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Abstract

Olefins, mainly produced by steam cracking, are playing a bigger part in the chemical industry, year

by year. However, with the rise in environmental awareness and the new environmental policies, the

search for greener production processes is very important. Dehydration of ethanol into ethylene, the

process of interest in this thesis appears as one of the main alternatives to this problem. However, the

ideal catalyst for this is yet to be found. Hence, a methodology previously developed, named ”Model-

driven catalyst design”, was applied in this work to identify the most suitable catalyst properties to maxi-

mize ethylene yield. This methodology integrates the kinetics of the process, by using identified catalyst

descriptors, namely chemisorption enthalpies, sticking coefficients and active site density, with statistical

tools. It has as main objective to establish relationships between catalyst properties and the observed

performance. Experimental data reported in two different studies obtained over zeolite-based catalysts

modified through dealumination and metal doping processes, with phosphorous and lanthanum, were

used in this work to correlate catalyst physical properties with their catalytic activity. Obtained rela-

tionships show that lower chemisorption enthalpies of ethylene are associated with good performances

while higher values are related to worst performance selectivity-wise. This appeared associated with

catalysts doped with phosphorous, which leads to modifications in the catalyst’s porous structure and in

the acidity of the catalyst. Yet, this constitutes preliminary conclusions and broader datasets should be

studied in the future, so getting to an optimal catalyst composition can be an easier process.
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Resumo

Olefinas, maioritariamente produzidas através de steam cracking, estão a tornar-se cada vez mais

relevantes para a indústria quı́mica com o passar dos anos. Contudo, com o aumento da consciência

ambiental e de novas polı́ticas ambientais, a procura por processos mais sustentáveis torna-se impor-

tante. A desidratação de etanol a etileno, o processo de interesse para esta tese, é considerada uma

das principais alternativas para este problema. Todavia, ainda é necessário encontrar o catalisador

ideal. Assim, neste trabalho foi aplicada uma metodologia previamente desenvolvida, denominada

”Model-driven catalyst design”, para identificar as propriedades do catalisador mais adequadas para au-

mentar o rendimento em etileno. Esta metodologia integra a cinética do processo, ao utilizar descritores

catalı́ticos identificados, como entalpias de quimissorção, sticking coefficients e a densidade de centros

ativos, com ferramentas estatı́sticas, tendo como objetivo estabelecer relações entre as propriedades

do catalisador e a performance observada. Dados experimentais reportados em dois estudos obtidos

sobre zeólitos modificados através de processos de desaluminação e doping metálico, com fósforo e

lantâno, foram utilizados neste trabalho para correlacionar as propriedades fı́sicas do catalisador com

a sua atividade. As relações obtidas mostram que valores mais baixos de entalpia de quimissorção

de etileno estão associados com boas performances enquanto valores mais altos estão ligados a pior

performance em termos de seletividade. Isto surge associado a catalisadores dopados com fósforo,

modificando a estrutura porosa e a acidez do catalisador. Contudo, estas conclusões são preliminares

e devem ser realizados estudos com dados experimentais mais vastos, para facilitar a obtenção de um

catalisador ótimo.

Palavras Chave

Descritor catalı́tico, Modelação cinética, Etileno, Desidratação, Design catalı́tico, Catalisador virtual
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1.1 Introduction

With a claimed production capacity of 200 million tons by 2024 and a predicted increase of almost

40% for the decade between 2016 and 2026, ethylene is one of the chemicals with the largest production

in the world, being not only an important product but a very important raw material, or intermediate, for

the production of several products, such as acetic acid and styrene [1].

The conventional processes for the production of ethylene rely majorly on fossil fuels, since the main

production route for it is steam cracking. However, due to the rise of environmental concerns and the

demand for this fuel, finding new ways to produce this kind of product is a priority [2,3].

Among many processes like Methanol to olefins (MtO), Oxidative Coupling of Methane (OCM) or

Fischer-Tropsch synthesis (FTS), ethanol dehydration to ethylene is reported to be one of the best

alternatives, especially with the rise of bioethanol production, and the ease how this can be produced

from biomass [2]. However, for this process to be viable more insights and search needs to be done,

especially regarding the operating conditions and catalyst.

There are three types of catalyst development techniques, statistics-driven design, performance-

driven design and information-driven design. There is also an emerging approach related to information-

driven design, entitled Model-driven catalyst design (MDCD) hereinafter, which is based on the concept

of catalyst descriptors [4].

1.2 Objectives

The objective of the present work was to apply the MDCD to identify the properties of zeolite-based

catalysts that largely affect ethanol conversion and ethylene selectivity and therefore provide guidelines

for the catalyst synthesis

To this end, a kinetic model based on the reaction mechanism and catalyst descriptors was devel-

oped considering an ideal plug flow reactor. Various virtual catalysts, defined by a combination of the

descriptor values (which will be defined after), were formulated and tested in silico with the developed

kinetic model.

