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Abstract

In this work, the feasibility of spacecraft recovery using rotative wings is analysed. This technology is based on
the autorotation phenomenon, in which the rotor is driven without power associated. It possesses the ability to
perform a safe and controlled landing, allowing the spacecraft to be reused and utilised in missions with different
requirements. To fulfill the objective, a computational model that simulates the descent of a rocket’s first stage
was developed. It is based on rotor’s aerodynamic theories and kinematics and computes several rotor parameters
that allow the analysis of the system’s performance. Moreover, it resorts to experimental data to increase the
results’ accuracy. The model’s verification was successfully carried out by comparing its behaviour with literature
data. The studies considered the recovery of an existing sounding rocket. To understand how each design
parameter influences the system, a parametric study of the rotor design variables was held. It was concluded that
the blade’s pitch angle is extremely important for the system’s performance and should be carefully selected, and
that weight penalties resultant from excessive blade’s number or radius can be prejudicial. Furthermore, a design
optimisation was conducted, aiming to minimise the rocket’s terminal velocity. The optimised solution decreased
the terminal velocity by 72.7%, in comparison to the initial velocity. Finally, a flare manoeuvre was disclosed to
reduce the touchdown velocity, resulting in a terminal velocity of 3.89 m/s. This recovery system is concluded to
be highly promising, though requiring further work in several fields of study.
Keywords: Rocket Recovery Systems, Autorotation Dynamics, Rotative Wings, Autorotation Recovery Systems,
Recovery System Design Optimisation

1. Introduction

Recovery of spacecrafts has always played an impor-
tant role in space missions [1]. In the past decade, the
space industry has been increasingly shifting towards
commercialisation and searching for solutions that can
make the enterprises economically sustainable. Recover-
ing and reusing a spacecraft reduces massively the oper-
ational launch cost, allowing for more launches per year
and thus a higher number of missions [2], offering a great
solution to the problem.

The most common method of recovery is the
parachute, which is reliable and able to decelerate a ve-
hicle until a more or less soft landing [1]. However, the
spacecraft’s descent can not be piloted, neither its veloc-
ity can be changed [3]. Nowadays, the most successful
technology is the autonomous vertical landing. In this
method, the rocket has a controlled descent and is de-
celerated through its engines - meaning that it can be
returned to Earth with a controlled trajectory and rate
of descent and land softly and precisely, being reused.

The recovery using rotative wings is based on the au-
torotation phenomenon and is also able to perform a
safe and controlled landing, allowing the spacecraft to
be reused [3, 4]. Its advantage is that it brings a greater
flexibility to the mission and possesses many applications
[3, 4] - it has the potential, for instance, to be used for
atmospheric research, since its flight path and velocity
can be adjusted [4].

This technology was mainly considered in the second
half of the last century. The main works in the field held

analytical and experimental studies, such as the Kaman
studies [4, 5] and the NASA Ames Research Center’s
program [6, 7], and provided interesting and promising
results as for the spacecraft and rotor’s performance. On
the contrary, in the nineties, stability problems were ob-
stacles for the development of Rotary Rocket Company’s
Roton [2]. Furthermore, recent studies cover the works
of J. Hagen [3] and the ARMADA project [8, 9]. All the
researchers revealed a great amount of confidence on the
capabilities of such method, though with some doubts
mainly regarding the system’s stability.

Thus, the objective of this work is to address the fea-
sibility of using a rotative wings system for the recov-
ery of spacecraft. With this intention, a computational
model was developed, offering the possibility to analyse
the system’s performance and culminating in a design
optimisation in order to achieve a terminal velocity goal
for a real situation.

2. Methods
This chapter describes the autorotation aerodynamic

theory and the computational model developed. It also
addresses the model’s verification, by analysing an exam-
ple and comparing it to the literature studies. Moreover,
a mesh study is conducted.

2.1. Autorotation Aerodynamics in Axial Flight
Autorotation is a self-sustained phenomenon used to

safely recover helicopters, more frequently in the event
of an engine failure. It is, thus, an emergency state in
which the vehicle’s rotor remains on rotating and pro-
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vides thrust, allowing the pilot to reduce the descent’s
velocity until a safe touchdown. It can be put into sim-
ple terms by the conservation of energy. During the de-
scent, the vehicle gives up potential energy and the rela-
tive vertical descent velocity causes an upward airflow in
the plane of the rotor, providing it with kinetic energy
[10]. Eventually, the system reaches a steady state op-
eration - the rotor’s thrust equals the vehicle’s weight,
T = W = mg, the rotor torque becomes Q = 0 N · m
and the vehicle reaches a terminal velocity [10].

