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Resumo

Da pesca ilegal ao tráfego de drogas, proteção ambiental e prevenção de ameaças, é evidente que

a vigilância marı́tima é de extrema importância. Um dos aspectos fundamentais da vigilância marı́tima

é o conhecimento da localização dos navios. Dado que o oceano cobre uma área tão ampla, são

necessários algoritmos automáticos para monitorá-lo. Avanços recentes em aprendizagem profunda

têm facilitado substancialmente o desenvolvimento de métodos de deteção de navios para imagens de

radar de abertura sintética (SAR). No entanto, a maioria destas soluções são métodos supervisionados

de detecção de objetos, que exigem grandes quantidades de dados anotados. Anotar estas imagens é

um processo extremamente demorado. De modo a aproveitar a enorme e crescente quantidade de da-

dos SAR, propomos dois métodos de aprendizagem profunda não supervisionada para a segmentação

de navios em imagens SAR. O primeiro método é baseado num modelo de tradução de imagem para

imagem, o CycleGAN, no qual exploramos as capacidades de transferência de imagens não empar-

elhadas para aprender o mapeamento do domı́nio de imagem SAR para o domı́nio de segmentação.

A segunda abordagem, o UDSEP (U-net Detect-Select-Erase-Paste) é um método de segmentação

auto-supervisionada, na qual treinamos uma rede de segmentação com dados de um novo algoritmo

que gera imagens anotadas sintéticas das imagens originais SAR não anotadas. Experiências no

SAR-Ship-Dataset e no SSDD revelam resultados promissores, mas ainda inferiores aos dos métodos

supervisionados.

Palavras-chave: aprendizagem profunda, radar de abertura sintética, segmentação semântica

de navios, não supervisionado
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Abstract

From illegal fishing to drug smuggling, environmental protection, and threat prevention, it is evident

that maritime surveillance is of extreme importance. One of the key aspects of maritime surveillance

is having knowledge of the location of the ships. Since the ocean covers such a wide area, automatic

algorithms are necessary to monitor them. Recent advances in deep learning have substantially facili-

tated the development of ship detection methods for synthetic aperture radar (SAR) images. However,

most of the solutions are supervised object detection methods, which require large amounts of labelled

data. Labelling the images is an extremely time-consuming process. To take advantage of the huge and

increasing amount of SAR data, we propose two unsupervised deep learning frameworks for SAR ship

segmentation. The first framework is based on an image-to-image translation model, the CycleGAN,

in which we exploit the model’s unpaired image style transfer capabilities to learn the mapping from the

SAR image domain to a segmentation domain. The second approach, the UDSEP (U-net Detect-Select-

Erase-Paste) is a self-supervised segmentation framework, in which we train a segmentation network

with data from a novel algorithm that generates synthetic labelled images from the original SAR unla-

belled images. Experiments on the SAR-Ship-Dataset and on SSDD reveal promising results but still

inferior to those of the supervised methods.

Keywords: deep learning, synthetic aperture radar, ship semantic segmentation, unsupervised
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Chapter 1

Introduction

1.1 Motivation

Maritime surveillance has attracted a lot of attention in recent decades, particularly in vessel detec-

tion, as knowledge of vessel placements is required to attain complete maritime domain awareness [1].

Illegal exploitation of natural resources, such as illegal fishing, is one of the issues that requires a quick

response from naval officials across the nations. In 2020, global estimates suggest that the illegal, unre-

ported and unregulated (IUU) annual fishing accounts for 20% of the world catch [2]. This industry often

uses bonded labour, puts food security and regional stability at risk, and threatens marine ecosystems

due to overfishing in unpermitted areas [2, 3]. IUU is also linked to a host of other crimes, such as drug

and arms trafficking, and wildlife smuggling. According to research conducted by the Global Financial

Integrity, 15% of the illicit drug revenue is smuggled by fishing vessels around the world [4]. Illegal im-

migration is another illicit maritime-based activity that has been receiving much interest. In 2021 alone,

over 3000 people died or went missing while attempting to cross the Mediterranean or the Atlantic to

reach Europe, which corresponds to a 60% increase compared with the previous year [5]. Consequently,

from threat prevention to national security, safety, and environmental protection, it is crucial to provide

relevant organizations, governments, and agencies with real-time data on vessel localizations to assist

decision-making processes.

To this end, there are several systems available for gathering information on the presence of ships.

Typically, these systems can be classified as being cooperative or non-cooperative. In cooperative sys-

tems, the ships provide information about themselves. The Automatic Identification System (AIS) is

one of the most common cooperative systems, where ships continuously provide information to relevant

authorities and to other ships [6]. Despite being very successful at monitoring ships which are legally ob-

ligated to install a VHF transponder, AIS fails to detect those who are not and those that disconnect their

transponder. Therefore, non-cooperative systems, which acquire information on the localization of the

vessels without any collaboration, are of extreme importance. Optical and reflected infrared, hyperspec-

tral, thermal infrared, and radar are the most common types of imaging systems that can provide data

for vessel detection [7]. Each of these systems has its set of advantages and disadvantages, however,
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in this work the focus will be on satellite-based radars. These systems provide global remote access,

being the only viable option to monitor certain sea areas [8]. Synthetic aperture radar (SAR) is the most

suitable type of radar for ship detection since its resolution is constant even when far from the observed

targets, does not depend on the distance to the target, it can image wide areas at constant resolution,

and works regardless of daylight and cloud cover [7, 9].

Several ship detection methods have arisen since the first SAR satellite was launched in 1978 [10].

Most traditional methods are not robust enough for SAR images with different backgrounds, especially in

rough sea conditions or near shore, depend on manual tuning of model parameters and have detection

speeds incompatible to suit the needs of real-time applications [11]. Recently, with the growth of artifi-

cial intelligence, various elegant deep learning solutions have obtained state-of-the-art in the SAR ship

detection task. However, most of these solutions are object detection methods, which are supervised

and, therefore, require large amounts of labelled data. Labelling the images is a process that requires

SAR specialists and is extremely time-consuming and expensive. Unsupervised methods, which do

not require the labeling of training images for feature extraction, can be a suitable alternative for ship

detection, especially given the extensive and expanding amount of available SAR data.

1.2 Objectives

The goal of this thesis is to develop unsupervised deep learning methods for ship detection in SAR

images. Moreover, although the proposed frameworks will only be applied to SAR ship images, they

should be generic enough to be applied with relative ease to other datasets. Two distinct novel deep

learning frameworks are presented, which were approached as a semantic segmentation problem. The

first framework is based on an image-to-image translation model, the CycleGAN, in which we exploit the

model’s unpaired image style transfer capabilities to learn the mapping from the SAR image domain to

the segmentation domain. The second approach, the UDSEP (U-net Detect-Select-Erase-Paste) is a

self-supervised semantic segmentation framework, in which we introduce a novel algorithm to generate

synthetic labelled images from the original SAR unlabelled images. Then, the generated SAR images

and their segmentation masks are used to train a segmentation network, the U-net. The proposed

work should contribute to filling the void in the state-of-the-art of SAR ship detection with unsupervised

techniques.

1.3 Thesis Outline

This thesis is organised into 6 chapters. In Chapter 2, an overview of the state of the art in SAR ship

detection is provided, including a review of both traditional approaches and more recent work utilizing

deep learning. Chapter 3 presents the theoretical background for the thesis. A review of SAR imagery

and its importance to ship detection is provided, followed by an explanation of the relevant classical

and deep learning models for this thesis. Chapter 4 presents the implementation in depth, including a

description of the datasets and the preprocessing applied to them, and the details of the two proposed

2



frameworks. Chapter 5 presents the experimental results, which are then analysed and discussed.

Finally, in Chapter 6, the main conclusions and possible future work for this thesis are presented.
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Chapter 2

State of the art

An overview of the work done in SAR ship detection will be presented in this chapter. First, a brief

summary of traditional approaches is offered for historical background. Then, more recent work adopting

deep learning is presented. Furthermore, a particular emphasis is placed on previous published work

with the models employed in this thesis.

2.1 Classical Approaches

Long before the development of deep learning-based object detection algorithms, traditional methods

were employed to perform ship detection. Usually, traditional methods follow a specific workflow, defined

by some or all of three main steps: preprocessing, candidate region extraction, and discrimination [12].

The most significant preprocessing task is normally sea-land segmentation or land masking. This

is usually based on GIS (Geographic Information System) or image features, and attempts to mask

the land pixels to minimise interference with the next steps. Other tasks of the preprocessing step are

very dependent on the posterior steps but may include filtering the speckle noise in the SAR images or

normalising the pixel values [13].

The candidate region extraction step consists of an algorithm that searches the whole image for

potential ship pixels. One of the first and simplest candidate region extraction algorithms simply sets

a global fixed threshold and considers pixels with intensity values above the threshold as candidates.

This approach was used by Lin et al. (1997) in [14] and [15]. This method is susceptible to various

factors, such as the type of material of each ship, which will have a direct impact on the intensity of

its pixels. Therefore, adaptive thresholds, which instead look for unusually bright pixels relative to their

surroundings, are more commonly used. The CFAR is the most common adaptive threshold candidate

region extraction for SAR ship detection. The CFAR method first statistically models the clutter of the

SAR image and then obtains the threshold value according to a set false alarm rate. Wackerman et

al. (2001) [16] provided early valuable results for CFAR in ship detection. They used a CFAR detector

with a multiple-pixel target window to detect ships in Radarsat-1 SAR images. They experimented with

several distributions for the clutter model, such as Gaussian, Exponential, Gamma, and K-distribution.
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Throughout the years, numerous CFAR-based algorithms have been proposed for ship detection [17–

20]. However, CFAR methods usually only perform well when the scenes are relatively simple. For

small ships, inshore or complex offshore scenes, the methods usually underperform, with several false

positives. This is directly associated with the difficulties in modelling the background.

Therefore, in an attempt to improve the detection accuracy, several frameworks include a discrimina-

tion step. This step analyses the candidate regions and chooses which pixels are ships and which are

background. Typically, this is achieved by employing artificially produced features and training traditional

classifiers, such as decision trees [21] or support vector machine (SVM) [22]. Several features can be

used for the discrimination step, such as the length, width or aspect ratio of the detected regions, but

also computer vision introduced features, such as histogram of oriented gradients (HoG) [23], speeded

up robust features (SURF) [24], or local binary pattern (LBP) [25].

2.2 Deep learning approaches

In 2012, a significant breakthrough occurred in machine learning when results on regularly used com-

puter vision benchmarks were released for the first time with human-competitiveness [26], outperforming

traditional methods. Not before long, as deep learning-based object detection algorithms emerged in

computer vision [27], SAR researchers began to look to this field for ideas.

The first public report using deep learning for SAR ship detection was presented by Schwegmann et

al. [28] in 2016. They established a very deep High-Way CNN to accomplish SAR ship discrimination,

achieving promising results. Inspired by R-CNN, proposed by Girshick et al. [29], Liu et al. (2017) [30]

proposed a framework of Sea-Land Segmentation-based Convolutional Neural Network (SLS-CNN) for

ship detection. Although both the mentioned reports are based on deep learning, they only apply it

to the last steps of the traditional detection workflow. Thus, deep learning is only employed for the

ship-background binary classification task, with several other traditional tasks still performed, such as

sea-land segmentation. Later that year, the Faster R-CNN [31] was first applied to SAR ship detection

by Kang et al. (2017) [32]. Considering that the model often misses small ships due to information loss

from max-pooling operations, the authors proposed transferring detections with a score between 0.3 and

0.8 into a CFAR detector. Kang et al. (2017) [33] also proposed a new method to improve the Faster R-

CNN with the CFAR detector, implementing a contextual region-based convolutional neural network with

multilayer fusion. The network consists of a region proposal network (RPN) with high network resolution

and an object detection network with contextual features. Compared to the previous work, the results

revealed considerable improvements. This was also the first report to achieve full end-to-end training

and testing, without the need for traditional sea-land segmentation or any post-processing. Thus, the

work of Kang et al. decidedly served as a baseline and motivation for future deep learning research in

SAR ship detection.