The performance of virtual catalysts was compared with one of the real catalysts and the match

was statistically evaluated to establish relationships between the physical properties and observed per-

formance, aiming to find a catalyst composition that would provide, maximal yield and selectivity of

ethylene.

2



1.3 Outline

The thesis is divided into 6 different chapters.

The chapter 1 is related to the short introduction and objectives of the thesis already presented

earlier. Chapter 2, consists of: i) a review of the ethanol dehydration to ethylene process, focusing

on the reaction mechanism and, tested catalysts and ii) an introduction to new catalyst development

techniques. In chapter 3 the procedure followed for the MDCD is explained. Chapter 4 provides a

discussion on results obtained by applying MDCD methodology to the ethanol dehydration to ethylene

making use of the experimental data from two different case studies.

Finally in chapter 5 conclusions on the developed work are taken, followed by some suggestions for

future work in chapter 6.
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2.1 Market

2.1.1 Ethylene

Ethylene, or Ethene, is the most simple olefin that exists and is one of the major building blocks

in the chemical industry. It became this important during the 1940s when American oil and chemical

companies started to produce it from refinery byproducts like ethane or natural gas, through a steam

cracking (SC) process [5].

Another event that strongly influenced ethylene production was the Second World War because

associated with it a huge growth in petrochemistry and the petrochemical area was observed. Two

principal factors appeared connected to this growth and had a role in this time: the first one is associated

with an increase in the demand for gasoline, where ethylene and other olefins can be used as additives

to improve fuel quality. The second factor was discovering and improving the processes that convert

olefins into more useful chemical products [6].

Since the times of the Second World War, mainly due to its high reactivity, ethylene became one

of the largest volume building blocks for petrochemical production, being the raw material for the pro-

duction of around 25% of this chemical area, and one of the most produced chemicals in the world [7].

Consequently, ethylene has a very big value chain around it, being a feedstock for the production of im-

portant chemicals like acetic acid, ethylene glycol, ethylbenzene, styrene, and polyethylene as Figure 2.1

shows [1,8].

Figure 2.1: Ethylene derivatives value chain [9].

Marketwise, ethylene is a commodity that can be considered as a measure of a country’s economy,

since growth or decrease in the petrochemical sector income is directly correlated with a country’s econ-

5



omy. This, associated with a constant demand for petrochemical products will lead to an increase in the

production capacity of ethylene over the years according to [1].

Figure 2.2, demonstrates among other world base chemicals, that ethylene production capacity will

reach around 200 million metric tons by the year 2024 [1].

Figure 2.2: Forecast for the global chemical capacity including ethylene [1].

Furthermore, a rise of about 39% is reported for the decade between 2016 and 2026, principally

associated with the rise of the economy and consumption levels in areas like China and the Middle

East, indicated in Figure 2.3 [1]. On top of this, the increase in the world’s population and also its living

standards can play a big role in this increasing trend.

Due to this rise in the demand for fossil fuels and petrochemical derivatives, and the constant rise of

environmental awareness by the population, a continuous search for alternative and more sustainable

processes and feedstocks for ethylene production will be required, in order to decrease the dependency

on fossil-based ones [1,8].

6



Figure 2.3: Global ethylene demand by geographic area [1].

2.1.2 Bioethanol

At the moment, bioethanol is considered as one of the main alternatives for the production of ethylene

[10]. The process of producing bioethanol from biomass sources is fairly simple since it only includes

a fermentation step. On top of this, ethanol produced from biomass is chemically similar to the one

obtained synthetically from petroleum. There are four different categories of biomass that can be used:

sugar-based biomass, starch-based biomass, lignocellulose-based biomass and lastly marine species,

which is a very promising route once land becomes scarce [11].

The first constitutes the main feedstock for the so-called first-generation fermentation for bioethanol

production, which thus processes feedstock with a high level of sugar or starch and is the most commonly

used method of production. However, there are different opinions among people because it is claimed

that it consumes crops that could be allocated as human or animal food [12].

Lignocellulosic and marine biomass are considered second-generation feedstocks. The second gen-

eration technology is still in the need of more developments but already has some advantages especially

the fact that it does not use food crops. Instead, it uses agricultural residue, which has high availability

and can be found for much lower prices [13].

Feedstock to be used for bioethanol production often depends on the part of the world where it is

and climatic conditions. For example, in Europe sugarcane is more used in contrast to the USA where

starch-based crops are preferred [14].

7



In 2011, the global ethanol production was already over 100 billion litres with a yearly increase

of 3 to 7% over the past decade [13]. Furthermore, around 80% of total world ethanol production,

already comes from biomass fermentation, with Brazil and the United States of America being the main

contributors to it, representing a share of around 31% and 42% each, respectively. Alongside this,

reports claim that from 2016 until the year 2024, a rise of 34% will be observed in ethanol production

[15,16].

