

Deep Reinforcement Learning

 applied to Analog Integrated Circuit Sizing

Tomás Bessa de Curado Rodrigues

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor: Prof. Nuno Cavaco Gomes Horta

Co-supervisor(s): Doctor Nuno Calado Correia Lourenço

 Examination Committee

Chairperson: Prof. Pedro Filipe Zeferino Aidos Tomás

Supervisor: Prof. Nuno Cavaco Gomes Horta

Member of the Committee: Doctor António Manuel Lourenço Canelas

 November 2022

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the

requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

Acknowledgments

This work was hosted at Instituto de Telecomunicações, funded by Fundação para a Ciência e

Tecnologia–Ministério da Ciência, Tecnologia e Ensino Superior (FCT/MCTES) through national funds

and, when applicable co-funded European Union (EU) funds under the project UIDB/50008/2020.

The most heartfelt thank you to my co-supervisor, Professor Nuno Lourenço, who gave me the

encouragement and guidance to complete this work. Without his help, this thesis could not have been

written. Professor Nuno Lourenço was always available to clarify any question I had and assist me with

any problem I faced throughout the entire development of this work.

Thank you to my supervisor, Professor Nuno Horta, for guiding me in this work, his assistance was

crucial to the development of this thesis.

I would like to thank my little brother, Duarte Bessa, the most important person in my life, for always

being there for me, through every obstacle I faced and every joy that came with this work. He is, without

a doubt, the best brother I could have asked for.

To my parents Maria Curado and Carlos Bessa, who were very supportive throughout the entire

process, giving me strength and love. I would also like to thank my grandfather, António Curado (Vôvas)

and my grandmother Isabel Bessa for their love and support throughout this path.

Thank you to my girlfriend, Ana Rodrigues, for being there for me when I needed a push to get back

up, for hearing all my thoughts and provide me with heartfelt support, no matter what.

To my best friends, Jaime Marques, and Bárbara Andrade, the most grateful thank you for their support.

They give me inspiration every day to become a better version of myself. Without them, I could not have

done this thesis, so thank you so much.

I would like to thank my friends at Instituto Superior Técnico, Rodrigo Vieira, Ricardo Santos, Inês

Ferreira, and André Amaral. They helped me take my mind off the problems and focus on the progress

instead of the obstacles. They helped me when I had any questions and offered their support constantly.

I would like to give a special thank you to my friends Pedro Gil, António Godinho, Marta Martins, Inês

Bolhaqueiro, Joana Carolina Matias, Mariana Ribeiro, Olavo Freitas, and Beatriz Rosalino for their

patience, support, and love.

I would like to give a special thank you to my “family” in Lisbon, the most amazing friends anyone could

ask for: Pedro Furtado, Sofia Guerreiro, Diana Costa, João Santos (Parreco), João Barbosa, Pedro

Fialho, and Pedro Silva.

Finally, the most heartfelt thank you to Fairy Tail (anime show) and its soundtrack. Fairy Tail had so

much influence over the course of this work that it needed to be mentioned here. Not only did Fairy Tail

helped me maintain my mental health with its music, it gave me passion and commitment to conquer

every obstacle that came my way, just like it taught me. Fairy Tail was truly indispensable and I am glad

it helped me so much.

i

Resumo

Este trabalho de tese de mestrado está inserido na área de Automatização de Projetos Eletrónicos.

Esta é uma vasta área que cobre diversos temas de extrema importância para as atuais e futuras

gerações da sociedade. Neste trabalho foca-se na área de dimensionamento automático de circuitos

integrados e como o processo pode ser otimizado e melhorado. Com esse objetivo, uma nova

abordagem é introduzida. Esta abordagem inovadora tem como base técnicas de Aprendizagem

Profunda, Redes Neuronais e Aprendizagem Reforçada.

Atualmente, a ausência de soluções globais padrão para a problemática de dimensionamento

automático de circuitos analógicos leva a um fastidioso, complexo e demorado processo de design,

contrastando drasticamente com os circuitos digitais. Recentemente, tem havido diversos

desenvolvimentos por forma a combater as disparidades ao nível de performance entre os circuitos

digitais e analógicos. Este tópico tem sido objeto de discussão intensiva, tendo havido progressos

notáveis, o que é suportado pela publicação de diversos artigos pela comunidade científica.

O principal foco deste trabalho consiste em aplicar Aprendizagem Automática, assim como

técnicas de Aprendizagem Profunda, ao dimensionamento de circuitos integrados analógicos. Em

particular, é destacado o algoritmo Ator-Crítico de Vantagem, um método que pode ser aplicado ao

dimensionamento de circuitos integrados analógicos. Recorrendo a ferramentas do software AIDA, o

agente proposto tem como objetivo melhorar o funcionamento do AIDA usando uma solução alternativa

de aprendizagem reforçada para o dimensionamento de circuitos integrados analógicos. O modelo foi

aplicado a duas topologias diferentes de circuitos, sendo elas um VCOTA e um FCA. Para ambas as

topologias o agente foi capaz de dimensionar com sucesso os componentes rapidamente e

eficientemente de modo a cumprir uma série de especificações definidas previamente que condicionam

a sua performance.

ii

Palavras-chave

Automatização de Projetos Eletrónicos, Circuitos Integrados Analógicos, Redes Neuronais Artificiais,

Aprendizagem Reforçada, Aprendizagem Profunda, Ator-Crítico de Vantagem.

iii

Abstract

The following work resides in the scientific field of electronic design automation. This is a vast area

which covers several different subjects of extreme importance to current and future society. There is a

special emphasis on the automatic sizing of integrated circuits and how the process may be improved

and optimized. Having this goal in mind, a new approach will be introduced. This innovative approach

makes use of Deep Learning techniques, Artificial Neural Networks and Reinforcement Learning.

Currently, the absence of standard and widespread solutions for automatic analog integrated sizing

leads to a cumbersome and complex design, not to mention time-consuming, severely contrasting with

their digital counterparts. To fight the productivity gap between analog and digital IC design, there have

been, recently, several developments in this area. It is being subject of intensive research considerable

progress has been made, which is supported by the publishing of various scientific articles.

This work mainly focuses on a relatively recent idea, which is applying Machine as well as Deep

Learning techniques to analog IC sizing, namely Reinforcement Learning methods, as it is stated earlier.

It presents Asynchronous Actor-Critic, a RL approach which can be applied to analog IC sizing. By

resorting to AIDA software tools, the proposed algorithm aims to enhance AIDA’s flow using an

alternative RL-based sizing solution. The model is applied to two different circuit topologies, VCOTA

and Folded Cascode. For both cases, the agent is capable of successfully performing the sizing of their

components in a short time while fulfilling set target specifications.

Keywords

Advantage Actor-Critic, Analog Integrated Circuits, Artificial Neural Networks, Deep Learning,

Electronic Design Automation, Reinforcement Learning

v

Table of Contents

Acknowledgments ... i

Resumo... i

Palavras-chave .. ii

Abstract .. iii

Keywords .. iii

Table of Contents .. v

List of Figures ... vii

List of Tables .. ix

Acronyms .. x

1 Introduction ... 1

1.1 Motivation: The Analog IC Design Effort .. 1

1.2 Topic Overview: Analog & MS Design Flow ... 2

1.3 Automatic Analog IC Sizing ... 4

1.4 Goals .. 4

1.5 Document Structure .. 5

2 Background and Related Work ... 6

2.1 Analog Circuit sizing approaches ... 6

2.2 Reinforcement Learning for Analog IC Sizing ... 8

2.2.1 Deep Reinforcement Learning for Analog Circuit Sizing (2020) 9

2.2.2 A Circuit Attention Network-Based Actor-Critic Learning Approach to Robust Analog

Transistor Sizing (2021) ... 10

2.2.3 AutoCkt: deep reinforcement learning of analog circuit designs (2020) 14

2.2.4 DNN-Opt: An RL Inspired Optimization for Analog Circuit Sizing using Deep Neural

Networks (2021) ... 15

2.2.5 Trust-Region Method with DRL in Analog Design Space Exploration (2021) 18

2.2.6 RobustAnalog: Fast Variation-Aware Analog Circuit Design Via Multi-task RL (2022) . 20

2.3 Comparative Analysis ... 23

2.4 Conclusions ... 24

3 Deep RL-Based Analog IC Sizing ... 26

vi

3.1 Proposed Approach .. 26

3.2 Agent Overview ... 26

3.2.1 State Space, Action Space and Reward Function .. 27

3.2.2 Model Structure and Hyper-parameter tuning ... 29

3.2.3 Action Selection .. 33

3.2.4 Circuit Sizing using Deep Reinforcement Learning ... 34

3.3 Conclusion ... 35

4 Results ... 37

4.1 Dataset ... 37

4.2 Loss Function ... 40

4.3 VCCOTA ... 41

4.4 Folded Cascode .. 47

4.5 Agent Reutilization .. 52

4.6 Conclusions ... 54

5 Conclusions ... 55

5.1 Work Conclusions ... 55

5.2 Future Work ... 55

References .. 57

vii

List of Figures

Figure 1.1 - Comparison between Analog and Digital Integrated Circuits [2] ... 2
Figure 1.2 - Hierarchical level and design tasks of design flow architectures [2] 3
Figure 2.1 - AIDA-C Architecture [3]. .. 7
Figure 2.2 - Reinforcement Learning loop ... 9
Figure 2.3 - Rewards obtained at different periods [5] .. 10
Figure 2.4 - Robust transistor sizing flow [18] ... 11
Figure 2.5 - Current mirror and its graph [18] ... 12
Figure 2.6 - Learning curves [18] .. 13
Figure 2.7 – Top level overview, showing what information is needed for AutoCkt in order to design

any circuit topology to meet a given target design specification [19] .. 14
Figure 2.8 – DNN-Opt framework [20] .. 16
Figure 2.9 – The average FoM (lower is better) curve for 500 simulations[20] 17
Figure 2.10 – Analog circuit pre-layout design flow[21] .. 18
Figure 2.11 – RobustAnalog Overview: (1) A pruned task subset is generated from the full task set (2)

Multi-task RL agent is trained on task subset (3) Training continues until the produced sizing can

achieve training tasks. Then the sizing is evaluated on the full set. If it passes all the tasks,

RobustAnalog returns the result [20].. 21
Figure 2.12 – RobustAnalog: Comparing learning curves with baselines (average rewards vs. #

simulation). .. 23
Figure 3.1 – Proposed method illustrative diagram .. 27
Figure 3.2 – Advantage Actor-Critic (A2C) - Pseudo Code[41] .. 27
 Figure 3.3 – Inverter circuit - CMOS .. 28
Figure 3.4 – Representation of the model used in this work: (1) Input Layer (2) Common hidden

layer 1 Common hidden layer 2 (4) Output layer - Actor (5) Output layer - Critic 30
Figure 3.5 – Representation of the model used in this work: (1) Input Layer (2) First hidden layer of

the actor network (3) Second hidden layer of the actor network (4) Output layer of the actor network (5)

First hidden layer of the critic network (6) Second hidden layer of the critic network (7) Output layer of

the critic network (2), (3), (4) Actor Network (5), (6), (7) Critic Network ... 31
 Figure 3.6 – Sigmoid Function ... 32
Figure 3.7 – Leaky ReLU Function ... 33
Figure 3.8 – Sizing Process illustrative diagram ... 35
Figure 4.1 – Circuit schematic showing the devices and corresponding design variables (channel

width: W’s, and channel length: L’s) .. 38
Figure 4.2 – Circuit schematic for the FCA showing the devices and corresponding design variables

(channel width: W’s, and channel length: L’s, bias voltages (Vcm1,2), and the bias resistor (Rbias) 39
Figure 4.3 – Policy Losses during the training process - VCOTA topology .. 40
Figure 4.4 – Value Losses during the training process - VCOTA topology .. 40
Figure 4.5 – Total Losses during the training process - VCOTA topology ... 40
Figure4.6– VCOTA Model 1 – Early Episode ... 45
Figure 4.7 – VCOTA Model 1 – Intermediate Episode ... 45
Figure 4.8 –VCOTA Model 1 – End Episode .. 45
Figure 4.9 –VCOTA Model 2 – Early Episode .. 46
Figure 4.10 – VCOTA Model 2 – Intermediate Episode ... 46
Figure4.11–VCOTA Model 2 – End .. 47
Figure 4.12 –FCA Model 1 – Early episode .. 49
Figure 4.13 – FCA Model 1 – Intermediate Episode ... 50
Figure 4.14 – FCA Model 1 – End Episode .. 50
Figure 4.15 – FCA Model 2 – Early Episode... 51

viii

Figure 4.16 –FCA - Model 2 – Intermediate Episode ... 51
Figure 4.17 - FCA – Model 2 – End Episode .. 52

ix

List of Tables

Table 2.1 - Comparative analysis between Model-based approaches and Simulation-based

approaches ... 7
Table 2.2 - Comparative analysis between the CAN-RL method and the GCN-RL method[18] 13
Table 2.3 – Sample efficiency (SE) and generalization comparison table [19] 15
Table 2.4 – DNN-OPT results on industrial circuits [20] ... 18
Table 2.5 – Performance of agents in 45nm two-stage OpAmp ... 20
Table 2.6 – Comparative Analysis between RL methods.. 25
Table 4.1 - VCOTA performance figures measures in the circuit simulation .. 38
Table 4.2 - Gain enhanced amplifier optimization variables and ranges. ... 38
Table 4.3 – FCA’s performance figures. ... 39
Table 4.4 – FCA’s optimization variables and ranges. ... 39
Table 4.5 – VCOTA: Table displays constraints for each Target .. 41
Table 4.6 – Model 1 - Performance results ... 42
Table 4.7 – Model 2 - Performance results ... 43
Table 4.8 – FCA: Table displays constraints for each Target .. 47
Table 4.9 – Model 1, Target 1 - Performance results .. 48
Table 4.10 – Model 2, Target 1 - Performance results .. 49
Table 4.11 – VCOTA Model 1: Comparison between the number episodes taken to perform the sizing

of Target 1 vs the number of episodes it takes to solve for Target 1 after the sizing is performed for

Target 0 ... 52
Table 4.12 – VCOTA Model 1: Comparison between the number episodes taken to perform the sizing

of Target 1 vs the number of episodes it takes to solve for Target 4 after the sizing is performed for

Target 3 ... 53
Table 4.13 – VCOTA Model 1: Comparison between the number episodes taken to perform the sizing

of Target 1 vs the number of episodes it takes to solve for Target 2 after the sizing is performed for

Target 1 ... 53

x

Acronyms

• AAC - Asynchronous Actor-Critic

• ACD - Analog Circuit Design

• AI - Artificial Intelligence

• AMS - Analog Mixed-Signal

• BO - Bayesian Optimization

• CAD - Computer Automated Design

• CAN - Circuit Attention Network

• DDPG - Deep Deterministic Policy Gradient

• DNN - Deep Neural Network

• EDA - Electric Design Automation

• FoM - Figure of Metric

• GCN - Graph Convolutional Network

• GNN - Graph Neural Network

• IC - Integrated Circuit

• LNA - Low-Noise Amplifier

• MCTS - Monte Carlo Tree Search

• ML - Machine Learning

• MLP - Multi-Layer Perceptron

• NF - Noise Figure

• MS - Mixed Signals

• PGNN - Physics-guided Neural Network

• PPO - Proximal Policy Optimization

• ReLU - Rectified Linear Activation Unit

• SoC - System on Chip

• TRM - Trust Region Method

• TRPO - Trust Region Policy Optimization

• UCB - Upper Confidence Bound

1

1 Introduction

The first chapter is dedicated to the introduction of Analog Integrated Circuits (IC). Analog Integrated

Circuit properties will be highlighted, and there is an emphasis on the challenges regarding optimization-

based methods, which concern sizing approaches. To address the problem, there is an introduction to

the concept of Machine Learning (ML) and the possible use of Artificial Intelligence (AI) to automate

Analog Circuit Design (ACD).

