. Variables 

Variables may be divided into controlled (decision) and non-controlled (exogenous). The 

variables that can be adjusted by the decision-maker whenever they wish are known as controllable 

variables and are permanent in the system. 

The variables recognised as controllable in the context of the issue are the number of 

technicians, assistants, physicians, secretaries and facilities. 

As the term indicates, non-controllable variables reflect the external environment's effect on 

the examined system — the healthcare unit — and are outside the decision-maker's control. 

In this situation, the exogenous variables under investigation are the number of patients arriving 

hourly, following an exponential distribution depending on the time of the day as explicit in Table 10 

from section 8.1.5.; the number of patients waiting in the queues to enter a specific service at a 

particular time; the number of technicians, assistants, physicians and secretaries on duty at a particular 
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time; duration at the check-in service which follows a log-normal distribution according to the Table 

11 from section 8.1.5. and the average and maximum time a patient stays in queue for each service. 

6.4. Key Performance Indicators 

After defining the problem and comprehending the intended objectives, it is necessary to 

establish performance metrics. These will play a crucial role in the whole duration of the project since 

they will permit the evaluation of the degree to which the predetermined objectives have been 

attained, allowing the conclusion of the system's performance. In this way, these meters must be well-

defined from an early stage to evaluate the initial solution's performance. 

Since the presented problem's primary objective is reducing waiting times in service queues, the 

defined KPIs will need to measure the quality of service of the same, similar to the pre-objectives 

already established. The following measures defined for this purpose are the average and maximum 

queueing time in the queue of each check-in service or examination and the occupancy rate of each 

resource. These metres will be reviewed after executing a number of the system runs to assess their 

performance across subsequent runs to determine if the system is trending towards deterioration or 

improvement. 

6.5. Relevant Entities 

Regarding the entities, which are the essential components of the system, it is feasible to 

distinguish between two sorts: temporary and permanent.  

Temporary entities are the system's objects of interest, such as a patient waiting in a queue for 

an examination in one of the waiting rooms. Because they are considered temporary entities, they 

have a short life span, only countable for the period they traverse the system from the entrance to the 

exit point, going through the activities designed for them. Once they exit the system, they will not re-

enter through the entry point during the execution time. Upon joining the system, each patient 

receives a unique identifier that enables the distinguishment from all other patients. Consequently, 

the modeller may track the course of a specific patient throughout the system. 

Permanent entities refer to the resources utilised to serve temporary entities. This study 

identifies four entities of this type: technicians, assistants, physicians and secretaries. Each of them 

will be responsible for activities that need the requisite resources to be performed. The equipment 

necessary to complete each activity might also be considered a resource. However, since the 

machinery is unique to each office serving the activity, it must contain the essential equipment without 

sharing equipment across activities. It explains why it is not immediately applicable as a resource. 
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6.6. Activities 

Activities represent a period with a given duration. Refers to a group of operations that modify 

the state of an object. Although activities and events are often used interchangeably, they have distinct 

meanings in the context of simulating. An event is a change in the system's state caused by an activity, 

with the event serving as the consequence and the activity as the cause. For example, a patient served 

at the ultrasound activity changed the physician's state to busy. 

The system's activities are comparable to building blocks. Each structural element is accountable 

for the movement of the work item. In a simulation model, they may be broken down into four primary 

building blocks: Work Entry Point, Work Centre, Queue, and Work Exit Point.  

Work Entry Point: This is the point at which each patient enters the system. The arrival pattern 

of work items may adhere to a predetermined schedule (deterministic behaviour) or a certain 

probability distribution (stochastic behaviour). 

Work Centres: This is the location where staff-related activities take place. The duration of the 

work may be modified to conform to a specific probability distribution. The output may be routed in 

several ways to other objects. 

Queues: This is where patients are kept while awaiting processing. The simulation analyst may 

manage the queue's capacity, shelf life (the maximum time a patient can be in the queue), and queue 

discipline. 

Work Exit Point: This is the point where patients leave the system. There may be several Work 

Exit Points in the model. For instance, it may monitor patients who left a particular examination and 

went straight to the exit. 

6.7. Assumptions 

To design the model, it was required to define some basic assumptions that would guide the 

whole procedure, beginning with its building and continuing through analysis and the search for 

solutions. These assumptions helped to assist the creation of the model and to assume the proper 

conditions required for modelling although there were those which were not mentioned when the 

issue was formulated. The following assumptions were made: 

 A patient only goes through the check-in procedure only once each day for an unlimited number 

of examinations. 

 A patient who has records on several days will be considered as one new patient each day they 

attended the unit. 

 Every patient exits the department having had at least one examination. 

 The patient waits in the queue for an examination for as long as is required. 
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 The patient who enters the unit on a particular day is required to be seen on the same day and, 

therefore, must depart the unit on the same day, never being permitted to remain there from 

day to day. 

 A patient is only permitted to take one examination at a time. 

 The duration of each examination activity corresponds to the slot provided for the patient (and 

its associated resources). 

 A patient leaving an examination may proceed to the exit or to another waiting queue for 

another examination, without ever having to return to the check-in area. 

 If a patient has several examinations of the same sort, they will be done inside the same time 

slot with no change in duration. In the case of MRI, the activity duration is multiplied by the 

number of times the patient has more than one examination in it. 

6.8. Sketch of Conceptual Model 

From a macro perspective, the model to be developed may be divided into two sections. The 

first section corresponds to the time between the patients' entrance (the period corresponding to the  

Figure 4 – Base schema of the model that will be implemented in SIMUL8. 
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withdrawal of the ticket from the kiosk) and their departure from the check-in service to join 

one of the queues heading to an examination. Consequently, the second section of the model 

addresses the remainder of the journey, from the patients' departure from the check-in until they 

depart from the system, with the transit of patients through various examinations as its primary focus.  

In the first section of the model, when patients arrive at the unit, they are directed to either the 

IS or the US. In any case, there is a check-in activity service linked to each zone and a queue before 

each of these activities.  

After abandoning the check-in activities, patients are sent to one of the queues for one of the 

five facilities. There are four facilities within IS, corresponding to Mammography, X-Ray, MRI, and CAT 

examinations, although only one facility for US, which is the ultrasound itself. After the patient has 

left the examination activity, they will have the option of proceeding to another queue of an 

examination or exiting the system. The diagram represented in the Figure 4, above, depicts the life 

cycle diagram of the model, which also contains an overview of the model to be designed in SIMUL8. 
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7. Data Collection and Treatment 

This phase focuses on collecting data and how it was treated to implement in the conceptual 

model.  

Before beginning the data treatment procedure, it is essential to be aware of the data privacy, 

and security law created and approved by the European Union, which became effective on May 25, 

2018, known as General Data Protection Regulation (GDPR). The legislation imposes requirements on 

companies worldwide as long as they target or collect data on European Union citizens. If this law's 

privacy and security criteria are broken, penalties of up to tens of millions of euros may be applied. 

The GDPR establishes the following data protection principles10:  

 Legality, fairness and transparency – Processing must be legal, fair and transparent for the data 

subject. 

 Purpose limitation – Data must be processed for the legitimate purposes explicitly specified to 

the data subject when it was collected. 

 Data minimization – Only data absolutely necessary for the purposes specified must be 

collected and processed. 

 Accuracy – Personal data must be accurate and always up to date. 

 Storage limitation – Personally identifiable data may only be stored for as long as necessary for 

the specified purpose. 

 Integrity and Confidentiality – Processing must be done in a way that ensures adequate security, 

integrity and confidentiality (e.g., using cryptography). 

 Responsibility – The data controller is responsible for demonstrating GDPR compliance with all 

principles. 

Considering the mentioned regulation and the topic of this dissertation, it is essential to note 

that every clinical study must adhere to the regulation. Since the provided data does not include any 

meaningful information about the user, his anonymity is likewise protected, and it would not be able 

to directly tell them that the information about his movement inside the unit is being utilised. 

Therefore, it is only necessary to maintain the confidentiality and anonymity of data concerning the 

provider, which is the hospital board of directors in this situation. 

7.1. Patients Entries 

The entries of the patients concern the patient's arrival at the unit depending on the time of the 

day. The given data included the moment each patient arrives at the unit, more specifically, the 

timestamp (composed by date and time) the patient receives the ticket for check-in. Since obtaining 

 
10 https://gdpr.eu/what-is-gdpr/ 
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the check-in ticket is a zero-duration action, this seemed to be a viable method for defining the instant 

a patient enters the system. A few more data procedures enabled the arrival date to be matched with 

the day of the week, revealing a greater influx of patients on weekdays than on weekends.  

It was revealed that the department started accepting patients at 07:30 AM each day (Monday 

through Friday) and continued until 8:30 PM. Therefore, because the system operates for 13 hours, it 

was necessary to divide it into several time intervals to analyse better the events that act in each of 

them and a way to maintain tracking control for when validation occurs later on. Graphic 1 presents 

the histogram relatively to the number of arrivals in the function of the extracted timestamps divided 

into 112 bins (classes), i.e., the 13 hours of labour split into 112 time periods, which gives 

approximately seven minutes for each time slot. 

 

 

 

 

 

 

 

 

             Graphic 1 – Histogram of the average number of arrivals per time interval per day (112 bins).  

Upon the first examination of the graph, it is apparent that the number of arrivals begins to rise 

gradually over time, i.e., the rate of patients per time interval rises until it stabilises for some time and 

then drops slowly until half day of labour. In other words, the time gap between two successive arrivals 

decreases progressively until it stabilises, at which point it begins to climb. The rate of patients at each 

time interval is inversely proportional to the period between successive arrivals, as the longer this 

delay, the fewer patients come per interval (Ranjkesh et al., 2019). During the second half of the 

labouring day, the procedure is similar to that of the first half. However, the stabilisation is less 

pronounced since it starts to drop very slowly and then gradually intensifies, although always to a 

lower extent than in the first half. 

Visually, the number of classes in a histogram is of tremendous importance. The greater this 

quantity, the greater the ability to examine how the system operates at different times of the day and 

the more evenly the data is distributed around the histogram, increasing the proximity to reality.11 

Additionally, with the reduction of bins, there is a growing amount of information that is lost because 

 
11 https://www.statisticshowto.com/choose-bin-sizes-statistics/ 
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it gets more condensed. The procedure was executed using 50 and 10 bins to facilitate comprehension 

and comparison. These histogram plots are shown in Graphic 1A and 2A, respectively. 

On the other hand, working with several bins may be laborious and useless since it would 

consume a great deal of time. Therefore, balancing the retrieved data and the number of classes is 

essential. This might be accomplished by grouping the areas of the graphic that have typical behaviour 

and studying them separately. In this study, it was easy to do this separation by eye, as shown in 

Graphic 2 below. 

 

 
Graphic 2 – Histogram of the average number of arrivals per time interval per day (112 bins) with the areas with a similar 

behaviour marked to be analysed. 

Therefore, there are seven bins, two smaller than the remaining. By further examining the data, 

it was possible to set proper intervals for the samples limited by each area in red. In a simplified way 

of doing those calculations, one can check that the first region of the graphic contains twelve bars. As 

indicated earlier, each bar is equivalent to seven minutes. Then, for the first region, the interval has a 

length of 84 minutes which might be extended to 90 minutes to equal one hour and a half. The 

procedure is repeated for the last region of the graphic. This way, three of the 13 hours were allotted 

to the intervals, leaving ten hours for five intervals or an average of two hours for each interval (or 120 

minutes). This way, seven intervals were established, as shown in Table 1. 

Each block's arrivals are segregated from the others so that each block is independent. The 

purpose of the following section is to assign a probability distribution to each block containing arrivals. 

This is perhaps the part that requires the most attention, given that the entire system will depend on 

the number of patients who arrive, and because it is pointless to complete any of the work if the 

patients do not come following reality or as close to reality as possible since this conclusion will not 

serve as an example. Before doing so, a thorough analysis was required. First, the given data revealed 

several instances in which a single patient was admitted multiple times, almost always in sequence. 

This may be explained, for example, by the fact that the patient collected many tickets from the ticket 

machine because they were not sure which one corresponded to their service the best. It was initially 

reported that a patient receives the check-in service once during his whole hospital stay, regardless of 
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the number of examinations they must take. To circumvent the issue of the same patient accessing 

the system several times, all of the patient's records with a check-in time of fewer than two minutes 

were deleted. This will be discussed in section 7.2. that follows, concerning this activity in specific, 

although this criterion has been established in conjunction with department managers.  