The aerodynamics of this phenomenon will now be
explained resorting to the Blade Element Theory (BET)
[10], assuming axial (vertical) flight. Figure 1 is a scheme
of the airflow in an infinitesimal blade section [10]. The
coordinate system is centred in the blade’s root, so the
positive x-axis is directed to the blade’s tip. Since the
vehicle is in a vertical descent, the resultant velocity rela-
tive to the rotor blades can be separated into two compo-
nents: vertical, U⃗P , and horizontal, U⃗T [10]. The vertical
component is given by

U⃗P = (Vc − vi)e⃗y = UP e⃗y (1)

where V⃗c is the velocity vector of the airflow relative to
the vehicle, caused by the air being forced up through
the rotor (positive on the y-axis), and v⃗i is the axial
induced velocity (negative on the y-axis), both in m/s
[10]. These velocities are assumed to be uniform along
the blade [10].

The horizontal component (parallel to the rotor and
negative on the z-axis) at a particular blade section re-
sults from the blades rotative motion and is equal to

U⃗T = ω⃗ × x⃗ = −ωxe⃗z = −UT e⃗z (2)

in which ω⃗ is the angular velocity vector of the rotor in
rad/s and x⃗ is the x-coordinate vector of the section in
m, with 0 ≤ |x⃗| ≤ R, in which R is the radius of the
blade, as observed in figure 2 [10].

The resultant velocity at one blade element is the sum
of the two velocity vectors:

U⃗ = UP e⃗y − UT e⃗z (3)

The angle between U⃗ and the reference plane of the
rotor is called induced angle of attack [10] and is given
in degrees by

ϕ = tan−1

(
∥U⃗P ∥
∥U⃗T ∥

)
(4)

In addition, the pitch angle of the blades, θ, is the
angle at which the rotor blades are set with respect to
the plane of rotation [10], and will be assumed to be
constant and equal through the blade (collective pitch).
In figure 1, this angle is represented as being positive
(airfoil leading edge pointing up) but, in an autorotative
descent, it should have a negative value for the airfoil
to generate the required forces to accelerate the rotor.
Finally, the angle of attack of the airfoil, which is the
angle between U⃗ and the airfoil’s chord line, is

α = ϕ+ θ (5)

Figure 1: Side view of a blade element in autorotation,
in axial flight. Adapted from [10].

Figure 2: Top view of a blade element in autorotation,
in axial flight. Adapted from [10].

The airflow creates lift, L, which is normal to the air-
flow direction, and drag, D, which is parallel [10]. There-
fore, for each blade element, one has, in N ,

∥dL⃗∥ =
1

2
ρ∥U⃗∥

2
cCldx (6)

∥dD⃗∥ =
1

2
ρ∥U⃗∥

2
cCddx (7)

where Cl and Cd are the lift and drag coefficients, re-
spectively, ρ is the density of the air in kg/m3, dx is the
length of each blade element, in m, and c is the local
blade chord of the blade, also in m [10]. In this work,
the blades are assumed to have a rectangular shape, what
means that c is constant throughout the blade’s span.

The addition of dL⃗ and dD⃗ is a resultant force vector
dF⃗res that can be decomposed into: a vertical compo-
nent dF⃗y that provides an upwards force, decelerating

the vehicle’s descent; a horizontal component dF⃗z, par-
allel to the rotor disk plane, that provides the blades with
rotary motion. These forces contribute, respectively, to
the rotor’s infinitesimal thrust, in N, and torque, N ·m,
equal to

dT⃗ = Nb

(
∥dL⃗∥ cosϕ+ ∥dD⃗∥ sinϕ

)
e⃗y = dT e⃗y (8)

dQ⃗ = Nb

(
∥dL⃗∥ sinϕ− ∥dD⃗∥ cosϕ

)
xe⃗y = dQe⃗y (9)
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where Nb is the number of blades of the rotor. Note that
the latter expressions are only valid for axial flight, since
the aerodynamic environment is assumed to be axisym-
metric (uniform in all the points of the rotor) [10].

Finally, according to the BET [10], dT and dQ can
be integrated across the blade’s span to obtain the total
rotor’s T and Q. This integration is of considerable dif-
ficulty of resolution, given to the fact that at each blade
element UT changes with the x-coordinate of the section
(see equation 2), increasing from 0 m/s at x = 0m (root)
until its maximum value at x = R (tip). Consequently,

both U⃗ and ϕ will vary across the blade, what varies α,
Cl and Cd. For this reason, all the referred parameters
depend on the x-coordinate, making the analytical cal-
culation of the T and Q of the rotor challenging. Thus,
an approximation was made and T⃗ and Q⃗ are obtained
by summing the contributions of each blade element:

T⃗ =

nsections∑
j=1

dT⃗j (10)

Q⃗ =

nsections∑
j=1

dQ⃗j (11)

where nsections = R/dx is the number of sections in a
blade.