1.1 Motivation: The Analog IC Design Effort

Currently, markets are frenetic, a reality that has never been experienced before. Industries are

developing and adapting to new patterns, and the market has become increasingly demanding. The

electronics market, such as analog and digital circuits, is no exception. Developers, in general, often

struggle with pursuing the challenge of creating better circuits with greater power and progressively

smaller components, exploring the tradeoff between size and performance.

The overall projection of total IC sales growth in 2022 is unchanged and expected to rise 11% this

year to a record-high $567.1 billion. The new 2Q22 Update keeps the 2022 growth forecast unchanged

in analog ICs (up 12%) and logic integrated circuits (up 11%)[1]. The growth associated with the

Integrated Circuits industry will contribute to advances in several different areas, namely education,

healthcare, and transportation. With the evolution of worldwide communications, like the Internet, which

combines several electronic components, developing such systems has become crucial to keep up with

society’s needs.

More often than not, analog IC design is being done manually, aiming to meet several specifications

simultaneously, resulting in long design cycles and challenging tasks. Therefore, experts are

progressively adopting digital components as much as possible.

Digital components are usually preferred over their analog counterparts for various reasons. First,

digital circuits are better supported and easier to reuse, and many automated tools assist in designing

digital circuits [2]. Therefore, it is generally preferable to use digital circuiting, and developers are

progressively switching due to the before mentioned advantages.

However, this type of circuit cannot be abandoned since real-world interactions are made through

analog and radio frequency (RF) circuits. Hence, there is a need to combine both types of circuits. The

result of this combination is named Mixed-Signals (MS) Systems on Chip (SoC). Analog circuits still

constitute a small fraction of MS-SoC, and they are the ones that require the most effort to be built,

even though they end up occupying less area in MS-SoCs, as portrayed in Figure 1.1.

2

Figure 1.1 - Comparison between Analog and Digital Integrated Circuits [2]

As visible from the image in Figure 1.1, MS-SoC are mostly constituted by digital components due to

reasons stated earlier. Analog IC composes roughly 20% of the total area, even though the effort

required to produce them is significantly larger than digital ICs. Analog circuitry deals with continuous

signals and is more susceptible to various types of noise, parasitic disturbances, crosstalk, etc. The

leading cause behind this large difference is associated with analog intrinsic properties. Namely, it is

generally less systematic, more intricate, and knowledge-intensive than digital ICs. These factors are

critical when digital and analog circuits are integrated into the same design.

Electronic Design Automation (EDA) tools and design methodologies have been improved to cope

with the latest IC technologies. However, there is still some road to cover, more specifically, the fact

that they are still not balanced (Analog IC and Digital IC), the latter having more resources available at

its disposal.

Such a gap is probably due to the difference in market size. Since digital circuitry has much more

demand, the market around it grows more prominent than its analog IC counterparts. Still, analog ICs

are responsible for expensive re-runs and design errors, which leads to investment in tools to mitigate

the design effort while ensuring reliability.

To summarize, two main reasons justify the considerable development time of analog circuits when

compared to digital circuits [3]:

• At the moment, analog IC blocks are being integrated using technologies that are destined

for the optimization of digital IC’s;

• Analog circuit blocks are complicated to reuse due to the high sensitivity regarding the

environment, nearby circuits, and overall process variations;

1.2 Topic Overview: Analog & MS Design Flow

The specific design flow of Integrated Circuits is often unique and specific to each designer or company

producing the IC, like the concept of human fingerprints. Each designer/company has its style of design.

However, the more significant part of the work related to analog design flow can be generally mapped

into the model proposed by Gielen and Rutenba [4]. This model is described in Figure 1.2. It

demonstrates the design flow for analog mixed-signal IC as a series of top-down design steps

3

repeatedly executed from the system level to the device level and bottom-up layout generation and

verification.

Figure 1.2 - Hierarchical level and design tasks of design flow architectures [2]

Adopting the top-down strategy proved advantageous since it made it possible to explore system

architectures of higher complexity, which led to improved system optimization at a higher level of

abstraction. This can be achieved before the beginning of more specific and intricate implementations

at lower levels. This way, finding problems at the beginning of the design process is possible, leading

to an increase in first-time success rate and a decrease in the necessary time it takes to conclude the

entire process.

The system complexity influences the number of hierarchy levels in the design flow. A generally

accepted representation of design architecture consists of two prominent design paths:

• Top-down electric synthesis: Includes topology selection, design verification, and

specification translation. The latter is also known as circuit sizing at the lowest level;

• Bottom-up physical synthesis: Includes detailed design verification after layout

extraction as well as layout generation;

The process of determining the circuit topology best suited for a given problem is called topology

selection. When selecting the topology that better suits a given problem, it is crucial to meet the

specifications at the current hierarchy level, where the available topology can either be chosen from a

determined set or synthesized. Each block carries its specifications to the next level down the hierarchy,

and the process is repeated until the top-down electric synthesis flow is complete.

The task which ensures the mapping of high-level block specifications into independent

specifications to each sub-block is named Specification Translation. This task can be narrowed down

to circuit sizing when dealing with the lowest level, as the sub-blocks are single devices. Circuit sizing

is an iterative process that determines a suitable set of lengths, widths, and multiplicities for each device

in the topology to achieve desired specifications.

4

1.3 Automatic Analog IC Sizing

Recent developments show that analog and RF cells, such as amplifiers or oscillators, can be

automatically synthesized from specification to fabrication. The most common methodologies follow an

optimization-based strategy with accurate circuit simulations in the loop to evaluate the circuit’s

performance. These tend to be time-consuming since the complex relationship between design

parameters and circuit specifications plays a big part in complicating this task but can find usable

solutions without user intervention.

AIDA-C[3], developed at Instituto de Telecomunicações (IT), is one such optimization-based sizing

approach. It is part of the AIDA Framework, an electronic design automation framework fully developed

at IT, and appears as an Electronic Design Automation tool to aid designers in doing their job better

and faster. AIDA multi-objective design methodology for automatic, analog IC sizing is based on NSGAII

multi-objective multi-constraint optimization, and the circuit’s performance evaluation is done with circuit

simulators, e.g., ELDO, Spectre, or NGSPICE, ensuring that the developed automatic circuit sizing is

compliant with the accuracy requirements of the analog designers.

In AIDA-C, circuit sizing and optimization are implemented as a multi-objective multi-constraint

optimization problem defined as:

()
()

,...N, i
U
ixix

L
ix

,...J,jxjgsubject to

,...M,mxmft minimizefind x tha

21

210

21

=

=

=

(1.1)

where, x is a vector of N optimization variables,𝑔𝑗(𝑥) one of the J constraints on the circuit performances

and 𝑓𝑚(𝑥) is one of the M circuit performances being optimized. However, these optimization-based

sizing approaches require many circuit simulations, which take time and consume energy. Hence the

search for new and more effective approaches to automatically size analog ICs. Here is where Machine

Learning advances come in handy, presenting significant innovation potential.

1.4 Goals

This work builds upon AIDA and explores using Reinforcement Learning (RL) techniques for automatic

Analog IC sizing. Reinforcement Learning emerged as a possible approach to analog IC in recent years.

Therefore, the main goals established for this work are the following:

• Use the same circuit setup as AIDA

• Encapsulate AIDA circuit setups in environments suitable for Deep RL

• Develop a Deep RL approach to analog IC sizing using Asynchronous Actor-Critic (A2C)

• Experiment in Analog Circuits, which will be later applied and tested on VCOTA and Folded

Cascode.

• Create an environment based on an interface with the OpenAI Gym™ simulator. Not only

will this contribute to this works development but also future works on different agents as

well.

5

• Finally, this work will resort to AIDA [3], an analog IC design automation environment

developed at IT, as an alternative to the utilized evolutionary algorithm. If successful, the

objective is to generalize the algorithm to be applicable to other circuits.

1.5 Document Structure

The current document is organized as follows:

• Chapter 2: This chapter is dedicated to the presentation of the state-of-the-art. The goal of

this chapter is to provide an analysis of the work that exists nowadays regarding this matter.

It also covers the approaches that are currently available worldwide and there is a detailed

description of their advantages as well as their drawbacks. Additionally, a comparative

analysis is presented, where the discussed approaches are compared;

• Chapter 3: In the third chapter there is a thorough description of the proposed Deep RL

sizing approach. The goal of this sections is to provide an insight on the agent’s

characteristics and how it can integrate AIDA’s flow by replacing the optimizer. Additionally,

the sizing process is explained in detail to provide a clear idea on how the entire process

works;

• Chapter 4: The fourth chapter is where the results are presented. In this section, the

application of the work developed and described in Chapter 3 is tested and the results are

evaluated. This way, it is possible for the reader to visualize how the proposed approach

handled the analog IC sizing as well as how the algorithm reacts to different circuit

parameterizations and target constraints;

• Chapter 5: The final chapter is destined to the presentation of the conclusions derived from

this work. A final appreciation is given and a summary of the impact of this approach is

provided. Additionally, future work is discussed;

6

2 Background and Related Work

The problem inherent to Analog IC design is a complex one. It is time-consuming and knowledge-

intensive, and manual design is becoming unbearably complex. Design automation solutions would

help to manage the design complexity, making the design less time-consuming and practical, but for

analog ICs, automatic design tools are not widely used, and no standard automation flow exists.

Therefore, several approaches emerged in the scientific community to provide a timely, trustworthy

solution.

Regarding analog IC sizing, ML, particularly RL, starts to be explored, and this chapter covers all

relevant recently reported results to support the development of the work presented here. Firstly, an

overview of the concept of how analog circuit sizing approaches work is given, followed by a special

focus on AIDA. Afterward, an overview of Deep RL is provided, which is followed by a description of

how Deep RL is being used on analog IC sizing in scientific work. Finally, a comparative analysis of the

evaluated works is done, and the developed RL approach is defined.

2.1 Analog Circuit sizing approaches

The design of analog IC is time-consuming due to the non-linear relationship between the design

parameters and circuit/device specifications. Generally, a handmade calculation can restrain the design

space and provide a good starting point for the designer. However, the process is cumbersome due to

the many iterations it takes to achieve the expected specifications. Regarding automation, the solutions

proposed over time follow two main trends: knowledge-based sizing and optimization-based sizing [10].

Knowledge-based sizing relies on expert knowledge, using tools like IDAC [11] and BLADES [15]. With

the assistance of design equations and a design strategy, tools like these can reproduce a pre-designed

plan. This approach shows, overall, favorable results concerning automatic analog IC sizing. The main

advantage is the short execution time. However, deriving the design plan is a complex task requiring

much time. The constant supervision that needs to take place to keep the design plan up to date and

according to technological breakthroughs is what makes this approach suitable only as a first-cut

design.

Optimization-based sizing can be further categorized into model-based methods and simulation-

based. Model-based approaches use simplified equations/polynomials, which are used to model circuit

performances. Then, they are used to solve optimization problems based on the calculated performance

7

results of those models. Since this is a theoretical approach, the predicted performances deriving from

circuit models are not real-circuit performances.

Model-based approaches cannot ensure accuracy in their results, especially when considering

large-scale circuits. Simulation-based methods significantly differ from their counterparts. They rely

directly on simulation results and are, therefore, more accurate in most cases. However, simulation-

based calculation relies on intensive computation and is a time-consuming process, which increases in

complexity even further when processing larger circuits, resulting in an enormous time cost during the

optimization process (Table 2.1 - Comparative analysis between Model-based approaches and

Simulation-based approaches).

Table 2.1 - Comparative analysis between Model-based approaches and Simulation-based
approaches

Model-
based

Simulation-based

Utilize equations/polynomials to model circuit

performances

Relies on simulation results

Based on theoretical expressions which
compromises its accuracy

Intensive computation makes it more reliable
and

accurate
Unable to ensure accurate results, especially in

large-scale circuits

Very expensive and time-consuming
process

(Scales even further in large circuitry)

Several works have been proposed where optimization-based methodologies are endorsed as a

strategy to design and achieve optimal analog automatically and RF circuits [29]-[44]. The majority only

tackles simple circuits like LNAs and VCOs and cannot handle more complex designs [29]-[36].

AIDA-C, whose core optimization engine is illustrated in Figure 2.1, uses a modified NSGA-II state-

of-the-art multi-objective multi-constraint optimization kernel, enabling the efficient exploration of design

tradeoffs. At the same time, the inclusion of corner cases and the usage of circuit simulators

(Eldo®[12][13][14]) ensures the accuracy and reliability of the solutions.

OUTPUTS

 Sized
Circuits

POF

INPUTS DESIGN STRATEGIES

EVALUATION

ENGINE

HSpice

SIMULATOR

INTERFACE

NSGA2

KERNEL

NSGA2

KERNEL

T
y
p
ic

a
l
P
O

F

x(random)

fm(x)

gj(x)

Corners

Corner POF

fm(x)

gj(x)

Typical

Figure 2.1 - AIDA-C Architecture [3].

The circuit design is then optimized by an NSGA-II multi-objective multi-constraint kernel [6], using

simulated binary crossover and mutation operators [6], tournament selection, and constrained-based

dominance check, modified to evaluate the fitness of the individuals using the circuit simulator. The

design variables define the search space, and the state representation is defined by an array of real

values (the current design).

8

AIDA minimizes the M objective functions fm(x) as defined in (2.1), where the measured circuit

characteristic, pm, minimized (e.g., Current consumption, Area, etc.) are used directly, while the ones

being maximized (e.g., DC gain, Unity Gain Frequency, etc.) are multiplied by −1. The constraints are

handled in the form gi(x) ≥ 0, and are obtained from the designer specification, e.g., DC gain larger than

50 dB, Current consumption smaller than 80 µA, etc., according to (2.2), where pi is the measured

circuit characteristic, and Pi is the constraint limit.

𝑓𝑚(𝑥) = {
𝑝𝑚
−𝑝𝑚

when minimizing 𝑝𝑚
when maximizing 𝑝𝑚

 (2.1)

𝑔𝑖(𝑥) =

{

𝑝𝑖 − 𝑃𝑖
|𝑃𝑖|

when the constraint is 𝑝𝑖 ≥ 𝑃𝑖

𝑝𝑖 when the constraint is 𝑝𝑖 ≥ 𝑃𝑖 and 𝑃𝑖 = 0
−𝑝𝑖 when the constraint is 𝑝𝑖 ≤ 𝑃𝑖 and 𝑃𝑖 = 0
𝑃𝑖 − 𝑝𝑖
|𝑃𝑖|

when the constraint is 𝑝𝑖 ≤ 𝑃𝑖

 (2.2)

The constrained dominance criteria in AIDA’s (the same as NGSA-II) sums all the constraints that are

not met, gsum, and uses the value for the primary sorting criteria.

𝑔𝑠𝑢𝑚(𝑥) =∑𝑐𝑗 (𝑥)

𝐽

𝑗=1

 with 𝑐𝑗 (𝑥) = {
0 if 𝑔𝑗 (𝑥) ≥ 0

𝑔𝑗 (𝑥) if 𝑔𝑗 (𝑥) < 0
 (2.3)

While evolutionary optimization has shown to be capable of globally exploring the analog IC design

space for a wide range of circuit designs, the execution time is still a significant concern due to the

demanding circuit simulations. In this context, the use of ML to increase sampling efficiency is being

widely explored.

For example, in [8], a classifier first predicts if the solution will likely be valuable to the optimization.

Only those solutions that are promising are passed to the circuit simulator. Other approaches, such as

[], use Bayesian optimization to reduce the number of needed simulations by making better guesses of

the optimal solution in the design space. Alternatively, reinforcement learning, the focus of this work, is

also being explored as a suitable technique for analog IC sizing.

2.2 Reinforcement Learning for Analog IC Sizing

Reinforcement Learning is a ML technique that uses a reward-based methodology, i.e., it rewards an

agent based on its behavior. For instance, if an agent performs the desired action, it is rewarded.