For each workday, the number of arrivals within each time slot was counted and stored in a 

vector comprising these numbers. Each vector element represents the number of arrivals from that 

time slot on a given day. For example, the vector corresponding to the first time slot (07:30 AM – 09:00 

AM) could be represented as 𝐴𝑉1 = {39, 67, 4, 49, 43, 53, 60, … , 55, 54}. This means that on the first 

day, there were precisely 39 patients that had arrived within that time slot, 67 on the second day, and 

from then on. Another factor that was seen and had to be maintained is that working hours vary from 

day to day. There are days at which patients are not recorded at a certain hourly period for unclear 

reasons. Either the department was temporarily closed, or the registration was missing. And that is 

quite clear in the vector, 𝐴𝑉1, above. An entry in the vector only registered four patients from 07:30 

AM – 09:00 AM, which is partially true. Even though it seems to be considerably far from the others 

observed, looking into that day, in particular, the department only operated for four minutes within 

that time slot, resuming operations at 12:00 PM, five hours later. Therefore, along with the vector 

containing the arrivals for each time slot, it is essential to keep the effective hours that the department 

had worked for each day. With this, a second vector, relative to the first time slot, containing this 

information (converted to decimals) could be represented as 𝑇𝑉1 =

{1.47, 1.43, 0.09, 1.43, 1.33, 1.42, 1.43, … , 1.38, 1.40}. With the two vectors, it was possible to find the 

rate at which the patients came to the unit (expressed in patients/hour) by simply dividing the number 

of arrivals by the hours the department had been working during the specific time slot. Or dividing 

vector 𝐴𝑉1 by 𝑇𝑉1. A third vector was then emerged storing those values, 𝑅𝑉1 =

{27, 47, 44, 34, 32, 37, 42, … , 40, 39}. 

The circumstances to apply the Poisson process12 to the set of arrival rates for all time slots, 

𝑅𝑉1, … , 𝑅𝑉7, looked favourable. Nonetheless, each vector was subjected to an examination to 

determine whether or not its data were consistent with a Poisson distribution. Using SPSS Statistics 

software, the Chi-Squared Test with a significance level of 0.05 was then performed on each vector 

corresponding to each time slot, holding the block of arrival rates of that period as well as the mean.13 

It demonstrated that the test satisfied the conditions for applying the Poisson process to the dataset 

indicating that the arrival rates may be modelled as a Poisson process. 

 
12 https://brilliant.org/wiki/poisson-distribution/ 
13 https://www.ibm.com/docs/en/spss-statistics/24.0.0?topic=tests-chi-square-test 



45 
 

At this stage, questions arose over the manner in which patients were shaped at the entryway. 

There are currently two methods for representing arrivals.14 The first method relates to applying the 

previously estimated patient arrival rate as being the number of arrivals per unit of time. The second 

method considers the time interval between two consecutive arrivals, i.e., interarrival times, which 

corresponds to technique that SIMUL8 employs in the entry point by default. These methods are 

inversely related to one another. For example, if the interarrival time of patients is equal to 10 minutes, 

on average, one could expect a rate of (1/10) × 60 = 6  patients per hour to arrive at the unit. 

Similarly, saying that the average patient arrival rate is equal to 20 patients per hour is equivalent to 

say that the average interarrival time is (1/20) × 60 = 3 minutes. Therefore, one could express the 

formula (1) that relates this two methods as follows: 

𝐼𝑛𝑡𝑒𝑟𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒 =
1

𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑅𝑎𝑡𝑒
∙ 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ 

The interarrival times of a process in which the arrival rate follows a Poisson distribution may be 

proven to have an exponential distribution.  In order to swap between these two distributions, the 

technique is similar to the formula above. The inverse of the mean of a set of values that follows a 

Poisson process corresponds to the parameter 𝜆 of an exponential distribution. For instance, the first 

time slot saw an average of 38.082 patients per hour. Since the time is measured in minutes, there will 

be, on average, about (1/38.082) x 60 = 1.576 minutes between successive arrivals. 

The following table displays the hourly patient arrival rate and conversion to the average time 

between arrivals for each time slot. 

Table 1 – Hourly patient arrival rate and corresponding interarrival time, in minutes, per time slot. 

# Time Slot Interval Arrival Rate (Patients/h) Interarrival Time (min) 

1 07:30 AM – 09:00 AM 38.082 1.576 

2 09:00 AM – 11:00 AM 59.935 1.001 

3 11:00 AM – 01:00 PM 50.202 1.195 

4 01:00 PM – 03:00 PM 44.161 1.359 

5 03:00 PM – 05:00 PM 54.244 1.106 

6 05:00 PM – 07:00 PM 41.718 1.438 

7 07:00 PM – 08:30 PM 16.169 3.711 

 

The beginning of section 7.3. explains the services of interest for the department managers. 

Examinations such as Densitometry, Interventional Radiology, Orthopantomography, and others were 

neglected, and as a result, patients who were incorrectly classified as arrivals had to be removed. It 

should be highlighted that a patient is only deleted from the system if they only have rejected records 

associated with one of these examinations. If the patient shares entries with another examination of 

 
14 https://blog.simul8.com/simul8-tip-whats-the-difference-between-arrival-rates-and-inter-arrival-times/ 

(1) 
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interest, only that patient's entry for that examination will be considered. Therefore, the rate of 

patients per hour in each time slot had to be readjusted. Using Excel, it was possible to determine that 

4,378 patients did not meet the criteria mentioned above and would consequently be deleted from 

the system. Knowing that the data extended for 124 days, it was easy to calculate the average number 

of patients removed each day, i.e., 35.306 patients/day. As arrivals occur for 13 hours a day, it was 

feasible to determine the hourly average number of dismissed patients. i.e., 2.716 patients/hour. With 

this information, each rate of patients per hour had to be removed in 2.716 units. Therefore, the new 

rates are according to the following table. 

Table 2 – New rate of patient per hour and interarrival time, in minutes. 

# Time Slot Interval 
Arrival Rate (Patients/h) 

(new) 
Interarrival Time (min) 

(new) 

1 07:30 AM – 09:00 AM 35.366 1.697 

2 09:00 AM – 11:00 AM 57.219 1.049 

3 11:00 AM – 01:00 PM 47.486 1.264 

4 01:00 PM – 03:00 PM 41.445 1.448 

5 03:00 PM – 05:00 PM 51.528 1.164 

6 05:00 PM – 07:00 PM 39.002 1.538 

7 07:00 PM – 08:30 PM 13.453 4.460 

 

Table 10 from section 8.1.5., contains information on the exponential distribution of each slot. 

After defining the time slots and calculating the average interarrival time for each, the 

proportion of patients who proceeded to IS or US was determined within each time slot. The results 

are presented in the table below, in Table 3. 

Table 3 – Proportion of patients that proceeded to one of the services per time slot in the moment of arrival. 

 Imaging Service Ultrasound Service  

# Time Slot Interval 
Number of 

Patients 
% 

Number of 
Patients 

% TOTAL 

1 07:30 AM – 09:00 AM 5,202 81.192 1,205 18.808 6,407 

2 09:00 AM – 11:00 AM 11,167 77.792 3,188 22.208 14,355 

3 11:00 AM – 01:00 PM 9,377 77.856 2,667 22.144 12,044 

4 01:00 PM – 03:00 PM 8,872 83.572 1,744 16.428 10,616 

5 03:00 PM – 05:00 PM 10,072 77.009 3,007 22.991 13,079 

6 05:00 PM – 07:00 PM 7,808 77.963 2,207 22.037 10,015 

7 07:00 PM – 08:30 PM 2,456 92.714 193 7.286 2,649 

 

In section 8.1.5., it is described how these percentages were implemented at the (F) Shift 

activity.  
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7.2. Check-In Service 

In addition to the patients' entrance timestamps in the unit, each patient's admission duration 

at check-in was also accessible.  

As indicated in the preceding section, all check-in admission durations of less than two minutes 

were deemed outliers and were eliminated with the agreement of department managers once they 

most likely referred to a patient who had previously been registered into the system.  

When making the first analysis of these durations, one might verify that the bulk of these 

durations falls between five and 10 minutes. Moreover, when looking into more detail, some durations 

between 20 and 50 minutes and even higher were observed. These values are a little out of place. They 

might be related to the fact that the system has considered the period during which an employee was 

absent from the workplace after finishing his shift with the previous patient and before returning to 

the workplace to resume their job. Other possibilities would have been overlapping durations of 

different patients or the count of the dead time between when a worker finalizes admitting one patient 

and when another patient comes considerably later. This second possibility is possible during periods 

with a lower overall number of patients. 

Consequently, it was necessary to take precautions to ensure that these values were not taken 

into consideration to avoid producing disruptive outcomes. Subsequently, it was necessary to detect 

and eliminate outliers from the dataset. In this research, statistical principles such as the computation 

of quartiles and the upper limit calculation were used (the lower boundary was not calculated since 

there are only acceptable values above two minutes).15 The dataset's first quartile (25th percentile) 

was computed along with the third quartile (75th percentile). The values of these two quartiles were 

used to calculate the inner quartile range, which is the difference between the two quartiles, i.e., 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1. The upper bound limit specifies the maximum value that can be accepted before it is 

deemed an outlier. Its calculation is provided by the formula (2): 

𝑈𝐵 = 𝑄3 + (1.5 × 𝐼𝑄𝑅) 

This resulted in about 19 minutes, the maximum allowable length for the check-in service. 

Nonetheless, this value was presented to department managers who believed it to be an acceptable 

threshold. 

Now that the check-in durations range between two and 19 minutes, the last stage was to 

identify a probability distribution that could accurately represent the admission durations for this 

service. To accomplish this, the dataset was submitted to the fitting distribution feature inside the SPC 

for Excel software to determine the optimal distribution for the data.16 Consequently, the time set 

 
15 https://www.absentdata.com/how-to-find-outliers-in-excel/ 
16 https://www.spcforexcel.com/knowledge/basic-statistics/deciding-which-distribution-fits-your-data-best 

(2) 
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followed a log-normal distribution with a mean of 7.527 and a standard deviation of 3.648. The 

corresponding distribution was saved and used later, as explained in section 8.1.5., related to this 

activity. 

7.3. Imaging and Ultrasound Services 

The provided data also contains information about the specific services each patient went 

through throughout their time in the unit. There was a total of five services that department managers 

are interested in the study, which consists of Mammography, X-Ray, MRI, CAT and Ultrasound. This 

step aims to determine the probability that a specific patient will use each service. These calculations 

are crucial because they will enable the simulation to determine whether the patient will choose one 

route or another depending on the actual use of each service. For instance, if the X-Ray service got a 

more significant number of patients who used the service, then the probability that a particular patient 

would follow this route is higher than the other services.  

The first step was to eliminate the data of patients who had received services not relevant to 

the research, as previously explained at the end of section 7.1.. 

Hereupon, using Excel tools, the total number of individuals that entered the hospital for 

examinations and the number of patients who specifically used each service was counted. It is 

important to note that there are records in which the same patient went through the same service 

more than once. This patient is counted just once for the service in question to preserve consistency. 

If this were not the case, there would be much more patients in circulation than recorded as arrivals. 

For example, if a patient has done three X-Rays, they will be considered as one patient who visited the 

X-ray service for the examination. The scenario of counting two or more exams at the same service on 

the same patient is discussed further in this section. 

Another observation that was taken into account was that the same patient underwent several 

services during their stay. This is only applicable for the same day, as the visit does not extend from 

one day to the next. The objective is also to determine the proportion of patients who move from one 

service to another without leaving the unit. Otherwise, it will be counted as two arrivals. With this in 

mind, a table was arranged in ascending day and month order, with each row representing a patient 

and each column representing one of four services. Each cell in the table described the number of 

times each patient used that particular service during their stay. 

The total number of patients that entered the hospital for any examination was 56,045. In terms 

of the overall number of days that were examined, a total of 32,254 patients entered the IS, which is 

about 58% of the general patients. The IS is divided into four facilities, which received 17,885 X-Ray 

patients, 9,627 MRI patients, 11,119 CAT patients and 6,102 Mammography patients. Consequently, 

the percentage of patients who underwent each of these facilities might be estimated by dividing the 
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number of patients that entered each facility by the total patients that entered the IS, being 

approximate 55%, 34%, 30% and 19% for X-Ray, CAT, MRI and Mammography, respectively. 

The same thing might be done for the US. During the period under review, 23,991 patients used 

this service, which is about 42% of the overall patients. The table below shows the percentage of 

patients who attended each one of the five possible examinations. 

Table 4 – Percentage of patients in each examination. 

 Mammography X-Ray MRI CAT Ultrasound 

% Of Patients 19 55 30 34 42 

 

Since the percentage of usage of each Imaging facility differs from the one in the US, it was 

required to adjust them to the same denominator, i.e., the overall patients. This resulted in 11%, 32%, 

17%, 20% and 42% of usage for Mammography, X-Ray, MRI, CAT and Ultrasound, respectively. These 

percentages are summarised in Table 5. 