Even though these numbers might seem promising, the economics of the process of ethanol dehy-

dration to ethylene when the ethanol has biomass as its source, are still not competitive with the more

common production technologies. The main reason is the high price of the bioethanol, making either

ethylene quite expensive or the production not very profitable [7]. So prospects say that these alternative

resources and technologies will work together with steam cracking technology, which is the most com-

mon one, instead of replacing it. Leading to the creation of more sustainable processes, while having

still good results in terms of conversion and operating conditions [2,17].

2.2 Ethylene production technologies

2.2.1 Conventional technology-Steam cracking

Steam cracking is a well-established technology, developed in the 1960s, that is considered to be

the current leading technology for the production of ethylene and other olefins, like propylene, for ex-

ample [2]. It consists of a petrochemical process that breaks down saturated hydrocarbons into smaller

molecules. For that, a gaseous or liquid hydrocarbon input, such as naphtha, Low Pressure Gas (LPG),

or ethane, is diluted with steam and heated in a furnace in the absence of oxygen [5, 6]. A brief flow

diagram for the process is presented in Figure 2.4 when the used feedstock is natural gas [6].

Figure 2.4: Flow Diagram for ethylene production through steam cracking [6].

Firstly, natural gas passes through a separation unit where different types of hydrocarbons, like

ethane or propane, are separated. This mixture of ethane, propane and other hydrocarbons goes fur-

ther to a steam cracker where cracking reactions happen forming a fraction of lighter hydrocarbons.

Steam cracker effluent goes then to a second separation unit to be quenched to temperatures around

600 ◦C, being cooled down after in a subsequent stage to around 300◦C. This sequential cooling has the
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objective of preventing degradation by secondary reactions and also generating steam for the compres-

sors, promoting energy integration among the process. The reaction temperature is high, normally in

the range of 850◦C with low residence times, which leads to very high gas velocities. The hydrocarbon

to steam ratio can also heavily influence the outcome of the process [6,18].

Even though being a very well-established technique, with some improvements and developments

over time, steam cracking still has many drawbacks attached to it. The first one is related to the higher

temperatures at which the process occurs, implying higher operational costs. Secondly, there is a ten-

dency for secondary undesired reactions to occur. Additionally, deactivation of the catalyst by coke

deposition happens quite often during the process [5]. Apart from the operational challenges, there are

several environmental issues with this process, mainly with CO2 emissions. It is reported that steam

cracking processes account for around 300 tons of CO2 emissions annually and some years ago it

represented around 30% of the total emissions associated with the chemical industry [19,20].

2.2.2 Alternative technologies for ethanol production

2.2.2.A Catalytic dehydration of ethanol to ethylene

Catalytic dehydration of ethanol into ethylene appears as one of the main alternatives for ethylene’s

main production process. It is a process that has been known for a long time but has never been

exploited for large-scale ethylene synthesis, mainly due to the operational cost and raw material avail-

ability [5, 21]. However, with the increasing production of bioethanol, this process becomes a better

perspective. Not only this could solve the environmental problems related to the conventional steam

cracking route, as it would lead to a disruption of ethylene’s value chain reliance on crude oil price

fluctuations [5].

Industrially, the process can be divided into three different parts. The first one contains the reactional

part where the dehydration occurs, the second one includes the recovery of ethylene and the third

consist of its purification. As presented in Figure 2.5, preheated feedstocks flow into a reactor where

an endothermic reaction takes place, forming ethylene, which afterwards goes into washing towers and

dryers where byproducts like diethyl ether, for example, are separated [8].
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Figure 2.5: Process diagram for an ethylene production plan [8].

The operating temperature in the reactor unit depends on the wanted fraction of each product.

Namely at the temperature above 473 K, ethylene is the main product, while below this temperature,

it is the ether [22].

The reactor used can either be a fixed bed or a fluidized bed reactor. At the moment, the fixed bed

is the most used in industry. A usual configuration is a multitubular disposition with the catalyst placed

inside the tubes and a hot fluid passing outside on the shell [23]. The conversion obtained with this kind

of reactor is around 99% with a selectivity of 95% to 99% when using zeolites like HZSM-5 or ZSM-5,

for example [3, 24]. Scaling-up of the reactor is limited due to the difficulty in maintaining an uniform

temperature along the tubes when they become bigger [10].

A fluidized bed reactor is a very promising alternative. When compared to the fixed bed reactor,

this one, has similar behaviour in terms of results while having less catalyst deactivation due to coke

deposition and having less operational costs associated because it does not need an external source

of heat. But it still has some problems to be solved, mainly related to collision between the catalyst

particles and the reactor walls, which could cause damage to the catalyst [8].

In the recovery step, the water, carbon dioxide and ethanol that did not react are set to be removed.