In addition, the fact that α varies along the blade
brings other implications. As known, variations of α are
related to variations of Cl and Cd, and when α surpasses
the critical angle of attack (value of α corresponding to
the highest Cl value), αcrit, the airfoil stalls due to the
separation of the boundary layer from the airfoil, result-
ing in a loss of L.

Figure 3: Blade regions and respective aerodynamic
forces, for an axial autorotative descent [11].

Since Cl and Cd are different across the blade’s span,
one can comprehend that the steady autorotative con-

dition of ∥dQ⃗∥ ≈ 0 N · m is not verified for each blade
section (see equation 9) [10]. For this reason, certain
stations of the rotor will absorb power from the airflow,
while others will dissipate it [10]. Nevertheless, this phe-

nomenon results in the sum of the several dQ⃗’s to be∫
∥dQ⃗∥ ≈ 0 N · m, complying with the steady autoro-

tative condition [10]. The stated phenomenon will then
form either two or three different zones in the rotor disk:
the driven region, the driving region and, possibly, the
stall region. The zones are showed in figure 3 and repre-
sented as letters.

The driven region (A) is located near the blade’s tip
and accounts for about 30% of the blade’s radius [11].
The value of UT on this zone is at its highest, resulting
in a low ϕ and, consequently, in a low α. Thus, the hor-
izontal component of ∥dL⃗∥ can not overcome the profile

drag, meaning that the horizontal component of dF⃗res

has the opposite direction to the rotation direction of
the blades, decelerating its rotation - the driven region
dissipates energy. Nonetheless, this resulting force also
produces T .
There are two equilibrium points between the driven

and driving regions (B) and between the driving and stall

regions (D), in which dF⃗res only has a vertical compo-
nent. Hence the resulting force only produces T and not
Q.

Moving to the centre of the rotor, there is the driving
region (C). In this region, UT is smaller than in region A,
which results in higher α’s. The horizontal component of
the lift overcomes the profile drag, producing the neces-
sary force to keep the blades turning. Thus, this region
absorbs power from the airstream to the rotor, acceler-
ating the rotation of the blades. It consists of about 25
to 70% of the blade’s radius [11].

Finally, near the root there is the stall region (E), con-
sisting of the blade’s remaining 25% [11]. In this region,
UT decreases and α increases (possibly until values close
to 90◦), becoming higher than αcrit. The airfoil is then
stalled and drag is produced, decelerating the blades.

By controlling the size of the regions, Q and therefore
ω can be controlled. This is achieved by varying θ, which
significantly affects the aerodynamic forces and moments
[7]. Concluding, for achieving a constant ω, θ must be
adjusted to a point in which the accelerating moment
provoked by the driving region equals the decelerating
moment caused by the driven and stall regions.

2.2. Computational Model
In this work, a computational model of the recovery of

a rocket’s first stage was developed. The model’s founda-
tions are based on a simple model developed by Amato et
al. [12], and it simulates the axial descent of a spacecraft
with rotative wings, resorting to the BET and kinematic
equations. Figure 4 shows the coordinate system of the
rocket’s body. An important approximation is that the
body’s y-axis is always oriented normally to the Earth’s
surface and that no movement is considered on the x and
z-axis. In addition, all the forces are assumed to be ap-
plied on the body’s centre of mass and no moments are
to be produced, except for Q, which is applied on the
rotor.

The flight begins with a vertical freefall during a spec-
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ified period of time, tdeploy, until the rotor’s deployment.
The body initiates the descent at a specific height (verti-
cal distance between the vehicle and the soil, in m), h0,
with no vertical velocity, vv0 = 0 m/s (velocity of the
airflow in relation to the body, being equivalent to its
descent velocity), and an acceleration that is equal to the
gravitational acceleration, av0 = −g. The freefall sim-
ulates the first stage’s descent after its separation from
the rocket and induces a non-null initial vertical veloc-
ity at the moment of the rotor’s deployment. When the
rotor is deployed its angular velocity, ω0, and angular
acceleration, aang0

, are also assumed as null.

Figure 4: Coordinate system of the first stage’s body.
Adapted from [3].