Two different scenarios were studied. The patient may have several examinations within the 

same service in the first scenario. The second scenario concerns the slight chance that one patient will 

have examinations in two different services. Note that these scenarios may be combined. For example, 

one patient could have two examinations in the MRI service and one in the CAT service, i.e., more than 

one examination within the same service and another in a different service. In the latter scenario, it 

was necessary to aggregate all two-by-two combinations amongst all services regarding the proportion 

of patients who used these two services.  

For the first scenario, in the US, 13,077 of the total number of patients (23,791) sent to this 

service had just one examination, while the remaining 10,714 had two or more. This corresponded to 

55% and 45%, respectively. 

For the X-Ray service, 13,171 out of the total patients (17,885) sent to this service had just one 

examination, while the remaining 4,714 had two or more. This corresponded to 74% and 26%, 

respectively. 

For the CAT service, 7,508 of the total patients (11,119) sent to this service had just one 

examination, while the remaining 3,611 had two or more. This corresponded to 68% and 32%, 

respectively.  

For the MRI service, 6,506 of the total patients (9,627) sent to this service had just one 

examination, while the remaining 3,121 had two or more. This corresponded to 68% and 32%, 

respectively. 
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For the Mammography service, 5,753 patients (6,102) sent to this service had just one 

examination, while the remaining 349 had two or more. This corresponded to 94% and 6%, 

respectively.  

With this information, it was feasible to construct Table 5, which would compile all future-useful 

data and the percentages of a patient making more than one examination at the same service. 

Table 5 – Number of patients per service and its percentage of usage in the system. 

Number of Patients Mammography X-Ray MRI CAT Ultrasound 

Examinations = 1 5,753 13,171 6,506 7,508 13,077 

Examinations > 1 349 4,714 3,121 3,611 10,714 

TOTAL 6,102 17,885 9,627 11,119 23,791 

% Of Patients 
(Examinations = 1) 

94 74 68 68 55 

% Of Patients 
(Examinations > 1) 

6 26 32 32 45 

Total of Patients 56,045 

% Of Usage 11 32 17 20 42 

 

For the second scenario, all combinations of two-by-two services were included with the exact 

number of patients who underwent these two services. Even though a significant proportion of 

patients have had examinations in more than two services, e.g., X-Ray, CAT, and Ultrasound, this 

probability is still considered. In this instance, the patient was tallied in X-Ray & CAT, CAT & US, and X-

Ray & Ultrasound pairs. The results are shown in Table 6. 

Table 6 – Number of patients who used two different services according to the combined pairs. 

# Combination Services 
Number of 

Patients 
Total 

Patients 
Intersection 
Probability 

1 X-Ray & MRI 1,366 

56,045 

0.024 

2 X-Ray & CAT 728 0.012 

3 X-Ray & Mammography 531 0.009 

4 X-Ray & Ultrasound 3,078 0.055 

5 MRI & CAT 332 0.006 

6 MRI & Mammography 63 0.001 

7 MRI & Ultrasound 311 0.006 

8 CAT & Mammography 185 0.003 

9 CAT & Ultrasound 1,029 0.018 

10 Mammography & Ultrasound 5,917 0.106 

 

The information in the table above made it possible to calculate the probability of the 

intersection of patients who underwent each pair of services. Those probabilities are expressed in the 

last column of the Table 6. 
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Similarly, it was conceivable to determine the chance of a patient who had just had one 

examination at a service leaving the unit permanently. These probabilities are expressed in the Table 

7. 

Table 7 – Number of patients who had just examination(s) at one facility. 

# Combination Services 
Number of 

Patients 
Total Patients 

Intersection 
Probability 

1 X-Ray & Exit 12,985 

56,045 

0.232 

2 MRI & Exit 7,765 0.139 

3 CAT & Exit 9,238 0.165 

4 Mammography & Exit 161 0.003 

5 Ultrasound & Exit 14,432 0.258 

 

By making use of the individual probabilities of the usage of each service as well as the 

probabilities of the intersection of the usage in two different services, one was able to arrive at the 

calculation of all conditioned probabilities that will serve as input data for the simulator. What is 

important to know is the likelihood that a certain patient may switch services. Mathematically 

speaking, one wants to determine the chance of a patient, for instance, going to a Mammography after 

having had an X-Ray. Since these probabilities cannot be determined just by their intersection, since 

the likelihood of one event may vary depending on the occurrence of another event first, it is 

reasonable to evaluate the chance of occurrence of event 𝐴 given the occurrence of event 𝐵. This 

indicates that the chance of a patient leaving a Mammography for an X-Ray may vary from the 

probability of a patient leaving an X-Ray for a Mammography, for example. 

The definition of the conditional probability, given two events 𝐴 and 𝐵 from a sample space 𝑆, 

is denoted by the following formula (3): 

𝑃(𝐴 | 𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 

in which 𝑃(𝐴 | 𝐵) is the probability of occurrence of event 𝐴 given event 𝐵, 𝑃(𝐴 ∩ 𝐵) is the probability 

of the intersection of those two events and 𝑃(𝐵) is the probability of occurrence of event 𝐵. 

Analogously to how the probability of intersection between all conceivable pairs of services 

were computed, Table 8 displays the conditional probabilities of each of these pairings in a more 

intuitive form that have previously been obtained using the formula shown above. It should be 

emphasized that, except for services intersecting with the exit, two conditional probabilities will exist 

between each pair of services. 

 

 

 

(3) 
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Table 8 – Conditional probabilities of a patient leaving one service and entering another/leave the unit. 

1st Examination 2nd Examination 
Intersection 
Probability 

Conditional 
Probability 

% Of Patients 

X-Ray 

MRI 0.024 0.075 8 

CAT 0.012 0.038 4 

Mammography 0.009 0.028 3 

Ultrasound 0.055 0.172 17 

Exit 0.232 0.719 72 

MRI 

X-Ray 0.024 0.142 14 

CAT 0.006 0.035 4 

Mammography 0.001 0.006 1 

Ultrasound 0.006 0.035 4 

Exit 0.139 0.808 81 

CAT 

X-Ray 0.012 0.061 6 

MRI 0.006 0.030 3 

Mammography 0.003 0.015 2 

Ultrasound 0.018 0.091 9 

Exit 0.165 0.833 83 

Mammography 

X-Ray 0.009 0.082 8 

MRI 0.001 0.009 1 

CAT 0.003 0.028 3 

Ultrasound 0.106 0.972 97 

Exit 0.003 0.028 3 

Ultrasound 

X-Ray 0.055 0.130 13 

MRI 0.006 0.014 1 

CAT 0.018 0.042 4 

Mammography 0.106 0.250 25 

Exit 0.258 0.608 61 
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8. Simulation Model Development  

Once gathered, data (from observations and interviews with experts) were combined to 

conceive the conceptual model using SIMUL8, where processes and activities could be defined. The 

conceptual model guides the actual simulation model, which contains more system detail. Besides 

that, it serves as a communication mechanism for validating the model. The implementation of the 

model in SIMUL8 is shown in Appendix 4. 

8.1. Explanation of System Modelling 

This section will describe the full process of modelling the system in the software by going over 

the many entities and components that act in the design and how they all interrelate. At this stage, it 

is intended to use all information gathered and processed in the past as inputs for each component. 

8.1.1. Simulation Clock 

Before beginning the simulation, it was important to establish the system's unit of 

measurement. Given that most of the information provided is presented in minutes and that the pre-

established performance metrics also use this time unit as a reference, it was determined that the 

minute would be the most appropriate unit of measurement for evaluating the acquired outcomes.  

Concerning the simulation's running hours on working days, according to the information 

provided, it was specified that the simulation period begins each day at 07:30 AM and ends at 09:00 

PM. The duration of each working day is 13 hours and 30 minutes.  

8.1.2. Arrival Shifts 

A total of seven shifts were created with the weekly pattern option enabled. The shifts created 

follow the same logic as the time intervals of the arrival time slots, so a specific shift covers each time 

slot, as presented in the Table 9, below. 

Table 9 – Start time and end time of each shift. 

# Time Slot Interval Shift 

1 07:30 AM – 09:00 AM S_07:30h_09h 

2 09:00 AM – 11:00 AM S_09_11h 

3 11:00 AM – 01:00 PM S_11h_13h 

4 01:00 PM – 03:00 PM S_13h_15h 

5 03:00 PM – 05:00 PM S_15h_17h 

6 05:00 PM – 07:00 PM S_17h_19h 

7 07:00 PM – 08:30 PM S_19h_20:30h 

 

These changes were only used to split the patients by the moment they arrive at the system. 
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8.1.3. Resources 

Throughout the simulation, the resources serve as methods that the system retains and employs 

for numerous actions. An activity that relies on them necessitates using personnel (or equipment not 

exclusive) to this activity alone. In general, a resource is shared by several activities, with the others 

on active standby until it becomes available for use by another activity. Technicians, assistants, 

physicians and secretaries will be able to comprehend the four distinct and potential resources 

described in this research for application in examination-related tasks.  

Therefore, four resources were created: R_Technician, R_Assistant, R_Physician and 

R_Secretary, each with a separate function. However, knowing their roles in the system is irrelevant to 

the problem. The only essential information is to understand how many resources of each type are 

required for each activity that depends on them and when they are no longer needed. 

8.1.4. Labels 

Labels allow for adding more control to the system. Labels can be attached to work items when 

they enter the simulation or at any point. The label's value can be tested and/or changed at any 

workstation. 

In this context, the labels will serve as a trail for each patient, indicating the latest examination 

they passed as well as the other tests where they have gone, with the latter incrementing the value of 

the exam-specific label each time the patient enters this activity. Since the patient should not re-enter 

the queue for an examination in which they have previously participated, this will also function as a 

debug to determine whether the patient has repeated an examination. Using labels, conditions will be 

set that prevent these incidents from occurring. The following labels were created to achieve 

this: L_Exam_Mammo, L_Last_Exam_Mammo, L_Exam_XRay, L_Last_Exam_XRay, L_Exam_MRI, L_L

ast_Exam_MRI, L_Exam_CAT, L_Last_Exam_CAT, L_Exam_Ultrasound and L_Last_Exam_Ultrasound. 

8.1.5. Activities 

Listed below is a description of how each activity was implemented in the software following 

the order designed in the model presented at the beginning of section 7.2..  

Additionally, fictitious activities do not fall inside any of the categories introduced in section 6.7.. 

They helped identify certain situations with them, such as sorting patients by arrival time or 

examination. These activities are regarded as having a fixed duration equal to zero. In the designed 

model, all these fictitious activities are denoted by an (F) at the label's start. At the same time, activities 

(or entry points) that have some fixed or variable duration associated with a time distribution are 

denoted by an (A); the queues and exit points are represented by a (Q) and (E), respectively. To avoid 

work items from staying in the system during the day-to-day transition, it is essential to establish a 

clean-up of the work items from the system when this transition happens using visual logic. 
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 (A) Arrivals: This activity coincides with the moment patients take their tickets from the kiosk at 

the checkpoint. This is where all information on patient arrivals must be stored, notably the 

temporal distributions, since the programme expects a distribution that specifies the time 

between patient arrivals, as previously stated. This activity is time-dependent, once composed 

of several smaller distributions that vary according to the time of the day. Therefore, the 

modeller must specify the slots each distribution wants to be related to. These small 

distributions are regulated to adhere to an exponential probability distribution (stochastic 

behaviour). Table 10 below shows the distribution relative to each time slot. The variables 𝜒1 +

𝜒2 + ⋯ + 𝜒𝑛 represent the intervals between each consecutive arrival within the time slot. 

Table 10 – Exponential distributions that comprise the overall distribution for the (A) Arrival activity. 

Activity Interval Distribution 

(A) Arrivals 

07:30 AM – 09:00 AM 𝜒1;  𝜒2;  … 𝜒𝑛 ~ 𝐸𝑥𝑝(1.697) 

09:00 AM – 11:00 AM 𝜒1;  𝜒2;  … 𝜒𝑛 ~ 𝐸𝑥𝑝(1.049) 

11:00 AM – 01:00 PM 𝜒1;  𝜒2;  … 𝜒𝑛 ~ 𝐸𝑥𝑝(1.264) 

01:00 PM – 03:00 PM 𝜒1;  𝜒2; … 𝜒𝑛 ~ 𝐸𝑥𝑝(1.448) 

03:00 PM – 05:00 PM 𝜒1;  𝜒2; … 𝜒𝑛 ~ 𝐸𝑥𝑝(1.164) 

05:00 PM – 07:00 PM 𝜒1;  𝜒2 ; … 𝜒𝑛 ~ 𝐸𝑥𝑝(1.538) 

07:00 PM – 08:30 PM 𝜒1;  𝜒2; … 𝜒𝑛 ~ 𝐸𝑥𝑝(4.460) 

 

Excluding arrival distributions, all labels previously defined in section 8.2.4., i.e., 

L_Exam and L_LastExam, were set to zero to indicate that the patient has not yet entered or left 

any examination. 