However, if the performed action/behavior is undesirable, it is punished. Generally, an RL agent can

successfully perceive and interpret its surroundings, which form its environment. The agent can act and

learn further based on what is previously learned.

The learning process is illustrated in Figure 2.2. When an agent is at a concrete state (s ∈ S) and

proceeds to take a suitable action (a ∈ S), it obtains an immediate reward (r ∈ R) from the environment

based on the results of said action. The main goal behind the RL loop is to maximize the reward function.

In each problem, independent of what it entails, an agent is unaware of whether it will find a solution. If

it does eventually find a valid solution, it will get instantly rewarded and will know, for future occasions,

9

that if it takes the path that previously led it to the solution, it will get a guaranteed reward once more.

However, the found solution is not assured to be the optimal solution. Hence, repeatedly taking the

same path is likely to prove unproductive.

Therefore, the agent must have a certain degree of freedom to explore different paths and

eventually achieve a better solution, resulting in better rewards. During the discovery process, the agent

can struggle to improve the current solution, resulting in expensive paths and excessive computation.

Considering all these factors, finding a balance between exploring the environment in search of a new

solution and ensuring the agent gets a reward is crucial.

Figure 2.2 - Reinforcement Learning loop

There are several approaches involving Analog IC sizing, which incorporate Reinforcement Learning

[22][23][25][47][48][50].The following subsections review several state-of-the-art works that use RL for

analog IC sizing.

2.2.1 Deep Reinforcement Learning for Analog Circuit Sizing (2020)

In [10], a Deep RL simulation-based approach is taken with an additional symbolic filter to reduce the

amount of circuit simulation. It relies on simulation results to assign rewards directing the learning

process. In addition, a Deep Neural Network (DNN) is employed. As for the algorithm, it learns and

improves over successive trials and respective rewards. Its goal is to find an optimal solution by

discovering which parameter needs an alteration and by which amount. To mitigate the expensive

runtime, a Symbolic Filter quickly evaluates the performance, filters trials, and eliminates those who do

not meet target specifications.

Circuit parameters, such as biases, component sizes, resistances, etc., can be classified into fixed

or changeable. The state is represented by an array, which contains every circuit parameter. The action

space is defined as an increment/decrement in the value of a parameter in the state array. The amount

associated with each change will depend on the product of two user-design hyperparameters, change

rate, and change capacity.

If by any means, an action breaks any implemented constraint (for example, for the two-stage

OpAmp, if VDD is smaller than both VINP and VBP), it is automatically considered invalid. By only

considering valid actions, unreasonable combinations of parameter values are eliminated, which

translates into a reduction in the number of simulations and, consequently, an improvement in the

10

efficiency of the sizing process. This RL approach encodes design objectives into the rewards to instruct

the learning direction.

The Symbolic Filter is the component that has had the more significant impact. Its goal is to apply

symbolic analysis to evaluate partial performance attribute factors. Among the parameters encoded in

the state are sizes and biases. Both serve as inputs to the Symbolic Filter. However, the symbolic

analysis needs all parameters relative to all involved transistors, thus creating a gap. The proposed

solution involves the curve-fitting technique. The curve-fitting technique is used to derive the transistor

models that reflect the parameter mappings and obtain the missing parameters.

The results were obtained on a CMOS 65nm process from an Operational Amplifier (OpAmp)

circuit, the folded cascode OpAmp. As for the experiment performed, each episode contains 50 steps,

and, as a result, 50 tuples are produced. Each tuple includes states, actions, and rewards, and it is

produced by the Physics-guided Neural Network (PGNN).

The reward function’s weights assigned to performance attributes are: 0.3 for dc gain and phase

margin, 0.2 for unit gain bandwidth and gain margin. Initially, set biases and sizes are not enough to

put all transistors into the desired operating modes. However, there is a significant improvement,

namely regarding solutions with good performance. As for the learning rate, Figure 2.3 demonstrates

the process extremely well.

Figure 2.3 - Rewards obtained at different periods [5]

In the early period, every trial got a reward of 0, since the size values did not fulfill the constraints set

by the symbolic filter. Then, in the first middle period, a few trials pass the symbolic filter, and few non-

zero rewards emerge, proving that the agent gets experience from previous learning. As it progresses,

reaching the second middle period, where rewards become larger and feasible solutions start to appear.

Finally, in the late period, rewards grow larger, indicating that the performance is greatly improved.

2.2.2 A Circuit Attention Network-Based Actor-Critic Learning Approach to
Robust Analog Transistor Sizing (2021)

In [18], a sizing approach built upon an Actor-Critic framework - DDPG (Deep Deterministic Policy

Gradient). Its main goal is to address the robust circuit sizing problem. Actor-Critic methods are

11

temporal difference methods that have a separate memory structure to represent the policy value

function. The policy structure may also be known as the actor since it is used to select actions. On the

other hand, another model estimates the value (the expected reward of the state), also known as the

critic, because of it” criticizing” the actions previously performed by the actor.

The approach is divided into three stages: Circuit Attention Network (CAN), Stochastic technique,

and validation of results. The CAN serves as both the Actor and Critic and is, at heart, a customized

graph NN. It allows knowledge transfer between different topologies of the same circuit type, and its

effectiveness has been proved through simulations. The stochastic technique is implemented to

mitigate the layout effect. It tries to turn a sizing solution robust against layout uncertainty but requires

a previously sized circuit. Result validation is done through post-layout simulation, showing significant

improvement in circuit performance compared to Bayesian Optimization and GCN-RL. Figure 2.4 shows

a diagram which illustrates the proposed approach:

Figure 2.4 - Robust transistor sizing flow [18]

The robust transistor sizing problem is solved using DDPG, as it is one of the most advanced RL

methods. In this approach, the state space is defined by transistor sizes x in their legal range [xL, xU].

On the other hand, the action space is defined by transistor size changes according to

a = [a1, a2, ..., aN] ∈ {−1, 0, +1}N. This way, the size of each transistor may be incremented, decremented,

or maintain its value (multiple transistors can change size simultaneously in one step). The reward

function is a modified Figure of Merit (FOMR) defined in (2.4), where µ stands for mean and σ for

standard deviation, β being the weighting factor.

(2.4)

In short, the process is the following: An action is performed based on information provided by the

actor. The circuit is then modified accordingly. Then, the kernel (deep NN as the underlying structure

of an analog circuit) of the stochastic technique addresses the layout effects. Next, RC circuits and

Monte Carlo simulations compute the rewards FOMR. Finally, the value function Q(x, a) is updated for

the critic function.

A tradeoff between robustness and layout uncertainty is considered when computing the rewards.

It is the kernel of the stochastic technique for considering layout effects during sizing. Its main

advantage is preventing expensive processes such as layout, extraction, and post-simulation. So, RC

12

(resistance and capacitance) elements are inserted for any given sizing solution to emulate the layout

effects. After that, they are simulated using Monte Carlo, and the weights are obtained to calculate the

FOMR.

It was earlier stated that the CAN, a customized Graph Neural Network (GNN), serves as both

actor and critic. First, it is important to summarize the circuit graph and features for CAN. It basically

transforms an input constituted of circuit features and devices into a graph, to be analyzed by the

network. Devices serve as nodes and edges indicate connections between nodes. For a better

visualization, there is a representation of the process in Figure 2.5.

Figure 2.5 - Current mirror and its graph [18]

As for its architecture, the CAN is composed of a series of embedded layers followed by a Multilayer

Perceptron (MLP). CAN adopts attention-based convolution in feature embedding and simultaneously

performs graph pooling to capture a global view. Each feature embedding layer in the Circuit Attention

Network is elaborated as follows:

1. Attention construction and compression

2. Graph Convolution

3. Node and edge pooling

A critical aspect of the CAN is its ability to transfer knowledge, i.e., it is applicable to several different

topologies. Usually, there are two problems associated with knowledge transfer. The first one is letting

a single GNN accommodate different input dimension sizes resulting from different graph structures.

CAN successfully solves the first problem since graph pooling in CAN performs node/edge feature

dimension reduction and effortlessly handles the input of different dimensions. The other problem is

making a single GNN model provide different-sized outputs due to the difference in action spaces. This

setback is solved by the actor network of target topology. It inherits the feature embedding layers from

the source topology, replacing the MLP of source topology with an untrained MLP, thus needing very

few data samples.

Comparing the quality of the solution presented (the CAN-RL method with FOMR reward) with the

GCN-RL method (which uses regular FOM reward). The following table provides a head-to-head

comparison between the methods for each feature. The” X” mark signals which method performs better:

13

Table 2.2 - Comparative analysis between the CAN-RL method and the GCN-RL method[18]

 CAN-
RL

GCN-
RL

Multiple-Layout design X

FOM values for multiple layout design X

Default Layout setting X

Average FOM values for default setting X

Schematic designs X

As it is visible from the table, the CAN outperforms its counterpart in almost every aspect. All in all,

CAN-RL is better in regard to circuit performance and robustness. In terms of convergence and

knowledge transfer, the proposed method is tested differently. The convergence is compared between

the former two methods (CAN-RL and GCN-RL) and the additional Bayesian Optimization (BO). Each

method is composed of two variants: the first one uses layout- oblivious FOM as its reward and the

second one utilizes layout-aware FOMR as its reward. The results are presented in Figure 2.6.

Figure 2.6 - Learning curves [18]

As visible from the figure, the red curve proves that CAN-RL converges faster than the both GCN-RL

and BO in most cases. The dashed red curves, on the other hand, display further speedup for CAN-RL

knowledge transfer. Regarding iterations, the convergence rate is similar when comparing FOM and

FOMR rewards.

14

Even though every method eventually converges and finds a similar solution, CAN-RL is the fastest

one to converge. It converges faster than both GCN-RL and BO. Relatively to BO, CAN-RL converges

5.6 times faster for FOM rewards and 6.8 times faster for FOMR rewards. When the reward function is

FOMR, the transfer makes CAN-RL approximately 2.8 times faster, which proves knowledge transfer

facilitates further speedup.

2.2.3 AutoCkt: deep reinforcement learning of analog circuit designs (2020)

In [19], AutoCkt, emerges as a response to the necessity of finding a sample efficient, accurate,

generalizable, and intuitive method without the overhead of constraint generation. It aims to find post-

layout circuit parameters for any given target specification and gain knowledge of the entire design

space using the sparse sub-sampling technique.

AutoCkt is a ML optimization framework that is trained by recurring to RL. The proposed method

offers several different advantages. For example, it understands the design space in the same style as

a circuit designer. In addition, it converges approximately 40 times faster than a regular evolutionary

algorithm, resulting in less time-consuming processes. The algorithm for this method is shown in Figure

2.7:

Figure 2.7 – Top level overview, showing what information is needed for AutoCkt in order to design
any circuit topology to meet a given target design specification [19]

As far as the RL Agent is concerned, there are N parameters to tune to optimize M target specifications.

The parameter space can be defined as x ∈ ZN and the design specification space as y ∈ RM (y is

normalized to a fixed range). Concerning the generation of trajectories using AutoCkt, it processes as

follows: The parameters are initialized to a given center point. Afterward, the NN uses the observed

performance, target specifications, and current parameters to act. The action space is defined as an

increment, a decrement, or a retaining in value. Training and deployment begin as the RL agent faces

50 randomly sampled target specifications. Afterwards, L trajectories are generated, and the targets

are chosen among the target specifications. The rewards are cumulative as they depend on previous

actions. Aiming to demonstrate AutoCkt’s capabilities, three different simulation environments as well as

three circuit topologies are considered. The first test is performed on a transimpedance amplifier.

Multiple design objectives are set, and the training begins. After training is complete, the mean episode

reward is greater than 0, which means the agent successfully learns how to reach positive goal states

15

over several target objectives. The second test consists of a two-stage operational amplifier, a more

complex yet more common circuit. The total action space for this problem is approximately 1014 possible

values, making random generation of parameters rather inconceivable. The set trajectory length

assigned for the agent to converge is 30 simulation steps. The obtained mean reward reaches a value

greater than zero as well and it does so in 25 ms, which makes the overall time tractable. The trained

agent is run on 1000 randomly generated target specifications.

The results are clear, AutoCkt can reach 963 out of 1000 target specifications and 40 times faster

than a traditional genetic algorithm. The table below presents the results for the second test and

compares how this method performed relative to a random RL agent and a traditional genetic algorithm.

Table 2.3 – Sample efficiency (SE) and generalization comparison table [19]

Metric Opamp SE TIA SE Generalization
Opamp

Genetic Alg. 1063 376 N/A

Random RL Agent N/A N/A 38/1000
[11] 27 15 963/1000

The third test involves a two-stage OTA where a negative gm load is introduced, which is very similar to

the second test. The circuit is more complex when it comes to its design and is more sensitive to layout

parasitic. The action space for this test set has an order of complexity of approximately 1011 different

parameter combinations. The results are like those of the previous two tests. It converges about 40

times faster than a standard genetic algorithm, taking just 10 simulations to find a solution.

2.2.4 DNN-Opt: An RL Inspired Optimization for Analog Circuit Sizing using
Deep Neural Networks (2021)

DNN-opt is one of the latest proposed RL-based approaches to analog circuit sizing. In [20], DNN-Opt

emerged as an attempt to optimize previously known methods. DNN- Opt consists of a two-stage deep

learning black-box optimization scheme, a fusion between RL’s strengths, Bayesian Optimization (BO),

and population-based techniques. Its key features include a two-stage Deep Neural Network (DNN)

architecture inspired by actor-critic algorithms, a population-based search space control mechanism,

and sensitivity analysis. This work can size large circuits efficiently. The overall framework of DNN-opt

is presented in the figure below. The flow begins by generating samples in the design space. Afterward,

a critic network is used to predict any new design point performance. The actor network uses the

previously mentioned prediction and proposes new possible candidates for the simulation, a scheme

like BO in space exploration.

16

Figure 2.8 – DNN-Opt framework [20]

The two-stage network architecture uses a structure that does not differ from Deep Deterministic

Policy Gradient (DDPG). However, to apply to an RL problem, it needs to be subjected to some

alterations.

Some parameters are important to highlight to have a better understanding of the problem and its

specifications. For starters, the state space involves mapping optimization parameters, which are

circuit design variables. A state of kth design is transformed as sk = xk. As for the action space,

each action ak is defined as a change in the optimization parameter vector xk (ak = ∆xk). Before

progressing to the functioning of the overall framework and the experimental results, it is important to

describe the actor-critic network and how each of them is trained.

The proposed critic-network takes the circuit design variables as input (x, ∆x), outputting

performance predictions Q(x, ∆x|θQ) ∈ Rm+1 (one dimension is destined to objective specifications

whereas m are for constraint specifications). In the problem context, the critic network is utilized as a

way of modelling design variables to circuit performance relationships. To achieve effective training,

data augmentation techniques are employed. By doing so, pseudo-samples are generated.

Consequently, the input dimensions of the critic network change from d to 2d. Further experiments have

shown that training using pseudo-samples and the usage of 2d inputs boosts the network’s accuracy

significantly over a critic-network which uses d inputs and original samples. For Nb pseudo-samples, the

used function to train the critic network is the Mean Squared Error (MSE).

Once the critic-network training is complete, it is possible to train the actor-network. Its training

consists of searching the design space for better designs. The proposed approach aims to provide a

change in the design parameter vector, translating in the expression ∆xk = ak = µ(xk|θµ). With the

intent of objectively assessing the design quality, 58[20] proposed a Figure of Merit (FoM) function,

g(·). The actor-network is trained using the function g(·) and replacing the SPICE simulation values by

critic-network predictions Q(x, ∆x). Further, the used population is constituted of elite solutions to restrict

the search space for the actor-network.