However, at that time, there were no proper open datasets dedicated to SAR ship detection based on

deep learning. Hence, in December 2017, the SSDD (SAR Ship Detection Dataset) was made publicly

available. This dataset provided the same data and evaluation criteria for researchers, which established
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the framework for the field’s quick development and endorsed a new era in SAR ship detection, marking

the transition from sporadic to regular deep learning papers. As years passed, several other SAR ship

datasets were made available, and the number of articles published on the topic increased considerably.

According to [12], in May 2022 there were 177 published papers that used deep learning to detect ships

in SAR images.

2.2.1 Object detection methods

The most common approaches for SAR ship detection are based on state-of-the-art object detection

methods. Li et al. (2017) [34] first tested the SSDD dataset with an improved Faster R-CNN. They

adopted the ZF-Net [35] pre-trained on ImageNet and fine-tuned the model to the SSDD dataset. Fur-

thermore, given the difficulties for the Faster R-CNN in detecting ships of different sizes, the feature

maps from the convolutional layer 3 to layer 5 were fused. This prevented the omission of important

features due to the dominance of the features from the latter layers, resulting in a more robust model

with improved accuracy for ships of different sizes. Also based on Faster R-CNN, Lin et al. (2019) [36]

used an encoding scale vector encouraged by a squeeze and excitation mechanism to suppress redun-

dant subfeature maps after Region of Interest (ROI) pooling. Experimental results on Sentinel-1 images

revealed an increase of 9.7% on the F1-score and a 14% faster execution time when compared to the,

at the time, state-of-the-art.

The YOLO (You Only Look Once), proposed by Redmon et al. [37] in 2016, is a state-of-the-art

architecture for object detection. YOLO solves the object detection task as a regression problem and

outputs the spatially separated bounding boxes and their corresponding class probabilities. Unlike R-

CNN, this is done with a single neural network from one evaluation. The original YOLO algorithm has

several variations, such as YOLOv2 [38], YOLOv3 [39], YOLOv4 [40], and YOLOv5 [41], that have been

extensively tested for SAR ship detection. Motivated by the practical Graphics Processing Units (GPU)

limitations of frontline marine monitoring, the majority of the following YOLO-based papers focus on

lightweight backbone network improvements. Deng et al. (2019) [42] and Chang et al. (2019) [43]

adopted YOLOv2 to detect ships in SAR images. Chang et al. proposed a modified architecture, the

YOLOv2-reduced that has fewer layers. The YOLOv2-reduced maintained a similar AP (average preci-

sion) with 2.5 faster detection times. Inspired by the latest YOLO method at the time, YOLOv3, Zhang et

al. (2019) [44] proposed a model with depthwise convolution and a pointwise convolution to replace the

traditional convolution neural network. This allowed to decrease considerably the number of network pa-

rameters and the detection time. Similarly, Zhou et al. (2020) [45] proposed a lightweight convolutional

neural network, the LiraNet. This model uses residual and dense connections and group convolution,

including stem blocks and extractor modules. Jiang et al. (2021) [46] adopted YOLOv4 to implement

YOLOv4-light, a reduced model with consequently fewer computational parameters, memory consump-

tion, and detection time. To compensate for the accuracy loss due to the reduced model, three-channel

images were used. Liu et al. (2022) [47] also proposed a lightweight ship detection network. Based on

the YOLOv4-LITE model [48], which uses MobileNetv2 [49] as its backbone, the model implemented an
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improved receptive field block to improve the quality of multi-scale ship detections.

The SSD (Single Shot MultiBox Detector) [50] is another state-of-the-art object detection algorithm

that has been used for SAR ship detection. This approach combines the regression concept with the

anchor box mechanism, which is very similar to the anchor boxes used in Faster R-CNN but is applied to

multiple feature maps with different resolutions. Compared to other detection models, the SSD is usually

simpler, as it eliminates proposal generation and subsequent pixel or feature resampling stages, con-

densing all computation into one network. In [51, 52] (2017) Wang et al. applied the original SSD to ship

detection for both Sentinel-1 and Gaofen-3 images. In both works, the authors used two SSD models:

SSD-300 and SSD-512, which have input sizes of 300 and 512 pixels in height and width, respectively.

The models were built with a VGG16 network that was pretrained on the PASCAL VOC dataset. More-

over, Ma et al. (2018) [53] proposed a Single Shot Multi-box Detector with a multi-resolution input (MR-

SSD) to classify different types of marine targets, such as boats, towers, cargo ships, etc. Compared to

the original SSD, this model is able to extract more features at various resolution. More recently, Jin et al.

(2021) [54] improved SSD by adding a feature fusing module to shallow feature layers and introducing

an attention mechanism based on squeeze excitation modules. Compared to the traditional SSD, the

proposed model was able to improve ship detection accuracy while maintaining detection speed.

All of the above discussed object detection methods are supervised. Unsupervised work, which

can be a suitable alternative for ship detection has not been extensively explored. Ferreira et al. [55]

proposed an unsupervised framework for SAR ship detection based on anomaly detection. They start by

learning the data representations with a convolutional variational autoencoder (VAE) and then perform

anomaly detection based on those representations with a clustering algorithm. Dias [56] also proposed

an unsupervised anomaly detection framework for ship detection. They train a bidirectional generative

adversarial network (BiGAN) with non-ship images and then use its inability to reconstruct images with

ships to detect anomalies. In fact, although referred to as unsupervised, both the mentioned works

rely on a supervised preselection of non-ship ocean images to train the models. Therefore, to our best

knowledge, no fully unsupervised work has been developed and published for SAR ship detection.

2.2.2 Segmentation methods

In 2020, Wei et al. publicly released the High resolution SAR images dataset (HRSID) [57], which,

unlike earlier published datasets, provided polygon masks of the ships. Soon after that, in Septem-

ber 2021, Zhang et al. [11] released an improved version of the SSDD dataset where the ships were

relabeled with their polygon segmentation. Consequently, the publication of these datasets aided and

encouraged the development of segmentation techniques, which were previously very challenging to

develop. Instead of providing bounding boxes, these techniques aim to provide pixel-level contour infor-

mation for the detected ships.

For instance, Gao et al. (2021) [58] proposed a lightweight feature extractor and an anchor-free

convolutional network for SAR ship segmentation based on the Ghostnet [59]. They presented a dy-

namic encoder–decoder to fully disseminate feature information by transforming shared features into
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task-specific features. Furthermore, utilising the geometrical shape and positional relationship between

the ships, a unique loss function based on centroid distance was implemented. Moreover, Zhao et al.

(2021) [60] proposed an instance segmentation framework based on a synergistic attention mechanism

at the image, semantic, and target level. For feature extraction, feature fusion, and target location, the

global attention module (GAM), semantic attention module (SAM), and anchor attention module (AAM)

were developed, respectively.

Some authors used U-net, a deep learning semantic segmentation model introduced by Ronneberger

et al. in 2015 [61], for SAR ship segmentation. For instance, Li et al. (2020) [62] proposed a 3D dilated

multi-scale U-shape convolutional neural network (3DDM-UNet). They start by building a 3D image

block through a multiscale stationary wavelet transform and, then, feed it to the 3D U-net. The results

obtained outperformed the other compared segmentation methods, such as the original U-net. Fur-

thermore, Mao et al. (2020) [63] proposed an efficient, low-cost SAR ship detection network consisting

of two branches: a ship bounding box regression network and a score map regression network. Both

branches use a simplified U-net to extract features. Afterwards, the soft non-maximum suppression

(NMS) post-processing module is exploited to get the final detections. Although the ultimate goal of this

strategy is to achieve ship detection, good segmentation results were obtained as an intermediate step

in the score map regression network.

Although fully unsupervised deep learning work has not been explored for SAR ship segmentation,

some authors have adopted weakly supervised methods. For instance, Gu et al. (2020) [64] proposed a

three-component CNN-CAM-CRF (CNN - Class Activation Mapping - Conditional Random Field) model

with two global labels, ship and nonship, that not only outputs the ship location heatmap and bounding

box, but also the pixel-level segmentation. Wang et al. (2020) [65] built a weakly supervised deep

hierarchical convolutional network for SAR ship segmentation that only uses noisy and missing target

level annotations. First, they trained a robust ROI detection network with soft labels to account for the

uncertainty of annotations with an added regularisation term to the cost function about the expected

existence of ships. Regularisation is implemented to prevent the network from becoming highly unstable

and oscillating throughout training, hence reducing the false alarm rate. Then, they created a statistical

model, Gaussian- G0
A mixture distribution where the Gaussian represents the properties of the ships and

the G0
A represents the sea clutter, both in the SAR ROI data. Lastly, a variational autoencoder (VAE) is

trained to estimate the parameters of the mixture model, and Otsu’s threshold [66] is used to segment

the ships on the parameter maps.

2.2.3 Data augmentation

Some authors attempted to solve the difficulties of collecting and labelling SAR ship images using

data augmentation techniques. Traditional techniques such as flipping, cropping, and affine transfor-

mation have been widely employed [67, 68]. However, these strategies have proven insufficient to fully

capture the wide variety of ships and their complex backgrounds [69].

Therefore, authors have proposed to overcome this problem by exploring Generative Adversarial
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Networks, mostly known as GANs, which are deep learning based generative models introduced by

Ian Goodfellow et al. in 2014 [70]. For instance, motivated by the low detection accuracy for a small

dataset, Zou et al. (2020) [71] used a multi-scale Wasserstein auxiliary classifier GAN [72] as a data

augmentation technique to generate high-resolution SAR ship images. Moreover, Zhang et al. (2022)

[73] attempted to solve the lower ship detection accuracy for the inshore scene when compared to the

offshore scene. Thus, they developed a GAN to extract the scene features of SAR images and used

K-means to create a scene binary cluster. Then, the inshore scene images were augmented via replica-

tion, rotation transformation, or noise addition until balance was obtained with the offshore scene. More

recently, some authors attempted to solve the SAR labelling difficulties by performing unsupervised do-

main adaptation, which aims to transfer knowledge from a labelled source domain to a target unlabelled

domain. For instance, Shi et al. (2022) [74] developed a framework for SAR ship detection through an

unsupervised domain adaptation by transferring optical domain knowledge to the SAR domain. Based

on the architecture of the original CycleGAN [75], an unpaired image-to-image translation model, the

authors proposed a cycle-consistent GAN with skip connections on the generator that revealed valid

results translating from the optical to the SAR domain. Therefore, the method developed is able to re-

ceive as input images from the optical domain, which are easier and less time-consuming to label, and

generate labelled images from the SAR domain. Similarly, Kwon et al. [69] (2022) proposed training

a conditional generative adversarial network (cGAN) to generate SAR ship images from electro-optical

images. Once again, since the model is trained using unpaired images, a cycle-consistency loss is im-

posed to maintain structural information while translating the image’s features. In summary, GANs have

been widely explored within the ship detection task, but solely as an augmentation technique. To the

best of our knowledge, GANs have not been directly applied to ship detection or segmentation.

Tables 2.1, 2.2, and 2.3 present the summary of the characteristics and main results of the deep

learning methods described in this section.
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Table 2.1: State-of-the-art on deep Learning SAR ship object detection methods. QF denotes the quality
factor, Pd the detection probability, Pf the false alarm probability, and Acc the accuracy.