Since there are two checkpoints (and therefore two entries), each representing the queried 

service, only a single entry for all patients was considered when designing the system. The duty 

of dividing patients according to the entry zone will be detailed in the next activity. 

 (F) Shift and (F) Sep: Depending on the arrival time, patients will be transferred immediately to 

one of seven fictitious activities that reflect the seven shifts (slots) the system uses to operate 

arrivals. Consequently, each shift created in section 8.1.2. had to be assigned with each of these 

activities of the (F) Shift type, implying that each activity will only take patients during its 

assigned shift. This was necessary after accommodating the percentage of patients that take 

either the Imaging or the Ultrasound path since percentages vary from slot to slot. For this 

reason, each (F) Shift activity is linked to two fictional activities, i.e., (F) Sep_I or (F) Sep_US, with 

the percent mode enabled in the routing out of the first. The input values to each (F) 

Shift activity are presented in section 7.1., Table 3. Each (F) Shift activity is labelled with 

an (F) followed by Shift and the start and end timings of the shift, e.g., (F) Shift 09h_11h. In the 

latter case, (F) Sep can be either (F) Sep_I or (F) Sep_US, forcing all patients who engage in one 
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of these activities to undergo Imaging or Ultrasound, respectively, according to the routing out 

percentages. 

 (Q) Wait_Check_In: The first queue the patient encounters after obtaining the ticket at the 

checkpoint is the wait to be summoned to the service to begin the check-in procedure. There 

are a total of two queues of this kind, (Q) Wait_Check_In_I and (Q) Wait_Check_In_US, one for 

each zone, each of which is connected to one of the immediately preceding activities, (F) Sep_I 

and (F) Sep_US, respectively, and therefore, only pass patients designated for the respective 

services. The capacity of the queue is infinite, i.e., there is no limit to the number of patients in 

the line waiting to be seen for the next activity, and no shelf life has been specified, i.e., patients 

are required to remain in the queue for as long as it takes before they may proceed to the next 

activity.  

 (A) Check_In: This procedure involves the staff confirming the patient's data and notifying the 

system that the patient will conduct the day's planned examinations. The log-normal 

distribution is employed for the duration of both activities, as determined in section 7.1.2. and 

reported below. The variables 𝜒1 + 𝜒2 + ⋯ + 𝜒𝑛 represent the set of durations for the activity. 

Table 11 – Log-normal distributions for the (A) Check_In activities. 

Activity Distribution 

(A) Check_In_I 
𝜒1 + 𝜒2 + ⋯ + 𝜒𝑛 ~ 𝐿𝑜𝑔 𝑁𝑜𝑟𝑚𝑎𝑙(7.527, 3.648) 

(A) Check_In_US 

 

Similar to the preceding activities, each queue, (Q) Wait_Check_In_I and (Q) Wait_Check_In_US, 

is linked to an activity, (A) Check_In_I and (A) Check_In_US, respectively. 

The resources and their rules related to these activities are detailed in the Table 12. 

Table 12 – Resources and their specific rules for the (A) Check_In activities. 

Activity Resources Rules 

(A) Check_In_I 

R_Secretary 

1. Require recourses before collecting any 
patients. 
2. Release resources as soon as the task 
complete. 
3. Require and release resource here. 

(A) Check_In_US 

 

 (F) Go_Wait_Exam: This fictitious activity portrays the patient's movement from leaving the 

check-in desk until they enter one of the examination waiting rooms. In reality, a patient may 

be served at the check-in relating to a service and wait in an opposite waiting room of the other 

service. This scenario is estimated to have a 15% chance (as determined by department 



57 
 

managers). This explains why two pathways lead from each check-in activity to this sort of 

activity. Two activities, (F) Go_Wait_Exam_I and (F) Go_Wait_Exam_US, relate to separate 

services as usual. According to the scenario described above, for instance, 85% of the patients 

who travel to (F) Go_Wait_Exam_I activity are derived from the (A) Check_In_I activity, 15% 

from the (A) Check_In_US activity. Therefore, it was defined in the routing out dialogue of 

the (A) Check_In_I activity as the percent option with an 85% probability of a patient following 

the path to (F) Go_Wait_Exam_I and 15% to follow the other route. 

Additionally, the patients who leave the Go_Wait_Exam_I activity have four alternatives for 

distinct pathways, which correlate to the four waiting rooms for the relevant examinations. 

From Table 4 from section 7.3., it is possible to directly extract the probability of a patient going 

to one of the four facilities within the IS. It should be noted that the values of these percentages 

use the number of IS patients as the common denominator and not the overall number of 

patients since the chance of a patient travelling to the ultrasound waiting room is null in this 

activity in particular. In this instance, the values of the percentages provided in the routing out 

dialogue for this activity correspond to the ones presented in Table 4 from section 7.3.. 

Conversely, patients who pass through the Go_Wait_Exam_US activity go straight to the next 

queue. 

 (Q) Wait_Exam: This is the second and last relevant queue for the study. There are a total of 

five queues of this kind, each preceding the appropriate examination-related activity. Hence, 

the queues (Q) Wait_Exam_Mammo, (Q) Wait_Exam_XRay, (Q) Wait_Exam_MRI, and (Q) 

Wait_Exam_CAT precede the activity (F) Go_Wait_Exam_I activity, based on the percentages 

mentioned in its description above, and the queue (Q) Wait_Exam_US that precedes the 

activity (F) Go_Wait_Exam_US. For the same reason as the (Q) Wait_Check_In queues, these are 

also specified as having an unlimited capacity, and shelf life equal to zero. 

 (A) Exam: There are five activities of this type, (A) Exam_Mammo, (A) Exam_XRay, (A) 

Exam_MRI, (A) Exam_CAT and (A) Exam_Ultrasound, each one succeeding the corresponding 

queue. This activity represents each examination and has a defined duration in minutes, i.e., it 

follows a fixed distribution equal to the examination’s duration. The distribution utilised for each 

activity is shown in Table 13, in which the variable corresponds to the duration of that 

examination. 
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Table 13 – Distribution of the duration for the (A) Exam activities. 

Activity Distribution 

(A) Exam_Mammo 𝜒1 ~ 𝐹𝑖𝑥𝑒𝑑(15) 

(A) Exam_XRay 𝜒1 ~ 𝐹𝑖𝑥𝑒𝑑(10) 

(A) Exam_MRI 𝜒1 ~ 𝐹𝑖𝑥𝑒𝑑(40) 

(A) Exam_CAT 𝜒1 ~ 𝐹𝑖𝑥𝑒𝑑(20) 

(A) Exam_Ultrasound 𝜒1 ~ 𝐹𝑖𝑥𝑒𝑑(15) 

 

The duration of each examination corresponds to the time slot provided for a patient, 

independent of the number of examinations the patient will conduct, except for RMI, for which 

a patient would need twice as much time if, for example, completing two exams. However, this 

situation will be addressed later in this section.  

Table 14 – Quantity of resources and their specific rules for the (A) Exam activities. 

Activity Resources Rules 

(A) Exam_Mammo 1 R_ Technician 

1. Require recourses before collecting 
any patients. 
2. Release resources as soon as task 
complete. 
3. Require and release resource here. 

(A) Exam_XRay 
1 R_Technician 
1 R_Assistant 

1. Require recourses before collecting 
any patients. 
2. Release resources as soon as task 
complete. 
3. Require and release resource here. 

(A) Exam_MRI 
1 R_Technician 
1 R_Assistant 

1. Require recourses before collecting 
any patients. 
2. Require here, but do not release the 
resource. 

(A) Exam_CAT 
1 R_Technician 
1 R_Assistant 

1. Require recourses before collecting 
any patients. 
2. Release resources as soon as task 
complete. 
3. Require and release resource here. 

(A) Exam_Ultrasound 
1 R_Physician 
1 R_Assistant 

1. Require recourses before collecting 
any patients. 
2. Release resources as soon as task 
complete. 
3. Require and release resource here. 

 

Each of these activities also redefines the value of the labels according to the following rule. For 

the activity under analysis, the value of the L_Exam label is incremented by one unit to indicate 

that the patient took an examination of that type. In contrast, the value of the L_Last_Exam label 
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is set to one to tell that this was the patient's most recent examination, along with other labels 

of this type set to zero.  

The resources are essential to all activities of this type since all these activities depend on the 

number of available workers to be performed. Each activity utilises the stated resources, 

although only some adhere to the same discipline. Table 14 highlights the resources necessary 

and application guidelines for each activity. 

(F) Dispatch_MRI: This fictitious activity is intended to direct the patient that finishes the (A) 

Exam_MRI activity to either repeat it or move to the subsequent one it is linked to, i.e., (F) 

MRI_Other_Exam. As it is the only activity in which the time is dependent on the number of 

examinations performed, there is a probability, which may be found in Table 5, section 7.3., that 

a patient will be able to undertake a second examination after completing the first. Therefore, 

in the routing out dialogue of this activity, it is defined as a probability of 32% for a patient to 

return to the (A) Exam_MRI activity and a 68% probability to proceed to (F) Other_Exam_MRI. 

For a patient who attends this activity and desires to repeat the examination, it is crucial to set 

his precedence over patients in the queue (Q) Wait_Exam_MRI. To avoid competition between 

these two patients travelling to (A) Exam_MRI activity, the routing in dialogue for this activity 

includes the option to wait until the exit is clear. Thus, a patient who is in the waiting queue (Q) 

Wait_Exam_MRI is only allowed to enter the (A) Exam_MRI activity when the (F) Dispatch_RMI 

activity is empty. As a result, a patient in this activity never loses the resources linked with them 

in the previous activity, as there is a chance that they will repeat the examination, and 

consequently, the resources will remain the same. 

 (F) Other_Exam: Essentially, this fictitious activity aims to refer patients who have finished the 

preceding (A) Exam to another examination or out of the system, ending their stay in the unit. 

Consequently, each activity of the type (A) Exam is linked to an activity of the type (A) 

Other_Exam, having, therefore, a total of five activities of this sort, such as (F) 

Mammo_Other_Exam, (F) Xray_Other_Exam, (F) MRI_Other_Exam, (F) 

CAT_Other_Exam and (F) US_Other_Exam. Each of these fictitious activities has defined, in the 

routing out dialogue, the probabilities (in the form of conditional probability) of a patient leaving 

that examination and pursuing each path leading to another examination facility (or eventually 

leaving the system). These probabilities can be found in section 7.3., Table 8. 

In the diagram, all possible paths out of each activity are highlighted with the same colour to 

help visualize the possible paths the patient might follow. It is essential to underline that there 

is no straight route back to an examination after a patient has left it. However, if the patient 

undergoes a second examination, there is always a way back to the initial one. In reality, a 



60 
 

patient does not return to an examination where they have already been. Thus, it is necessary 

to account for such situations and find a way to prevent the patient from returning to that 

examination. 

Due to the patient's departure from the MRI facility, the resources associated with the two 

preceding activities are released as soon as the patient enters the (F) MRI_Other_Exam activity 

(Table 15). 

Table 15 – Resources and their specific rules for the (F) MRI_Other_Exam activity. 

Activity Resources Rules 

(F) MRI_Other_Exam 
1 R_Technician 
1 R_Assistant 

1. Only release the resource here. 

 

 (Q) Mammo, (Q) XRay, (Q) MRI, (Q) CAT and (Q) US: These queues have no significance for the 

system since they exist to impose conditions for the passage of individual patients, operating as 

fictitious queues with no capacity limit or shelf life. These queues reflect the remaining routes 

to a patient’s additional examinations after completing one. Therefore, except for the queue 

associated with that test, since the patient has departed, all of these queues are linked to the 

last activity, i.e., (F) Other_Exam, each with the probabilities specified in the routing out the 

dialogue as indicated above. It is important to note that up to this point, a patient is not 

prohibited from retaking an examination they have previously passed. For instance, a patient 

who has had an X-Ray and then a Mammography may return to the X-Ray since there is always 

a chance that they will follow that route after leaving Mammography. In order to prevent this 

situation, the system must verify whether this patient has previously been in the X-Ray facility 

before sending them. One way to do this is by checking, in this fictitious queue, whether the 

field of the label L_Exam_ XRay has a value other than zero. If so, it indicates that the patient 

has already been through the X-Ray facility and, as a result, cannot proceed to the activity that 

would lead them back to (Q) Wait_XRay. If the label field has zero value, it indicates that the 

patient is exempt from this examination and may go down this route. So far, patients who were 

previously excluded from moving out of this fictitious queue would accumulate and remain 

there indefinitely because their condition had not been validated. However, it is vital to maintain 

a steady flow of these patients. 