Summarizing, the overall framework for DNN-Opt is processed as follows: Firstly, sensitivity

analysis is applied, causing a reduction in the number of design variables. Then, a random sample of

points is collected to build the initial population. It is then followed by an initialization in actor-critic

parameters and pseudo-sample generation. The next step is to train both the actor and critic networks,

17

followed by the construction of an elite population based on the FoM of total-population. Every elite

population’s design parameter serves as input to the actor-network and the output are proposed

changes for them.

DNN-Opt was tested on two small building blocks: a folded cascode amplifier and a strong-arm

latch comparator (implemented in 180nm CMOS technology). DNN-Opt is compared to Differential

Evolution (DE), Bayesian Optimization with weighted expected improvement (BO-wEI) [8] and the GAS-

PAD method [9]. DE has a simulation budget of 10000, whereas BO-wEI, GASPAD and DNN-Opt have

a budget of 500 simulations. Statistics relative to each method are provided. For example, the success

rate (number of times a feasible solution is found) and the evolution of the FoM are metrics used to

compare the methods.

The first case is a folded cascode Operational Transconductance Amplifier (OTA). In this test, DNN-

Opt shows high reliability, proving to find a feasible solution in all its trials. As opposed to DNN-Opt, BO-

wEI and GASPAD performed relatively worse in comparison. Even though DE can find feasible

solutions, it falls short to DNN-Opt since it does it 24 times more effectively. DNN-Opt design draws up

to 43% less power on average. Its execution time is about 50 times smaller compared to the other

methods. All of this results in more efficiency regarding runtime (about 2.5-16 times more). DNN- Opt

also shows strong convergence behaviour (visible in the figure below), outperforming other methods.

GASPAD can find the optimal FoM, even though it is slow, yet BO-wEI is trapped in local optima.

Figure 2.9 – The average FoM (lower is better) curve for 500 simulations[20]

The second case is relative to the Strong-Arm Latch Comparator. DNN-Opt is the only method that is

able to find a feasible solution in every trial, showing 30 times more efficient when compared to DE.

GASPAD does not fall behind DNN-Opt, still DNN-Opt finds a solution with 25% better power

consumption. Regarding convergence in FoM, DNN-Opt finds a solution much earlier than other

methods.

As far as large circuits are concerned, DNN-Opt still performs well, not being limited to small

examples. The 4 large circuits tested were: Inverter Chain, Level Shifter, Low-Dropout (LDO) and

Regulator, and Continuous-Time Linear Equalizer (CTLE). DNN-Opt is compared to a commercial black-

box optimizer based on Simulated Annealing. DNN-Opt outperforms its counterpart in terms of the

number of simulations required to meet the constraints, and the solution it presents is less costly than

the one presented by the commercial optimizer. Table 2.4 demonstrates for both Simulated Annealing

18

(SA) and DNN-Opt the number of SPICE simulations that were performed for each model to meet the

specified constraints. The data shows that DNN-Opt outperforms SA as it is faster at finding a solution

when submitted to the same constraints as SA.

Table 2.4 – DNN-OPT results on industrial circuits [20]

Circuit MOS NODES SA DNN-Opt

Inverter Chain 8 7 >1000 90

Level Shifter 1.2k 3.9k 1200 195

LDO 167k 2.8k 552 112
CTLE 173k 63k 587 150

2.2.5 Trust-Region Method with DRL in Analog Design Space Exploration
(2021)

One recent approach to analog IC sizing is presented in [21]. The proposed method consists of a

general learning-based search framework. The contributions are distributed over three levels: system,

algorithm, and verification.

On a system level, the proposition lies on a general framework for IC design space search. Fast

migration is allowed by standardized API, providing well-formulated problems. Algorithm wise, RL is

employed. It aims to directly replicate the dynamics of the SPICE simulation as opposed to the

traditional process that is estimating cumulative rewards. Finally, verification is done by considering

PVT conditions. Analog circuit sizing is usually formulated as a constrained multi-objective optimization

problem.

The main goal of this problem in particular is to minimize the objective function cth under the PVT

condition Minimize Fm,c(X). The X refers to the vector of variables which are set to be optimized.

The general framework is depicted in the below:

Figure 2.10 – Analog circuit pre-layout design flow[21]

This approach has 3 main variables: X = x1, x2, ..., xn, which refers to a finite set of sizing variables; D

= D1, D2, ..., DN , Di = b1, b2, ..., bl, which corresponds to a non-empty domain, namely the design

space; The final variable is C = C1, C2, ..., Ck, Cj = (tj, rj), represents the constraints to which

the problem is subjected, tj being the constraint scope and rj being the relation over the variables in

the scope.

Given the situation, the preferred algorithm is local search due to three main advantages, being:

1. Faster environment adaptation

2. Model-based agents with supervised learning

3. Easier implementation and convergence

19

All these virtues combined act as a model-based approach, which aims to imitate the behaviour of a

SPICE simulator. A feed-forward network fNN (X, θ) with three layers can be used as a SPICE function

approximation: ŷ = fNN (X, θ) ≈ SP ICE(X). The loss function is obtained by MSE.

Every search begins with a random exploration in the design space. The next step involves selecting

the most optimal point as the local area DL. The idea behind it is that, upon modelling the local land-

scape, a candidate solution can be selected. This selection is made in the local domain and is based on

the expected value computed with the measurements in yˆ. Local area’s properties are granted by the

trust region method (TRM).

The fundamental part of this work lies in the trust region method (TRM). This method characterizes

a trust region radius δri, which is iteration dependent. The model (Value ◦ fNN) is trusted to be suitable

representation of the objective function (ValueSpice). Upon each iteration, the trust region sub-problem is

solved by a trust region algorithm to obtain a vector of optimal trial steps d∗(i). Afterwards, a ratio ρi

between the estimated reduction as well as the actual reduction is calculated. This ratio is a criterion used

to classify the trial step. For instance, if the ratio is non-significant, that will lead to a trial point rejection.

The final step consists of updating the radius taking the ratio ρi into account. In case the NN can

closely approximate the objective function Value ◦ Spice, the trust region is expanded, otherwise, the trust

region is sure to diminish.

As for reward computation, a value function is created with the goal for estimating the merit of circuit

measurement sets (after a SPICE simulation is run). The value function acts as a guide since it points the

direction of the next move. This differs from actor-critic methods since values are not a part of training.

The utilized method is relatively simple. It is based on the sum of normalized measurements so that

no extra information is gathered. When analysing the trade-off between constraints, there is a concept

which could be implemented. It lies in the premise of a second-stage value function, something that can

be implemented with the purpose of assigning importance to each measurement. These actions can be

performed once the agent enters an optimal local area.

Experiments were conducted on both academic and industrial settings. The agents are first tested

on a two-stage OpAmp with BSIM 45/22mm processes simulated on an open sourced NGSPICE

simulator developed by UC Berkeley. The first step is to benchmark the proposed method with several

different baseline models, which include random search, customized BO, Advantage Actor-Critic (A2C)

[22], Proximal Policy Optimization (PPO) [23], and Trust-Region Policy Optimization (TRPO) [24],

implemented by Stable-Baselines [25].

All these agents follow the same observation design as AutoCkt [19] and use the same reward

function as the proposed agents. Every experiment has a 10000-step limitation. As for the customized

BO and the proposed model-based agents, 100 experiments are run to prove stability. On the other

hand, only 10 are executed for agents in stable baselines since the experiments take an excessive

amount of time to complete (about a month). The results are visible in the table below:

_Ref117720996
_Ref117720996
_Ref117721005
_Ref117721005
_Ref117721005

20

Table 2.5 – Performance of agents in 45nm two-stage OpAmp

 Success-rate Average iterations

Random search 100% 8565

Customized BO 100% 330

A2C 90% 34797

PPO 40% 31503

TRPO 20% 16350

TRM 100% 36

These experiments prove that random search is a strong baseline in which model-free agents such as

A2C, PPO, TRPO fail to reach its performance level. Model-based agents are reported to meet all

specifications on 36 steps (on average), indicating stable search.

Since it is not enough to only find a set of sizes in a single condition, PVT exploration strategies

are tested on the proposed method. The tests are performed by using two-stage OpAmp with BSIM

22nm process. Random search fails to accomplish the task, as opposed to other strategies, which finish

100% of the time. One compelling discovery is that the initial condition does not influence the result,

suggesting that progressive search is not sensitive to the initial condition.

Summing up, the generalizable search framework which is proposed adopts a new approach in the

trust-region method, being trained with supervised learning. This results in fast design space adaptation.

In addition, a PVT exploration strategy is suggested to deal with different working conditions not

considered in previous works.

2.2.6 RobustAnalog: Fast Variation-Aware Analog Circuit Design Via Multi-
task RL (2022)

Due to various process, voltage, and temperature (PVT) variations from chip manufacturing, analog

circuits inevitably suffer from performance degradation. To tackle this issue, [46] presents Robust Analog

as an efficient variation-aware optimization framework for automatic analog circuit design. One of its

primary goals is to reduce simulation cost to design a robust analog circuit not susceptible to variations.

The proposed method outperforms methods such as Evolutionary strategy (ES), Bayesian Optimisation

(BO) and DDPG and even reduces the simulation cost.

When in the presence of any circuit topology, a search is conducted with the objective of finding a

circuit sizing vector which can satisfy the constraints across all variations. The problem can, therefore,

be formulated as a constraint satisfaction problem. The prominent goal is to find a sizing vector which

satisfies any constraints under any corner task. There is an overview of the proposed framework in

Figure 2.11.

21

Figure 2.11 – RobustAnalog Overview: (1) A pruned task subset is generated from the full task set (2)
Multi-task RL agent is trained on task subset (3) Training continues until the produced sizing can achieve
training tasks. Then the sizing is evaluated on the full set. If it passes all the tasks, RobustAnalog returns
the result [20]

The process for each iteration goes as follows:

1. RobustAnalog selects a new task subset from all PVT corner tasks;

2. The RL agent generates actions and passes them to each environment in the task subset;

3. The environment denormalizes actions and turns them into actual circuit sizing, followed

by a refinement.

4. Circuit Simulation

5. The agent obtains the rewards from corner-specific environments. The actor and critic

networks are optimized with PCGrad technique

6. The sizing solution is tested in case all tasks in the subset are passed.

In the meantime, the actor-critic model’s weights as well as replay buffers are saved for the agent to

inherit once it reaches the next iteration. After going over the problem definition as well as a framework

overview, the section that follows involves multitask RL training. Multi-task RL is a training paradigm in

which agents are trained using samples from multiple tasks simultaneously. In this case, a multitask

agent is created.

This agent’s critic can predict the value of task-conditioned action-state pairs. The actor model, on

the other hand, is set to be task agnostic. This is due to its target is to look for sizing that passes all

tasks. The PVT information is embedded in the states (s = (p, v, t)). In this expression, p represents

the one- hot representation of component type whereas v is normalised voltage value and t is the

normalised temperature value. The reward can be expressed as the measurement of the relative

distance between the current performance metrics and the design targets. It is represented by the

expression below:

22

(2.5)

(2.6)

The one thing designers usually prioritize is fulfilling requirements in a short time, hence the lack of

over-optimization. As far as the action space is concerned, the action vector is composed by a set of

values that correspond to the sizing parameters relative to each circuit.

As for the training, the environment includes the circuit, the simulator and PVT information. Every time

the environment is queried, the circuit is stimulated, and it ends up returning the performance with the

desired PVT information. Replay buffers proceed to store agent-environment interactions in the form of

(s, a, r, 𝑥i) (s-state, a-action, r-reward, 𝑥i-corner task ID). The critic network takes the state, the action,

and the corner task ID (s, a, 𝑥i) as input, predicting the corresponding value for the current corner task.

The task ID is removed from the inputs of the actor neural network. One aspect that distinguishes the

method from single-task setting is the sampling of a stratified batch from buffers every time as well as

generating task-specific losses. As for the the optimization strategy, the used one is PCGrad [40].

Multitask training has been crucial in improving efficiency; however, it is possible to reduce the

number of simulations even further by selecting a small-sized training task subset. To improve

optimisation, the NN-based RL agent is incrementally trained due to its capability of inheriting weights

from last cycle as well as transferability.

Contrary to what human designers usually do, which is guessing the worst-case scenario and then

work from that point on, the small batch is chosen from a large batch by sampling in a random fashion.

Worst-case scenarios are perceptibly identified as the ones with the lowest reward. The reward value,

scalarized from a multi-dimensional performance metric vector, lacks the information to distinguish

different low-performance corners. In order to tackle this issue, the corners are clustered based on their

multi-dimensional metric values. Thus, inside the cluster, it is possible to get a clearer view of the

corner’s performance. The proposed task space pruning is divided into three steps, being:

1. Simulation of the optimized on all corner tests to get the performance distribution to each

of them

2. Corner division into different clusters based on the performance metrics

3. Selection of the corner with the lowest reward in each cluster as one of the training tasks

for the next iteration

The present method is tested on three real-world analog/mixed signal circuits. The first one is a Two-

stage OTA, the second a Folded-Cascode OTA and the last one is a strongARM Latch. RobustAnalog

is applied to all three circuits. The results are compared to those of Bayesian Optimization (BO),

Evolutionary Strategy (ES), and single-task RL algorithm (DDPG). Each method is compared to the

others by the average reward. BO, ES, and DDPG improve the average reward until it reaches the

value of 0.2. In ES, DDPG, and RobustAnalog, the circuit simulation time is over 95% of the total time.

23

RL training was done with a batch of 64, a replay buffer size of 1000, and an exploration noise standard

deviation of 0.2. The actor and critic are both a 4-layer MLP implemented in PyTorch, and the evaluation

is performed every 10 training steps.

Considering all three circuit benchmarks, RobustAnalog achieves the smallest simulation cost to

accomplish all corner tasks. As far as simulation costs go, RobustAnalog outperforms the other methods

by a significant amount. The reductions in simulation cost are roughly 26 times in Two-Stage OTA, 30

times in storngARM Latch and 14 times in Folded-Cascode OTA. RobustAnalog shows a very

significant improvement in efficiency. Figure 2.12 shows the learning curves for each method. The

RobustAnalog method converges faster than the other algorithms for all circuit benchmarks.

Figure 2.12 – RobustAnalog: Comparing learning curves with baselines (average rewards vs. #
simulation).
Reward=0.2 indicates all tasks are passed. RobustAnalog hits the reward of 0.2 significantly faster
than the baseline methods on all benchmarks.

RobustAnalog is, therefore, a fast variation-aware optimization framework that is based on multitask

RL. Its key property involves the ability to conduct efficient multitask learning with pruned training task

space. Hence, it can design circuits effectively for variations. It is shown to significantly reduce

simulation cost and scale to many variation cases. RobustAnalog is, thus, a promising approach to

drastically shorten the circuit design cycle and reduce the cost.

2.3 Comparative Analysis

Having discussed the most recent attempts to use RL for analog IC sizing, Table 2.6 summarizes the

methods’ advantages and disadvantages.

The proposed Symbolic Filter applied in [10] not only reduces helps this approach reduce simulation

runtime but also offers strong scalability, meaning it can be adapted to other models. One thing that still

holds this algorithm back is the long duration of the early period and the runtime not being optimal.

Although AutoCkt [19] performs very well and has good scalability, it can be time-consuming due to the

extremely large action space.

The Trust-Region method applied in [21] provides a faster environment adaptation, offers an easier

implementation and convergence. Its drawbacks include poor extrapolation properties at the beginning

of each episode (i.e when the number of samples is low). One recently proposed algorithm, DNN-Opt,

explored in [20], offers several advantages. For example, when compared to other algorithms, such as

_Ref117720479
_Ref117720479
_Ref117720783
_Ref117720783
_Ref117720946
_Ref117720946
_Ref117720844
_Ref117720844

24

AutoCkt [19], it is vastly superior in terms of performance. Its ability to size large circuits and efficiency

in terms of consumption is also extremely good, making this a trustworthy algorithm

Another example of a proposed algorithm that distinguishes itself is the RobustAnalog[46] [46] since

it can conduct efficient multitask learning with pruned task space. The simulation cost is greatly reduced,

and this approach proved to effectively design circuits for variations. The CAN Actor-Critic [18] excels

in performance as well as improving robustness. Its low variance allows it to perform better that most

models. The Actor-Critic associated to the circuit attention network offers a wide range of possibilities.