Author Year Dataset Main architecture Main results

Schwegmann et al. [28] 2016 22 Sentinel-1 and
3 RADARSAT-2 images High-Way CNN Acc = 96.67%

Liu et al. [30] 2017 ALOS PALSAR and
TerraSAR-X imagery SLS-CNN QF > 80%

Pd > 80%

Kang et al. [32] 2017 23 Sentinel-1 images Faster R-CNN and CFAR Pd = 78.6%
Pf = 24.2%

Kang et al. [33] 2017 27 Sentinel-1 images Contextual Region-Based
CNN with Multilayer Fusion

Pd = 88.35%
Pf = 13.72%
F1 = 0.873

Time = 2.180 s

Li et al. [34] 2017 SSDD Improved Faster R-CNN AP = 78.8%
Time = 173 ms

Lin et al. [36] 2019 22 Sentinel-1 images Squeeze and Excitation
Rank Faster R-CNN

Pd = 81.1%
Pf = 13.8%
F1 = 83.6%

Deng et al. [42] 2019 80 Sentinel-1 images YOLOv2 with Densenet
as backbone

F1 = 75%,
Time = 3.17 s

Chang et al. [43] 2019 SSDD and DSSDD YOLOv2-reduced

SSDD: Acc = 90.05%
Time = 25 ms,

DSSDD: Acc = 89.13%
Time = 27 ms

Zhang et al. [44] 2019 SSDD Depthwise Separable CNN AP = 94.13%
Time = 9.03 ms

Zhou et al. [45] 2020 mini-RD and SSDD Lightweight YOLO
BFLOPS: 2.980

mini-RD: AP = 83.21%
SSDD: AP = 85.46%

Jiang et al. [46] 2021 SSDD Lightweight YOLO-V4
with three-channels

AP = 90.37%
Time = 13.42 ms

Liu et al. [47] 2022 SSDD YOLOv4-LITE AP = 95.03%
Time = 21.2 ms
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Continued from previous page.

Author Year Dataset Main architecture Main results

Wang et al. [51] 2017 3 Gaofen-3 images SSD300 and SSD512
with transfer learning

SSD300: Pd = 97.87%
Pf = 10.75%,

SSD512: Pd = 100%
Pf = 6.93%

Wang et al. [52] 2017 3 Sentinel-1 images SSD300 and SSD512
with transfer learning

SSD300: F1 = 92.11%
SSD512: F1 = 94.44%

Ma et al. [53] 2018 MTCD and MTDD MR-SSD F1 = 94.57%
mAP = 87.38%

Jin et al. [54] 2021 SSDD
SSD with feature fusing

module and squeeze
excitation modules

AP = 94.41%
Time = 32.6 ms

Table 2.2: State-of-the-art on deep learning SAR ship segmentation methods.

Author Year Dataset Main architecture Main results

Gao et al. [58] 2021 SSDD Lightweight Ghost Net Offshore AP = 64.8%
Inshore AP = 46.0%

Zhao et al. [60] 2021 HRSID and SSDD Synergistic Attention R-CNN
HRSID: Detection AP = 68.7%

Segmentation AP = 56.5%,
SSDD: Detection AP = 91.5%

Li et al. [62] 2020 TanDEM-X imagery 3D Dilated Multiscale U-Net

Sensitivity = 0.9004± 0.0295
Specificity = 0.9996± 0.0001

Dice = 0.9386± 0.0168
MHD = 0.1110± 0.0234

Mao et al. [63] 2020 SSDD Simplified U-Net AP = 68.1%

Gu et al. [64] 2020 Chinese Gaofen-3
fine strip imagery CNN-CAM-CRF -

Wang et al. [65] 2020 6 Gaofen-3 images YOLOv3 F1 = 86.22%
AP = 81.78%
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Table 2.3: State-of-the-art on deep learning SAR ship data augmentation methods.

Author Year Dataset Main architecture Main results

Zou et al. [71] 2020 Gaofen-3 imagery MW-ACGAN Generated multi-scale and
multi-class ship slices

Zhang et al. [73] 2022 SSDD GAN
Generated inshore
images to eliminate
scene learning bias

Shi et al. [74] 2022 AIR-SARship-1.0 and GF2ship OSGAN
Translated labelled images

from optical domain
to SAR domain

Kwon et al. [69] 2022 HRSID cGAN
Translated labelled images
from electro-optical domain

to SAR domain
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Chapter 3

Theoretical Background

A theoretical background is presented in this chapter. First, a brief overview of SAR and its utility for

ship detection is given. Afterwards, a thorough explanation of the pertinent classical and deep learning

models utilised in this thesis is provided.

3.1 Synthetic Aperture Radar Imaging

The main goal of this thesis is to develop unsupervised deep learning models to detect ships in SAR

images. Therefore, it is relevant to start by introducing SAR and its relevance to ship detection.

For over 30 years, SAR has been extensively used by the scientific community for Earth remote sens-

ing. SAR produces high-resolution images, independently of weather and daylight, that can be utilised in

numerous applications, such as climate change and geoscience research, 2D and 3D mapping, change

detection, and security-related monitoring [9, 76, 77]. SAR systems are based on a pulsed radar placed

on a platform that moves forward and features a side-looking imaging geometry. The radar technology

sends out powerful electromagnetic pulses and sequentially gathers the echoes of the backscattered

signal. After acquiring the data, the radar transmits it to another antenna on earth [78]. In its simplest

form, the system provides a 2D reflectivity map of the imaged area. In general, smooth surfaces appear

as black areas due to single-bounce surface scattering. Rough surfaces appear brighter due to the fact

that they reflect light in all directions, thereby, scattering more energy back to the antenna [79].

Applied to ship detection, the backscatter from the ocean is usually due to single-bounce surface

scattering, which leads to black areas in the reflectivity map. If the water is turbulent or the incidence

angle is high, this could not be true. Ships, on the other hand, typically appear as bright pixels due

to double and multiple-bounce scattering. Figure 3.1 shows the scattering mechanism for calm sea

conditions. Additionally, the appearance of the image may vary considerably with the radar parameters,

such as frequency, resolution, incidence angle, and polarisation [13]. For instance, the shape of the

same ship differs significantly at various resolutions, and ships of different shapes have varying sizes at

the same resolution [7]. Furthermore, the ships have various complex surroundings due to their special

imaging mechanisms that consequently interfere with their detection. These interferences can be blurred

15



Figure 3.1: Scattering mechanisms from the sea surface and a ship in calm sea conditions (retrieved
from [80]).

edges, sidelobes, ship wakes, speckle noise, inshore scenes, etc. Figure 3.2 shows some examples of

the common types of interference.

(a) (c)(b)

(d) (e)

Figure 3.2: SAR ships and their background interference: blurred edges (a), sidelobes (b), ship wake
(c), speckle noise (d), and inshore scenes (e).

3.2 Classical models for ship detection

In this section, the traditional methods that have been used for ship detection and are used for com-

parison purposes in this thesis are introduced. Therefore, the CFAR method and the spectral residual

approach for saliency detection are presented.
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3.2.1 CFAR

The CFAR method is an adaptive threshold-based detection algorithm that has been widely used

for SAR ship detection. The fundamental concept underlying the CFAR detector is to determine the

detection threshold, T , based on a false alarm probability, Pfa, and the clutter probability density function

of the SAR image. Let I be the grey value of the pixel and pb(I) the probability density function of the

background. The probability of false alarm and threshold value are given by

Pfa =

∫ ∞

T

pb(I)dI. (3.1)

For a set Pfa and pb, we can solve (3.1) to obtain the T value. All pixels with values higher than the

threshold are defined as ship, and pixels with values lower than the threshold are considered as back-

ground.

The algorithm generally consists of establishing the background distribution of the clutter based on

the SAR image and then estimating the distribution parameters of the clutter pixels in the sliding win-

dow. Then, given a specified false alarm probability, the threshold is computed and compared with the

test pixel to obtain the detection result. This process is repeated for each pixel of the input SAR image

through a sliding window. Typically, the sliding window, depicted in Figure 3.3, is composed of three

windows: the clutter window, the target window, and the protection window. The clutter and the protec-

tion window are centred in the test pixel. The clutter window is used for background clutter statistics to

compute the target detection threshold, and the protection window is used to ensure that no pixel of the

target is included in the background.

Clutter window

Protection window

Target window

Figure 3.3: CFAR sliding window.

To deal with different sea conditions, several clutter statistical models and sliding window structures

have been proposed throughout the years. Currently, the Rayleigh distribution, the Weibull distribution,

the Pearson distribution, the Gamma distribution, and the G0 distribution are the most used models [81].

However, although still some research is done on this topic, CFAR methods continue to significantly

rely on sea conditions and model parameters and are not robust enough to handle multitargets and

nonhomogeneous backgrounds.
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3.2.2 Saliency

The human visual system functions as a filter that is able to focus greater attention on visually ap-

pealing areas or objects [82]. Furthermore, it is believed that the human saliency detection process is

divided into two stages [83]. The first stage is a simple, fast, pre-attentive process in which low-level

features such as edges, intensity, and orientation initially emerge. It is at this stage where the candidates

to object surge. The second stage of attention is a slower and more complex process in which additional

details are extracted from objects. The first stage was the inspiration for Xiaodi Hou and Liqing Zhang

to introduce a technique to extract objects from their background, the spectral residual approach for

saliency detection [83].

Starting from the principle of image scale invariance [84], which states that the amplitude A(f) of

the averaged Fourier spectrum of natural images follows a 1/f distribution, the authors adopted a log

spectrum representation of the image, L(f) = log(A(f)). Furthermore, they believed that the information

that jumps out of the smooth log spectrum curve is related to the location of the objects or areas of

interest. To this end, the authors proposed to approximate the shape of A(f) by convoluting the input

image with an average filter:

A(f) = hn(f) ∗ L(f), (3.2)

where hn(f) is an n× n matrix given by

hn(f) =
1

n2


1 1 . . . 1

1 1 . . . 1
...

...
. . .

...

1 1 . . . 1

 . (3.3)

Then, in order to obtain the information that stands out from the log spectrum curve, they defined R(f)

as the spectral residual,

R(f) = L(f)−A(f). (3.4)

The spectral residual represents the statistical singularities in the input image and can be understood as

the unexpected or anomalous portion of the image.

Furthermore, with the inverse Fourier transform, it is possible to reconstruct the output image in the

spatial domain, obtaining the saliency map. The complete procedure for obtaining the saliency map,

S(x), from an input image, I(x), is given by

A(f) = ℜ(F[I(x)]) (3.5)

P(f) = ℑ(F[I(x)]) (3.6)

L(f) = log(A(f)) (3.7)

R(f) = L(f)− hn(f) ∗ L(f) (3.8)

S(x) = g(x) ∗ F−1[exp(R(f) + P(f))]2, (3.9)
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where F and F−1 are the Fourier Transform and the Inverse Fourier Transform, P(f) the phase spectrum

of the input image, and g(x) a Gaussian filter used to obtain a smoother saliency map.

Afterwards, a thresholding technique, such as Otsu’s threshold [66] can be applied to the saliency

map in order to obtain a binary map with the highlighted salient objects.

Even though this method can be directly applied to SAR ship images, the results lack consistency,

with good results for simple images and terrible results for images with complex backgrounds. Although

unreliable for ship detection, this method can be very useful for other preprocessing tasks, as will be

further discussed in Chapter 4.

3.3 Deep Learning models

In this section, the relevant deep learning models for this thesis will be introduced. The fundamentals

of deep learning, such as deep feedforward neural networks, convolutional neural networks, backprop-

agation, etc., are omitted. If the reader is unfamiliar with this topic, we suggest [85] and [86]. Only the

theory behind U-net, GAN, and CycleGAN will be presented.