For this reason, the label of type L_Last_Exam should be used so that it is possible to determine 

where the patient came from before entering that fictitious queue, i.e. which examination they 

passed most recently. Therefore, if the patient is held in the fictitious queue, all labels of this 

type are examined to determine which one has the value so that the patient is returned to the 
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corresponding preceding activity based on the label’s value and obeying that activity’s set 

priorities. As it is not always possible for a modeller to construct the system’s profound logic 

using only the dialogues already offered by SIMUL8, it is required to follow the Visual Logic path 

to manage the system’s behaviour precisely. Consequently, a code snippet was added in each 

fictitious queue that is examined immediately after a patient enters the queue, testing all the 

reasoning illustrated above. Table 12A, there is an illustration of the code used for each queue. 

 (E) Exit_Mammo, (E) Exit_XRay, (E) Exit_MRI, (E) Exit_CAT and (E) Exit_US: As noted previously, 

there is a chance that a patient who leaves an examination leaves the unit, finishing their stay. 

Therefore, for each activity of type (F) Other_Exam, it is linked to the corresponding exit point 

that catches the patients who leave the unit by that facility. 

 (F) Go_Wait: Each fictitious activity of this type, i.e., (F) Go_Wait_Mammo, (F) 

Go_Wait_XRay, (F) Go_Wait_MRI, (F) Go_Wait_TAC, and (F) Go_Wait_US, is succeeding the 

corresponding fictitious queue and its purpose is to receive those patients who validated the 

condition to proceed to the examination facility. Each activity forwards the patient to the 

corresponding type (F) Wait_Exam queue. This activity does not have any enforced conditions 

or defined routing out. However, it only exists because there must be an activity between two 

queues since it is the force responsible for extracting work items from queues. 

8.2. Model Validation 

To validate the model, it was necessary to run the simulation for a sufficient time and pause to 

confirm that the system's behaviour adheres to the previously specified requirements during various 

times of the day on different days. Thus, a simulation monitoring was conducted with a running period 

of a week, beginning at 07:30 AM on Monday and finishing at 08:30 PM on Friday, with the primary 

purpose of detecting any implementation faults for different operational conditions. 

During the monitoring procedure, the pauses made at various times and days helped to validate 

some of the requirements needed by the decision-maker; therefore, the implemented model was 

subjected to four verifications. The first verification had to do with the average hourly arrival of 

patients at the unit. The second verification with the portion of patients who went to the check-in of 

each zone (IS or US), depending on the shifts in which these arrivals occur. The third with the 

proportion of patients who go to each of the queues for the respective exams after leaving the Imaging 

check-in service. The fourth and final verification ensures that patients do not return to the queue 

where they were before to complete a test if they have taken other routes than departing immediately 

after completing the examinations. 

https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
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Verification 1: The rate of patient arrival to the service between 07:30 AM and 09:00 AM is 

35.366 per hour, as stated in Table 2 of section 7.1.. Around 1.5 x 35.366 should come this time, 

resulting in an average of 53.049 patients. The expected arrival value for the hour between 3:00 PM 

and 5:00 PM is 2 x 51.528, which equals an average of 103.056 patients. From 7:00 PM to 8:30 PM, 

there is an arrival rate of 13.453 patients per hour, averaging 1.5 x 13.453 = 20.180 patients. Using the 

average predicted values, the system was executed throughout the above-described execution time, 

and the values on the number of patients who arrived within each shift were retrieved. These values 

were introduced in Table 16 for comparison with the predicted ones. 

Table 16 – Simulation results on the number of patients that entered each shift below for the whole running period. 

 Number of Patients 

Arrivals Mon Tue Wed Thu Fri Expected 

07:30 AM – 09:00 AM 52 65 52 59 63 53.049 

03:00 PM – 05:00 PM 102 100 89 91 86 103.056 

07:00 PM – 08:30 AM 16 31 21 12 11 20.180 

   

Daily values seem to swing somewhat around the predicted value. As they reflect an average 

number of patients each period, these deviations from the expected value are not indicative of a 

system that needs to be better adapted to reality. These deviations translate to a very crucial issue, 

namely uncertainty since it is not feasible to determine in advance the precise number of patients who 

arrive at the system during a specific time of the day; only its average is known, with the potential of 

days when these numbers are lower or more significant. 

Verification 2: In the scenario described, a patient's likelihood of visiting one of the check-in 

stations depends on the arrival shift. For instance, in the 1:00 PM – 3:00 PM shift, the probability that 

a patient would visit the Imaging check-in service or the ultrasound check-in service is 83.6% and 

16.4%, respectively. Given that the arrival rate for that shift is 41.445 patients/h, a total of 2 x 41.445 

= 82.89 patients is expected to arrive at that time. The chances that resulted from the simulation were 

then examined to determine whether they agreed with the assumptions believed to have been made. 

To compute the corresponding probabilities, Table 17 indicates the number of patients that arrived at 

the unit throughout the analysis period within that shift and how many of them went to each check-

in. 
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Table 17 – Simulation results on the number of patients who entered each check-in station, during the 01:00 PM – 03:00 PM 
shift, for the whole running period. 

Day Mon Tue Wed Thu Fri Expected 

TOTAL 73 113 73 81 80 82.89 

Check-In Station I US I US I US I US I US I US 

Number of Patients 64 9 91 22 60 13 67 14 70 10 69.3 13.6 

% Of Patients 87.7 12.3 80.5 19.5 82.2 17.8 82.7 17.3 87.5 12.5 83.6 16.4 

 

It should be emphasised, however, that we are not dealing with fixed values. Thus the 

percentages may change but will remain near the predicted values. The number of patients who 

entered each check-in activity during that shift may be determined by conducting a run with a 

simulation time one minute before the shift began and deducting it from the patient number when 

the shift ended. The verification procedure for the other shifts operates similarly. However, as it is a 

straightforward process that cannot deceive the system, it sufficed to verify the prescribed percentage 

in which each shift activity points for each check-in station in the model. 

Verification 3: Similar to when patients are distributed to one of the check-in stations after 

entering the system, the percentage of patients who go to each of the queues after leaving the check-

in follows the same logic. For this reason, the premise for the third verification is similar to what was 

done with the second one, along with the explanation provided regarding the allowed values being 

approximately in the predicted range. In this particular scenario, the number of patients in queues was 

tallied at the end of each day. To eliminate possible patients who go to the queue for each examination 

by other paths, not directly from the check-in service, it was necessary to perform a simulation with 

these paths cut, thus leaving only the values of interest. The following table shows, by day, the total 

number of patients who attended each of the queues. It was feasible to determine the chance that a 

patient had gone to each of the four waiting queues, given the total number of patients who entered 

the system.  

Table 18 – Simulation results on the number of patients who entered each queue after leaving the Imaging check-in service, 
for the whole running period. 

 Mammo X-Ray MRI CAT 

TOTAL 
Day 

# Of 
Patients 

% 
# Of 

Patients 
% 

# Of 
Patients 

% 
# Of 

Patients 
% 

Mon 41 11.7 145 41.3 66 18.8 99 28.2 351 

Tue 66 16.2 171 41.9 74 18.1 97 23.8 408 

Wed 51 13.8 144 38.8 91 24.5 85 22.9 371 

Thu 58 15.1 147 38.5 89 23.2 89 23.2 383 

Fri 67 17.8 149 39.5 70 18.6 91 24.1 377 

Expected - 13.8 - 39.9 - 21.7 - 24.6 - 
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It is essential to remember that this verification is not valid for the Ultrasound check-in since 

patients have no choice but to follow the route that leads them to this queue, which has a 100% 

probability. 

At the beginning of section 7.3., the percentage of patients who underwent each facilities within 

the IS was computed and presented in Table 4 from section 7.3.. These percentages correspond to the 

chance that a patient would follow one of the pathways leading to the waiting room for that 

examination. Notably, the sum of all percentages exceeds 100%, which is expected given that not all 

patients were limited to a single examination type throughout their course. Considering the potential 

of patients having more than one examination of the same kind in the registry, if the number of 

examinations done of each type were divided by the total number of tests completed, the percentages 

of usage would be different and add up to 100%. It should be highlighted that the purpose is to 

compute the proportion of patients who had an examination at that facility. In addition, the above 

percentages were entered into the model; however, the programme attempted to standardise them 

to add up to 100% without requiring manual computation, as they are explicit in Table 18. 

Verification 4:  

With the apparent possibility of the patient moving to a queue where they have been previously, 

through other exams, it must be verified whether or not this situation occurs. As previously described 

in section 8.2.5., code snippets were written in the software's Visual Logic so that the passage to one 

of the queues where the patient has previously been denied, making their return to the last activity to 

choose a different path. Thus, the system was run within the allocated time, with periodic execution 

pauses to consult the labels of patients either in the queue or engaged in an activity connected to the 

examination shortly after. In all the pauses to which the system was subjected, it was checked that the 

labels assigned to the activities where the patients were all contained the zero value, indicating that 

the patient had not yet completed these activities while inside the system having the system been 

validated. 
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9. Results Discussion and Presentation 

In order to conclude, it will be essential to calculate the initial and final circumstances while 

simultaneously evaluating the system. After proposing a formal solution search technique and 

presenting this methodology, the results are further examined and interpreted. 

9.1. Initial Conditions Definition 

When examining the system's long-term behaviour, the results produced can be affected by the 

starting circumstances specified, hence modifying the system's behaviour. Define a strategy to prevent 

the scenario and assure the quality and dependability of the outcomes. In order to tackle this issue, a 

warm-up period will be considered, during which no data will be taken, guaranteeing that the results 

will only pertain to the model's stable states. To define this period, it was necessary to deduct the 

minimum number of required resources. 

9.1.1. Minimum Number of Resources 

This number reflects the minimum resources the system can minimally work and serves as the 

basis for future resource alterations. The minimum number of resources needed to conduct each of 

them in each activity will be measured. When determining this number, one of the variables must be 

considered is the amount of time devoted by each resource to a particular task. As soon as a patient 

begins an activity, resources start to be used and are released when the patient departs after the 

activity's length has passed. Thus, for each activity, each resource spends the same amount of time as 

the activity's duration.  

Additionally, it is vital to consider the average number of patients entering the system at any 

given time. For this computation, many simulations were carried out, which lasted days or weeks, 

extracting the total number of arrivals and then dividing it by the total number of hours the system 

was operating based on the 13 hours per day in which the system works.  

For example, Table 13A was generated containing the total number of arrivals in a working day, 

which were distributed among the several time slots. This value was then divided by the 13 hours that 

the system was admitting new patients, yielding an average rate of 38.385 patients/h. It is predicted, 

however, that the number of simulations performed is independent of this average arrival rate since 

the ratio between the total number of arrivals and the number of hours the system works will remain 

constant.  

Although the acquired average arrival rate value is universal, the number of minimal resources 

for each activity cannot be computed using this value since there are patients who are split among the 

current activities and should not be considered for this reason. Therefore, the proportion of total 

patients who travel through each activity must be determined through the simulation results and 

multiplied by the average arrival rate. This final value is multiplied by the time each resource spent on 

https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
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the relevant activity and then divided by 60 to get the minimal number of resources required per 

activity each hour.  

The parameters to compute the minimal number of resources required for each examination 

activity are summarized in Table 19. 

Table 19 – Parameters to determine the minimum number of resources for each (A) Exam activity. 

Activity Resources 
Average Arrival Rate 

(patients/h) – Simulated 
% Of Patients 

(%) – Simulated 
Duration 

(min) 

(A) Exam_Mammo 1 Technician 

38.385 

19 15 

(A) Exam_XRay 
1 Technician 
1 Assistant 

42 10 

(A) Exam_MRI 
1 Technician 
1 Assistant 

22 40 

(A) Exam_CAT 
1 Technician 
1 Assistant 

22 20 

(A) Exam_Ultrasound 
1 Physician 
1 Assistant 

45 15 

 

As an activity needs just a single resource of a given kind at any moment, it may be assumed 

that the minimal number of resources required for this activity is equal to the number of activities of 

the same type that can occur concurrently in the system. This is because if an activity requires a certain 

resource twice, adding one additional resource would decrease its execution time in half. In reality, 

this would entail a second activity occurring concurrently so that two patients might be despatched at 

the same time as previously one could. As a result, as there would be two facilities working 

simultaneously, the occupancy rate would be cut in half, i.e., personnel would exert half the effort to 

provide for the same number of patients.  