The water is firstly removed, by using a quenching tower. The carbon dioxide is removed by dissolution

in a sodium hydroxide solution and then the remaining water is removed by molecular sieves. It is

very important to remove this water because the instruments to be used in the purification phase are

very sensitive to the water content of the stream. Lastly, the purification step consists of a cryogenic

distillation unit that removes all the impurities from previously cooled ethylene. In the end, the obtained

ethylene normally has a purity level of around 98% [10].

This process has some downsides. At the moment, the price of ethanol as a feedstock determines

the cost of ethylene synthesis and the price of pure ethanol is still quite high. On top of that, the price
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of the produced ethylene following this route is not comparable to the one produced by steam cracking.

This issue can be, at least partially, tackled if bioethanol is used as a feedstock. Another solution for

this problem can be the usage of ethanol with lower purity levels, but this hypothesis still needs more

studies and research before implementation, since the effect of the impurities in the process needs to

be studied and simulated, to assess its feasibility [10].

Catalysts

Ethanol dehydration can be considered as an acid-catalyzed reaction. Many different catalysts have

been studied so far, to achieve maximum selectivity and conversion. Those include transition state metal

oxides, alumina, zeolites, etc [25].

A – Phosphoric acid catalyst

The first used catalyst for the studied reaction was a catalyst of phosphoric acid. The British Imperial

Chemical created it in the 1930s by depositing phosphate on coke or clay. In fact, until the 1950s,

this catalyst was the base one for the production of polyethylene in England [25]. This, at the time,

presented a product with high purity but, on the other hand, the catalyst suffered quick deactivation due

to the deposition of coke. As the catalyst required a month to regenerate, the use of this catalyst was

abandoned [25].

B – Alumina-based catalyst

In the years that came after this, alumina-based catalysts were utilized. They were first used in Ger-

many by a company called Elektrochemische Werke. Many have followed the same path, like Braskem

in Brazil which produced ethylene as a raw material for the production of polyethylene and other poly-

mers [7,25].

The alumina-based catalyst exhibited better results than the previous one in terms of ethylene purity.

However, for it to work properly, the ethanol concentration at the beginning of the process needs to

be higher, otherwise higher temperatures and lower space velocities will be required, leading to higher

energy-related expenses, thus making the process unfeasible. Because of this many companies ended

up their ethylene production through this process and turned again to the steam cracking path [8,25].

C – Heteropolyacid catalysts

Heteropolyacid refers to an oxygen-containing multi-acid created by the core atom that can be P, Si

or Fe, for example, and the ligand-atom which can be Mo, V, W, bridging the oxygen atom, as can be

seen in Figure 2.6 [8].
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Due to their physicochemical properties, heteropolyacid catalysts are considered a promising family

of catalysts both for heterogeneous and homogeneous catalysis. They are also considered to be useful

as a model system, being very used for fundamental research, to explore some problems that still exist

in catalysis because their acidity and oxidizing potential can be easily modified [26].

Figure 2.6: Structure for one of the main variants of a heteropolyacid catalyst [27].

The use of this type of material for ethanol dehydration to ethylene offers several advantages in-

cluding lower reaction temperatures with higher conversion rates. Yet, this type of catalyst needs to be

loaded on the carrier when utilized, which results in higher preparation costs and can lead to big losses.

As a result, even though this catalyst can be a promising one, as stated before, more research into it is

still required [8].

D – Zeolite catalysed reaction

Lastly, the type of catalyst that has been studied and utilized more recently is zeolites. Zeolites are

promising materials as catalysts due to their unique structural properties, especially their big internal

surface area which can lead to a higher number of active sites available for reactions. As reported by

Tanabe et al. [28], almost 40% of the industrial processes are already improved by the use of zeolites

as catalysts.

There are zeolites originating from nature, but these are considered unsuitable due to their high

water content and the presence of impurities. Since the 1970s, big efforts have been made to develop

synthetic zeolites, especially to catalyze reactions in the petrochemical area. In 1972 Mobil managed to
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synthesize the first zeolite, with a main focus on improving petrochemical processes [25].

A zeolite is an inorganic molecule made up of tetrahedron of SiO4 and AlO4 linked by a common

oxygen atom, with the following general formula given by Equation (2.1), where A represents the anion,

x/y the ratio of silica atoms over aluminium and (x+y) the amount of tetrahedron per unit cell [25].

Am+
y/m[(SiO2)x.(AlO−

2 )y].zH2O (2.1)

This link between the tetrahedrons results in a porous molecule with a 3D structure, as can be seen

in Figure 2.7, where four of the main zeolite structures are presented [29].

Figure 2.7: Structure of four of the main zeolites. [29].

Three important characteristics that are present in zeolites are shape selectivity, the confinement

effect and the Si/Al ratio. These characteristics can be manipulated to optimize the reaction results.