3.3.1 U-net

Inspired by the work of Long et al. [87] using fully convolutional networks, Ronneberger et al. pro-

posed the U-net [61]. Originally designed for biomedical segmentation, the architecture achieved state-

of-the-art segmentation results, winning the Cell Tracking Challenge in 2015 by a large margin [61].

The basic architecture of the U-net, depicted in Figure 3.4, is composed of two paths: a contracting

path and an expansion path. Also known as the encoder, the contracting path follows a typical convo-

lutional network architecture, consisting of repeated convolutions followed by rectified linear unit (ReLU)

activations and max-pooling, that allows for high-level feature extraction. Throughout the contracting

path, the number of feature channels increases while the image size decreases. The expansion path,

or decoder, consists of up-convolutions followed by convolutions and ReLU, and concatenations with

features that have been captured in the encoder. Due to convolution, there is a loss of border pixels,

therefore, cropping is necessary. Thus, the pixel features near the edges are removed, since they have

the least amount of contextual information. The full model architecture resembles a u-shape that is able

to propagate contextual information throughout the network, allowing to segment objects in an area us-

ing information from a larger overlapping area [88]. Several energy functions have been proposed to

optimise the U-net. For binary classification, one of the most commonly used energy functions is the

Binary Cross Entropy (BCE),

LBCE = − 1

N

N∑
i=1

yi log (ŷi) + (1− yi) log (1− ŷi) , (3.10)

where N is the number of pixels of the training image, yi ∈ {0, 1} is the target value of pixel i, and

ŷi ∈ [0, 1] is the predicted probability for the pixel i. The capability of obtaining remarkably detailed
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Figure 3.4: Example of a U-net architecture (retrieved from [61]). Blue boxes correspond to multi-channel
feature maps and white boxes to copied feature maps. The number of channels is shown on top of the
boxes. The number of feature maps is provided at the bottom of the boxes. The arrows denote the
different operations.

segmentation with limited training samples quickly led to the use of the original U-net and improvements

in several other fields outside medical imaging [89].

3.3.2 Generative adversarial networks

Generative Adversarial Networks, a deep-learning-based generative model, was first introduced in

2014 by Ian Goodfellow et al. [70]. The authors proposed a new estimation framework for generative

models based on an adversarial process. In this framework, two models are trained concurrently: a

generator, G, that captures the data distribution and is able to generate new examples from the problem

domain, and a discriminator, D, that calculates the probability that a new sample was drawn from the

training data as opposed to sampled from G.

The generator can be represented by a differentiable function, G(z, θg), where z is an input vector,

sampled from pz(z) and θg represents the network parameters. The discriminator can also be repre-

sented by a differentiable function, D(x, θd) where x is its input data, that can either be from the training

data or generated by G, and θd represents the network parameters. The discriminator function outputs

a single scalar, D(x), that expresses the probability that x came from the training data rather than from

G. Figure 3.5 shows the architecture of the GAN model. The models are trained simultaneously, where

the discriminator is trained to maximise the probability of assigning the correct label to x, while the gen-

erator is trained to minimise log(1 − D(G(z))). Therefore, the discriminator is updated to get better at

discriminating between real and synthetic samples, while the generator is updated to get better at fooling

the discriminator. This competitive adversarial behaviour can be seen as a two-player minimax game,
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Backpropagation: 
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Figure 3.5: Simplified architecture of the GAN. The generator and the discriminator are trained using the
discriminator’s classification loss. The discriminator attempts to minimise the loss while the generator
seeks to maximise it.

which is mathematically defined with the value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (3.11)

Furthermore, the authors realised that the second term of equation 3.11 might saturate in early

training given that the discriminator is able to distinguish between real and low-quality synthetic samples

with relative ease. Therefore, it was proposed as an alternative to train the generator to maximise

logD(G(z)).

Although the generator and discriminator architectures were initially proposed as multilayer percep-

trons, Radford et al. [90] quickly developed deep convolutional generative adversarial networks (DC-

GANs), which achieved promising results for unsupervised learning of images by using CNNs as the

models. By addressing a conventional unsupervised problem by framing it as supervised, GANs quickly

became one of the most widely used and successful generative models.

3.3.3 CycleGAN

Image-to-image translation is the task of converting an image from one domain to another. This is

accomplished by learning the mapping between images of the different domains. Usually, paired image

examples are used to train image-to-image translation models, such as the Pix2Pix [91], a model that

achieved outstanding translation results using conditional adversarial networks. However, acquiring this

type of data can be very expensive or even impossible.

Therefore, in 2017, Zhu et al. introduced CycleGAN [75], an extension of GAN that is able to learn

image-to-image translation models without paired data. Although not being the first approach to at-

tempt unpaired image-to-image translation, the method has proven to be able to generate successful

outcomes for a variety of tasks backed by the fact that it does not rely on any task-specific, predefined

similarity function between the domains, nor does it presuppose that they lie in the same low-dimensional

embedding space [75].

The goal of the method is to learn the mapping between the domains X and Y , and vice-versa, given
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the training data xi ∈ X with i = 1, . . . , N and yj ∈ Y with j = 1, . . . ,M1 with distributions x ∼ pdata (x)

and y ∼ pdata (y), respectively. The CycleGAN architecture is depicted in Figure 3.6. The model includes

two generators G : X → Y and F : Y → X and two adversarial discriminators, DX and DY , where

DX aims to distinguish between images {x} from the X domain and translated images {F (y)}, and

DY between images {y} from the Y domain and {G(x)}. To be able to correctly translate domains,

the authors proposed three types of terms for the objective function: adversarial loss, cycle consistency

loss, and identity loss.

Figure 3.6: Simplified architecture of the CycleGAN. The generator G translates images from X domain
to Y domain and F translates images from Y to X domain. The discriminators for the X and the Y
domain are DX and DY , respectively.

Adversarial Loss

The adversarial loss is responsible for approximating the distribution of the generated images to the

target distribution. For the mapping function G : X → Y , G attempts to generate images G(x) that match

the Y domain. Then, DY tries to distinguish the generated image from real samples, y ∈ Y . Therefore,

the objective is given by

LGAN (G,DY , X, Y ) = Ey∼pdata (y) [logDY (y)] + Ex∼pdata (x) [log (1−DY (G(x))] , (3.12)

where G attempts to minimise it and DY aims to maximise it, i.e., minG maxDY
LGAN (G,DY , X, Y ).

For the mapping function F : Y → X, the process is similar, hence, F aims to generate images F (y)

matching the X domain, while DX attempts to discriminate F (y) from x ∈ X. Accordingly, the objective

is given by

LGAN (F,DX , Y,X) = Ex∼pdata (x) [logDX(x)] + Ey∼pdata (y) [log (1−DX(F (y))] , (3.13)

1Subscripts i and j will be omitted for simplicity.
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where F aims to minimise it DX tries to maximise it i.e., minF maxDX
LGAN (F,DX , Y,X).

With the adversarial loss, the generators are expected to generate plausible images in the target

domain, indistinguishable from the real ones. However, it does not guarantee an individual translation

from input to the desired output, thus the need to introduce the cycle consistency loss.

Cycle Consistency Loss

The cycle consistency loss is able to further reduce the space of possible mapping functions by

attempting to make the mapping functions cycle-consistent via an L1-norm reconstruction loss for a real

image. For the X domain, the cycle ought to be able to reconstruct x, that is, x → G(x) → F (G(x)) ≈ x.

For the Y domain, the principle remains, thus, G and F should be updated during the training to ensure

that y can be correctly reconstructed, i.e., y → F (y) → G(F (y)) ≈ y. To ensure this procedure, the cycle

consistency loss is defined as

Lcyc(G,F ) = Ex∼pdata (x) [∥F (G(x))− x∥1] + Ey∼pdata (y) [∥G(F (y))− y∥1] , (3.14)

where ∥ · ∥1 represents the L1-norm.

Identity Loss

Inspired by Taigman et al. [92], the authors suggested the regularisation of the generators to force an

identity mapping when real samples of the target domain are provided as input. Therefore, they defined

the identity loss as

Lidty(G,F ) = Ey∼pdata (y) [∥G(y)− y∥1] + Ex∼pdata (x) [∥F (x)− x∥1] . (3.15)

Although this loss is not fully required to successfully learn the mapping between the domains, it can

improve the results depending on the translation task. The intuition behind the loss should be for the

CycleGAN to only change parts of the image if required. Therefore, if something already looks like the

target domain, the model should learn that it does not need to be changed.

Complete objective

The full objective is given by the weighted sum of the objectives referenced above:

L (G,F,DX , DY ) = LGAN (G,DY , X, Y ) + LGAN (F,DX , Y,X) + λLcyc(G,F ) + αLidty(G,F ), (3.16)

where λ and α are parameters that determine the importance of each objective. Moreover, the goal is

to obtain the generators that solve

G∗, F ∗ = argmin
G,F

max
Dx,DY

L (G,F,DX , DY ) . (3.17)
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Training pipeline

Figure 3.7 represents the simplified training pipeline for a batch size of one2. The X domain is

composed of SAR ship images and the Y domain of unpaired binary segmentation masks. For simplicity,

only the forward propagation is shown. To train the DY discriminator, the input image, x, from the X

domain goes through G, generating G(x). The discriminator is then updated on the L2 adversarial loss

upon its output for the real Y domain image, y, and the generated image, G(x). To train the generators,

the three losses are used. For the cycle consistency loss, the input image goes consecutively through

G and F , F (G(x)), and the generators are updated on the L1 reconstruction loss. Moreover, for the

identity loss, the input image goes directly through F , which is updated to ensure identity mapping via

an L1 loss. The generator G is also updated via the L2 adversarial loss if G(x) is not able to trick DY .

The pipeline for when the input is an image y from the Y domain is similar.

G F

Input image from 
 X domain: x

Generated image from 
 Y domain: G(x)

Reconstructed Image:  
F(G(x))

DY

Image from 
 the Y domain: y

Cycle Consistency Loss: L1 loss

Adversarial Loss: 
binary L2 loss

F

Identity Loss: L1 loss

Generated image from 
 X domain: F(x)

FG

Generated image from 
 X domain: F(y)

G

Generated image from 
 Y domain: G(y)

Identity Loss: L1 loss

Cycle Consistency Loss: L1 loss

DX

Reconstructed Image:  
G(F(y))

Adversarial Loss: 
binary L2 loss

Start

Start

Figure 3.7: Simplified pipeline architecture for the CycleGAN training. The input image x goes through
the forward cycle, x → G(x) → F (G(x)) and the generators are updated based on the L1 loss between
the input and the reconstructed image. The input image x also goes directly through F which is then up-
dated in an attempt to maintain identity mapping. As usual in GANs, the model goes through adversarial
training, thus, G and DY are updated upon the decision of the discriminator. The principle is similar for
the input image y start.

2The input might alternatively be a mini-batch, however for the sake of clarity, a batch of one is assumed.
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Chapter 4

Proposed Approach

This chapter presents the implementation details of the proposed approaches. First, the character-

istics of the two datasets used and the preprocessing performed on them are presented. Then, the

framework for both approaches is described in depth.

4.1 Dataset

There are several public datasets suitable for ship detection in SAR imagery using deep learning

models. Two well-known datasets from the SAR ship research community were separately used to

train and evaluate the models proposed in this thesis. In this section, we will introduce them, list their

characteristics, and explain the preprocessing procedure.

4.1.1 SAR-Ship-Dataset

The SAR-Ship-Dataset [7], made available by Wang et. al in 2019 is one of the datasets used

in this thesis. The dataset consists of 102 Chinese Gaofen-3 (GF-3) [93] images and 108 Sentinel-1

[94] images labelled by SAR experts. These images vary in imaging mode, resolution, incident angle,

polarization, and background. Table 4.1 provides details on some of the characteristics mentioned

above. The authors processed and cropped the satellite images to a size of 256x256, building a dataset

with 39729 SAR ship chips with a total of 50885 ships labelled with the corresponding bounding box.