For Mammography, the calculated minimum number of resources (technicians) is 1.823. As a 

result, a technician would no longer be an option since the system would be in deficit. The occupancy 

rate would reach its maximum level, and patients would wait a long time for this activity. This value 

should thus be rounded up to the closest integer. Therefore, the minimum for this activity to work 

decently would be to have two technicians (which is equivalent to two activities of this type taking 

place simultaneously, as explained above). 

The same reasoning used in this activity is also applied to the others. For the X-Ray, the minimum 

number of resources is three, i.e., three technicians and three assistants, meaning three activities 

occurring in parallel. For the MRI are six of each, i.e., six technicians and six assistants, i.e., six activities 

in parallel. For the CAT, three of each, i.e., three technicians and three assistants, i.e., three activities 

in parallel. Finally, for Ultrasound, are five of each, i.e., five physicians and five assistants, i.e., five 

activities in parallel. 
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The minimum number of resources of a certain kind in the system is equal to the sum of the 

minimum resources present in each activity. In total, there will need to be at least 14 technicians, 17 

assistants and six physicians per hour, which translates into having simultaneously two activities for 

Mammography, three for X-Ray, six for MRI, three for CAT and five for Ultrasound. Table 14A helps to 

consolidate these numbers by providing a table summary. 

The same procedure needed to be done for the check-in activities since these activities also 

required resources to be carried out. Unlike the other resources previously listed for the examinations, 

these resources are exclusive for the check-in activities, with no resource sharing across activities of 

different types. Since there is only one type of resource, and only one person performing this activity 

per patient, it makes the most sense to examine the minimum number of simultaneous replicas of this 

activity in parallel since it has already been shown that it correlates with the number accessible of 

resources. Therefore, the parameters to compute the minimum number of resources required for each 

check-in activity are summarized in Table 20. 

Table 20 – Parameters to determine the minimum number of resources for each (A) Check-In activity. 

Activity 
Average Arrival Rate 

(patients/h) – Simulated 
% Of Patients 

(%) – Simulated 
Duration 

(min) 

(A) Check_In_I 
38.385 

80 
7.527 

(A) Check_In_US 20 

 

For the Imaging check-in activity, the minimum number of activities required for the system to 

work appropriately is four. 

On the other hand, for the check-in activity in the ultrasound facility, the minimum number of 

activities required for the system to work correctly is one. 

In conclusion, stating that the minimum number of activities of this type to co-occur is four for 

the IS and one for the US is equivalent to saying that there will be four employees at the check-in 

counter in the first zone and one employee at the counter in the second zone. This means the system 

will require five employees to meet the minimum conditions for working on these two activities. These 

tabulated data may be found in Table 15A.  

9.1.2. Warm-Up Period 

After determining the minimal number of resources required for each activity (Tables 

14A and 15A), the next step was to set these number of resources and replicas of activities within the 

system and determine when the occupancy rate of each resource along with the average queueing 

time in the corresponding activity began to stabilize. Therefore, multiple runs were conducted weekly 

to determine that period of stabilization. 

https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
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According to Tables 16A to 26A (and the complementary information from Graphic 3A to 13A), 

the results of the simulation after 13 weeks of execution seem to be entirely stable after a period of 

small oscillations relating to the average waiting times. On the other hand, the occupancy rates of the 

resources have stabilized since the first week. 

Due to the need to account for an extra safety margin to guarantee those beginning 

circumstances do not impact the results as much as possible, it was determined that the warm-up 

period would be 26 weeks (twice the 13 weeks verified), which corresponds to 105,300 minutes, the 

time unit of the system. After obtaining this value, entering it in the clock properties was sufficient. 

9.2. Termination Conditions Definition 

Once the warm-up period has been set, the timeframe for collecting results must be determined. 

Variability in these results depends on the number and duration of runs done. Thus, it is supposed to 

examine, across different periods, the variation related to all KPIs specified during the problem 

formulation phase. For this analysis, it was determined once again that the resources are at their 

minimum.  

The number of trials for each experiment was first determined to ensure the precision of the 

confidence intervals surrounding the estimated mean of the simulation results. The number of trials 

tells the number of times the system is executed within the specified time period. Consequently, an 

accuracy of up to 5% of the mean value was established. This indicates that there is a 95% probability 

that, in the future, a genuine result for a specific KPI will fall within the range limited by its minimum 

and maximum values. It turned out that three trials were sufficient, but five were added to ensure a 

safety margin. This means that each data collecting period will consist of five runs or samples from the 

same experiment, each exhibiting a degree of variability due to the random numbers regulating its 

behaviour. In turn, the values to be accepted within the stated confidence interval established for each 

KPI will be presented in the results manager of SIMUL8, along with the mean.  

With this in mind, the results collecting periods were arbitrarily determined. This duration was 

altered successively after each trial's set of five runs. The purpose is to compare the indicated 

confidence intervals for the same KPI across different results collection periods. Consequently, the 

results collecting periods 5, 10 and 20 weeks were selected. This implies that after the initial conditions 

no longer affect the system (the warm-up period concludes), the system will run five times and gather 

the results for each period.  

After running the system for each of these periods, a table was constructed containing, for each 

KPI, the mean value and confidence interval, with an accuracy of 5%, along with the variance between 

the extreme values. Tables 27A, 28A and 29A reflect the results following each collecting period of 5, 

10 and 20 weeks, respectively. Table 30A was constructed to reunite the variances for each interval's 
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extremes for the same KPI throughout the various collecting periods to further analyse the variances 

in each confidence interval. A quick study reveals that the variances of each confidence interval tend 

to decrease with the length of the results collection period, indicating that the system gets more stable 

with time. Consequently, analysing the system over more extended collection periods makes sense. 

However, one must also consider the intensive computing work of the machine's CPU while operating 

the system for extended periods. Therefore, the results collection period was fixed at 20 weeks. 

9.3. Solution Searching Technique 

Considering the minimum resources and replicas of activities identified above, many software-

based experiments were conducted, based on the data collection period previously set, to examine all 

possibilities regarding the number of resources to be compared and assessed. In the initial phase of 

the analysis, the number of replicas and resources will be maintained at their minimum values, 

according to the Tables 14A and 15A, except for the activity and its associated resources that are being 

studied, whose quantity will vary between executions.  

As the number of minimum resources is defined based on the minimum number of activities 

working in parallel so that the system can minimally work, each type of activity has defined a collection 

of values, each one corresponding to the exact number of replicas of that activity that will be served 

as the basis for each experiment run. Along with the number of replicas, the number of resources is 

defined accordingly. So, for each execution, a pair is determined by the number of existing replicas of 

that specific activity and the number of resources. Henceforth, these values will be referred to as the 

resource’s “quantity.”  

Because the number of resources is defined through the number of replicas, it can be proved, 

taking as an example the check-in-related activities, that when the number of resources increases upon 

the unchanged number of replicas, the resource’s utilisation rate will suffer a decrease (there are more 

resources for the same number of replicas, which makes the load decrease between them – Table 31A. 

In contrast, the resources’ utilisation rate will increase if there are more replicas compared to the 

number of resources (the load increase between them). Therefore, it becomes necessary to 

proportionally alter the number of resources alongside the number of replicas to guarantee sufficient 

resources so that all activities may be executed (although the aspect of decreasing resources and 

maintaining the same number of replicas will be evaluated later). This is essential to notice 

improvements (or losses) for the same increase from run to run, precisely to determine how the 

resource occupancy rate fluctuates as the number of resources and replicas rise proportionally.  

The following sections will demonstrate how increasing replicas and resources in each activity 

affects its three KPIs. The number of replicas and resources will be increased by one unit throughout 

the subsequent three runs, beginning at the start point, with the number of resources being reduced 
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to their absolute minimum. After each iteration, the values of all three KPIs will be retrieved. An 

analysis will determine at what levels the system will most likely provide the maximum benefit. 

Because the model is separated into two parts, the procedure described above must be 

performed independently since one part may congest the other, or the first’s congestion may impact 

the second. In a system with a single-entry point and two activities linked by a queue, situations such 

as this may occur owing to the activities’ varying durations. For instance, if the duration of the first 

activity is greater than the duration of the second activity, it indicates that the departure rate of the 

first activity is lower than the entrance rate of the second activity, leaving the first activity to condition 

the rest of the system (bottleneck). Due to this, the waiting queue between these two activities will be 

less congested than the queue before the first activity. However, duration is not necessarily the most 

important criterion for an activity to influence the system; the number of replicas (and, ultimately, 

resources) is also an important parameter controlling the system’s flow. To examine the impact of 

adding replicas and executing resources, it is crucial that the immediately preceding activities have a 

natural flow to accurately interpret the KPI values. In other words, if check-in activities are thought to 

be “bottlenecks” in the system, the waiting queues for examinations would not behave similarly to 

what occurs, and it would be bad practise to believe the KPIs results to be the real ones and then make 

system adjustments based on them. To circumvent this issue, it was proposed that modifications to 

activities delivered to examinations be evaluated and assessed while keeping an optimal number of 

replicas and resources for check-in activities so that they are not affected by their conditioning. 

9.3.1. Changes in the Imaging Check-In Service 

Initially, four activities of this type were designated as minimum resources and four secretary 

resources, one for each replica. According to Table 32A, under the starting conditions of limited 

resources and a 20-week execution period, the average and maximum queueing times for this activity 

were observed to be 63.05 minutes and 219.72 minutes, respectively.  

With the addition of one more replica, and, consequently, one more secretary, i.e., increasing 

from four to five replicas, in contrast to the previous results, the average queueing time dropped to 

10.60 minutes and the maximum queueing time to 82.03 minutes, demonstrating 83% and 63% 

reductions, respectively. 

With the increase from five to six replicas, the average waiting time decreased by 83% to 1.77 

minutes, while the maximum waiting time decreased by 64% to 29.60 minutes. 

At a seventh replica addition, the average queueing time was reduced by 69% to 0.55 minutes, 

while the maximum queueing time was reduced by 41% to 17.33 minutes. 

For this activity, increasing the number of replicas from four to five had the same impact as 

increasing it from five to six, i.e., the benefit rose correspondingly. The effect is diminished when the 
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number of replicas increases from six to seven. For this reason, it is preferable to abuse the system 

with six replicas. 

The initial occupancy rate of the resources present in this activity was 96.10% and, depending 

on the increase in the number of replicas and resources, decreased to 82.53%, 70.74% and 61.90%, 

respectively. 

9.3.2. Changes in the Ultrasound Check-In Service 

At first, one replica and one secretary resource were deemed the bare minimum resources. 

According to Table 33A, under the initial constraints of minimum resources and a 20-week execution 

period, the average and maximum queueing times for this activity were determined to be 101.65 

minutes and 343.35 minutes, respectively. 

In contrast to the previous results, with the addition of one more replica and one additional 

secretary, i.e., increasing the number of replicas from one to two, the average queueing time 

decreased to 3.90 minutes and the maximum queueing time to 57.58 minutes, showing 96% and 83% 

reductions, respectively. 

The average waiting time fell by 85% to 0.58 minutes and the maximum waiting time by 59% to 

23.64 minutes with the expansion from two to three replicas. 

The average queueing time decreased by 83% to 0.10 minutes, while the maximum queueing 

time decreased by 50% to 11.85 minutes upon installing the fourth replica. 

For this exercise, raising the number of replicas and associated resources from one to two 

proved to have the highest impact on the KPIs. 

The initial resource occupancy rate for this activity was 96.10%, and when the number of 

resources and replicas increased, it declined to 81.87%, 70.74%, and 61.40%, respectively. 

9.3.3. Changes in the Mammography Facility 

Initially, two mammography facilities were designated to operate concurrently, which makes a 

total of two technicians working simultaneously, one in each room. In addition, it was previously 

determined that (A) Check_In_I and (A) Check_In_US would be considered optimised with six and two 

replicas, respectively, with eight resources of that type. 

According to the Table 34A, under starting conditions of minimal resources and a period of 20 

weeks, after execution, the KPIs' average queueing time and maximum queueing time for this activity 

were determined to be 61.49 minutes and 244.22 minutes, respectively.  

With the increase of one more facility, i.e., from two to three replicas of this activity, there is a 

massive improvement in the KPIs results, with the average queuing time decreasing to 4.51 minutes 

and the maximum queuing time decreasing to 52.60 minutes, which represents a 93% and 78%, 

decrease in comparison to the previous values, respectively. 
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It was observed that for a new increase from three to four facilities, the average queueing time 

was 0.83 minutes, representing a decrease of 82%. In contrast, the maximum queueing time was 24.90 

minutes, representing a decrease of 53%. 

The average queueing time at a fifth facility was reduced by 78% to 0.18 minutes, while the 

maximum queueing time was reduced by 47% to 13.30 minutes.  

With this, it was verified that the percentage of improvement had the highest impact from the 

transition from two to three replicas. As this number increased, the benefit percentages decreased. 