The Critic network in the CAN is able to assess an action and its outcome before it is performed by the

actor network, possibly saving complex actions that fail to improve the current solution. Furthermore,

its good scalability enables it to transfer knowledge to different topologies as well, which is crucial as to

meet market demands.

An illustrative way to describe the way actor-critic works is to imagine the relationship between an

infant and its mother. The infant, due to its characteristic curious nature, is bound to explore the

environment around it, whether it is by playing with toys, painting the wall, or run around making noise.

The infant, in this case, represents the actor. The child’s mother (which represents the critic) is bound to

watch it and either praise the infant or reprimand it, to help adjusting its behaviour. Eventually, the child

learns what behaviours result in praise and tends to have such attitudes in the future, avoiding negative

ones as much as possible.

2.4 Conclusions

In this Chapter, State-of-the-Art for Reinforcement Learning is presented. A series of techniques

connected to Reinforcement Learning and their application on analog circuit sizing is described. To

evaluate the quality and performance of every technique, each one is discussed in detail. Furthermore,

an analysis of both their advantages and drawbacks was performed. Several aspects are considered

when making this detailed analysis: state and action space, reward function, how the algorithm

generalizes to different situations, and the efficiency and speed for which each algorithm finds a

solution. Additionally, throughout several articles, most algorithms were compared, providing a clearer

idea of the strengths and weaknesses of each RL method when exposed to the rest of the proposed

methods.

Taking all the facts above into consideration and detailed research on the subject, actor-critic is

chosen as the preferred RL method to apply to analog circuit sizing. The actor-critic method excels in

performance, combining the strengths of policy-based RL and value-based RL, making it the ultimate

RL method. This algorithm is divided into the actor and critic networks. The Critic network is extremely

useful since it allows the evaluation of an action and whether the outcome will benefit the model before

it is performed by the actor network.

Therefore, it possibly prevents complex actions that fail to improve the current solution. In addition,

its versatility makes it one of the best algorithms. Therefore, all the previously mentioned reasons

contributed to the choice of the actor-critic algorithm as the preferred method for this work.

_Ref117720783
_Ref117720783
_Ref117721046
_Ref117721046
_Ref117720657
_Ref117720657

25

Table 2.6 – Comparative Analysis between RL methods

Method State Space Action

Space

Rewards Advantages Drawbacks

Policy

Gradient

 Solves the evaluation metric mis- match

during training / test

Unrealistic reward computation;

High variance

Deep RL [5] Array containing every

circuit parameter

Increment / Decrement in

parameter value

Performance; Attribute

weight ki ∈ [0, 1] –

maximise / ki ∈ [−1, 0[-

minimise

Symbolic filter - Reduces runtime, strong

scalability

early learning period can be

long; still not optimal in terms of

time

Deep Q-

Learning

 Useful in problems with high- dimensional

state space, meaning it can solve more

complicated tasks with lower prior

knowledge

Fails when the Q-function (i.e.,

re- ward function) is too complex

to be learned

CAN Actor-

Critic [10]

Transistor sizes x= [x1,

x2, ..., xn] in their legal

range[xL , xU]

Transistor size change a

 ∈ {−1, 0, 1}N

Modified Figure of Metric

FOMR

Improves robustness and performance,

low variance, performs better than most

models

Can be time-consuming

AutoCkt [11] Transistor parameters

and Design

specifications

transistor: width and

multiplier; resistor: no of

resistors in series and no of

resistor in parallel

Cumulative rewards based

on design specifications

Great generalisation

Very large action space

DNN-Opt [12] Optimisation

parameters sk = xk

Change in optimisation

parameters ak∆xk

(Not explicit) Able to size large circuits; Efficient in

power consumption

Due to it being so recent, there

have not been tests to its

scalability

TRM [13] (Not explicit) (Not explicit) Sum of normalised

measurements

Faster environment adaptation; Easier

implementation and convergence

Can have bad extrapolation

properties at the beginning of

the episode, when only few

samples exist

RobustAnalog

[37]

s = (p, v, t) Sizing parameters relative to

each circuit

Equations 1 and 2 Smallest simulation cost to accomplish all

corner tasks; Very significant improvement

in efficiency; High Scalability

Necessity of pruning the task

space

26

3 Deep RL-Based Analog IC Sizing

This chapter is dedicated to the detailed description of implemented work. The first step involves an

overview of the agent. Following that, an overview of the agent’s network is provided. It is followed by

a characterization of how the agent is trained and the way it learns. The latter includes a depiction of

the process of action selection, utilized rewards, and how it deals with the exploration exploitation trade-

off. The main goal of this work is turning the sizing process of the circuit to an automatic process using

the reinforcement learning method Advantage Actor-Critic (A2C).

3.1 Proposed Approach

The Analog IC Design Automation (AIDA) software tools is an automation solution developed and

maintained at Instituto de Telecomunicações (IT). AIDA’s automatic sizing is based on the NSGA2

multi-objective optimization kernel, accounting for PVT, variability, layout generation and post-layout

considerations. The AIDA framework implements an analog IC design flow from circuit-level

specifications to a physical layout description, focusing on design optimizing and porting. It uses highly

efficient searching methods combined with accurate circuit-level simulation, layout design rules and

parasitic extraction engines.

This work, although not directly integrated into AIDA’s tool, it does follow its flow providing an

alternative Deep RL-based sizing approach. The circuit setup, including netlists (circuit and test

benches), circuit parameterization and design variables, and target specifications is the one from AIDA.

To that end, the interface with the simulator and measurements processing are wrapped in an

environment suitable for RL. An agent is trained to replace the optimizer from Figure 3.1 – Proposed

method illustrative diagram, the interface with the simulator and measures is wrapped in an environment

suitable for RL, and an agent replaces the optimizer.

3.2 Agent Overview

This section is destined to the description of the agent. The used algorithm is a variation of the Actor-Critic,

named Advantage Actor-Critic (A2C) This version of Actor Critic is characterized by the advantage factor.

The main purpose of the advantage function is to evaluate how much better an action is when compared

to other actions for a particular state as where the value function measures how beneficial that action

is for that state. Figure 3.2 depicts the general functioning of the A2C algorithm:

27

Figure 3.1 – Proposed method illustrative diagram

Figure 3.2 – Advantage Actor-Critic (A2C) - Pseudo Code[41]

Taking that into consideration, it is substantially better to make the model learn the Advantage Values

instead of the Q values. This way the action evaluation is based on how good an action is, as well as

how better it can become. Another favorable aspect of the advantage function is that it stabilizes the

model, reducing the variance of policy networks.

To build an actor-critic method, like any Deep RL framework, it is necessary to specify the following

components: state space, action space and reward function. Chapter 3.2.1 describes the states and

actions used in this work, as well as the reward function. This is followed by a detailed description of

the model’s architecture and hyper-parameters. Chapter 3.2.3 describes the process of action selection,

providing insight on how the actions are determined based on the current state.

3.2.1 State Space, Action Space and Reward Function

Each state is composed of two different variable sets: design variables and target specifications. The

design variables are the variables that are modified according to the defined actions. Each design

variable is defined by a tuple, which has three different positions. The first position corresponds to the

28

minimum size value a design variable can reach whereas the second position is the maximum size

value the same variable is able to reach. Finally, the third position is the amount each action alters the

size of the component. The target specifications, however, are manually set in the environment wrapper

and remain unchanged during the sizing process.

For instance, considering a CMOS circuit Figure 3.3), the state space involves all the sizes of the

components that constitute the circuit plus the target constraints manually set for this model. Assuming

there are only 2 variables that need to be sized, the state space consists of a vector where the first two

positions are destined to the sizing components and the rest is filled with the manually specified target

constraints. The target constraints specified for this work are IDD, GBW, DC Gain, Phase Margin and

Figure of Merit.

 Figure 3.3 – Inverter circuit - CMOS

An action in this framework is an alteration in the state. These changes are only applicable to design

variables since the target specifications remain unchanged. Each action is defined by a tuple, which

encompasses the design variable that needs to be altered as well as the amount by which it can change

(called the “step size”). For this work, the step size defined for each action is either 1 or 10, meaning

that an action can increase/decrease by one or ten times the step size of each design variable.

Taking the CMOS circuit in Figure 3.3 as an example once more, if there are two design variables,

then the number of possible actions is 4. Each action either increases or decreases the size of the

component and since there are 2, there are 4 possible actions. Every time an action is performed, the

state suffers an alteration and that results in a change of the specifications that measure the system’s

performance. Such alterations are bound to affect the performance of the circuit. Once the target

specifications are met, the algorithm considers it has found a solution.

Finally, any RL model needs a reward function. This function is crucial in helping the agent

determine which actions are beneficial and which actions are not. Positive rewards are associated with

actions that improve the system’s performance whereas negative rewards are associated with actions

which worsen it. The RL process is divided into episodes and timesteps. An episode is composed of

time steps and each episode in this work is composed of 50 timesteps. Upon each time step, an action

is performed, resulting in a reward assignment. If the action brings the circuit performance measures

29

closer to the target specifications, it means the circuit performance was improved, resulting in a positive

reward.

On the other hand, if the action leads the circuit performance away from the target specifications,

the assigned reward is negative. The reward for each action is the difference between the target

specifications that are not fulfilled and the objective target specifications, similarly to what is defined in

AIDA.

g0(𝑥) =
𝑔𝑏𝑤

35 ✕ 106
 (3.1)

g1(𝑥) =
𝑝𝑚

65
 (3.2)

g2(𝑥) = 1 −
𝑝𝑚

90
 (3.3)

 An action results in an alteration of the state and, if the agent gets closer to the target specification,

it results in a reward increase, otherwise, the reward value decreases. This calculation is performed for

every single target constraint (IDD, DC Gain, GBW, Phase Margin, and FoM). The resulting reward for

each action is obtained by adding each of these results. If a solution is deemed impossible to achieve,

the episode is immediately terminated and a reward of -100 is assigned to the episode. The reward is

propagated to the next episode, so the agent has prior knowledge of the actions when the following

episode begins.

The reward function according to the state can be defined as:

Thus, the agent enters each episode with progressively more knowledge of the implications of each

action. The reward for each episode is calculated through adding a portion of the total rewards of the

current episode (95%) and a portion of the rewards of the prior episode (5%). Once a feasible solution

has been found, the episode terminates and is given a reward of +2000.

3.2.2 Model Structure and Hyper-parameter tuning

The Actor-Critic model is defined as a large Neural Network. Like all ANNs, the proposed network has

an input layer, an output layer, and a set of hidden layers. This work makes use of two NNs: the first one

employs two common layers, later dividing itself into actor and critic, however, the hidden layers are

common to both networks; the second model has no common hidden layers; hence, the actor and critic

are trained separately:

The first network is composed as follows:

𝑅𝑒𝑤𝑎𝑟𝑑(𝑠) =

{

 −100, 𝑖𝑓 ∑𝑐𝑖(𝑠) < −3000

∑𝑐𝑖(𝑠), 𝑖𝑓 − 3000 <∑𝑐𝑖(𝑠) < 0

2000, 𝑖𝑓 ∑𝑐𝑖(𝑠) ≥ 0

(3.4)

𝑐𝑖(𝑠) = {
𝑔𝑖(𝑠), 𝑥 < 0

0, 𝑥 ≥ 0

(3.5)

30

• 1 input layer

• 2 common hidden layers

• 1 output relative to the actor

• 1 output relative to the critic

To better visualize the first network’s architecture, there is a representation in Figure 3.4:

Figure 3.4 – Representation of the model used in this work: (1) Input Layer (2) Common hidden
layer 1 Common hidden layer 2 (4) Output layer - Actor (5) Output layer - Critic

The second model is substantially different form the first one, since the actor and critic networks are

trained separately:

• 1 input layer

• 2 hidden layers for the actor

• 2 hidden layers for the critic

• 1 output layer relative to the actor

• 1 output layer relative to the critic

Figure 3.5 offers a visual representation of the model’s architecture. As it is earlier stated, the prominent

difference between both models lies in the architecture, mainly in the position of the hidden layers. The

first model uses both hidden layers prior to the divergence between actor and critic. The hidden layers

are common to both actor and critic; however, they produce different outputs. In the second case, both

networks are separated, which proves, in theory, to be a more difficult task. Nevertheless, both models

are tested in Chapter 4 and their performance is evaluated.

31

Figure 3.5 – Representation of the model used in this work: (1) Input Layer (2) First hidden layer of the
actor network (3) Second hidden layer of the actor network (4) Output layer of the actor network (5) First
hidden layer of the critic network (6) Second hidden layer of the critic network (7) Output layer of the
critic network (2), (3), (4) Actor Network (5), (6), (7) Critic Network

The input of the model is the initial configuration of the state, which is manually set and common to both

models. The actor’s output is a tensor vector which corresponds to a probability distribution. The size

of the vector depends on the environment since it dictates the number of possible actions. Each action

has a probability associated to it. The critic’s output is a value function (size 1), which is used to

determine how beneficial an action is for a given state.

Model 1: The first hidden layer of the first model (Figure 3.4) has a default number of 1024 neurons

and the second one is composed of 512 neurons. The activation function for both hidden layers is the

leaky ReLU activation function. After the second hidden layer, the network is divided into actor and

critic. The layer prior to the output of the actor is submitted to a sigmoid activation function and the

actor’s output is then submitted to a SoftMax activation function.

Model 2: The actor and critic network are separated. The actor network (Figure 3.5): 2, 3 and 4 has

a first layer composed of 1024 neurons, a second layer formed by 512 neurons. Contrary to the previous

model, the first hidden layer is activated through Leaky ReLU activation function whereas the second

hidden layer is activated through a sigmoid function. The same is also true for the critic network’s first

hidden layer, however, the second hidden layer is activated through a Leaky ReLU activation function.

The output of the actor is submitted through a SoftMax function. The chosen optimizer is the Stochastic

Gradient Descent. One of its parameters is the learning rate. A high value learning rate results in fast

updates and average estimates tend to decrease quickly. However, the model is more sensible to

fluctuations coming from reward randomness. On the other hand, a low- valued learning rate is much

less sensible to randomness and the updates are slow. Average estimates are bound to slowly

32

decrease, and the “overshoot” risk is reduced, thus increasing the probability of finding the best

action. The nature of this problem caused for the implementation of an adaptive learning rate. An

adaptive learning rate is a value of learning rate which decreases over time.

To achieve that, it benefits from two main parameters: gamma and step size. The first parameter

controls the decay rate, i.e., how much the learning rate will decrease. The second parameter defines

how frequently the learning rate is updated (example: if step size= 2: the learning rate is updated every

two episodes). An adaptive learning rate improves performance and require less parameter tuning and

less effort in hyperparameter settings. Additionally, they facilitate training in terms of speed. The

activation functions chosen for this implementation are: Leaky ReLU, Sigmoid and SoftMax. The

sigmoid function is one of the most prominent non-linear activation functions to date. It is an S-shaped

function (as shown in Figure 3.6) and has the property of mapping any number into a small range, such

as the interval [0, 1]. It is generally used to convert real values that can be interpreted as probability,

which is the case for this work.

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (3.6)

 Figure 3.6 – Sigmoid Function

Leaky ReLU acts as an improved version of the ReLU. The classical ReLU activation function has a

gradient of 0 for negative inputs, which can result in dying ReLU problem for neurons in that region.

Leaky ReLU is especially designed to address this situation. Instead of defining the function as 0 for

input values lower than 0, it is defined as an extremely small linear component of x, for example:

𝜎(𝑥) = max (0,01𝑥, 𝑥) (3.7)

Fundamentally, the function returns x if it receives a positive input (identical to ReLU), however, it

returns a small value (Figure 3.7) for negative inputs. Hence, it is possible to have an output for negative

values. This way, the gradient on the left side becomes a non-zero value, preventing dead neurons.