Shape selectivity, as the name says, means that the transformation of reactants depends on how the

molecules fit in the pores/channels of the zeolite. It is based on the idea that the pores of some zeolites

are of the same order of magnitude as the reactant molecules in terms of molecular dimensions. This

will cause some molecules to not adsorb and certain possible reaction products might not be formed.

This is a very useful characteristic for diminishing the production of undesired by-products in some

reactions [30,31].

The confinement effect consists of a property related to the porous structure, that is known to have

a high influence on the diffusion step. This leads to a constrained environment due to geometrical
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constraints and selective absorption affecting the reactions selectivity and activity [32].

Last but not least, the Si/Al ratio is also a characteristic with a very high influence on catalyst perfor-

mance since it defines the Brønsted acidity of the catalyst when the cation is exchanged for a proton.

Reports claim that, when the ratio is low, so when alumina is present in higher concentrations, the acid

site density will be higher. But, the presence of more acid sites means more AlO4-tetrahedron leading

to a decrease in the acid site strength, even though they are present in bigger quantities [25]. Find-

ing a balance between these relationships is the key element that should be adjusted according to the

objective of each process.

Lewis acid sites are another type of acid site that can be present on zeolite surfaces. These can be

formed from non-framework aluminium species which can appear by degradation of Brønsted acid sites

along with some thermal treatment. They are of much less importance and exist in lower concentrations

than Brønsted acid sites [29].

Zeolites show higher activity than alumina-based catalysts allowing for lower reaction temperatures

however they can be more prone to deactivation [25].

Considering this, looking for new approaches for catalyst development, which is one of the aims of

this paper, remains very important.

In recent years, catalyst modification has been often implemented to improve their performances

and lifetime. These modifications are heavily important in establishing relationships between catalyst

properties and performances. The most common ones are related to dealumination processes and

metal doping. The major objective in performing these modifications is to reduce the number of strong

acid sites on zeolite structure as it has been realized that the weak acid sites have a bigger lifespan

regarding coke deposition and provide better catalyst stability [3].

Dealumination can be classified as a demetallation post-synthesis method that has the aim to remove

aluminium from the catalyst structure by utilizing hydrothermal treatments or other chemical agents.

Not only this method can cause changes in the number of acid sites of the zeolite but it also breaks

down its structure, leading to the formation of vacant spots. This can further increase the porosity,

especially regarding mesopores [33].

Similar to dealumination there is another demetallation process called desilication. It is one of the

most used processes to create secondary porosity in zeolites structure. This technique removes silicon

from the zeolite structure preferentially in an alkaline environment. In the resulting material, microporous

nature and acidic characteristics are preserved and a secondary system of mesopores is formed, which

impacts the activity, selectivity and lifespan of the material [33]. Catalysts obtained by this technique

can be considered hierarchical catalysts since they possess the inherent catalytic characteristics of mi-

croporous zeolites but with improved access to and transport through the extra meso and macroporous

system that the material retains [34]. Figure 2.8 demonstrates a simple chemistry of the hydrolysis
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process that results in either dealuminated or dessilicated zeolites.

Figure 2.8: Hydrolysis processes involved in the synthesis of dealuminated and dessilicated zeolites [35].

Metal doping is a post-synthesis process that consists of two main steps. Firstly, a proton substitutes

a cation in the zeolite followed by metal impregnation on the zeolite [36]. This cation insertion followed up

by the ion exchange can induce the change of the zeolite physical properties for example the crystallinity

or the porous structure [37].

In the particular case of doping with phosphorous, it is reported that this kind of doping will improve

shape selectivity through a replacement of the stronger acid sites and also diminish the pore size, which

can strongly influence the diffusion of components inside zeolite structures [38].

Mechanism

Regarding the reaction mechanism for the zeolite catalyzed ethanol dehydration to ethylene, it is quite

consensual among many studies [22, 39]. It is suggested that the reaction happens via two different

competitive paths as demonstrated in Figure 2.9. The first one (path A in Figure 2.9) is an ethanol

dehydration to water and ethylene and is thermodynamically endothermic, while the second (path B) is

an exothermic bi-molecular step where ethanol is dehydrated into water and diethyl ether. There is also

a third path (path C), that embodies a diethyl ether conversion to ethylene and ethanol. The dominant

product at lower temperatures (323-373K) is ether, while at higher temperatures (373-473K) ethylene

becomes the major product. The reaction temperature is a major variable in the process that needs

to be controlled, since undesired reactions, such as, oligomerization reactions start occurring at higher

temperatures, leading to the formation of higher hydrocarbons [22,40].
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Figure 2.9: Reaction scheme for ethanol dehydration reaction [11].

Figure 2.10, shows the proposed mechanism of ethanol dehydration to ethylene. This mechanism

was obtained through Density Functional Theory calculations and was validated by several kinetic ex-

periments. In Table 2.1, the three paths mentioned above (shown in Figure 2.9) are presented, with their

contribution for each one of the paths.