Regarding occupancy rate, the baseline value was 91.92%, lowered to 87.42%, 82.03%, and 

77.17% throughout the three executions as additional facilities and resources were added. 

9.3.4. Changes in the X-Ray Facility 

Initially, three X-Ray facilities were authorised to function concurrently, requiring three 

technicians and three assistants in each room. Furthermore, with eight resources of such sort, it was 

previously found that (A) Check_In_I and (A) Check_In_US would be optimised with six and two 

replicates, respectively. 

According to the Table 35A, after the first execution under initial conditions of minimum 

resources and a period of 20 weeks, the KPIs' average queueing time and maximum queueing time for 

this activity were found to be 33.72 minutes and 174.97 minutes, respectively. 

With the addition of one additional facility, i.e., from three to four replicas of this activity, there 

is a significant improvement in the KPIs, with the average queueing time reducing by 91% to 3.05 

minutes and the maximum queueing time decreasing by 75% to 43.31 minutes, compared to the initial 

values. 

It was discovered that with a new increase from four to five facilities, the average queueing time 

decreased by 78% to 0.66 minutes, while the maximum queueing time was reduced by 57% to 18.80 

minutes. 

At a sixth facility, the average queueing time was decreased by 67% to 0.22 minutes, while the 

maximum queueing time was cut by 17% to 15.60 minutes. 

There was a more significant percentage difference when increasing from three to four replicas, 

which appears to translate into a better gain for the same increase of one resource of each kind and 

one replica in each of the executions. 

The baseline occupancy rate of the resources was 91.92% for technicians and 91.50% for 

assistants. When more facilities and resources were added throughout the three executions, the 

values decreased to 86.88%, 81.62%, and 77.08% for technicians and 87.40%, 82.92%, and 79.01% for 

assistants. 
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9.3.5. Changes in the MRI Facility 

At first, six MRI facilities were proposed to operate simultaneously, necessitating the presence 

of six technicians and six assistants, one of each in each room. In addition, it was previously determined 

that (A) Check_In_I and (A) Check_In_US would be considered optimised with six and two replicas, 

respectively, with eight resources of that type. 

According to the Table 36A, the average queueing time and the maximum queueing time for this 

activity, as measured by the KPIs, were determined to be 34.95 minutes and 209.58 minutes, 

respectively, after the first execution under the starting conditions of minimum resources and a period 

of 20 weeks. 

There is a significant improvement in the KPIs with the addition of one additional facility, i.e., 

from six to seven replicas of this activity, with the average waiting time decreasing by 63% to 12.84 

minutes and the maximum waiting time decreasing by 53% to 97.49 minutes, compared to the initial 

values. 

The average queueing time was reduced by 59% to 5.25 minutes, with a new increase from 

seven to eight facilities, while the maximum queueing time decreased by 32% to 66.04 minutes. 

The average waiting time at a ninth facility was reduced by 54% to 2.42 minutes, while the 

maximum waiting time decreased by 48% to 34.50 minutes. 

It should be noted that the system is much improved by the rise from seven to eight facilities 

compared to the other increases. In terms of the maximum queueing time, it was preferable to 

expansion the replicas from eight to nine, rather than from seven to eight, making this increase the 

second-highest benefit.  

The occupancy rates of technical and assistant resources began at 91.92% and 91.50%, 

respectively, then fell as additional resources of the same kind were added in each execution, being 

the occupancy rate of 89.96%, 87.73%, and 85.68% for technicians and 89.87%, 88.08%, and 86.26% 

for assistants. 

9.3.6. Changes in the CAT Facility 

Initially, three CAT facilities were assigned to run concurrently, resulting in three technicians and 

three assistants operating simultaneously in each room. In addition, with eight such resources, it was 

previously determined that (A) Check_In_I and (A) Check_In_US would be considered optimal with six 

and two replicas, respectively. 

According to the Table 37A, the results of the KPIs' average queueing time and maximum 

queueing time for this activity were determined to be 78.71 minutes and 291.57 minutes, respectively, 

under the beginning conditions of minimum resources and a period of 20 weeks of execution.  
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With the addition of one additional facility, i.e., increasing the number of replicas from three to 

four, the average queueing time decreased to 15.32 minutes and the maximum queuing time 

decreased to 127.88 minutes, which represented an 81% and 56% drop in comparison to the initial 

values, respectively.  

For the increase from four to five facilities, the average queueing time was 2.90 minutes, 

representing a drop of 81%; meanwhile, the maximum queueing time was 50.95 minutes reflecting a 

decrease of 60%. 

At a sixth facility, the average waiting time was decreased by 69% to 0.91 minutes, while the 

maximum waiting time was cut by 48% to 26.25 minutes. 

This analysis reveals that the KPIs perform more optimally for the transition from four to five 

replicas. 

The baseline occupancy rate for the resources was 91.92% for technicians and 91.50% for the 

assistants. Nevertheless, when more replicas and resources were added throughout the three 

executions, the values decreased to 86.13%, 83.70% and 79,19% for technicians and 89.24%, 84.74% 

and 80.83% for assistants. 

9.3.7. Changes in the Ultrasound Facility 

At first, five ultrasound facilities were assigned to operate simultaneously, resulting in five 

assistants and five physicians working simultaneously, one in each room. Additionally, it was previously 

found that (A) Check_In_I and (A) Check_In_US would be optimal with six and two replicas, 

respectively, with eight such resources. 

According to Table 38A, under the initial circumstances of minimal resources and a 20-week 

execution period, the results of the KPIs for average queueing time and maximum queueing time for 

this activity were determined to be 31.24 minutes and 142.62 minutes, respectively.  

With the addition of one more facility, i.e., expanding the number of replicas from five to six, 

the average queueing time reduced to 5.01 minutes, and the maximum queueing time decreased to 

52.74 minutes, representing an 84% and 63% reduction, respectively, in contrast to the initial results. 

With the expansion from six to seven facilities, the average queueing time was 1.29 minutes, 

representing a 74% reduction, while the maximum queueing time was 27.41 minutes, representing a 

48% decrease.  

At an eighth facility, the average waiting time was decreased by 71% to 0.37 minutes, while the 

maximum waiting time was cut by 55% to 12.25 minutes. 

According to what has been seen, adding a sixth replica, with the respective physician and 

assistant, has a more substantial influence on the system than increasing from six to seven or even 

from seven to eight replicas. However, the second greatest benefit regarding the maximum queueing 
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time is raising the number of facilities from seven to eight (55% against 48%), which makes this 

transition considered the second-highest improvement. 

As more replicas and resources were added in each execution, the occupancy rates for assistant 

and physician resources, which had initially started at 91.50% and 90.79%, respectively, dropped to 

86.78%, 82.26% and 78.12% for assistants and 76.06%, 65.16% and 57.06%. 

9.4. Results Interpretation and Analysis 

As was noted, the most significant improvement in the KPIs occurred almost immediately after 

the first run, where the values corresponding to the minimum number of replicas and resources were 

raised by one. After some time, this advantage began to diminish due to the increased number of 

replicas and resources included in each posterior execution. Nevertheless, these improvements were 

still significant, so it was impossible to entirely rule out the potential of climbing to a higher level. The 

person in charge of making a choice will determine how much of an increase in costs they are ready to 

accept to make this change in the system. 

In general, the percentage of the extra benefit tends to stabilise as the number of replicas and 

resources increases. However, after a few runs, it is possible to see that for certain KPIs, the value 

between the last two runs changes by just a tiny amount. However, as the proportion of benefit 

decreases until it stabilises, there will come a time when increasing the number of replicas and 

resources is no longer advantageous, either in this context or in any other where a comparable 

simulation experience is conducted. From this point on, raising the number of replicas or resources is 

not advised since the utilisation rate would fall considerably. In other words, the proportion of replicas 

and resources to work items would be 1:1, queueing times would go toward zero, and the system 

would be undercrowded, which would be a fantastic benefit for patients. 

Considering the number of replicas and resources where the benefit is more significant in each 

activity conducted in section 9.3., these values (Table 39A) were included in the model to examine the 

effect of all modifications in concert. The table below compares the results of the KPIs when each 

activity was analysed individually and in combination with the other activities, always employing the 

number of replicas and resources for which there was a more significant benefit. 

Looking at the 1st more significant benefit column of the Appendix 1, the performance of the 

KPIs has deteriorated, as predicted, when the number of replicas and resources are optimised for all 

activities concurrently. When reviewing the KPI results for a particular activity while limiting the others 

to the bare minimum of resources, this conditioning in the waiting queues of these activities 

obstructed the regular flow. As a result of fewer patients circulating from these activities, fewer 

patients were added to the waiting queue for the "optimal" activity (via other examinations). On the 

other hand, when all activities are optimised simultaneously, the number of patients circulating 
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between examinations increases. More patients are sent for examinations, causing more patients to 

move to other waiting rooms. In Table 40A, the number of patients waiting in queue for examinations 

before the individual and collective analysis is provided. Therefore, it is verified that the number of 

patients in all examination queues is greater when the system is implemented, considering an optimal 

solution for all activities simultaneously.  

Consequently, it may be required to investigate, for each activity, the number of replicas and 

resources for which the second-greatest benefit will be realised. According to Tables 32A to 38A, the 

second highest benefit occurs most frequently immediately after increasing the number of existing 

replicas from the first benefit by one. For MRI and Ultrasound examinations, however, Tables 

37A and 38A reveal that the total benefit (relative to the two KPIs in the queues) is more significant 

when the number of replicas is increased by two rather than one. Recall that this extra added benefit 

per unit stabilises at a specific value. Increasing the number of replicas is advantageous if the added 

benefit is equal to or greater than the immediately preceding value.  

Then, the number of replicas will grow for each activity to reach the second-highest benefit, and 

the resource allocation will be readjusted. Consequently, the system was rerun for the same period 

(20 weeks), with the parameters presented in Table 41A. The results of the KPIs are shown in the last 

column of Appendix 1. As expected, the results revealed decreased queueing times for all queues; thus, 

the KPIs performed better with increased replicas and their resources in a single unit for the second-

highest benefit. This provides a far more convenient solution to the system resulting from shorter 

times in queues. Notably, the difference between the individual and collective analyses for the second-

highest benefit is lower than those for the first more substantial benefit, anticipating that the 

difference would decrease as replicas and resources rise. 

The exact needs to be updated for check-in activities. The Appendix 1 shows that during the two 

most considerable benefits analyses, there was a null difference between the individual and collective 

analyses. It is anticipated that similar behaviour will continue for the following benefits. One of the 

reasons this occurs is that the flow of both check-in processes is independent of one another, i.e., the 

performance of one is unaffected by the entrance rate of the other, apart from the fact that the same 

does not happen for activities related to examinations, as already explained. Since the entry rate of 

these activities depends on the exit rate of the check-in activities, the effect of a bottleneck on these 

activities acts as a limitation on the entire system. 

When analysing resource efficiency, one may directly notice a decline when the queues' KPIs for 

a single activity improve. Lower occupancy rates are a direct result of lower efficiency and vice versa. 

This indicates that more resources must be wasted in a specific period for operations to be carried out 

efficiently. The fact that resources are less efficient throughout the tests, as a consequence of their 

increase based upon the number of replicas, is because there are more of them for the same number 
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of patients on the waiting queue. The workload of each resource is decreased because, as predicted, 

the same number of patients is more evenly distributed among them. With the assumption that the 

activity time is constant, there is, thus, more free time for the resource. More free time denotes 

increased resource waste or resources awaiting allocation to an activity.  

Even though the number of resources is proportionate to the number of activities, the workload 

is reduced even further when all activities are examined simultaneously because more resources are 

available. The fact that the activities frequently share a resource is the only reason this occurs. There 

is a propensity for stabilisation between individual and collective analyses when a physician is involved 

in the Ultrasound activity because it is the only exclusive resource of this activity. Since more patients 

have this examination simultaneously due to the increased flow, there is still a chance to detect a 

slight, nearly imperceptible rise, which was expected given the increased demand for the resource.  

It is anticipated that the difference between the two collective analyses of the first and second-

highest benefits will reflect the same logic given what has already been stated about efficiency 

significantly declining as the number of resources increases. Appendix 1 shows a noticeable decrease 

in the utilisation rate between the two strategies, proving what was predicted. 

To promote resource efficiency, the system was put into place to study the impact of reducing 

resources by resource type each while keeping the number of activities. The resource utilisation rate 

is expected to grow based on what has already been stated and demonstrated in Table 31A, for the 

opposite case. Because it is not possible to simultaneously improve resource efficiency and service 

delivery, there is a trade-off between the two. In order to do this, it is important to strike a balance 

between the two and determine a level of comfort where there are neither benefits nor losses 

concerning one another. Thus, the value of the performance of the KPIs of the second-highest benefit 

was used as a starting point, and three experiments were conducted, each with one less resource of 

each type compared to the previous experience, to determine how the efficiency of resources 

improved concerning the decrease in performance of the remaining KPIs. The results are presented 

in Appendix 2.  