The final activation function worth mentioning is the SoftMax function, which is used for the actor’s

output.

This function turns a vector of K real values into a vector of K real values that add up to 1. Either

the input is a negative, positive or zero, the SoftMax function transforms it into values which fit in the [0,

1] interval. This way, the output can be interpreted as probabilities, which is the goal for the model.

33

Basically, the system works the following way: if the input value is a negative value, it is turned into a

small probability by the SoftMax function, whereas a large input is transformed into a high probability.

The SoftMax function proves itself extremely useful since it normalizes the score into a probability

distribution. In this work, the Leaky ReLU activation function is applied to every layer except the last

hidden layer of the actor network on both models, which is where the sigmoid function is applied. The

output layer of the actor (for both models) is subjected to a SoftMax activation function.

Figure 3.7 – Leaky ReLU Function

3.2.3 Action Selection

Exploration and exploitation are two possible approaches upon facing a decision-making problem. Both

approaches have their advantages and drawbacks. Exploitation consists of preferring the decision

assumed to be optimal in respect to the observed data. The main goal of this behavior is avoiding poor

decisions as much as possible, however, it may prevent the algorithm from finding potentially better

solutions.

Exploration involves avoiding decisions that may seem optimal. This process relies on disregarding

observed data, which is not considered to be sufficient in truly identifying the best possible option. The

main goal is to find a strategy with a favorable trade-off between these decisions. This dilemma is a

common problem in most of the data driven decision making process. Currently, there are several

different methods which enable the management of this trade-off between exploitation and exploration,

among them:

• ϵ-greedy – Chosen action is assumed to be the best in some cases, otherwise

explore randomly

• Optimistic initialization - Chooses actions assuming the best for expected

rewards until proven contrary

• Upper Confidence Bound - Chooses the action with the highest upper bound estimate of the
reward

• Thompson sampling - Chooses an action randomly according to their probabilities to be the
best

The exploration-exploitation trade-off implies a decision regarding the current model’s state. The split

lies in deciding according to the current model (exploitation) or take another decision which can lead to

a better outcome (exploration). The actor’s target is to produce the action with the best outcome. Hence,

the actor’s output consists of a probability distribution.

34

The only usable distribution in this case is the Categorical distribution since the state is a multi-

class problem. A categorical distribution is a discrete probability distribution which describes the

probability a random variable can take on a value belonging to one of N categories. Each of the

categories has a probability associated with it. This type of distribution proves to be advantageous since,

like all probability-based exploration methods, enables the agent to randomly sample an action

according to its probability to be the best possible action.

Thus, profitable actions have a higher chance of being chosen, although they are not strictly chosen

as there is room for exploration. This is due to the existence of a possibility, although lower, that the

agent decides on an action which has a lower probability. Because there are episodic updates, if an

action that happens to have a lower probability proves profitable, it will be updated accordingly. This

way, its chances of being chosen are increased for the following episode.

3.2.4 Circuit Sizing using Deep Reinforcement Learning

Contrary to most ML methods, RL algorithms are not divided into the typical training, validation, and

test stages. In model training, a given model is trained to be later tested and validated. This is not the

case for this work. The learning process in RL, more specifically, the actor-critic method, is the process

of finding a feasible solution given an environment with manually set constraints. Therefore, the principal

objective of the learning process is finding a feasible solution for the environment, automating the sizing

component of the project.

At first, the neural network’s weights are initialized randomly. During the beginning of the process,

the quality of the results is especially low because the agent is learning what actions result in better

rewards. During the circuit sizing process, the objective is to transform a poor performing agent into an

agent that can size the circuit’s components, meeting the set target specifications. The agent maintains

a policy (actor) π (𝑎𝑡|𝑠𝑡; θ) and a value function (critic) V (𝑠𝑡; 𝜃𝑣). Both policy and value functions are

updated after 50 timesteps or in case a terminal state is reached.

𝐴(𝑠𝑡 , 𝑎𝑡; 𝜃, 𝜃𝑦) = ∑(𝛾𝑖𝑟𝑡+𝑖 + 𝛾
𝑘𝑉(𝑠𝑡+𝑘; 𝜃𝑣) − 𝑉(𝑠𝑡; 𝜃𝑣)

𝑘−1

𝑖=0

, 𝑘 ≤ 𝑡𝑚𝑎𝑥 (3.8)

The advantage function (Equation 17) is the sum of discounted rewards added to the difference in value

functions between states. The Loss function is portrayed in Equation (3.9)

𝐿 = log π(𝑎𝑡|𝑠𝑡; 𝜃)(𝑅𝑡 − 𝐴(𝑠𝑡 , 𝑎𝑡 , 𝜃, 𝜃𝑣) (3.9)

In this expression, the term Rt - 𝐴(𝑠𝑡 , 𝑎𝑡; 𝜃, 𝜃𝑦) is relative to the temporal difference term (TD). The Rt

term can be expressed as it is stated in Equation (3.10):

𝑅𝑡 = ∑𝛾𝑘𝑟𝑡 + 𝑘

∞

𝑘=0

 (3.10)

The TD term is multiplied by the probability assigned by the policy for the action at time t. This way,

policies which are more certain are more heavily penalized in case they incorrectly estimate the value

function. It is important to highlight how it progresses over time. First, it is divided into episodes and

time steps. Each episode is composed of time steps and in each time step, an action is performed. The

35

result of the action proceeds to influence the current state and reward. Afterwards, the episode reward

is updated as the last reward of the episode. After each episode is finished, the reward function is

updated, leading to an update in the solving condition. Once the reward function is updated, the training

process enters in the finishing step.

The finishing step is the final step in an episode, incorporating every update the model needs to

progress to the next episode. The final step ensures the model is ready to progress to the following

episode and improve, by applying prior knowledge. The present rewards are updated considering the

past rewards multiplied by the discounting factor and total episode rewards. The result is used to

calculate the advantage function. The advantage function factors how beneficial an action is when

compared to other actions for a particular state. Following the advantage function calculation, both

policy losses and value losses are calculated. Once they are calculated, the gradients are all set to 0.

(This step is important because PyTorch accumulates gradients, compromising the backpropagation

and weight adjustment stages). The policy and value losses are added to achieve the total loss, which

contributes to updating the weights in the Deep NN. Once the loss is fully calculated, it is possible to

perform backpropagation, thus updating the weights and improving the network. The entire process is

represented in Figure 3.8

Figure 3.8 – Sizing Process illustrative diagram

3.3 Conclusion

This section describes the work which develops an alternative to analog IC sizing, using deep

reinforcement learning. The first section provides an overview of the proposed approach to the analog

IC sizing problematic. The implemented work is set to provide an alternative Deep RL-based sizing that

follows the flow of AIDA. The interface with the measurements processing and simulator are wrapped

in an environment suited for RL. The agent is ultimately trained to replace the optimizer.

The second part of this Chapter provides a detailed description of the agent and how it is

implemented in this work. The state space as well as the action space are the first things that need to

36

be highlighted. Each state is composed of a vector which contains the components that need to be

sized as well as the target specifications. Each action increases/decreases the component’s size by the

amount defined in the ”step” vector. Finally, to determine if the agent is learning and to improve its

learning capabilities, a reward function was implemented. if the action improves the results, the reward

is a positive value. Contrary, if the action taken for a given state worsens the system, the reward takes

a negative value. The main goal is to reach the 0 value. If this value is surpassed, it means the model

has found a solution. This is followed by a thorough description of the model’s structure.

There are two different structures: the first model has two common hidden layers and only

separates the actor and critic networks at the end whereas the second model divides into actor and

critic earlier on, resulting in the training of two different networks. Finally, a thorough description of the

entire sizing process is given. The process is divided into episodes and each episode is composed of

timesteps. The sizing process illustrates how each action affects the state as well as the reward and

how the agent evolves during its interaction with the environment. Unlike typical training process, the

agent in Reinforcement Learning learns as it interacts the environment The learning is divided into

episode and in each episode, it learns progressively more about the environment. The end of the

process happens when the agent is able to find a feasible solution.

37

4 Results

This work is implemented in PyTorch, a Python framework. PyTorch is tightly integrated with the Python

language. When it comes to debugging, PyTorch offers a wide variety of debugging tools such as a pdb,

PyCharm debugger or ipdb. The nn.Module is a building block PyTorch provides in order to create

complex deep learning architectures. PyTorch is also full of ready to used modules in torch.nn

package (which are used as a base for the proposed model). The operations are relatively low-level

operations. Overall, PyTorch provides useful tools to simplify code and speed up the development of

models. The present work is implemented in PyTorch, mainly due to it being clearer and developer

friendly. The torch.nn.Module is a flexible and useful tool as well. Its accessibility and relatively easier

experience in debugging and development is the main reason why PyTorch has been chosen for the

development of this work

This Chapter is destined to the presentation of the results derived from the implementation. Every

model in this work, both agent and environment, are implemented in Python 3.8.8, using PyTorch as

backend. The code is run on an AMD Ryzen 7 5700U with Radeon Graphics CPU 1.80 GHz with 16GB

of RAM.

4.1 Dataset

For proof of concept, the amplifier using voltage combiners for gain enhancement (VCOTA), presented

in [42], is considered as well as the folded cascade amplifier (FCA), used in [43]. Voltage-combiners

are typically used in radio frequency, due to their ability to convert fully differential signals into a single-

ended one, for 50 and 75 Ohm impedance matching. The electrical scheme of a VC is shown in Figure

4.1. It employs a combination of a NMOS in a common-drain configuration and an NMOS in a common-

source configuration.

The amplifier topology using voltage combiners proposed in [1] was optimized to maximize the

figure of merit (FOM) and maximize de low-frequency gain (GDC). By maximizing the FOM, the power

consumption is minimized as well as the gain-bandwidth product (GBW) is maximized, as described by

the FOM is in (1), where Cload is the load capacity and IDD is the current consumption.

 (4.1)

38

The circuit schematic is shown in Figure 4.1 and the performance figures are measured using ngspice.

The extracted measures that can be used to define objectives as constraints are listed and described

in Table 4.1.

Figure 4.1 – Circuit schematic showing the devices and corresponding design variables (channel
width: W’s, and channel length: L’s)

Table 4.1 - VCOTA performance figures measures in the circuit simulation

ID Units Description

IDD A Current Consumption
GDC dB Low-Frequency Gain
GBW Hz Unity Gain Frequency
PM degree Phase Margin
FOM MHz * pF / mA Figure of Merit
OVPn mV Overdrive Voltages of the PMOS nth Device (VTH-VGS)
OVNn mV Overdrive Voltages of the NMOS nth Device (VGS-VTH)
DPn mV Saturation Margin of the PMOS nth Device (VDSat-VDS)
DNn mV Saturation Margin of the NMOS nth Device (VDS-VDSat)

For the setup of the VCOTA, the devices’ sizes that constitute the optimization variables were the width,

length and the number of fingers of all the MOS devices, and the dimension ranges are presented in

Table 4.2.

Table 4.2 - VCOTA variables and ranges.

Variable (Unit) Min. Grid Unit Max.

w8, w6, w4, w10, w1, w0, l8 (μm) 1 1 100
l6, l4, l10, l1, l0 (μm) 0.34 0.1 10
nf8, nf6, nf4, nf10, nf1, nf0 (μm) 1 1 8

39

Figure 4.2 – Circuit schematic for the FCA showing the devices and corresponding design variables
(channel width: W’s, and channel length: L’s, bias voltages (Vcm1,2), and the bias resistor (Rbias)

The principal goal of this architecture is testing how the actor-critic method performs in the sizing of the

components, while keeping the performance of the circuit to the highest level and fulfilling the

established constraints. The measures are extracted from the circuit simulation and can be used to

define objectives and constraints are listed and described in Table 4.3.

Table 4.3 – FCA’s performance figures.

ID Units Description

IDD A Current Consumption
GDC dB Low-Frequency Gain
GBW Hz Unity Gain Frequency
PM degree Phase Margin
NO V / V Noise RMS
SN V / √Hz Noise Density
Sr Slew Rate
Voff V Offset Voltage
PSRR V Power Supply Rejection Ratio
OVPn mV Overdrive Voltages of the PMOS nth Device (VTH-VGS)
OVNn mV Overdrive Voltages of the NMOS nth Device (VGS-VTH)
DPn mV Saturation Margin of the PMOS nth Device (VDSat-VDS)
DNn mV Saturation Margin of the NMOS nth Device (VDS-VDSat)

The design variables are the width, length, number of fingers and number of rows of the MOS devices,

and the length and number of fingers of the MOM capacitor. The variable ranges considered are

indicated in Table 4.4.

Table 4.4 – FCA’s optimization variables and ranges.

Variable (Unit) Min. Grid Unit Max.

wp5, wp3, wp1, wp0 (μm) 1 0.1 100
wn7, wn5, wn3, wn2, wn1 (μm) 1 0.1 100
lp1, lp0, ln7, ln5, ln3, ln1(μm) 0.34 0.1 10
nfp5 nfp3, nfp1, nfp0 1 1 8
nfn7, nfn5, nfn3, nfn2, nfn1 1 1 8

40

4.2 Loss Function

A loss function is of extreme importance in determining the accuracy of any model. Therefore, to

evaluate the performance of the actor-critic network, the model kept track of its losses.

Figure 4.3 – Policy Losses during the training
process - VCOTA topology

Figure 4.4 – Value Losses during the training
process - VCOTA topology

Figure 4.5 – Total Losses during the training process - VCOTA topology

Generally, the tendency is for the loss value to increase during the initial episodes. The reason for this

kind of behavior lies in the exploration stage. The agent is exploring different options which are sub-

optimal, resulting in a high error function due to the difference between the actual solution and the

solution the agent found. Over time, the agent learns what solutions are beneficial and adapts to achieve

them, minimizing the loss function. Therefore, although there is an increase in the beginning of the

training process, the tendency is for the loss function to decrease after that, as the agent learns and

adapts.

However, that is not the case in Figure 4.3, Figure 4.4, and Figure 4.5. It is important to refer that

the actor-critic is not a supervised learning method, i.e., when it is learning, it does not know before-

hand whether or not the output is close to the solution. Without possessing this kind of knowledge in

advance, it is difficult for the model to estimate since the outcome of the actions varies from state to

state and different actions have different rewards depending on the current state.

41

Taking all the above into consideration, it is very complicated for the actor-critic network to predict

the outcome of every action for every state, it only knows which actions are beneficial, and therefore,

the predictions it makes are off-target, which is a characteristic behavior of unsupervised learning.