Other simulation’s initial variables include the first
stage’s length, Ltstage, and diameter, Dmstage, both in
m (the first stage is approximated as a cylinder), and its
mass, mstage, in kg. As for the rotor, the design variables
are Nb, R, c and θ.
In addition, other rotor’s design parameters are calcu-

lated. The rotor’s solidity, σ, and disk loading, DL in
kg/m2, are respectively given by

σ =
NbAb

Adisk
=

NbRc

πR2
=

Nbc

πR
(12)

DL =
m

Adisk
=

m

πR2
(13)

in which Ab is the area of a blade and Adisk is the area
of the rotor’s disk, both in m2, and m is the total mass
of the system (first stage plus recovery system). The
recovery system’s mass, mrecovery, estimated from [8],
increases with Nb and R.
The freefall is based on kinematic motion equations

and computed through an iterative process, calculating
the successive heights, h, vertical velocity vector, v⃗v, and
acceleration vector, a⃗v, of the body. The time of the sim-
ulation t is also continuously iterated with an increment
of dt. During this freefall, a⃗v becomes dependent on the
vertical drag force of the first stage, D⃗stage, which is
positive on the y-axis of figure 4, and equal to

D⃗stage =

(
1

2
ρCdstage

∥v⃗v∥Abase

)
e⃗y′ (14)

in which Cdstage
is the cylinder’s axial drag coefficient

and Abase is the reference area, in this case of the cylin-
der’s base. To calculate Cdstage

, experimental values of

Computational Fluid Dynamics (CFD) simulations [13]
were inputted in the model, and this coefficient depends
only on the cylinder’s aspect ratio, AR = (Lt/Dm)stage.

Apart from this, an enhancement was made to the pro-
gram: for each iteration, atmospheric parameters such as
ρ and temperature Tp, in K, are successively computed
for each h, being inputted from empirical models, to in-
crease the accuracy of the results. In the same manner, g
and the dynamic viscosity of the air µ, in kg/(m · s), are
also updated resorting to the law of universal gravitation
and to the Sutherland’s Law, respectively.

When t = tdeploy, the rotor is deployed and the BET
equations are used to calculate the forces generated,
throughout an iterative process that terminates when
h = 0 m. The rotor is assumed to be instantly deployed.

Following deployment, the airflow induces the gen-
eration of forces on the blades. Since such forces are
distinct along the blade, the model divides the blade
in nsections sections and successively calculates the in-
finitesimal forces on each one through an iterative pro-
cess, resorting to the equations described in section 2.1.

Equations 6 and 7 involve Cl and Cd, which depend
on α and on the Reynolds number, Re. The Re at each
blade element is equal to

Re =
ρ∥U⃗∥c

µ
(15)

In the model that served as a basis for this work’s
model [12], the computation of these coefficients was
quite inaccurate and deceptive, so an alternative ap-
proach was taken. It consisted in creating a database
of Cl and Cd as a function of α, for a wide range of
Re numbers. For α’s below αcrit, computational data
obtained from simulations in the aerodynamic software
XFLR5® is used. Above αcrit, this software fails to
compute trustworthy values due to the separation of the
boundary layer [14], and the situation is more challeng-
ing since values for α up to 90◦ are necessary. It is seen
that, following the Cl loss due to stall, there is a recovery
of this value and for a higher α it eventually becomes in-
dependent of Re. This means that, above the referred α,
experimental data of wind tunnel testing for a single Re
can be used, from [15]. Nevertheless, between αcrit and
the α at which the coefficients become independent of
Re, there is still a considerable dependence on Re. Thus,
in order to consider this dependence but not excessively
jeopardise the results, the solution was to resort both
to the computational and the experimental data for this
range, with a weighting being made. Until αcrit, only
the XFLR5® data is used - the computational data has
a weight of 100%. Between αcrit and the referred α, the
weight of the XFLR5® data is progressively decreased
with increasing α, while the experimental data’s weight
is increased. Finally, above that α, the experimental
data has a weight of 100%. This was the best way to
compute several plots of Cl and Cd depending on α, for
a wide Re number range.