Each chip has at least one ship.

The SAR-Ship-Dataset was chosen for a variety of reasons. First, the dataset is by far the largest

one [12], which is valuable given the need for vast amounts of data to train deep learning models [95].

Then, the ships are multiscale. The smallest and the largest ship bounding boxes have an area of

24 and 25258 pixels, respectively. Moreover, the ships have distinct backgrounds, such as buildings,

harbours, islands, and land. These surfaces often have double backscattering reflections, appearing

similar to ships in the SAR imagery, which can lead to false positives in detection models. Land-ocean

segmentation can mitigate this effect. However, this process severely limits the speed of ship detection

and impedes automatic end-to-end ship detection. Sea condition is another extremely important factor
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Table 4.1: Detailed information for the original SAR imagery for the SAR-Ship-Dataset (retrieved from
[7]).

Sensor Imaging
Mode

Resolution
Rg. × Az. (m) Swath (km) Incident

angle (◦ )
Polarization Number of

Images

GF-3 UFS 3x3 30 20∼50 Single 12
GF-3 FS1 5x5 50 19∼50 Dual 10
GF-3 QPSI 8x8 30 20∼41 Full 5
GF-3 FSII 10x10 100 19∼50 Dual 15
GF-3 QPSI 25x25 40 20∼38 Full 5

Sentinel-1 SW 1.7x4.3 to
3.6x4.9 80 20∼45 Dual 49

Sentinel-1 IW 20x22 250 29∼46 Dual 10

which may difficult the ship’s detection, particularly in rough sea conditions, as volume scattering may

weaken the ocean-ship contrast. To offset the inevitable background diversity of practical applications,

this dataset includes a large number of ships under complex backgrounds. The authors of the dataset

believe that given its diversity, object detectors should perform well without the need for land-ocean

segmentation. Figure 4.1 depicts some examples of images from the dataset in different conditions with

the corresponding bounding boxes.

(a) (b) (c)

(d) (e) (f)

Figure 4.1: Examples of images from the SAR-Ship-Dataset with diverse backgrounds, such as calm
sea conditions (a), rough sea conditions (b), harbour (c), and complex background with islands/land
(d-f). The provided ship bounding boxes are represented in red.

26



Although the authors of the dataset refer to each of the 256x256 images as a chip, we will refer to them

as images for simplicity and congruity.

Data Selection and Pre-Processing

It would usually be advisable to train deep learning models with as much representative data as there

is available. However, in practise, this is often not possible. The CycleGAN, one of the models in this

thesis, fits this description. Due to it being a considerably complex model, it is unfeasible to train it with

the full dataset due to extremely long running times. Therefore, we were compelled to create a more

concise version of the dataset. Although capturing a large diversity, a substantial part of the images from

the original dataset are very similar, with most images having only one ship of relatively small size in calm

sea conditions. Thus, randomly sampling the images from the original dataset would likely result in a new

dataset with a predominance of these simple images. Since we want our CycleGAN model to work not

only for simple images but also for complex ones, which are characterised by having ships in rough sea

conditions, or near harbours or land, or of relatively large size, we must create the new dataset in such a

way that it captures the original’s diversity in a balanced manner. Due to the unsupervised nature of the

problem, it is not possible to manually select the images of the new dataset. Nonetheless, we believe

that the entropy of each image should be an adequate representation of the level of its complexity. Thus,

we propose to create the new dataset with images that are equally distributed in entropy. Hence, we

compute the Shannon entropy [96] for each image of the original dataset and utilise the return values

to create a histogram with a fixed number of bins, which is depicted in Figure 4.2. In Figure 4.3 we

show examples of images sampled from different bins, where it is possible to observe the increasing

complexity of the images as we sample from bins with higher average entropy levels. Then, we sample

an equal number of images from each bin, creating a new training set with a total of 7000 images. We

call this dataset the concise-SAR-Ship-Dataset.
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Figure 4.2: Distribution of the Shannon Entropy of the SAR-Ship-Dataset images.
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(a) (b) (c) (d)

Figure 4.3: Images sampled from the first (a), fifth (b), tenth (c) and, fifteenth (d) bin of the histogram
from Figure 4.2.

For the second approach, the UDSEP, as there are no computational limitations, we can use the

complete dataset. This dataset and the concise-SAR-ship-dataset do not contain images from the test

set, which was created by randomly selecting 1000 images from the original dataset.

Furthermore, the pixel values of the images, which range from 0 to 255, are normalized. Given

the architecture of each of the proposed models, namely the output activation function, different nor-

malisations are required for each of the approaches. For the first approach, the CycleGAN, a linear

normalisation is performed, scaling the images to a [-1,1] range. For the UDSEP, the pixel values of the

images that are used to train the U-net are linearly scaled to a [0,1] range.

The original dataset only provides the ship’s bonding box, however, in this work we are interested

in segmenting the ships. Therefore, for more accurate test results and for a fairer comparison with the

supervised method, all the images from the test set and the concise-SAR-Ship-Dataset were annotated

with ship segmentation through a threshold-based segmentation method supervised by us. More details

on the method used to label the images are given in Appendix A. Moreover, for the purpose of analysing

the method’s results for the different types of images, a binary label of the level of complexity (simple

or complex) is given to each test image. Typically, images that are considered simple contain offshore

ships of average size in calm to moderate sea conditions. Images are deemed complex if the ships are

excessively large, or in inshore conditions, or with a significant amount of spectral noise. Out of the 1000

images that make up the test set, 650 images were considered simple and 350 complex.

4.1.2 SAR Ship Detection Dataset (SSDD)

The SSDD, introduced by Li. et al [34] in 2017, is the other public dataset used in this thesis. This

dataset consists of 2456 ships in 1160 images that vary considerably in size. The largest width/height

of the image is 668 pixels, while the smallest is 190 pixels. Table 4.2 provides further details on the

characteristics of the dataset. Although the initial version of the published article only provided the ship’s

bounding box, a 2019 release [11] provided additional annotations, such as the rotatable bounding box

and the polygon segmentation. As with the previous dataset, we chose this dataset for a variety of rea-

sons. For instance, it is very diverse. Small-sized ships, complex backgrounds, and dense arrangements

near the harbours are some of the reasons that contribute to SSDD’s diverse ship population. Then, this
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Table 4.2: Detailed descriptions of SSDD imagery (adapted from [11]).

Sensors RadarSat-2, TerraSAR-X, Sentinel-1
Polarization HH, VV, VH, HV
Resolution 1m-15m
Places Yantai, China; Visakhapatnam, India
Scale 1:1, 1:2, 2:1
Ship Different sizes and materials
Sea condition Good and bad conditions
Scenes Inshore and offshore

dataset is by far the most utilised. According to [12], in May 2022, 67% of the published papers using

deep learning for SAR ship detection utilised this dataset or improvements thereof. Moreover, contrarily

to the previous dataset where the images are simply provided, the authors of this dataset also formu-

lated some standards such as a train-test division, inshore-offshore protocol, and ship-size definition.

These standards promote equitable methodological comparisons, endorsing the development of SAR

ship detection. Figure 4.4 depicts some examples of images from the dataset in different scenes with

the corresponding polygon segmentations.

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Examples of images from SSDD with different ship scenes, such as offshore (a-c), and
inshore (d-f). The provided ship polygon segmentations are represented in red.

Data Selection and Pre-Processing

Given the relatively small size of the dataset, there was no need to do a preselection of images, hence

the full dataset was utilised for both proposed models. Moreover, given that the image sizes vary and in

order to maintain consistency throughout the models, each image was resized to 256x256 pixels. Since
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the majority of resized images were shrunk, the SAR images were resized using OpenCV INTER AREA

interpolation, as suggested by [97]. The segmentation images were resized with INTER NEAREST to

keep binary values. Additionally, the dataset undergoes the same normalisation steps as the previous

dataset. We use the standards provided by the authors, such as the train-test division. Thus, the train

and the test set are made up of 928 and 232 images, respectively. Furthermore, there is no need

to distinguish between complex and simple images given that the authors have already provided an

offshore-inshore separation.

4.1.3 Comparisons between the datasets

A comparison between some characteristics of the datasets described above is employed. First of all,

the SAR-Ship-Dataset is considerably larger than the SSDD. Even the concise-SAR-Ship-Dataset has

more than seven times the images of the SSDD. Furthermore, the SSDD has a higher average ship per

image value than the SAR-Ship-Dataset, which is 2.11 as opposed to 1.26. This is partially attributable

to the fact that the SSDD contains a large number of images with various small ships, which are less

common in the SAR-Ship-Dataset. This assertion is supported by Figure 4.5, which demonstrates that

the relative ship area for the SSDD training set is significantly smaller.
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Figure 4.5: Distribution of the relative area of the ships segmentation for the training set of the SAR-Ship-
Dataset and the SSDD. The relative area is given by the division between each ship’s segmentation area
and the total area of the image.
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4.2 Methods

4.2.1 CycleGAN

The first proposed approach is based on the CycleGAN. In this framework, we aim to explore the im-

age translation capabilities of the CycleGAN to provide semantic segmentation. To this end, we propose

for the CycleGAN to learn the mapping between normal images and binary segmentation masks, and

vice-versa. In the context of this thesis, and since we are only interested in the segmentation, the main

goal is for the CycleGAN to learn the mapping between the SAR image domain and a binary domain,

corresponding to the ships’ semantic segmentation. Moreover, one independent CycleGAN model is

trained for each of the datasets.

The CycleGAN is based on the original paper implementation [75]. Its simplified architecture is

depicted in Figure 4.6. The model consists of two discriminators, DL and DSAR and two generators,

GL to SAR and GSAR to L.

Label Domain

SAR Domain

Figure 4.6: Simplified architecture of the CycleGAN. The generator GL to SAR translates images from
the label domain to the SAR domain and GSAR to L translates images from the SAR domain to the label
domain. The discriminators for the label domain and the SAR domain are DL and DSAR, respectively.

The discriminators are deep convolutional neural networks that receive as input an image and com-

pute the likelihood that it came from the training data rather than being generated by the generators.

Per the paper’s specifications, the discriminators are PatchGAN classifiers. This model tries to classify

whether each NxN patch of an input image is real or fake. The PatchGAN runs convolutionally across

the image, averaging the values to compute the global likelihood of the input image. When compared

to the classical ImageGAN, where NxN would equal the size of the input image, this approach allows

for a cheaper model with consequently faster computing times. Following the recommendations of [75]

and [91], a 70x70 PatchGAN is implemented for both discriminators. The architecture of the PatchGAN

discriminator is depicted in Figure 4.7.
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64x64x128

16x16x512
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16x16x1

256x256x1

Convolutional + LeakyReLU

Convolutional + InstanceNorm + 
 LeakyReLU

Input image

Convolutional

70x70 Patch

Figure 4.7: Schematic representation of the architecture of the PatchGAN discriminators. The
LeakyRelu activation function has a 0.2 slope for the negative values. The numbers below the blocks
represent the image size at its output.

The generators receive an image from one of the domains as input and translate it to the other

domain. To accomplish this, the generators have an encoder-decoder architecture, where the input

image is initially down-sampled to a latent space that goes through a series of ResNet blocks [98],

followed by an upsampling to the size of the output image. The architecture of the generators is depicted

in Figure 4.8.