4.3 VCCOTA

The selection of the best solutions is organized by targets specifications. Each target has different

specification, which needs to be met for the agent to find a valid solution. To test the first circuit

(VCOTA), various target constraints are specified. The circuit performances which are considered as a

way of evaluating the performance of the RL algorithm are: DC Gain, IDD, GBW, Phase Margin (PM)

and figure of merit (FoM). Their ranges of values are shown in the table below:

Table 4.5 – VCOTA: Table displays constraints for each Target

IDD (μA) GBW (MHz) DC Gain (dB) PM (º)

Target 0: < 350 > 35 > 50 45 < PM < 90

Target 1: < 300 > 40 > 40 45 < PM < 90

Target 2: < 700 > 120 > 50 45 < PM < 90

Target 3: < 210 > 25 > 40 45 < PM < 90

Target 4: < 130 > 2 > 40 45 < PM < 90

Target 0 is notably straightforward since the pre-determined conditions are feasible and within

reasonably standard values. On the other hand, the constraints on Target 1 are more complicated to

fulfil. The IDD minimum limit value is lower than that of Target 0, which, when conjugated to the

maximum limit set for GBW, make these constraints more complicated to meet. Target 2 aims to set a

higher GBW value by sacrificing the maximum limit of IDD. Targets 3 and 4 are designed with the goal

of limiting the maximum IDD value while not sacrificing DC Gain in the process. The main difference

between Target 3 and Target 4 is that target 4 handles the trade off by lowering the lower limit of GBW

while Target 3 does aims to achieve a lower IDD value while keeping the GBW at relatively standard

levels. The results obtained using the first model for each target are presented below:

42

Table 4.6 – Model 1 - Performance results

Seed
Episodes

solved
 IDD (µA)

DC Gain
(dB)

GBW
(MHz)

PM (º)
FoM

(MHz×pF/mA)

12 4

Target 0

347,2 55,259 49,45 58,966 854,681

72 50 347,0 58,820 45,57 49,165 787,824

44 124 308,9 58,437 43,67 46,189 848,192

56 70 339,5 55,064 45,72 74,431 807,966

80 21 345,9 54,355 62,64 62,895 1086,436

21 15 261,8 58,576 41,28 49,116 946,052

13 5 345,9 56,154 46,92 55,420 813,982

Average 41,3 328,0 56,666 47,89 56,597 877,876

Std. Dev 43,88 32,26 1,896 6,98 9,868 105,4

12 34

Target 1

285,6 53,750 42,24 79,644 887,283

15 46 260,4 58,449 42,72 48,024 984,351

16 77 298,7 55,889 49,46 45,718 993,533

19 57 279,8 53,053 45,45 46,475 974,619

24 32 297,5 53,412 47,71 58,052 962,313

Average 49,2 284,4 54,911 45,52 55,582 960,420

Std. Dev 18,51 15,59 2,265 3,118 14,34 42,50

12 34

Target 2

615,0 48,429 143,8 73,789 1403,415

14 184 666,4 53,370 124,4 46,399 1120,308

16 201 679,9 52,370 130,7 62,829 1153,398

20 268 593,1 50,920 124,3 63,475 1257,840

80 209 559,1 54,380 120,4 57,045 1292,535

Average 179,2 622,7 51,894 128,7 60,707 1245,499

Std. Dev 87,11 50,39 2,320 9,207 10,02 113,4

12 34

Target 3

209,9 55,771 34,44 72,784 984,773

15 247 207,1 52,864 35,52 63,396 1028,833

24 54 187,2 48,983 26,04 69,794 834,732

21 143 207,1 57,824 30,16 63,036 873,573

22 49 202,0 47,200 26,33 46,743 782,190

Average 105,4 202,6 52,528 30,50 63,150 900,820

Std. Dev 89,98 9,108 4,462 4,419 10,08 103,2

12 39

Target 4

117,6 51,068 4,696 89,493 239,572

15 5 128,7 46,519 2,201 88,901 102,616

22 24 129,2 52,674 15,54 53,254 721,798

24 41 122,9 45,109 4,265 86,979 208,175

21 143 108,9 54,185 4,591 88,005 252,906

Average 50,4 121,5 49,91 6,258 81,33 305,013

Std. Dev 53,74 8,451 3,931 5,286 15,72 24,03

For the VCOTA topology, the results show that the actor-critic network learned the design patterns and

found solutions in few episodes. Moreover, it successfully finds solutions within difficult constraints.

Given the FoM in every result, it indicates that the solutions it found are efficient, since the FoM value is

over 850 in most cases. The FoM is calculated based on Equation (3.4), indicating that the solutions

are efficient. For target 0, 1, 2 and 3, the average FoM is over 850, which indicates quality in the

solutions that the algorithm found. However, for target 4, the average value of FoM is slightly above 300.

43

This value is considerably low when compared to the other targets. Target 4 compromises GBW in order

to achieve a lower and feasible IDD value. Therefore, since GBW is sub optimal, that change will reflect

on the FoM value, resulting in a poor FoM for Target 4. The second model produced the following

results:

Table 4.7 – Model 2 - Performance results

Seed
Episodes

solved
 IDD (µA)

DC Gain
(dB)

GBW
(MHz)

PM (º)
FoM

(MHz×pF/mA)

12 15

Target
0

282,1 50,073 37,26 75,367 792,401

72 4 325,6 58,129 45,96 60,478 846,799

44 15 336,4 58,144 48,12 58,541 858,187

56 27 314,7 56,318 37,02 77,097 705,892

80 23 338,3 51,148 47,62 73,330 844,450

21 14 260,0 58,465 42,65 48,043 984,204

13 32 317,8 58,128 37,79 49,306 713,579

Average 18,6 310,7 55,772 42,35 63,166 820,787

Std. Dev 9,4 29,16 3,609 4,987 12,22 88,512

12 91

Target
1

286,5 50,966 45,46 67,870 951,973

14 639 280,1 53,292 45,05 46,934 965,030

16 36 298,8 58,106 43,00 57,185 863,319

20 43 295,1 53,818 63,35 58,740 1287,919

80 216 299,8 52,984 44,42 86,082 888,991

Average 205 292,1 53,833 48,25 63,362 991,446

Std. Dev 253,1 8,496 2,621 8,489 14,71 171,1

12 72

Target
2

678,6 55,624 121,1 68,230 1070,738

15 431 651,4 54,481 133,1 48,729 1225,866

16 251 689,8 50,249 129,9 69,897 1130,191

19 231 593,1 50,948 124,2 52,838 1256,638

24 318 660,0 48,621 142,9 80,245 1298,823

Average 260,6 654,6 51,985 130,2 63,988 1196,451

Std. Dev 131,2 37,55 2,953 8,476 12,98 93,76

12 353

Target
3

197,3 55,707 26,79 61,690 814,704

15 272 204,3 45,247 29,24 74,400 858,994

24 67 189,5 52,866 25,86 47,798 818,726

21 318 200,4 57,605 26,99 54,492 807,975

22 31 176,8 56,651 29,02 66,046 984,639

Average 208,2 193,7 53,615 27,58 60,885 857,007

Std. Dev 148,7 10,87 5,002 1,480 10,27 74,08

12 353

Target
4

127,6 50,243 4,672 86,658 219,670

15 87 113,4 43,590 5,345 85,781 282,829

22 31 121,3 46,415 10,76 74,667 532,363

24 30 129,5 42,906 2,835 87,062 131,367

21 485 121,4 56,448 1,169 84,976 577,780

Average 197,2 122,6 47,920 7,061 83,829 348,802

Std. Dev 209,1 6,335 5,574 3,925 5,185 196,5

The results taken from the second model are like those taken from the first model. It is important to

remember that the second model has the critic and actor network separated from each other right at

44

the beginning of the network. Upon thorough examination it is possible to arrive to some conclusions

and compare it to the values obtained from the first model.

Before analyzing the results, it is important to clarify that every condition was maintained, only the

structure of the model changed.

The number of episodes necessary to reach a valid solution for target 0 decreases on average

when compared to its model counterpart (model 1). However, for the remaining Target specifications,

the second model needs on average more time to reach a valid solution. This way, the second

model seems to perform better for simpler solutions whereas the first model outperforms its counterpart

for more complex solutions, although the difference is small. One aspect worth mentioning is that the

number of episodes needed to reach a solution varies greatly depending on the utilized initialization

value, leading to the conclusion that the seed value greatly influences the number of episodes needed

to reach a solution. As for the FoM value, all the results are above 800 (except for Target 4, which is

expected). There is a slight decrease in average FoM value for Target 0 when compared to the one

obtained by model 1, although the difference is minimal. This observation is also applicable for targets 1

and 3. The difference between these values is not significant enough. Surprisingly, the average FoM

value increases for target 2 and 4, surpassing the one obtained by the first model. It is important to

illustrate how the agent evolves and learns over each episode on different occasions. With that goal in

mind, several graphs were taken which show how each target specification evolves in an episode. To

get a clearer view of it, different episodes in distinct stages of the sizing process are depicted. The first

set is taken for one of the first episodes, the second for one for a later stage, and the third set represents

how the different target parameters evolve during the episode for which the agent finds a solution. This

process was done for both models and topologies.

45

 Figure4.6– VCOTA Model 1 – Early Episode

Figure 4.7 – VCOTA Model 1 – Intermediate Episode

Figure 4.8 –VCOTA Model 1 – End Episode

46

Figure 4.9 –VCOTA Model 2 – Early Episode

Figure 4.10 – VCOTA Model 2 – Intermediate Episode

47

Figure4.11–VCOTA Model 2 – End

Both models obtained successful results, fulfilled the target specifications and within a reasonable time.

Overall, the first model performed better than the second one regarding the number of episodes it needed

to reach a solution and the average FoM value. However, the difference between both models is not

large and greatly depends on the seeds, leading to the conclusion that both model structures perform

well when applied to the VCOTA topology.

4.4 Folded Cascode

Equivalently to the case presented above, the agent is also tested in the Folded Cascode environment.

The main reason behind this is to prove that the agent can adapt to different environments, namely more

complex environments. To assess the performance of the agent, the same procedure is applied to the

environment. Like the VCOTA circuit, the circuit performances which are considered as a way of evaluating

the performance of the RL algorithm are: DC Gain, IDD, GBW, Phase Margin (PM) and figure of merit

(FoM). The ranges of those specifications are specified below:

Table 4.8 – FCA: Table displays constraints for each Target

 IDD (μA) GBW (MHz) DC Gain (dB) PM (º) FoM (MHz×pF/mA)

Target 1: < 600 > 45 > 70 45 < x < 90 > 600

Target 2: < 320 > 35 > 85 45 < x < 90 -------------------

48

This time, there are two target specifications: Target 1 and Target 2. The first set of specifications

(Target 1) was created as a way of evaluating how the agent handles a several different constraints,

balancing an intermediate value of current and GBW, a relative high value of DC Gain. There is also an

added constraint relative to the FoM to check if the algorithm can deal with an added constraint. The

second target (Target 2) specification aims to conjugate a relatively low current value with a high DC

gain value. The agent was tested for the first model and the results are presented below:

Table 4.9 – Model 1, Target 1 - Performance results

Seed

Episodes
solved

 IDD (μA)
DC Gain

(dB)
GBW (MHz) PM (º)

FoM
(MHz×pF/mA)

12 88

Target 1

428,7 75,204 45,24 79,839 633,170

72 76 351,1 86,502 45,80 58,320 782,683

44 183 371,6 82,526 49,80 78,321 804,090

56 115 316,1 85,910 47,97 74,305 910,535

80 100 388,7 77,283 45,11 65,629 696,321

21 171 330,7 87,116 47,02 61,095 853,099

30 8 282,8 87,397 45,91 69,745 974,045

Average 105,86 352,8 83,134 46,69 69,608 807,706

Std. Dev 59,30 48,55 5,009 1,704 8,351 118,2

13 7

Target 2

287,9 86,048 35,74 65,608 744,842

12 3 320,8 87,625 36,10 64,299 675,187

21 7 267,7 91,677 35,14 60,850 787,598

24 6 320,0 86,451 37,36 56,180 700,500

19 14 252,6 96,586 35,37 50,679 840,143

17 3 349,9 85,703 35,27 61,091 604,801

15 5 324,9 86,434 35,55 65,069 656,510

Average 6,43 303,4 88,646 35,79 60,539 715,654

Std. Dev 3,74 34,88 4,050 0,763 5,431 80,81

The agent performed relatively well for the first target. It found valid solutions on an average of

approximately 106 episodes. The average FoM value was substantially above the set specification,

which means that the algorithm naturally finds high quality solutions. For target 2, the agent performed

exceptionally quickly, fitting all the constraints in a short amount of time. It balanced the low current and

DC gain very well and still is able to find configurations that do not drop considerably in terms of GBW.

The agent was also tested in this environment with a different architecture, model 2. The results are

presented below:

Comparing the results to those obtained by model 1, there are slight differences, however, they are not

impactful. For Target 1, model 2 finds a solution slightly faster than the first model. It also fulfills every

constraint and the average FoM value is around 800. As for Target 2, the second model is also able to

find a valid solution extremely quickly which fulfills every specified constraint. The average FoM value is

higher than that of model 2. Much like VCOTA, there are no major differences in terms of performance

between the two models. Results are also telling that the choice of seeds greatly affects the results.

To check the agent’s progress over different episodes and visualize the learning of the agent during the

sizing process, the same graphs were made for the FCA topology

49

Table 4.10 – Model 2, Target 1 - Performance results

Seed
Episodes

solved
 IDD (μA)

DC Gain
(dB)

GBW (MHz) PM (º)
FoM

(MHz×pF/mA)

12 209

Target
1

431,2 72,928 4,628E+07 75,011 643,970

72 129 383,4 82,489 4,690E+07 72,580 733,959

44 18 345,4 88,122 4,513E+07 53,354 783,961

56 32 422,4 78,134 4,944E+07 66,768 702,273

80 12 311,1 93,443 4,579E+07 52,046 883,124

21 116 318,2 83,715 4,543E+07 69,814 856,631

30 68 291,7 91,483 4,631E+07 54,155 952,554

Average 83,43 357,6E-04 84,331 4,647E+07 63,390 793,782

Std. Dev 72,08 55,51 7,312 1,438 9,890 109,3

Seed
Episodes

solved
 IDD (μA)

DC Gain
(dB)

GBW (MHz) PM (º)
FoM

(MHz×pF/mA)

13 18

Target
2

316,4 85,758 35,10 52,772 665,613

12 10 282,8 90,602 36,00 61,380 763,791

21 13 275,2 92,707 37,40 60,186 815,407

24 3 305,5 87,779 36,58 73,860 718,429

19 4 272,6 91,958 35,02 54,469 770,800

17 9 382,8 90,720 37,09 63,649 581,348

15 4 270,1 90,124 36,29 65,311 806,146

Average 8,71 300,8 89,950 36,21 61,661 731,648

Std. Dev 5,53 40,22 2,414 0,9152 7,060 83,92

Figure 4.12 –FCA Model 1 – Early episode

50

Figure 4.13 – FCA Model 1 – Intermediate Episode

 Figure 4.14 – FCA Model 1 – End Episode

51

Figure 4.15 – FCA Model 2 – Early Episode

Figure 4.16 –FCA - Model 2 – Intermediate Episode

52

Figure 4.17 - FCA – Model 2 – End Episode

4.5 Agent Reutilization

In order to test whether the agent is capable of adapting to new circumstances, an experiment is

performed. The main goal is assessing the agent’s capabilities of adapting to new circumstances and

if the performance improves if the agent acquires previous knowledge. The test consists of sizing a

given topology for a different set of target specification after the agent’s has successfully performed the

sizing for an initial configuration of target specifications. For example, the agent can be performing the

sizing process for Target 3 initially, and afterwards, without resetting the process, it performs the sizing

process for Target 4. The process is performed for different pairings of target specifications to test how

the agent adapts to different configurations. The results are presented in Table 4.11, Table 4.12 and

Table 4.13 and are relative to the VCOTA topology:

Table 4.11 – VCOTA Model 1: Comparison between the number episodes taken to perform the sizing
of Target 1 vs the number of episodes it takes to solve for Target 1 after the sizing is performed for

Target 0

Seed
Episodes Solved

Target 1
Episodes Solved for Target 1
after being sized for Target 0

12 34 9

Target 0 → 1

22 12 39

13 15 9

16 77 47

20 30 18

Average 33,6 24,4

Standard Deviation 26,0 17,6

53

Table 4.12 – VCOTA Model 1: Comparison between the number episodes taken to perform the sizing
of Target 1 vs the number of episodes it takes to solve for Target 4 after the sizing is performed for

Target 3

Seed
Episodes Solved

Target 4
Episodes Solved for Target 4
after being sized for Target 3

24 41 33

Target 3 → 4

22 24 1

13 103 40

12 39 5

Average 51,8 19,8

Standard Deviation 35,0 19,6

Table 4.13 – VCOTA Model 1: Comparison between the number episodes taken to perform the sizing
of Target 1 vs the number of episodes it takes to solve for Target 2 after the sizing is performed for

Target 1

Seed
Episodes Solved

Target 2
Episodes Solved for Target 2
after being sized for Target 1

24 32 1173

Target 1 → 2

12 34 28

14 184 1014

16 77 123

Average 81,8 584,5

Standard Deviation 71,3 592,6

The three tables which are presented show three different scenarios. In the first case (Table 4.11),

although slightly improving, the improvement in speed is not significant. Both configurations (Target 0

and Target 1) are balanced configurations, resulting in a multitude of beneficial actions which are not

particularly identifiable. Therefore, although previous knowledge is useful, the improvement is not

significant. In the second case (Table 4.12), there is a significant improvement. After performing the

sizing for target 3 the agent quickly finds a solution for target 4. This is mainly due to the preference of

actions that lower the IDD value for both target specifications. Since the objective is the same, beneficial

actions are not going to differ greatly and therefore, result in a significant improvement. The final case

portraits a situation where there is a significant downfall in terms of results (Table 4.13). The two targets

differ greatly in terms of preferential actions. Hence, the agent acquires knowledge beforehand that is

not valuable knowledge for the next configuration and therefore needs to adapt during the following

sizing process, resulting in an increase in time. Therefore, the agent is proven to be adaptable to

different situations and is able to find a solution with prior knowledge although it is uncertain if the result

will improve or not.