Figure 2.10: Reaction mechanism for the dehydration of ethanol to ethylene [22].
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Table 2.1: Reaction Mechanism and Steps [22].

Step Elementary Step A B C
1 C2H5OH + ∗ ↔ M1 1 1 0
2 M1 ↔ M2 1 0 0
3 M2 ↔ Ethoxy +H2O(g) 1 0 0
4 Ethoxy ↔ Etheneads 1 0 0
5 Etheneads ↔ Ethene(g) + ∗ 1 0 1
6 M1 + C2H5OH ↔ D1 0 1 0
7 D1 ↔ D2 0 1 0
8 D2 ↔ DEEads +H2O(g) 0 1 0
9 DEEads ↔ DEE(g) + ∗ 0 1 -1

10 DEEads ↔ C1 0 0 1
11 C1 ↔ Etheneads + C2H5OH 0 0 1

Path A C2H5OH(g) −→ Ethene(g) +H2O(g)
Path B 2C2H5OH(g) −→ DEE(g) +H2O(g)
Path C DEE(g) −→ Ethene(g) + C2H5OH(g)

Starting with path A, it is a monomolecular pathway which includes ethanol adsorption, forming a

chemisorbed monomer named M1 (adsorbed ethanol). Species M1 undergoes a rearrangement forming

physisorbed surface species M2. After that, M2 undergoes water elimination due to activation of the

alcohol Cα-O bond. This activation occurs by the catalyst proton promoting an attack of the α carbon by

the aluminun-bound oxygen next to the acid site, leading firstly to the formation of a cationic transition

state followed by the formation of an ethoxide. From this, physisorbed ethylene is formed, desorbing

after with regeneration of active sites [22].

With path B, not only one but two ethanol molecules adsorb forming D1, which is a chemisorbed

dimer, where both of the molecules that adsorbed share the proton. Similarly to what happens in path A,

this intermediary species undergoes a rearrangement, forming physisorbed D2. This step is necessary

for the elimination of water, leading to the formation of the Diethyl Ether (DEE) species. This one then

desorbs which frees the active sites [22].

Considering Path C, an attack of the β-hydrogen of a previously adsorbed DEE molecule by the

aluminum-bound oxygen next to the acid site leads to the scission of the Cβ-H and Cα-O bonds forming

physisorbed ethylene and ethanol. Following this, both these compounds desorb restoring acid sites

[22].

K. Alexopoulos et al. proposed a mechanism based on Density Functional Theory (DFT) calculations,

which is somewhat a more complex one, as shown in Figure 2.11 [39]. The kinetic model for this study

was developed around this adopted mechanism and MDCD was performed considering it because this

model has already been used for kinetic modelling and is reported to be a valid one for the process [39].

Furthermore, it was chosen instead of the more simplistic one, presented previously, to have a more

accurate study of the behaviour of the process. This mechanism accounts for the same three reaction

paths as the previous one shown in Figure 2.10 but comprises eight different mechanisms among those
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paths. Path A consists of five mechanisms, path B consists of two mechanisms and path C is just one

shown in Table 2.2.

Figure 2.11: Complex reaction mechanism for the dehydration of ethanol to ethylene [39].

For path A, one of the mechanisms assumes that the ethylene formation can happen in the following

way. Firstly (step 1), adsorption and protonation of ethanol take place forming intermediate M1, followed

by elimination and desorption of ethene as stated by step 15, with deprotonation of water (step 0). M1

goes through heterolysis of the C-O bond led by deprotonation of the β-carbon forming the ethylene. The

second mechanism that K.Alexopoulos et al. proposes is the same as the one proposed in Table 2.1 for

path A [39]. A third mechanism is constituted by, firstly, the ethanol protonation and adsorption in step 1,

followed by a rearrangement of the surface species formed in 1 (step 2), followed by elimination of ethene

(step 16), with its consequent desorption (step 17). Lastly, there is, of course, the de-protonation and

desorption of water (step 0). The fourth mechanism is a path that was recently discovered and claims

that water is needed together with ethanol since it assumes that the process occurs on an acid site

previously covered with water. Following this assumption, the first step consists of ethanol adsorption

together with water (step 18), followed by ethylene desorption and elimination. After this, water desorbs

from the formed dimer (step 20) [39]. The last mechanism presented for path A is a simple one, where
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instead of having a pre-adsorbed water molecule as it happens in the previously explained mechanism,

there is the need to have an adsorbed ethanol molecule. This starts with ethanol adsorption on the

ethanol monomer that is already protonated (step 6), followed by a rearrangement of the formed dimer

(step 7), and then elimination and desorption of ethylene (step 13), The last step of this mechanism

consists on the desorption of water from the formed intermediate (step 14) [39].