256x256x1 256x256x64

128x128x128

64x64x256

9x ResNet block

ResNet block

Deconvolution +  InstanceNorm + ReLUInput image

Convolutional + InstanceNorm + ReLU Deconvolution +  InstanceNorm + Tahn

Skip connection (concatenate)

256x256x1

128x128x256

256x256x128

Figure 4.8: Schematic representation of the architecture of the generators. The numbers below
the boxes represent the image size at its output. The ResNet blocks are made of a Convolution-
InstanceNorm-ReLU block followed by a Convolution-InstanceNorm block. The convolutions of the
ResNet block have a kernel size of 3x3 and a 1x1 stride. The input of each ResNet block is con-
catenated to its output.

Training data generation

To train the model, it is necessary to provide data from both domains. Since the data does not need

to be paired, we just need to ensure that it is representative of the domain. For the SAR image domain,

the concise-SAR-Ship-Dataset and the complete SSDD training set are used for each of the models.
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For the binary label domain, it is required to produce two new datasets, Dlabel SSD and Dlabel SSDD, with

binary ship segmentation images. Figure 4.9 depicts the procedure developed to acquire this dataset

for the SAR-Ship-Dataset. We apply the saliency method described in Section 3.2.2 followed by Otsu’s

thresholding to obtain these images. However, naively applying this method to a random SAR image

would not always work, as the saliency method only yields satisfactory results for simple images, which

are categorised by having ships in calm sea conditions with considerable ocean-ship contrast. Therefore,

to ensure finer and more accurate segmentation, we first select the 7000 images with the lowest entropy

from the first and second bin of Figure 4.2 (step A) before applying the saliency-thresholding method

(step B). Additionally, the segmentation masks are post-processed using flood fill [99]. At the conclusion

of the procedure, 7000 binary 256x256 ship segmentation images are obtained. A similar approach is

used for the SSDD. In that case, we select the 300 images with the lowest entropy and then apply the

saliency-threshold method. Additionally, data augmentation is performed on the obtained segmentation

masks until they match the number of SAR images, thus avoiding the SAR domain images to be more

represented. A combination of scaling, translating, rotating and elastic deformation [100] is used for the

data augmentation.

Selected SAR images

B

Original dataset

A

Figure 4.9: Proposed approach to obtain the ship segmentation images dataset Dlabel SSD.

4.2.2 UDSEP

The second proposed framework, the UDSEP (U-net Detect-Select-Erase-Paste), is a self-supervised

segmentation method. In this approach, we first generate synthetic labelled images from the original

SAR unlabelled images. Then we use the synthetic images and the corresponding masks as training

set for semantic segmentation with the U-net. Since the U-net is a supervised method, and in order to

avoid generating the segmentation masks manually, we propose a novel algorithm to generate the new

SAR images with the corresponding masks, the DSEP (Detect-Select-Erase-Paste) method. The overall

framework of the UDSEP method is depicted in Figure 4.10. The framework is divided into a training

phase (a) and an inference phase (b). The training starts with the generation of the synthetic labelled

images where the DSEP method takes as input a SAR image x, and outputs a pair of images x1 and m1

where x1 is a new SAR image and m1 its segmentation mask. This process is repeated for each image

in the training set. Then, the generated image pairs are used to train the U-net, Fϕ with parameters ϕ,

which is optimised to minimise the BCE loss between the output training masks and the target generated
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masks. After training is complete, the optimised U-net is used directly to obtain segmentations of the test

set. The detailed architecture of the U-net is shown in Figure 4.12. Similar to the CycleGAN approach,

a separate UDSEP model is trained for each dataset.

Training phase (a)

Inference phase (b)

DSEP

Figure 4.10: Framework for the UDSEP. (a) Training phase (b), Inference phase

DSEP method

In [101] Li et al. introduced an anomaly detection framework for high-resolution images with defects

in local regions. To train the network, the authors proposed to generate images with irregularities.

Therefore, they introduced a novel augmentation technique, the Cutpaste. This method consists of

collecting a small rectangular image patch from a normal image and pasting it back into another normal

image at a random location.

Inspired by their work, we propose the DSEP method. Named after its four main steps: Detect,

Select, Erase, and Paste, the DSEP is an unsupervised augmentation process that receives as input

an image with objects of the same type and transforms it to a new image, obtaining the corresponding

binary segmentation mask with the location of the objects. In a concise manner, the DSEP method

consists of the following steps:

• Detect the objects in an image.

• Select which of the detected objects to keep in the image and add their segmentation to the mask.

• Erase the objects that were chosen not to keep in the original image, by covering them with

background.
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• Optionally Paste augmented versions of the detected objects randomly in the image where the

objects were erased, adding their segmentation to the mask.

Therefore, unlike Cutpaste, where the main objective was to create spatial irregularity by randomly

collecting and pasting patches, we aim to, as far as possible, maintain the structure of the original

image. For instance, if the detected objects are all kept and if the Paste step is not employed, the new

transformed image will in fact be equal to the original input image. Thus, in practice, the method will

work only as a mask generator.

Given that Detect step will be performed by an unsupervised object detector, which is likely not that

robust, we introduced the Select and Erase steps. Therefore, if the initial object detector performs poorly

and unduly detects a lot of objects, these steps make sure to mitigate the damage that would come from

considering all those objects in the segmentation mask while training the U-net. Moreover, in an effort

to increase the amount of information contained in the images without significantly altering them, we

made the Paste step optional. Therefore, there is a pa chance of pasting an augmented version of

each selected object. Evidently, the quality of the images produced by the DSEP approach is highly

dependent on the robustness of the initial object detector.

Training data generation

For our task, the process receives as input a SAR image and transforms it into a new image, obtaining

the corresponding binary segmentation mask with the ship’s location in a completely unsupervised way.

Although the DSEP method can be used as an augmentation method, for this problem in particular, we

are not interested in the original input image after the transformation process. Therefore, we refer to the

DSEP as a transformation method as opposed to an augmentation method.

A schematic representation of the DSEP transformation method is depicted in Figure 4.11. First, the

Detect step is employed. For our object detector, we use the previously trained SAR to label generator,

GSAR to L, from the CycleGAN model described in Section 4.2.1. Evidently, we use the generator model

that was trained on the same dataset that we are transforming. Therefore, we apply the generator to

the input image (step A). After thresholding the obtained translation, we obtain a binary map with the

shapes of each detected object in the input image. Then, using the label and regionprops tools from

[102], each individual object in the SAR image domain is separated (step B). At the end of the Detect

step, we are left with all the objects that the generator was able to identify.

Next, in the Select step, we choose which of the detected objects to keep in the image and which

ones to cover. To determine which objects to keep, we start by rejecting objects whose size deviates

heavily from the mean, i.e., extremely large or small objects. Then, we keep up to Nkeep objects. The

rest of the objects are marked to be erased. Given that there is not an unsupervised robust way to give

a ship’s confidence level for each detected object, we randomly choose which ones to keep until the

maximum of Nkeep objects is reached (step C). Moreover, the segmentation of the chosen objects is

added to the segmentation mask (step D).

After the objects to be erased are selected, we extract their segmentation from step A and, to ensure
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that they are totally covered, apply the morphological operation dilation (step E). Then, we search the

original image to find regions big enough for cutting that were not detected in step A, i.e., regions of

background, and paste them at the locations of the objects to cover (step F). At the end of the Erase

step, we are left with an image that is similar to the original but in which some of the objects have

been replaced by the image’s background. On first inspection, one might think that the Erase step is

unnecessary and that we should keep all the objects detected in step A. However, as previously said,

the initial object detector is not perfect, so we cannot guarantee that all of the detected objects are in

fact ships. Therefore, considering every detected object as a ship could lead to the generation of poor

quality SAR images for cases in which the SAR to label generator performed poorly with a lot of false

detections. Furthermore, it is important to state that the generator will have fewer than Nkeep detections

for most images, so the Erase step will often not be employed.

Lastly, in the Paste step, there is a pa chance of augmenting each of the kept objects and pasting

them at a random location in the image that resulted from step F, and subsequently on the mask from

step D. The augmentation consists of rotation and soft intensity jitter. At the end of the Paste step, we

obtain a new SAR image (step H) and its corresponding segmentation mask (step I).

A  BDetect step Select step
Keep:

Erase:

Paste step

Output mask

Input SAR image

C

F

I H

D
Erase step

Output SAR image

E

Augmented: G

Figure 4.11: An overview of the proposed method. The DSEP method consists of four main steps: The
Detect step (blue) receives as input the original SAR image and outputs the identified objects that are
expected to be the existing ships; The Select step (yellow) receives all the identified objects and outputs
which ones are to be kept and which ones are to be erased. It also outputs the segmentation mask of
the kept objects; The Erase step (green) receives the objects to erase and the input SAR image and
outputs the same image with those objects covered with background; The Paste step (orange) receives
the output of the two previous steps and returns a new SAR image and the corresponding segmentation
mask.
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Figure 4.12: Schematic representation of the architecture of the U-net. The number of channels at the
output of the boxes is shown on top of them, and the size of the feature maps at the bottom.
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Chapter 5

Results

This chapter presents the evaluation metrics, training details, and results for the proposed methods

as well as comparison methods. First, the data generated as a training set for the models will be anal-

ysed. Then, the segmentation and object detection results of the proposed methods will be compared

to those of two conventional unsupervised methods, Saliency and CFAR, as well as a supervised U-net.

In addition, a discussion and analysis of the results, an ablation study of the UDSEP method, and a

computation evaluation are provided.

5.1 Evaluation Metrics

In order to evaluate the performance of the proposed methods, the results are evaluated with seg-

mentation metrics and object detection metrics. All the deep learning models were trained several times.

The best results were kept and are shown in this thesis.

For the segmentation evaluation, the IoU (Intersection over Union) and the F1-score for the ship class

are computed pixel-wise. The IoU (equation 5.1) is the area of overlap between the ships’ ground truth

masks and their prediction masks divided by the area of union between the ships’ ground truth masks

and their prediction masks. The F1-score (equation 5.2) is a single evaluation metric that combines

precision and recall by taking their harmonic mean. Precision (equation 5.3) refers to the proportion of

correctly assigned ship pixels across all segmentation results, while recall (equation 5.4) refers to the

proportion of correctly segmented ship pixels across all ground truth ship pixels. TP, FP, and FN stand

for the pixel number of true positives, false positives, and false negatives, respectively.

IoU =
Area of overlap
Area of Union

(5.1)

F1-score =
2× Precision × Recall

Precision + Recall
(5.2)

Precision =
TP

TP + FP
(5.3)

Recall =
TP

TP + FN
(5.4)
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For the detection evaluation, the F1-score is calculated for different IoU thresholds. The equations

are similar to those used for the segmentation evaluation, with the exception that TP, FN, and FN are

no longer defined by pixel but by objects. A ship detection is considered a true positive if the IoU value

between the ground truth mask and its prediction is greater or equal to the threshold IoU value. If the IoU

value is lower than the threshold, the detection is considered a false negative. A false positive occurs if

there is a detection with no corresponding object in the ground truth.

5.2 Implementation Details

In this section, training and further implementation details of the models will be presented. All the

deep learning algorithms were implemented with Python [103] using Keras [104] and Tensorflow [105]

libraries. Moreover, the experiments were carried out with the following specifications:

• Python 3.9.10,

• Tensorflow 2.6.2,

• Cuda 11.6,

• CPU: Intel(R) Core(TM) i5-7600K CPU @ 3.80GHz,

• GPU: NVIDIA GeForce GTX 1070 - 8GB.