54

4.6 Conclusions

In this chapter, results for both topologies were presented. Each topology was subjected to agents which

differed in architecture. The tested topologies were the VCOTA, a VC amplifier and a Folded Cascode.

The agent was able to achieve valid solutions for the VCOTA circuit. The target specifications which

were set for this circuit are enough to prove the agent’s versatility. In a relatively small amount of time,

the actor-critic method was able to find solutions for the problem at hand at increasingly difficult target

specifications.

As for the folded cascode, the agent was also capable of finding several valid solutions in a short

period of time. The actor-critic method adapted well to the target specifications that were set and quickly

found configurations which successfully fit those constraints. In general, the agent performed very well

for both topologies, proving that it can be generalized to different circuit topologies. This adaptation is

very important in engineering, as it is vital for a method to perform under different circumstances.

55

5 Conclusions

This chapter presents the conclusions of all the work performed for this dissertation, and the future

directions for the continuous development of Actor-Critic applied to analog IC sizing.

5.1 Work Conclusions

This work presents a reinforcement learning approach – Advantage Actor-Critic - that successfully

contributed to the analog IC sizing for two amplifiers: VCOTA and FCA, given their intended target

performances. There has not been much research on the topic at hand. Reinforcement Learning is still

being tested on analog IC sizing. The available information is not widely spread as there is little research

on the subject.

The Actor-Critic model proved to be very flexible, fast, and capable of satisfying complex

constraints with relative ease. This technique can prove itself extremely useful in the future as it

possesses a tremendous potential. This work shows that the actor-critic approach can learn design

patterns and generate circuit sizing that are correct for specification trade-offs.

The limitless potential of the actor-critic algorithm shows considerable promises to future

applications and could prove itself extremely useful in future research. This work showed that it can

adapt to different analog IC environments, namely VCOTA and FCA, proving it generalizes quite well

to other more complex environments of the same type, a feature which is extremely important in

engineering.

On a final note, the proposed goals for this work were achieved, the actor-critic was able to

successfully size the components of the two circuits, fulfilling all specified constraints.

5.2 Future Work

This work only scratches the surface of the impact the actor-critic method may have in Analog circuit

sizing. There are still several opportunities where reinforcement learning might improve analog EDA.

One great opportunity that might arise from this work is testing how the actor-critic method performs in

more complex topologies. Assessing how it might behave in extremely complex circuits and

experimenting more with it is promising. Additionally, assessing how other variants of the actor-critic

algorithm behave and what results they might achieve is also a prospect that can be worth following.

Although the learning process is fast and efficient, it is important to test if the knowledge the agent

stored during the sizing process can prove valuable and improve the speed as well as the transfer the

knowledge to same circuit with different target specification or a different circuit. Once the agent has

learned which actions improve the circuit’s performance, the sizing process in theory should be faster

and more efficient. Despite not being tested and implemented in this work, this is is a test which offers

high potential and could further improve the agent’s reliability and expand its versatility. For future

reference, this is something that should be pursued as to improve the agent’s capabilities and assess

56

how it would perform in different circumstances, such as adapting to new specifications or a new circuit

after performing the sizing for a given set of specifications.

Other than testing how previous knowledge can influence future performances in different

circumstances, one possibility that offers great potential is integrating Asynchronous Advantage Actor-

Critic (A3C). A3C is an asynchronous version of A2C. Its main characteristic is allowing various agents

to perform the sizing process separately and at the same time. This characteristic is advantageous

since it enables the sizing of different topologies with different target specifications at the same time

and using the same base model for the agent. Therefore, using A3C in the agent’s development can

be a step forward in the improvement of this work for future reference.

57

References

[1] The McClean Report - A complete analysis and forecast of the semicondutor industry. (2022). IC
Insights. https://www.icinsights.com/data/reports/6/1/brochure.pdf?parm=1666909705.

[2] Lourenc¸o, Nuno, Ricardo Martins, and Nuno Horta. Automatic analog IC sizing and optimization
constrained with PVT corners and layout effects. Cham: Springer International Publishing, 2017.

[3] Martins, Ricardo, et al.” AIDA: Robust layout-aware synthesis of analog ICs including sizing and
layout generation.” 2015 International Conference on Synthesis, Modeling, Analysis and Simulation
Methods and Applications to Circuit Design (SMACD). IEEE, 2015.

[4] R. F. Badaoui and R. Vemuri,” Analog VLSI circuit-level synthesis using multi-placement
structures,” 2005 IEEE International Symposium on Circuits and Systems, 2005, pp. 5978-5981
Vol. 6, doi: 10.1109/ISCAS.2005.1466001.

[5] K. Deb, A. Pratap, S. Agarwal, T. MeyarivanA fast and elitist multiobjective genetic algorithm:
NSGA-II

[6] K. Deb, H. BeyerSelf-adaptive genetic algorithms with simulated binary crossover

[7] Evol. Comput., 9 (2) (2001), pp. 197-221, 10.1162/106365601750190406

[8] J. Domingues, A. Gusmão, N. Horta, N. Lourenço and R. Martins, "Accelerating Voltage-Controlled
Oscillator Sizing Optimizations with ANN-based Convergence Classifiers and Frequency Guess
Predictors," 2022 18th International Conference on Synthesis, Modeling, Analysis and Simulation
Methods and Applications to Circuit Design (SMACD), 2022, pp. 1-4, doi:
10.1109/SMACD55068.2022.9816265.

[9] IEEE Trans. Evol. Comput., 6 (2) (2002), pp. 182-197, 10.1109/4235.996017

[10] Zhao, Zhenxin, and Lihong Zhang.” Deep Reinforcement Learning for Analog Circuit Sizing.” 2020
IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2020.

[11] Degrauwe, Marc GR, et al. ”IDAC: An interactive design tool for analog CMOS circuits.” IEEE Jour-
nal of solid-state circuits 22.6 (1987): 1106-1116.

[12] Eldo Platform. (n.d.-b). Siemens Digital Industries Software. Retrieved October 31, 2022, from
https://eda.sw.siemens.com/en-US/ic/eldo/

[13] Spectre Simulation Platform. (n.d.). Cadence. Retrieved October 31, 2022, from
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-
simulation/spectre-simulation-platform.html

[14] Vogt, H. (n.d.). Ngspice, the open source Spice circuit simulator - Intro. Retrieved October 31, 2022,
from https://ngspice.sourceforge.io/index.html

[15] F. El-Turky and E. E. Perry, “BLADES: an artificial intelligence approach to analog circuit design,”
in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 8, no. 6,
pp. 680-692, June 1989, doi: 10.1109/43.31523.

[16] W. Lyu, F. Yang, C. Yan, D. Zhou, and X. Zeng, “Multi-objective bayesian optimization for analog/rf
circuit synthesis,” in DAC, 18.

58

[17] Liu, Bo, et al.” GASPAD: A general and efficient mm-wave integrated circuit synthesis method
based on surrogate model assisted evolutionary algorithm.” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 33.2 (2014): 169-182.

[18] Li, Yaguang, et al.” A Circuit Attention Network-Based Actor-Critic Learning Approach to Robust
Analog Transistor Sizing.” 2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD).
IEEE, 2021.

[19] Settaluri, Keertana, et al.” AutoCkt: deep reinforcement learning of analog circuit designs.” 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2020.

[20] Budak, Ahmet F., et al.” DNN-Opt: An RL Inspired Optimization for Analog Circuit Sizing using Deep
Neural Networks.” 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 2021.

[21] Yang, Kai-En, et al.” Trust-Region Method with Deep Reinforcement Learning in Analog Design
Space Exploration.” 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 2021.

[22] Mnih, Volodymyr, et al.” Asynchronous methods for deep reinforcement learning.” International con-
ference on machine learning. PMLR, 2016.

[23] Schulman, John, et al.” Proximal policy optimization algorithms.” arXiv preprint arXiv:1707.06347
(2017).

[24] Schulman, John, et al.” Trust region policy optimization.” International conference on machine
learn- ing. PMLR, 2015.

[25] A. Hill et al., “Stable baselines,” https://github.com/hill-a/stablebaselines, 2018

[26] H. Wang et al.,” GCN-RL Circuit Designer: Transferable Transistor Sizing with Graph Neural Net-
works and Reinforcement Learning,” 2020 57th ACM/IEEE Design Automation Conference (DAC),
2020, pp. 1-6, doi: 10.1109/DAC18072.2020.9218757.

[27] Mendes, Lu´ıs, et al.” In-Depth Design Space Exploration of 26.5-to-29.5-GHz 65-nm CMOS Low-
Noise Amplifiers for Low-Footprint-and-Power 5G Communications Using One-and-Two-Step De-
sign Optimization.” IEEE Access 9 (2021): 70353-70368.

[28] Brockman, Greg, et al.” Openai gym.” arXiv preprint arXiv:1606.01540 (2016).

[29] R. Gupta, B. M. Ballweber, and D. J. Allstot, “Design and optimization of CMOS RF power ampli-
fiers,” IEEE J. Solid-State Circuits, vol. 36, no. 2, pp. 166–175, Feb. 2001.

[30] C. R. C. D. Ranter, G. van der Plas, M. S. J. Steyaert, G. G. E. Gielen, and W. M. C. Sansen,
“CYCLONE: Automated design and layout of RF LC-oscillators,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 21, no. 10, pp. 1161–1170, Oct. 2002.

[31] G. Alpaydin, S. Balkir, and G. Dundar, “An evolutionary approach to automatic synthesis of high-
performance analog integrated circuits,” IEEE Trans. Evol. Comput., vol. 7, no. 3, pp. 240–252,
Jun. 2003.

[32] M. Chu and D. J. Allstot, “Elitist nondominated sorting genetic algorithm based RF IC optimizer,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 3, pp. 535–545, Mar. 2005.

[33] G. Tulunay and S. Balkir, “A synthesis tool for CMOS RF low-noise amplifiers,” IEEE Trans.
Comput.- Aided Design Integr., vol. 27, no. 5, pp. 977–982, May 2008.

[34] Y. Xu, K.-L. Hsiung, X. Li, L. T. Pileggi, and S. P. Boyd, “Regular analog/RF integrated circuits
design using optimization with recourse including ellipsoidal uncertainty,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 28, no. 5, pp. 623–637, May 2009.

[35] B. Liu, G. Gielen, and F. V. Fernandez, Automated Design of Analog and High-Frequency Circuits.
Berlin, Germany: Springer-Verlag, 2014.

[36] R. Povoa, I. Bastos, N. Lourenc¸o, and N. Horta, “Automatic synthesis of RF front-end blocks using
multi-objective evolutionary techniques,” Integr. VLSI J., vol. 52, pp. 243–252, Jan. 2016.

[37] R. Martins, N. Lourenco, N. Horta, J. Yin, P.-I. Mak, and R. P. Martins, “Many-objective sizing opti-
mization of a class-C/D VCO for ultralow-power IoT and ultralow-phase-noise cellular applications,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 1, pp. 69–82, Jan. 2019.

59

[38] F. Passos, R. Gonza’lez-Echevarr’ıa, E. Roca, R. Castro-Lopez, and F. V. Fernandez, “A two-step
surrogate modeling strategy for single-objective and multi-objective optimization of radio frequency
circuits,” Soft Comput., vol. 23, pp. 4911–4925, Jul. 2018, doi: 10.1007/s00500-018-3150-9.

[39] G. G. E. Gielen, “Modeling and analysis techniques for system-level architectural design of telecom
front-ends,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 1, pp. 360–368, Jan. 2002.

[40] D. R. de Llera Gonzalez, A. Rusu, and M. Ismail, “Receiver design for multi-standard wireless
communications,” in Radio Design in Nanometer Technologies, D. R. de Llera Gonza’lez and M.
Ismail, Eds. New York, NY, USA: Springer, 2006.

[41] Wang, Jane & Kurth-Nelson, Zeb & Kumaran, Dharshan & Tirumala, Dhruva & Soyer, Hubert &
Leibo, Joel & Hassabis, Demis & Botvinick, Matthew. (2018). Prefrontal cortex as a meta-
reinforcement learning system. Nature Neuroscience. 21. 10.1038/s41593-018-0147-8.

[42] W. Sheng, A. Emira, and E. Sanchez-Sinencio, “CMOS RF receiver system design: A systematic
approach,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 5, pp. 1023–1034, May 2006.

[43] S. Rodriguez, J. G. Atallah, A. Rusu, L.-R. Zheng, and M. Ismail, “ARCHER: An automated RF-IC
Rx front-end circuit design tool,” Anal. Integr. Circuits Signal Process., vol. 58, no. 3, pp. 255–270,
Mar. 2009.

[44] Z. Pan, C. Qin, Z. Ye, and Y. Wang, “Automatic design for analog/RF front-end system in 802.11ac
receiver,” in Proc. 20th Asia South Pacific Design Autom. Conf., Chiba, Japan, Jan. 2015, pp. 454–
459

[45] Zhang, Junzi, et al.” Sample efficient reinforcement learning with REINFORCE.” Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 35. No. 12. 2021.

[46] Shi, Wei, et al.” RobustAnalog: Fast Variation-Aware Analog Circuit Design Via Multi-task RL.” arXiv
preprint arXiv:2207.06412 (2022).

[47] Chen, Po-Yan, et al.” A Reinforcement Learning Agent for Obstacle-Avoiding Rectilinear Steiner
Tree Construction.” Proceedings of the 2022 International Symposium on Physical Design. 2022.

[48] K.-W. Lin et al., “A maze routing-based methodology with bounded exploration and path-assessed
retracing for constrained multilayer obstacle-avoiding rectilinear Steiner tree construction,” ACM
TODAES, Vol. 23, Iss. 4, Article 45. May, 2018

[49] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multitask learning. arXiv preprint arXiv:2001.06782 (2020)

[50] H. -C. Jang, Y. -C. Huang and H. -A. Chiu,” A Study on the Effectiveness of A2C and A3C Rein-
forcement Learning in Parking Space Search in Urban Areas Problem,” 2020 International Confer-
ence on Information and Communication Technology Convergence (ICTC), 2020, pp. 567-571, doi:
10.1109/ICTC49870.2020.9289269.

[51] Lourenc¸o, Nuno, et al. “On the exploration of promising analog IC designs via artificial neural net-
works.” 2018 15th International Conference on Synthesis, Modeling, Analysis and Simulation Meth-
ods and Applications to Circuit Design (SMACD). IEEE, 2018.

[52] Lourenc¸o, Nuno, et al.” Using polynomial regression and artificial neural networks for reusable ana-
log ic sizing.” 2019 16th International Conference on Synthesis, Modeling, Analysis and Simulation
Methods and Applications to Circuit Design (SMACD). IEEE, 2019.