The analysis of the results reveals that there are still some improvements in the average 

queueing times for the Mammography and MRI queues. However, the values of the KPIs associated 

with other examination queues (except for the Ultrasound) indicate weak variances compared to the 

base experience. One of the reasons this occurs is because the check-in activities, which condition the 

system, have fewer resources. As a result, the system is more crowded in these queues, which lowers 

the flow in the second part of the system. It can be seen from that table for these queues that 

performance, namely the maximum queueing time, actually improves dramatically. Although the 

number of patients who wait longer than the average value is relatively small, it is still a case that 

merits consideration because the average waiting time is still low (Graphics 14A and 15A). Although 
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the performance of the KPIs associated with the Ultrasound queue deteriorated significantly due to 

the reduction in the number of physicians, it became evident that this resource is very dependent on 

the system's functioning as a whole. To circumvent this issue, a second execution was carried out, 

taking as the basis the experiment's values with less than three resources (specified in Appendix 3), 

increasing only the number of physicians by two.  

According to Appendix 3, a reduction from 24 to 21 technicians increased their efficiency from 

68.22% to 75.90% following a final general analysis based on the values of the second-highest benefit. 

With the reduction from 28 to 25 assistants, this resource's efficiency increased from 67.97% to 

74.33%. The change in efficiency caused by the drop from 8 to 7 physicians was from 58.89% to 67.30%. 

A reduction from 10 to 7 secretaries increased productivity from 50.59% to 72.22%. In addition, it was 

demonstrated that the increase in resource efficiency had a minor effect on the performance of the 

queues, although some have varied more than others.  
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10. Conclusion and Future Work 

This study addressed the need to enhance the quality of service provided to patients by the 

Imaging Department of Hospital da Luz. The objective was to reduce the amount of time customers 

must wait for services in order to satisfy patients' needs for a higher quality of service and increase 

demand. In order to provide a set of solutions, the metrics for minimising these wait times were 

explored in a variety of methods. These solutions will strengthen the decision-making ability of the 

individual responsible for making the call following the presentation of these results, as only the 

decision-maker will be able to determine which option is ideal for keeping the system operational. 

Sometimes the decision-making process can be more difficult than expected. In situations where 

a clear trade-off is apparent, where a gain in performance in one factor leads to a decrease in another, 

it is crucial for the decision-maker to reflect and consider, for instance, which of the two factors has 

the greater impact for them. During the analysis, it was always observed the effect of the trade-off 

between keeping patients pleased and making better use of resources, given that increasing the 

quantity of one requires decreasing the amount of the other. If more resources are available, there 

will be a better flow of patients through the waiting queues, lowering the queueing times and, 

therefore, their length of stay in the system, so boosting patient satisfaction in this regard. Satisfied 

patients are more likely to return, leading to an increase in demand and higher revenue. On the other 

hand, the quantity of money supplied to employees in the form of wages, for example, will grow. This 

will lead to an increase in variable costs for each extra resource or activity. In addition, the fixed costs 

may be adjusted, but only to a small degree than variable costs. The fixed costs include equipment 

maintenance and electricity bills (more equipment running). Before providing a variety of alternatives 

that are most suitable for the person making the decision, in this case, as in others, it is vital to control 

the budget to make the most of the available resources while meeting the needs of the patients 

without significantly surpassing the opportunity cost that the decision-maker is facing. 

During the analysis, it was possible to observe that the bottleneck effect on check-in activities is 

not necessarily detrimental to the system, as it frequently prevents examination waiting rooms from 

being overcrowded, which may be preferable given that patients may remain in more than one queue 

for an examination during their stay. As witnessed, the results of the KPIs were only able to fluctuate 

slightly between resource removal trials due to the conditioning of the check-in activities with the flow. 

A limitation on check-in activities might also be a successful strategy for reducing the number of health 

personnel (technicians, assistants and physicians). After taking this into consideration, as observed in 

the last experiment, reducing the number of resources did not result in a substantial difference in the 

performance of the examination queues other than enhancing the efficiency between the resources, 

so it may be advantageous to go this way.  
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Furthermore, when the aim of the modeller is to improve the performance of the queues, as 

was done in the initial analyses of the preceding chapter, it is crucial to underline the importance of 

reducing the bottleneck effect. It is important to reiterate the point that system enhancements will 

need to be made in phases. To put it another way, increasing the performance of examination-related 

tasks would be pointless if check-in procedures delayed patients. Because of this, it is crucial to 

evaluate and test the other activities from a position where patients are not backed up in the check-in 

lines, i.e., where the flow of these activities is already judged acceptable, and the exit rate is, in the 

best scenarios, close to the entrance rate. Therefore, it is argued that congestion will always occur in 

a system where an activity's exit rate is larger than the entry rate of the activity that precedes it. 

Appendix 2 reveals that the resource utilisation is approximately 70%, for the maximum 

reduction the model was subjected, indicating that 30% of the time is spent waiting to be allocated to 

activities owing to a lack of patients or an excess of resources. Studying the periods when these 

resources are most in demand and the contrary, i.e., when they are less needed, is one strategy to 

improve even more the efficiency of these resources. Since this research deals with a limited number 

of patients whose admission follows particular temporal distributions, the number of patients 

fluctuates with the time of day, and the flow of patients through the system will not be constant 

throughout the day. However, the number of patients is similar from time to time. In other words, 

there is a propensity for patterns to repeat themselves based on the time of day. When keeping the 

same activities and resources throughout a changeable patient flow, it is only reasonable that the 

utilisation rate would oscillate. There may be certain times when the utilisation rate reaches close to 

100% as well as other periods when it reaches a value below 50%, indicating that an adjustment could 

be made in the number of resources according to the time of day when this occurs so that there is a 

more efficient use of resources. In light of this, one could divide the system into many shifts and 

propose the necessary number of resources for each shift to battle the patient flow. Thus, it was 

guaranteed that less resources would be wasted, thereby boosting their efficiency without impacting 

the performance of the queues. 
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Annexes 
 

Appendix 1 – Results of the KPIs regarding the individual and collective analysis. 

 Activities 
1st more significant 

benefit 
2nd more significant 

benefit 

Number of Replicas 

(A) Exam_Mammo 3 4 

(A) Exam_XRay 4 5 

(A) Exam_MRI 7 9 

(A) Exam_CAT 5 6 

(A) Exam_Ultrasound 6 8 

(A) Check_In_I 6 7 

(A) Check_In_US 2 3 

Number of Resources 

R_Technician 19 24 

R_Assistant 22 28 

R_Physician 6 8 

R_Secretary 8 10 

Simulation Object Performance Measure 
Individual 

Analysis 
Collective 

Analysis 
Individual 

Analysis 
Collective 

Analysis 

(Q) Wait_Check_In_I 
Average Queuing Time 1.77 1.77 0.55 0.55 

Maximum Queuing Time 29.60 29.60 17.33 17.33 

(Q) Wait_Check_In_US 
Average Queuing Time 3.90 3.90 0.58 0.58 

Maximum Queuing Time 57.58 57.58 23.64 23.64 

(Q) Wait_Exam_Mammo 
Average Queuing Time 4.51 6.54 0.83 1.33 

Maximum Queuing Time 52.60 77.54 24.90 29.19 

(Q) Wait_Exam_XRay 
Average Queuing Time 3.05 4.39 0.66 1.15 

Maximum Queuing Time 43.31 65.54 18.80 21.94 

(Q) Wait_Exam_MRI 
Average Queuing Time 12.84 17.35 2.42 3.97 

Maximum Queuing Time 97.49 150.70 34.50 52.84 

(Q) Wait_Exam_CAT 
Average Queuing Time 2.90 3.90 0.91 1.32 

Maximum Queuing Time 50.95 49.31 26.25 28.28 

(Q) Wait_Exam_Ultrasound 
Average Queuing Time 5.01 10.01 0.37 1.04 

Maximum Queuing Time 52.74 85.71 12.25 24.54 

R_Tecnician 

Utilization (%) 

86.99 77.10 82.13 68.22 

R_Assistant 87.20 78.65 82.03 67.97 

R_Physician 76.06 78.69 57.06 58.89 

R_Secretary 76.31 62.23 66.32 50.59 
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Appendix 2 – The KPIs' results in the absence of one resource per experience. 

  2nd more significant benefit 

 Activities Initial 
1 

Reduction 
2 

Reduction 
3 

Reduction 

Number of Replicas 

(A) Exam_Mammo 4 4 4 4 

(A) Exam_XRay 5 5 5 5 

(A) Exam_MRI 9 9 9 9 

(A) Exam_CAT 6 6 6 6 

(A) Exam_Ultrasound 8 8 8 8 

(A) Check_In_I 7 7 7 7 

(A) Check_In_US 3 3 3 3 

Number of Resources 

R_Technician 24 23 22 21 

R_Assistant 28 27 26 25 

R_Physician 8 7 6 5 

R_Secretary 10 9 8 7 

Simulation Object Performance Measure 
Collective 

Analysis 
Collective 

Analysis 
Collective 

Analysis 
Collective 

Analysis 

(Q) Wait_Check_In_I 
Average Queuing Time 0.55 0.67 1.19 3.87 

Maximum Queuing Time 17.33 18.79 24.43 44.42 

(Q) Wait_Check_In_US 
Average Queuing Time 0.58 0.73 1.12 1.99 

Maximum Queuing Time 23.64 25.82 29.49 35.14 

(Q) Wait_Exam_Mammo 
Average Queuing Time 1.33 1.55 1.44 1.30 

Maximum Queuing Time 29.19 29.61 27.40 46.12 

(Q) Wait_Exam_XRay 
Average Queuing Time 1.15 1.25 1.30 1.21 

Maximum Queuing Time 21.94 19.72 25.52 20.78 

(Q) Wait_Exam_MRI 
Average Queuing Time 3.97 3.75 3.53 3.27 

Maximum Queuing Time 52.84 46.50 42.83 37.34 

(Q) Wait_Exam_CAT 
Average Queuing Time 1.32 1.61 1.47 1.49 

Maximum Queuing Time 28.28 36.16 31.95 44.23 

(Q) 
Wait_Exam_Ultrasound 

Average Queuing Time 1.04 2.78 10.94 46.82 

Maximum Queuing Time 24.54 35.94 92.17 198.55 

R_Tecnician 

Utilization (%) 

68.22 71.45 73.89 76.32 

R_Assistant 67.97 70.59 72.66 74.36 

R_Physician 58.89 66.97 78.26 91.99 

R_Secretary 50.59 56.21 63.23 72.27 
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Appendix 3 – The KPIs' results in the absence of three resources, except for the Physician. 

 Activities Initial 
3 Reduction (Except Physician, 

with 1 Reduction) 

Number of Replicas 

(A) Exam_Mammo 4 4 

(A) Exam_XRay 5 5 

(A) Exam_MRI 9 9 

(A) Exam_CAT 6 6 

(A) Exam_Ultrasound 8 8 

(A) Check_In_I 7 7 

(A) Check_In_US 3 3 

Number of Resources 

R_Technician 24 21 

R_Assistant 28 25 

R_Physician 8 7 

R_Secretary 10 7 

Simulation Object Performance Measure 
Collective 

Analysis 
Collective Analysis 

(Q) Wait_Check_In_I 
Average Queuing Time 0.55 3.87 

Maximum Queuing Time 17.33 44.42 

(Q) Wait_Check_In_US 
Average Queuing Time 0.58 1.99 

Maximum Queuing Time 23.64 35.14 

(Q) Wait_Exam_Mammo 
Average Queuing Time 1.33 1.86 

Maximum Queuing Time 29.19 33.62 

(Q) Wait_Exam_XRay 
Average Queuing Time 1.15 1.78 

Maximum Queuing Time 21.94 24.72 

(Q) Wait_Exam_MRI 
Average Queuing Time 3.97 3.57 

Maximum Queuing Time 52.84 54.20 

(Q) Wait_Exam_CAT 
Average Queuing Time 1.32 1.58 

Maximum Queuing Time 28.28 25.09 

(Q) 
Wait_Exam_Ultrasound 

Average Queuing Time 1.04 2.31 

Maximum Queuing Time 24.54 29.62 

R_Tecnician 

Utilization (%) 

68.22 75.90 

R_Assistant 67.97 74.33 

R_Physician 58.89 67.32 

R_Secretary 50.59 72.27 
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Appendix 4 – Overview of the model implementation in SIMUL8. 
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Other Appendixes may be found at:  

https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link 

 

https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link