With Cl and Cd, the calculations for each blade sec-
tion are completed and eventually T and Q are obtained.
Thus, T will influence av and consequently vv and h for
the next iteration, that become
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a⃗v =

[(
T +Dstage

m

)
− g

]
e⃗y′ (16)

v⃗v = (vv0 − avdt) e⃗y′ (17)

h = h0 − ∥v⃗v∥ dt+
1

2
∥a⃗v∥ dt2 (18)

while Q has an influence on aang and ω, which are given
by

a⃗ang =
Q

Irotor
e⃗y (19)

ω⃗ = (ω0 + aangdt) e⃗y (20)

in which Irotor is computed by assuming that the rotor is
only composed by the blades and that these are approx-
imated as thin rectangular plates. Its value increases
with R, c and with the rotor’s mass.
Finally, other parameters for rotor’s performance anal-

ysis are computed. The rotor drag coefficient, CdR
, is

given by

CdR
=

T
1
2ρUP

2Adisk

(21)

and the axial advance ratio, λaxial, is equal to

λaxial =
UP

Vtip
=

UP

ωR
(22)

where Vtip is the velocity of the blade’s tip [10]. Follow-
ing the calculations, the described process restarts.

2.2.1 Axial Induced Velocity in Axial Flight
In equation 1, UP depends on vi. The latter is used to

compute the inflow through the rotor (negative on the
y-axis of figure 1) and should be taken into account to
assure the model’s reliability, since it alters the vertical
velocity of the airflow on the blades. Such parameter was
also not considered in the base model [12]. To obtain it,
the momentum theory in axial flight is put into practice
[10] and the velocity in a state of hover, vh, must be
calculated:

vh =

√
W

2ρAdisk
=

√
mg

2ρπR2
(23)

For the momentum theory to be applied, the condi-
tion of the windmill brake state, Vc > 2vh, should be
complied with. In this operation mode, vi is

vi = vh

 Vc

2vh
−

√(
Vc

2vh

)2

− 1

 (24)

For 0 ≤ Vc ≤ 2vh, the rotor operates in the vortex
ring state, in which the momentum theory is invalid due
to unstable flow. However, if necessary, it is possible to
resort to empirical data in order to obtain vi, without
considering the unstable and turbulent effects [10].

From equation 24, the value of vi depends on Vc for the
current iteration, and Vc is obtained through the forces
in the rotor, which in turn depend on UP , that depends
on vi. Thus, it was necessary to implement one more
iterative process for the convergence of UP .

2.2.2 Model Verification

The verification of the model was conducted by focus-
ing on the behaviour of the problem’s physical variables,
and by providing qualitative comparisons with the liter-
ature, since no quantitative comparisons were possible.

In this part of the work, there is a freefall of tdeploy =
3.09 s. It was then observed that the plots of both av and
aang, seen in figures 5(a) and 5(b), present two peaks.
The first av peak occurs since the blades act similarly to
flat plate drag surfaces, which means that they are fully
stalled. The second peaks are justified by the fact that
the rotor transitioned from being fully stalled to being
only partially stalled. These peaks result in a decrease
of vv and an increase of ω. Moreover, the behaviour of
T and Q is the same as av and aang, respectively.

(a)

(b)

Figure 5: Evolution of av (a) and aang (b) with t, with
the second acceleration peak highlighted.

To better justify the occurrence of the second peak,
the spanwise distribution of the blade’s α was analysed in
three different instants. It was concluded that, between
the first and second peaks, 100% of the blade is stalled,
while at the maximum value of av registered, this value
drops and the blade becomes partially stalled. In the
end of the simulation, in equilibrium, this value is only
of about 30%. This was confirmed by [16].

Accordingly, the evolution of CdR
with λaxial con-

firmed the previously stated. References [4, 5] claim
that the blades are partially stalled for λaxial < 0.5,
what can also be seen in figure 6. In fact, around this
value of λaxial, CdR

increases substantially, and this was
observed to occur approximately when av begins to rise
again.
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Figure 6: CdR
variation with λaxial.

Following the peaks, av and aang (or T and Q, respec-
tively) eventually reach a near steady state operation,
or autorotation, as described in section 2.1. In this mo-
ment, the spanwise distribution of the blade’s dQ was
also analysed (see figure 7), verifying the three zones
presented in section 2.1 and being confirmed by [16].

Figure 7: Spanwise distribution of the dQ of a blade’s
section in autorotation.

The terminal values were close to the equilibrium val-
ues expected, with the differences obtained being justi-
fied by numerical errors and approximations.

2.2.3 Mesh Study
In order to guarantee the reliability of the results ob-

tained, a mesh study of dx and dt was held. These
parameters were studied separately, considering an ex-
tremely low value of each as a reference, since the lat-
ter culminate in more trustworthy results but also on a
higher computational time. It was decided that dx = 0.1
m and dt = 0.1 s were satisfying selections, even though
it is mandatory to select dt = 0.01 s or lower whenever
the model considers vi, for convergence purposes.