For path B, one of the proposed mechanisms is the same as path B of the simpler mechanism

(shown in Figure 2.10), being an ethoxy-mediated one. The second proposed mechanism includes a

dimer-mediated process. It starts with monomolecular adsorption of ethanol (step 1), followed by bi-

molecular adsorption of ethanol (step 6), forming the species D1. Then a rearrangement of the dimer

happens, producing the intermediate D2 (step 7). After that, a protonated ether is formed by a nucle-

ophilic substitution (step 8) and lastly, DEE desorbs and de-protonates, freeing the acid active site [39].

In step 8 the Cα of the protonated ethanol destroys its bond with the water group and bonds with the

oxygen of the ethanol molecule [39].

Regarding path C, the proposed mechanism is equivalent to the one from the first proposed mecha-

nism, with almost no differences between them [39].

Table 2.2: Elementary steps and reaction mechanisms for ethanol dehydration in H-ZSM5 [39].

Path # A B C
Mechanism # 1 2 3 4 5 6 7 8

(0) W ↔ H2O(g) + ∗ 1 0 1 0 0 0 0 0
(1) EtOH(g) + ∗ ↔ M1 1 1 1 0 0 1 1 0
(2) M1 ↔ M2 0 1 1 0 0 1 0 0
(3) M2 ↔ ethoxy +H2O(g) 0 1 0 0 0 1 0 0
(4) Ethoxy ↔ Ethene∗ 0 1 0 0 0 0 0 0
(5) Ethene∗ ↔ C2H4(g) + ∗ 0 1 0 0 0 0 0 1
(6) M1 + EtOH(g) ↔ D1 0 0 0 0 1 0 1 0
(7) D1 ↔ D2 0 0 0 0 1 0 1 0
(8) D2 ↔ DEE ∗+H2O(g) 0 0 0 0 0 0 1 0
(9) DEE∗ ↔ DEE(g) + ∗ 0 0 0 0 0 1 1 -1
(10) DEE∗ ↔ C1 0 0 0 0 0 0 0 1
(11) C1 ↔ Ethene ∗+EtOH(g) 0 0 0 0 0 0 0 1
(12) Ethoxy + EtOH(g) ↔ DEE∗ 0 0 0 0 0 1 0 0
(13) D2 ↔ C2 + C2H4(g) 0 0 0 0 1 0 0 0
(14) C2 ↔ M1 +H2O(g) 0 0 0 0 1 0 0 0
(15) M1 ↔ W + C2H4(g) 1 0 0 0 0 0 0 0
(16) M2 ↔ C3 0 0 1 0 0 0 0 0
(17) C3 ↔ W + C2H4(g) 0 0 1 0 0 0 0 0
(18) W + EtOH(g) ↔ C2 0 0 0 1 0 0 0 0
(19) C2 ↔ 2W + C2H4(g) 0 0 0 1 0 0 0 0
(20) 2W ↔ W +H2O(g) 0 0 0 1 0 0 0 0
Path A (mechanism # 1-5) C2H5OH(g) −→ Ethene(g) +H2O(g)
Path B (mechanism # 6-7) 2C2H5OH(g) −→ DEE(g) +H2O(g)
Path C (mechanism # 8) DEE(g) −→ Ethene(g) + C2H5OH(g)
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2.2.2.B Other alternative technologies for ethanol production

Alongside the ethanol dehydration into ethylene technology, there are more emerging technologies

for ethylene production, that can compete between them to be the main production technology in the

future. This is driven by the existence of cheap alternative feedstocks to naphtha such as propane,

ethane or methane, especially in the United States of America, where the production of shale gas

has risen exponentially. Moreover, since methane is very abundant and can have a lower price, all

technologies that have the ability to transform it into higher hydrocarbons or chemicals with high value

are considered to be very promising and a good studying topic [2]. Anyhow, for these technologies to be

able to come into play at a bigger scale, they need to economically match the current steam cracker plant

and production capacity. So development needs to be done regarding capital costs, process efficiencies

and reliability so the risk of investing in these is as low as possible.

Nonetheless, some of the processes from these groups are considered promising. These are the

MtO, the FTS, the OCM and the Oxidative dehydrogenation of light alkanes (ODH) as can be seen in

Figure 2.12 [2].

Figure 2.12: Different technologies for ethylene and other olefins production [2].

A – Methanol to olefins

The MtO process was developed by Mobil in 1977 and further patented and developed by other

companies like UOP/Hydro, for example. It is a process where methanol, previously obtained from

natural gas or coal, is catalytically dehydrated and then converted into ethylene over zeolite or alumina
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catalysts [41]. In the case of Mobil’s process, ZSM-5 is used, while silico-alumino phosphate (SAPO-34)

is used at UOP/Hydro [2]. The MtO process is carried out in a fluidized bed reactor with a yield of around

80% in terms of carbon content.

At the moment China is the country boosting this technology the most, mainly due to governmental

policies since it has large quantities of coal to use as raw material. Proving this is the capacity of

production of olefins from coal that has increased from 1.1 million tons per year to 15.5 million tons per

year [2].