5.2.1 CycleGAN

The discriminator models are optimized with an L2 loss with a factor of 0.5 in order to slow their

changes relative to the generator. The discriminators are updated on both the real and generated

images. However, to lessen the impact of model updates on the discriminator, a buffer of 50 generated

images is kept for each of the discriminators, as suggested in [106]. At the beginning of training, the

buffer is populated and then, for each iteration, there is an equal chance of using the generated image

directly to train the model or of replacing it in the buffer with an existing image and using the replaced

image to train the model. The use of this buffer allows the discriminator to avoid greedily attempting to

beat the current generator but instead the last 50, creating a more generalized solution. The generators

are updated based on the cycle consistency loss, adversarial loss, and identity loss. Following the paper

recommendations [75], the cycle loss is given ten times the weight of the adversarial loss and double

the weight of the identity loss.

GAN models usually do not converge, rather, an equilibrium is found between the generators and

the discriminators. Moreover, analysing the evolution of the losses is not useful to determine whether

training has ended, as often lower losses lead to visually worse results. Therefore, at the end of each

training epoch, we save the generator models and several samples of generated images. After a few

epochs of training, which is set to 15 epochs for the SAR-Ship-Dataset and 100 for the SSDD, we visually

review the generated images and choose the model with the highest translation quality from the SAR

domain to the label domain.
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For the SAR-Ship-Dataset, the CycleGAN model is trained with the concise-SAR-Ship-Dataset and

Dlabel SSD. For the SSDD, the CycleGAN model is trained with the complete SSDD and Dlabel SSSD.

After the models are trained and selected, a 0.5 threshold is applied to the output of the GSAR to Label

at test time to get the binary segmentation predictions. Pixels with values above 0.5 are considered as

ship and below 0.5 are considered as background. Although we are only interested in the segmentation

capability of the CycleGAN, the GLabel to SAR generator is optimised to generate SAR-domain images

from binary image inputs. The results of this translation operation are shown in Appendix B.

5.2.2 UDSEP

The U-net was trained from scratch, with an early stopping of 10 epochs of patience, using the

Adam optimizer [107] with a learning rate of 0.001, with Xavier initialization and batch size of 5. We

apply the DSEP method separately to the complete SAR-Ship-Dataset and the SSDD and split the

generated image pairs with a 85%-15% ratio into the training and validation sets, respectively. The

model is optimized to minimize the BCE loss function (equation 3.10). The parameter pa is set to 0.2 to

have a considerable chance of augmenting the ships, and Nkeep is set to 4 since we have a moderate

level of confidence in the CycleGAN’s generator detections. Moreover, one independent U-net model

is trained for each of the datasets. A plot of the train and validation loss for both datasets is depicted

in Figure 5.1. After the model is trained, a threshold of 0.5 is applied to the U-Net’s output in order to

obtain the binary segmentation masks.
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Figure 5.1: Evolution of Training and validation loss for the UDSEP model. a) SAR-Ship-Dataset, b)
SSDD.

5.2.3 Saliency

The framework introduced in Section 3.2.2 is applied for comparative purposes. The non-deep learn-

ing unsupervised method consists of a spectral residual approach for saliency detection followed by

Otsu’s thresholding. The method does not require any training, so it is directly applied to the test set.

The size of the hn(f) matrix in equation 3.3 is set to 3x3 and the size of the Gaussian blur kernel from
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equation 3.9 is set to 7x7.

5.2.4 CFAR

A two-parameter CFAR algorithm based on Rayleigh distribution and morphological processing is

also implemented for comparison. Inspired by [81], the CFAR parameters are set so that the false alarm

rate is 0.04 and the target window size is 40x10. Two morphological post-processing operations are

applied to the output of the CFAR detector and consist of eroding and dilating, which are then followed

by small object removal and flood fill. Like the previous method, this framework does not require training

so it is applied directly to the test set.

5.2.5 Supervised U-net

The supervised semantic segmentation method chosen for comparison is a U-net. The U-net has

the same architecture and is trained similarly to the UDSEP method, therefore, the model is trained from

scratch with an early stopping of 10 epochs of patience, using the Adam optimizer with a learning rate

of 0.001, with Xavier initialization and batch size of 5. Moreover, the model is optimized to minimize

the BCE loss function. For the SAR-Ship-Dataset, the model is trained with the 7000 images from

the concise-SAR-Ship-Dataset and the corresponding segmentation masks obtained with the method

presented in Appendix A. For the SSDD, the model is trained with the provided training set and the

corresponding polygon segmentation masks. Figure 5.2 depicts the train and validation loss for both

the datasets. A threshold of 0.5 is applied to the U-Net’s output at test time to obtain the segmentation

masks.
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Figure 5.2: Evolution of Training and validation loss for the supervised U-net. a) SAR-Ship-Dataset, b)
SSDD.
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5.3 Experimental Results and Analysis

5.3.1 Generated Data Analysis

Dlabel SSD & Dlabel SSDD

Figure 5.3 shows several examples of the obtained binary ship segmentation images that make up

Dlabel SSD and Dlabel SSDD. The proposed saliency-threshold method was able to successfully generate

binary segmentation masks from simple SAR images where the sea is calm and there is good contrast

between ships and sea. Furthermore, the augmentations implemented for the SSDD also revealed valid

results. However, it is important to note that the preselection of the low entropy images had a major

impact on the results obtained. Without this preselection, the segmentation masks would have poor

quality, which would later have a severe impact on the CycleGAN results.

SAR-Ship-Dataset: SSDD:

(a) (b)

Figure 5.3: Binary ship segmentation masks obtained with the saliency-threshold method. (a) SAR-
Ship-Dataset, (b) SSDD.

DSEP

Figure 5.4 shows a series of examples of the DSEP transformations. The first and fourth columns are

the original SAR images, the second and fifth columns are the created SAR images, and the third and

sixth columns are the corresponding segmentation masks. As can be seen from the first to the third row,

the method performs extremely well for input images with low to medium complexity. In these cases, the

initial object detector usually has fewer than 4 detections. Therefore, the method simply works as a mask

generator, and given the success of the initial object detector, the obtained image pairs are comparable

to those of the desired supervised method. Furthermore, sporadic augmentations that seem to improve

the amount of information in the images can also be observed.

For inshore images, the quality of the image pairs generated considerably deteriorates. This was

already expected given the limitations of the initial CycleGAN based object detector. Nonetheless, it is

43



on these images where we can better see the impact of the Select and Erase steps. For example, in

the fourth row from Figure 5.4 (a), due to the complexity of the input image, the initial object detector

identified 6 objects when the ground truth only indicates the existence of one ship. Since we defined 4

as the maximum number of objects to keep, 2 of those detected objects were covered, avoiding training

the U-net with that presumably inadequate labelled data. Although we did not cover all the non-ship

objects, we managed to minimize the impact of the poor CycleGAN detection. Moreover, there is always

a chance to cover a ship, but we believe that unduly covering a ship from an image should have less

negative impact on the network than training it with unlabelled ships.

In addition, as can be seen in the fifth row, the method yields good results even for input images with

bright, noisy backgrounds. This and the general effectiveness of the DSEP method owe a great deal to

the CycleGAN generator’s robustness.

(a) (b)

input image input imageoutput SAR image
output segmentation 

mask output SAR image
output segmentation 

mask

Figure 5.4: Original input SAR images and the result of the DSEP method: SAR image and its segmen-
tation mask. (a) SAR-Ship-Dataset, (b) SSDD.

44



5.3.2 Results on SAR-Ship-Dataset

The test set from the SAR-Ship-Dataset, which consists of 1000 images randomly sampled from the

original dataset, is used to evaluate the models.

Segmentation results

Table 5.1 presents the pixel-wise IoU and F1-score for the methods described above. To provide a

more in-depth understanding of these results, several segmentation results for a selection of simple and

complex images from the test set is represented in Figures 5.5 and 5.6, respectively.

Table 5.1: Segmentation results for the SAR-Ship-Dataset.

Method IoU F1-score

Supervised 0.773 0.841
Saliency 0.551 0.663
CFAR 0.441 0.564
CycleGAN 0.627 0.734
UDSEP 0.630 0.737
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Figure 5.5: Segmentation results for simple test images. The original bounding box is represented in
green in the input image, the ground truth segmentation obtained with the method explained in Appendix
A is represented in red in all images, and the predictions for each model are represented in yellow.
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Figure 5.6: Segmentation results for complex test images. The original bounding box is represented in
green in the input image, the ground truth segmentation obtained with the method explained in Appendix
A is represented in red in all images, and the predictions of each model are represented in yellow.
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Detection results

Figure 5.7 displays the F1-score for the methods described above across IoU thresholds ranging from

0.1 to 0.9 in steps of 0.1. To understand each technique’s pluses and drawbacks in greater detail, the F1-

score across the IoU thresholds computed separately for images with simple and complex background

is represented in Figure 5.8.
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Figure 5.7: F1-score across the IoU thresholds for the different methods, for the complete SAR-Ship-
Dataset test set.
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(a) Simple images
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(b) Complex images

Figure 5.8: F1-score across the IoU thresholds for the different methods, for different type of images
from the the SAR-Ship-Dataset test set.

Analysis

First off, it should come as no surprise that the supervised method outperformed all the remaining

methods, which are all unsupervised. Moreover, the good results for the supervised method validate

the U-net as the feature extractor for SAR ship semantic segmentation. Furthermore, deep learning

techniques performed significantly better than conventional techniques. Among the proposed methods,

the UDSEP marginally outperformed the CycleGAN. For the segmentation metrics, the UDSEP achieved

a 0.03 higher pixel-wise IoU and F1-score. For the object detection metrics, the evolution of the F1-score
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throughout the threshold values is very similar, but still slightly in favour of the UDSEP. For the most

common threshold value, 0.5, the UDSEP obtained an F1-score of 0.730 as opposed to the CycleGAN’s

0.706. Given that the CycleGAN generator serves as the foundation for the UDSEP, the similarity of

these results is not surprising. Nonetheless, the integration of the DSEP transformation method with the

U-net improved the results of the original CycleGAN. The ablation study provided later in this section

will help to better understand the impact of these additions. Moreover, the results of the proposed

methods are still considerably lower than those of the supervised method, which as an F1-score at the

0.5 threshold of 0.859. It is worthwhile to comment on the saliency method, as its segmentation results

are superior to those of CFAR, but its object detection results are significantly inferior. This is due to the

fact that for complex or noisy images, the Saliency method behaves chaotically, considering everything

as small objects, resulting in a high recall and low precision. This can be seen easily seen in Figure 5.6.

Because the calculations are done by object rather than pixel, this behaviour has a greater impact on

the object detection metrics.

When analysing the results separately for simple and complex images, several conclusions can be

made. First, it is possible to notice that all methods perform reasonably well for simple images. Tra-

ditional methods usually have bigger segmentation masks than ground truth masks and, occasionally,

have false detections. Deep learning methods detect the vast majority of ships, with few to no false and

missed detections. Furthermore, it is of interest to note that up to the 0.5 threshold, the F1-score for

the proposed methods is very similar to that of the supervised method. This and the visualisation of

the results indicate that the results for simple images between the proposed and the supervised meth-

ods are very comparable. The deterioration of the results for higher threshold values is due to minor

discrepancies between the predictions and the ground truth.

Furthermore, not only for the proposed methods but also for the comparison methods, there is a

significant decline in results for the complex images. This was already expected, given the high de-

gree of similarity between the ships and the background, which may include islands, harbors, noise,

etc. This inevitably leads to more false positives. Nonetheless, there is a significantly higher gap in

performance between the proposed and the supervised method for the complex images. There are

some factors that can account for the lower performance of the proposed methods. First, when train-

ing the CycleGAN, even with the efforts of obtaining a concise training set with high image diversity,

there is still a class imbalance in the training data. This is due to the fact that there are considerably

more simple-to-medium-complex images than complex ones. For this reason, the CycleGAN will likely

learn the mapping between simple images and the segmentation domain more effectively. Moreover,

being an unsupervised method in which we simply fed images from the two domains, other than the

shape of the provided segmentation images, there is nothing that is forcing the CycleGAN to learn to

differentiate between shore and ships. For these reasons, and since the CycleGAN generator is directly

related to the performance of both proposed methods, it is normal for the results to be worse for complex

images. Nevertheless, the proposed methods still obtained satisfactory results for numerous complex

images. Moreover, it is possible to observe that the saliency method differs from other approaches in

that it produces good results for simple images but terrible for complex ones. This is the reason that
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allowed the good extraction of the segmentation masks for Dlabel SSD and Dlabel SSDD, but only after the

preselection of low entropy images.