3. Computational Experiments
In this chapter, a real situation is addressed, in order

to comprehend the performance of the recovery system,
as well as its feasibility. A parametric design study, a de-
sign optimisation and the demonstration of a touchdown
manoeuvre are conducted.

3.1. Baltasar Sounding Rocket
The selected scenario was the recovery of the sounding

rocket Baltasar [17], with a touchdown velocity goal of
around 5.95 m/s. It reaches an altitude of about 3, 000

m, having a freefall of tdeploy = 3.09 s. When the rotor
is deployed, one has hdeploy ≈ 2, 976 m and vvdeploy ≈ 30
m/s. These are real values provided to the author, al-
lowing to fix the initial kinematic conditions and leaving
room to focus on studying the recovery system itself.

3.2. Parametric Study
This study involves the analysis of the following design

parameters: R, Nb, and θ. It consists in investigating
how the system’s performance varies with the change of
each design variable, with an emphasis on minimising
the terminal vv. The mesh parameters used were based
on the mesh study conducted.

3.2.1 Variation of R
Regarding variations of blade’s R, the values were in

the range of R = 0.4 m to R = 3 m. Figures 8(a) and
8(b) show the variation of vv and av with t for the several
studied R’s. All the plots follow the same tendency, with
the exception of R = 0.4 m and R = 3 m.

(a)

(b)

Figure 8: Evolution of vv (a) and av (b) with t, for the
several R’s studied.

Excluding these two values, it is generally observed
that lower terminal vv’s occur for higher R’s. Addition-
ally, the first peak of av is higher with increasing R, while
the second one is lower. Furthermore, increasing R “de-
lays” the transition of the blades to a partially stalled
operation, since the second peak occurs later, what was
seen to result in lower terminal vv’s. It is also observed
that, as R increases, the differences on the curves of vv
become smaller, converging to a certain terminal vv.
The main findings from this study were that R = 0.4

m is not sufficient for the blades to have a positive first av
peak, not being able to adequately decelerate the system.
Contrarily, R = 3 m is an excessive value, since the
terminal vv is higher than the one obtained for R = 2
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m. For R = 3 m, both av peaks are lower then the
ones for R = 2 m even though its T is higher, given to
the fact that R = 3 m results in an excessive mrecovery,
prejudicing the system’s performance (see equation 16).

As for the rotor, a higher R results in lower aang’s and
ω’s due to a higher Irotor, even though Q increases with
R (equation 19). The successively lower equilibrium ω’s
can be advantageous not to induce blade’s overspeeding.

3.2.2 Variation of Nb

In the same manner, Nb between 2 and 5 was anal-
ysed. Since mrecovery also increases with Nb, it would
be expected that, at some point, the situation referred
above would happen again. However, Nb = 5 actually
delivered the best results. Generally, the same observa-
tions of the R study can be made for the Nb analysis,
with a first peak of av being higher with increasing Nb,
contrarily to the second peak. Additionally, increasing
Nb also “delays” the blade’s operational transition, re-
sulting in lower terminal vv’s. Moreover, aang is lower
with Nb, as is ω.
From equation 12, σ is directly proportional to Nb.

References [4, 5] state that both the value of CdR
and

the value of λaxial for which the maximum CdR
occurs

increase with σ, something that is registered in this study
(see figure 9). However, these references predict the
curves to be proportional to σ only for the region in
which the blades are fully stalled (λaxial > 0.5), some-
thing that was not observed herein, since the curves are
nearly proportional to σ for the whole λaxial range.

Figure 9: CdR
variation with λaxial for the several Nb’s

studied.

3.2.3 Variation of θ
Finally, the θ variation is studied, since it is the most

defining parameter of the performance of an autorotative
descent. For the blades to rotate in the right direction,
all the selected values of θ were negative, between θ =
−10◦ and θ = −2◦.
Figures 10(a) and 10(b) display the evolution of vv

and av with t for the θ range considered.
The first peak of av observed is higher with increasing

θ (less negative), since the blades become closer to being
perpendicular to the axial airflow, producing higher T ’s,
but lower Q’s.
The first conclusion taken is that the values of θ =

−10◦ and θ = −5◦ are not efficient, because between the
first and second peaks there is a period in which av is
negative, which adversely increases vv. This does not

happen for the other θ’s.
Regarding the second av peak, an important finding

is that θ = −2.8◦ and θ = −2◦ do not possess one. Even
though their first peaks are the highest, the blades are
not capable of generating enough Q for ϕ (and α) to
decrease significantly, meaning that the blades remain
fully stalled, never overcoming this state. By analysing
the spanwise distribution of the blade’s α in equilibrium
(see figure 11), for θ = −2◦, it became clear that the
blade was completely stalled. These values were also
considered as inefficient.