Ablation study

To further understand the impact of the components of the DSEP method, we conducted an ablation

study on the UDSEP. Table 5.2 presents the conditions of the carried experiments. Case 0 represents

the original UDSEP method. Case 5 corresponds to the UDSEP method but using the Saliency as the

initial object detector instead of the CycleGAN generator. In case 1, we directly use the CycleGAN

predictions to train the U-net, skipping the DSEP transformations. The same is done in case 6, but using

the saliency predictions instead. In the remaining cases, some components of the DSEP transformation

method are ignored. Figure 5.9 depicts the object detection results for the cases described.

Table 5.2: Conditions of the UDSEP ablation experiment.

Case Detect Select Erase Paste

Case 0 CycleGAN generator ✓ ✓ ✓

Case 1 CycleGAN generator ✗ ✗ ✗

Case 2 CycleGAN generator ✓ ✓ ✗

Case 3 CycleGAN generator ✗ ✗ ✓

Case 4 CycleGAN generator ✓ ✗ ✓

Case 5 Saliency ✓ ✓ ✓

Case 6 Saliency ✗ ✗ ✗
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Figure 5.9: F1-score across the IoU thresholds for the different cases of Table 5.2, for the complete
SAR-Ship-Dataset test set.

By analysing the outcomes of cases 0 through 4, it is extremely difficult to draw conclusions about

the utility of the DSEP approach. Despite the fact that applying all the stages (case 0) results in a slightly

better model, the performance of the remaining models is still extremely similar to the original. This can

be explained for two reasons. First, given that the CycleGAN generator is already a highly robust object
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extractor, there are typically less than 4 object detections in the majority of the images. Therefore, the

Select and Erase steps, which were introduced as insurance, are unnecessary. Then, the SAR-Ship-

dataset is very big, hence the augmentations provided by the Paste step are not that crucial. Therefore,

although in our case the DSEP is not that relevant, we aimed at proposing a generic approach that

could be used for a variety of scenarios. To validate the relevance of the DSEP, we implemented it with

an initial less robust object detector, the Saliency (case 5). In this case, the DSEP method manage to

increase the F1-score at the 0.5 threshold by 0.23 points when compared with the model where it was

not implemented (case 6), indicating a substantial improvement.

Computation Evaluation

Table 5.3 presents model size, training and test time for all methods. As previously demonstrated,

the accuracy of the traditional methods falls short, hence, further computational analysis will not be

done. Considering the deep learning models, the CycleGAN model took considerably longer to train,

which was expected, given its increased model and training complexity. However, since each model

only needs to be trained once, training time is not the most crucial factor. In fact, the inference time

is more important given the goal of processing the SAR data in real-time. The U-net-based methods

have significantly faster detection speeds than the CycleGAN. This is due to the large model of the

CycleGAN generators, which includes a series of ResNet blocks, inherently leading to more expensive

computations. Furthermore, the detection speed of the proposed models is lower than the state-of-

the-art, especially for the CycleGAN. Nonetheless, it is important to state that the UDSEP not only

managed to slightly increase the detection performance of the CycleGAN but also managed to transfer

its knowledge to a U-net which has 2.35 faster detection times.

However, it is important to note that this thesis’s main objective was to maximise accuracy rather than

obtain fast detection speeds. To reduce the time of inference, likely at the cost of accuracy, the original

models could be replaced by lightweight versions, such as Lightweight U-Net [108] or a Lightweight

CycleGAN implementation [109].

Table 5.3: Model size, training time and inference time per image. *The time taken to generate the
images to train the models is accounted for in the training time.

Method Model Size (MB) Training time (hours) Average inference time p/ image (ms)

Supervised 373.2 1.3 34.9
Saliency - - 1.7
CFAR - - 1.08× 103

CycleGAN* 141.3 60 82.1
UDSEP* 373.2 9 34.9

5.3.3 Results on SSDD

The proposed and the comparison methods were also trained and evaluated individually on SSDD.

The test set of the SSDD consists of 232 images.
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Segmentation results

Table 5.4 presents the pixel-wise IoU and F1-score for the methods described above. Moreover,

several segmentation results are represented for a selection of inshore and offshore scenes in Figures

5.10 and 5.11.

Table 5.4: Segmentation results for the SSDD.

Method IoU F1-score

Supervised 0.763 0.857
Saliency 0.466 0.585
CFAR 0.483 0.624
CycleGAN 0.554 0.676
UDSEP 0.571 0.693
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Figure 5.10: Segmentation results for offshore scene images from the SSDD test set. The ground truth
segmentation is represented in red and the predictions of each model are represented in yellow.
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Figure 5.11: Segmentation results for inshore scene images of the SSDD test set. The ground truth
segmentation is represented in red and the predictions of each model are represented in yellow.
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Detection results

Figure 5.12 displays the F1-score for the different methods across the IoU thresholds for the complete

test set. Figure 5.13 displays the same metric but with the F1-score computed separately for offshore

and inshore scene images.
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Figure 5.12: F1-score across the IoU thresholds for the different methods, for the complete SSDD test
set.
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(a) Offshore images
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(b) Inshore images

Figure 5.13: F1-score across the IoU thresholds for the different methods, for different type of images
from the the SSDD test set.

Analysis

The results are consistent with the previous data set. The supervised method clearly outperformed

the remaining unsupervised methods, and the deep learning methods outperformed the traditional meth-

ods. Of the proposed methods, the UDSEP obtained better segmentation and detection results, with an

F1-score at the 0.5 threshold of 0.625 compared to the CycleGAN’s 0.578. In light of the fact that the

CycleGAN generator has lower performance for this dataset, the improvements of the DSEP method

are more noticeable. In addition, the SSDD is a considerably small dataset, thus the augmentations

provided by the Paste step likely had a bigger impact than on the SAR-Ship-Dataset. Moreover, the
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UDSEP managed to clearly outperform the CycleGAN model for inshore images. This is likely due to

mitigations endorsed by the Select and Erase steps, which encouraged the U-net to not have as many

false detections as it otherwise would have.

Overall, the results for the proposed methods on the SSDD dataset were worse than on the SAR-

Ship-Dataset. Several factors support this conclusion. First, the SSDD has a significantly smaller size,

which will unavoidably result in models being more vulnerable to overfitting. Then, as seen in Figure

4.5, this dataset is mainly composed of ships of small size. Since the IoU becomes more sensitive as

the area of the object decreases, slight discrepancies between the ground truth and the prediction might

result in low IoU values for small objects. Moreover, smaller objects are naturally harder to detect, given

that their features may disappear in deeper layers. Nevertheless, the models performed reasonably well

for the SSDD, validating the generalisability of the presented methodologies.
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Chapter 6

Conclusions

The main goal of this thesis was to develop unsupervised deep learning techniques for ship detection

in SAR images. For this purpose, two fully unsupervised frameworks were proposed for ship segmen-

tation: the CycleGAN, an image-to-image translation model which was explored for segmentation, and

the UDSEP, a U-net trained on synthetic generated data from a novel augmentation process. Although

still inferior to those of the supervised method, the results obtained for the two proposed methods were

extremely promising, especially given the fully unsupervised nature of the approaches. Evaluation on

simple/offshore images revealed overall competitiveness with the supervised method. Evaluation on

complex/inshore images proved that the proposed methods are still insufficiently robust for this type of

image. However, it is important to state that ship detection in this type of image is an active challenge,

even for supervised research. Given their essentially inferior robustness, the struggle for unsupervised

approaches is not surprising.

Moreover, the CycleGAN approach revealed to be effective and robust for domain translation between

the SAR domain and the ship segmentation domain. Consequently, the UDSEP managed to enhance

the CycleGAN model in two aspects. First, there was a slight improvement in detection quality. Then,

there was a severe reduction in detection time, with a decrease of over 57%.

Furthermore, the author believes that the developed work should inspire fellow researchers to de-

velop unsupervised frameworks for SAR ship detection, which can fully exploit the amount of available

raw SAR data and the increasing GPU performance.

6.1 Future Work

Future improvements could be made to attempt to improve the accuracy of the models. First, further

studies could be employed to attempt to increase the robustness of the models. For instance, the

CycleGAN could benefit from a distinct architecture for each of the generators, which could be more

task-specific to the domain translation. Moreover, the DSEP method could benefit from improvements

in the Select step. Currently, after a size-dependent preliminary removal, the selection of the objects to

keep and to erase is essentially random. Several unsupervised strategies could be employed to attempt
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to address this. For example, a binary cluster could be conducted by K-means to try to classify each

object as a ship or non-ship. Then, objects classified as ships would be kept, and objects classified as

non-ships would be marked to be erased.

Second, the low accuracy of the inshore scene should be addressed. For the CycleGAN, resolving

the class imbalance between the offshore and inshore images could be a good start. The strategy

introduced by [73], which used GAN and K-means to create a scene binary cluster and then augmented

the inshore scene images, would be a good approach to augment these images in an unsupervised

manner. The UDSEP method would indirectly benefit from this improvement.

Lastly, in an effort to make models suitable for real-time detection, the original backbone structures

of the models could be replaced with lightweight versions. To this end, we propose not to change the

CycleGAN model but experiment with lightweight versions of the U-net to check if it would still be possible

to fully transfer the knowledge obtained with the current CycleGAN model.

Furthermore, to further test and refine the proposed methods, it would be of interest to evaluate them

in other segmentation tasks using datasets other than SAR ship.
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Appendix A

Annotation

Figure A.1 depicts a flowchart of the framework adopted to annotate the SAR ship images from the

SAR-Ship-Dataset with the ship’s segmentation. First, the input SAR image goes through Gaussian

blur followed by a fixed threshold method. Pixels inside the original bounding box with values above

the threshold are set as ship, and pixels with values below the threshold are set as background. Then,

the SAR image with the segmentation drawn is visually analysed. If the result seems satisfactory, the

image with the corresponding segmentation is saved. If the result is not satisfactory, the size of the

Gaussian blur filter kernel, the threshold value, or the size of the original bounding box can be changed

by the reviewer. The size of the bounding box occasionally needs to be changed due to poor annotation

by the authors of the dataset. This process is done iteratively for each image of the training set (for

the supervised method) and for the test set (for testing the models) until an accurate segmentation is

obtained.

Input Image Gaussian blur +
Threshold

Is it good? Save the image and the
segmentation mask

Yes

Update Gaussian
filter size or

threshold value or
bounding box size

No

Figure A.1: Flowchart of the method used to annotate the SAR ship images with the ship’s segmentation.
The initial size of the gaussian blur kernel is 11x11 and the initial threshold value is 70 (with 0-255 pixel
intensity).
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Appendix B

SAR images generated by the

CycleGAN

Figure B.1 depicts some examples of generated images from the SAR domain when using the binary

masks as input.

Segmentation mask from Generated SAR image Segmentation mask from Generated SAR image

(a) (b)

Figure B.1: SAR images generated from the CycleGAN generator GL to SAR. The Dlabel SSD and
Dlabel SSDD are used as input. (a) SAR-Ship-Dataset, (b) SSDD
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