(a)

(b)

Figure 10: Evolution of vv (a) and av (b) with t, for the
several θ’s studied.

Figure 11: Spanwise distribution of the α of a blade’s
element for θ = −10◦, θ = −4◦ and θ = −2◦.

As for the remaining angles, the second peak is smaller
with increasing θ (except for θ = −10◦) and occurs later.
This means that the rotor “delays” the transition from
fully stalled to partially stalled blades. As a matter of
fact, it was observed that, especially for θ = −3◦ and θ =
−2.9◦, the value of λaxial remains constant at λaxial ≈
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0.4 for some seconds, dropping afterwards, moment at
which the transition occurs and the peaks begin. This
results in a lower terminal vv. In addition, the spanwise
distribution of the blade’s α in equilibrium, of figure 11,
showed that for θ = −10◦ approximately 30% of the
blade is stalled, while for θ = −4◦ this percentage drops
to less than 20%.

Furthermore, both aang peaks are higher for lower θ’s
(more negative), what results in higher ω’s. This is jus-
tified by the fact that the reduction of θ increases the
generation of Q.

Finally, the most efficient θ range for this specific de-
sign was assessed. Reference [8] states that this value is,
from the θ’s that induce an unstalled operation, the high-
est. Equivalently, reference [16] asserts that this angle is
located between θ = 0◦ and θ for which the equilibrium
dimensionless tip speed, Ω∗ = 1/λaxial, is maximum.
The plots of equilibrium Ω∗ and CdR

with θ can be seen
in figures 12(a) and 12(b) and are in accordance with ref-
erences [6] and [9]. The difference between an unstalled
and stalled operation becomes evident, with the stalled
operation being identified for θ > −2.9◦, denoted by a
sudden decrease on the values of Ω∗ and CdR

, as seen for
the case of θ = −2.8◦. On the contrary, for θ = −2.9◦

the blades are partially stalled, presenting the highest
value of Ω∗ and CdR

.

(a)

(b)

Figure 12: Variation of the equilibrium Ω∗ (a) and CdR

(b) with θ.

For this reason and taking into account that θ = −2.9◦

also demonstrated the best results as for terminal vv, the
model confirmed the predictions made by the literature
studies. Thus, it was concluded that the most efficient θ
is within the range −2.9◦ ≤ θ < −2.8◦.

The θ parametric study resulted in the highest vv re-
ductions from the three parametric studies conducted,
proving the importance of θ for the system.

3.3. Genetic Optimisation

Following the parametric study, a Genetic Optimisa-
tion (GA) was held to address the design that achieves
the lowest terminal vv. Thus, Nb, R, c and θ were se-
lected as design variables and bound constraints were
defined for each, taking into consideration the results
obtained in the parametric study. The only objective
function was vv, which was intended to be minimised.

The optimised solution of the GA led to a design that
displayed a terminal vv of vv ≈ 8.24 m/s, represent-
ing a decrease of 72.7% in comparison to vvdeploy . The
design variables that produced the minimised solution
are seen in table 1. These values are within the best
values observed in the parametric studies (for instance,
−2.9◦ ≤ θ < −2.8◦).

Table 1: Design variables that resulted in the optimised
solution.

Nb R [m] c [m] θ [◦]

4 1.9213 0.0926 −2.8123

3.4. Optimised Solution

The solution that achieved the best results (table 1)
was then addressed. Figures 13, 14, 15 and 16 depict the
evolution of vv, av, ω and aang with t, for this simula-
tion. As for av, a first peak with a maximum av ≈ 6.89
m/s2 (approximately 0.70 g’s) was seen, while aang had
a maximum of aang ≈ 4.59 rad/s2. Following the first
peak, the model entered a state of near equilibrium in
which both accelerations were approximately null.

As evidenced by the parametric analysis, a greater
time interval between the two acceleration peaks was
characteristic of designs that provided lower terminal
vv’s. Such factor explains the interval of roughly 160
s ascertained between the two peaks. It was then con-
firmed that the minimised solution “delays” substan-
tially the transition of the blades from fully stalled to
partially stalled, as expected.

Figure 13: Variation of vv with t for the GA solution.
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Figure 14: Variation of av with t for the GA solution.

Figure 15: Variation of ω with t for the GA solution.

Figure 16: Variation of aang with t for the GA solution.

Furthermore, the second acceleration peak resulted in
maximum values of av ≈ 6.94 m/s2 (approximately 0.71
g’s) and aang ≈ 13.86 rad/s2, corresponding to a max-
imum of T ≈ 613.35 N and Q ≈ 149.16 N · m, respec-
tively. This resulted in a decrease of vv until a terminal
vv ≈ 8.24 m/s, and an increase of ω, which presented
a value of ω ≈ 70.31 rad/s at h = 0 m. This demon-
strated the recovery system’s promising deceleration ca-
pabilities. It was also evident that, since the second peak
of acceleration occurred so late, there was not enough
time for the system to reach an equilibrium state again
- this becomes clear by looking at figure 16.

Looking at the spanwise distribution of dQ in the end
of the simulation (not in equilibrium, though), the stall
region was registered to be only of approximately 16% of
the blade, denoting a great improvement in comparison
to what was observed in figure 7.

Moreover, it was verified that, as observed in the Nb

parametric study, the value of λaxial for which the CdR

variation becomes steeper is lower as the system becomes
more efficient, in this case being λaxial ≈ 0.33 - the low-
est value registered throughout all the studies. Finally,
the maximum CdR

was CdR
≈ 1.45, while in the end of

the simulation it was CdR
≈ 1.19, which is a lower value

than the expected Cd of the parachute designed by RED.
Consequently, it is understandable that this configu-

ration did not fulfill the design goal of vv = 5.95 m/s.

3.4.1 Collective Flare Manoeuvre
A final study was held to both solve the latter prob-

lem and demonstrate the ability of performing a collec-
tive flare manoeuvre to further reduce the vv at touch-
down. Such manoeuvre is put into practice by collec-
tively changing θ to induce blade’s stall, acting as flat
drag plates and producing a higher deceleration at touch-
down [4]. The optimised solution was run again, with the
difference that, when h < 20 m, θ was varied to θ = 0◦.
Since Vc decreases, at some point vi had to be calcu-
lated by considering the rotor’s operation in the vortex
ring state (see subsection 2.2.1).

(a)

(b)

Figure 17: Variation of vv (a) and av (b), with and with-
out performing the collective flare manoeuvre.

The results obtained for vv and av for the last seconds
of the simulation are shown in figures 17(a) and 17(b),
underlining the differences of resorting to the flare ma-
noeuvre. As observed, vv was decreased to a touchdown
value of vv ≈ 3.89 m/s, caused by a maximum av of
approximately 2.24 g’s. This value complies with the
objective, representing a vv decrease of 87.1% in compar-
ison to vvdeploy , and a decrease of 52.8% with regard to
the terminal vv without applying this manoeuvre. Thus,
the mission would be successful regarding the terminal
vv requirement.
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4. Conclusions

In this work, the feasibility of rotative wings for the re-
covery of spacecraft was investigated, assessing its poten-
tial in comparison to the most common recovery meth-
ods. It resulted in the conception of a bibliographical
compendium, which proved useful for the subsequent
parts of the work.

To carry out the viability analysis, a computational
model that simulates the full descent of a rocket’s first
stage with a self-rotating rotor was developed. The
model was successfully verified, being confirmed to have
the same behaviour of an autorotating rotor through
comparisons with literature studies.

A parametric study regarding the rotor’s design pa-
rameters was held. It led mainly to the following con-
clusions: θ was seen to be the most defining parameter
from the ones studied, and should be carefully selected
in order to achieve the most efficient configuration (a
non stalled one); increasing Nb or R results generally in
a lower terminal vv, but a too high value can be prejudi-
cial due to the weight penalties associated; the more ef-
ficient the design, the more the transition from a blade’s
fully stalled operation to a partially stalled operation is
“delayed”, what leads to lower terminal vv’s. This study
allowed to better comprehend the effects provoked on the
system’s performance by varying each design variable.

Following the parametric studies, a design optimisa-
tion was conducted, with the solution achieving a termi-
nal vv ≈ 8.24 m/s, which reflects on a decrease of 72.7%
from the initial vv value. Finally, the collective flare
manoeuvre for touchdown was demonstrated so that the
terminal vv goal of vv = 5.95 m/s was reached. This
study was successful, with a total decrease of 87.1%,
without considering the vortex ring state’s unstable ef-
fects, though.

Concluding, this proof of concept confirmed that it
is feasible to resort to rotative wings to safely recover a
rocket’s first stage, with regard to its terminal vv, though
with a number of approximations and assumptions. The
rotative wings recovery system presents advantages that
make it extremely interesting in comparison to the most
commonly used systems, especially regarding its versatil-
ity, and shows potential. Nonetheless, and understand-
ably, many other studies are still required, especially re-
garding stability, to fully address its feasibility.
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