The process seems to be economically competitive with the conventional method but still needs a lot

more research and upgrades to deal with catalyst deactivation, mainly caused by coke deposition, and

regeneration.

B – Fischer-Tropsch synthesis

Regarding the FTS process, this is a mature catalytic process that aims at the production of liquid

fuels and other chemicals, like linear alkanes, alkenes and oxygenates from syngas, which is a mixture

of CO and H2, normally obtained from the reforming or gasification of methane. It is seen as a very

beneficial process, especially in areas where the amount of crude oil is meagre [2].

For FTS to be a process for olefin production, some problems still need solving. These problems

are very catalyst dependent and involve a lack of control on the reaction’s product selectivity, leading

to a very broad range of products, and sulfur poisoning [42]. Furthermore, from already implemented

industrial units, the investment and risk associated with FTS units can be much higher than expected

initially [2].

C – Oxidative coupling of methane

The OCM process is a direct conversion route of methane to other hydrocarbons by activating

methane to produce methyl radicals [2]. These methyl radicals can combine to originate ethane, that

by going through a set of pyrolysis reactions can form ethylene. Similarly to the ethanol dehydration to

ethylene, this technology does not need crude oil as a raw feed, making it one of the most researched

ones, so it can be commercialized in a few years.

If methane is available abundantly and at low prices, this technology can be feasible and very compet-

itive [17]. However, research in terms of catalyst design to enhance the selectivity and stability at higher

temperatures is still required. Additionally, the development of new reactor technologies is needed to

deal with the high exothermicity of the reaction and make thermal control easier [2].

D – Catalytic dehydrogenation of light alkanes

Another emerging technology for olefin production is the ODH. Due to the high quantity of cheap

light alkanes, that can be produced from shale gas, it is worth considering this process. Especially in
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countries like China that is reported to have shale gas reserves of up to 207 trillion cubic meters or the

United States where the projections claim that almost 50% of the natural gas produced by 2040 will

come directly from shale, according to the Energy Information Agency (EIA) [43].

At the moment there are already two patented processes for this technology, Oleflex and Catofin.

The reactions for this transformation are heavily endothermic, being favoured at high temperatures and

lower pressures over alumina-supported catalysts [2].

The biggest downside of ODH at the moment is a tendency for coke formation and deposition on the

catalyst which is pronounced at the temperatures required for a higher ethylene selectivity. Coke for-

mation is not fully reversible, which, of course, compromises the catalyst activity and lifetime, therefore,

further research in the area of catalyst stabilization and recovery is needed [2].

On top of this, the energy efficiency of the process still needs to be improved, as well as the reaction

equilibrium that should be shifted to the product side. For that, some strategies are being tested like

lowering the partial pressure or removing hydrogen from the system. However, problems associated

with thermal stability arise and still need solving [2].

Environmental concerns

The main reason for these processes to be considered promising, as stated before, is environmen-

tally related.

The ethanol dehydration to ethylene technology solves a big part of the issues related to steam

cracking. Firstly, since it needs very lower temperatures to work, the energy consumption by the ethanol

dehydration to ethylene is much lower, having lower operational costs associated with it. Secondly, the

CO2 emissions per ton of ethylene produced are reported to be around 60% lower than the ones from

steam cracking, when the process gets more developed. On top of that, this process, if the raw material

is bioethanol, can be considered almost carbon-neutral, because the CO2 released into the atmosphere

during the combustion of ethanol, was previously absorbed by the growth of crops and other biomass

sources during the process of photosynthesis. The emissions of NOX and other particulate matter are

also much lower for this process [5].

Figure 2.13 shows the total emissions of CO2 coming from various routes for ethylene and other

olefins productions. A distinction between two kinds of CO2 is made. One is energy-related CO2 ,

for example, produced by the fuel combustion or power generation needed to heat the process to the

required temperatures, and the chemical CO2 that is produced in the reaction [2].
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Figure 2.13: Total CO2 emissions per ton of chemicals for different production technologies [2].

It is clear from the figure that SC, when using naphtha or ethane as feedstock, is still the best

technology mainly because of all the development and research put into it, which lead to the high energy

efficiency of the process. However, if big efforts are done on the alternative processes presented, these

can become similar or even better than SC. OCM, for example, already showed very good results, which

can be easily further reduced in terms of chemical CO2 if the selectivity for ethylene in the process is

improved [2].

2.3 Catalyst development techniques

Catalysis and catalysts are present in all forms of chemicals in the industry. It is commonly said that

at least one catalytic process is used in the manufacturing of over 90 % of all chemical products [44].

So it should come as no surprise the fact that the search for novel catalytic materials is a never-ending

process. This aspect in chemical industry became even more important with the development of new

sustainable ways to manufacture chemicals relying less on fossil fuels [45, 46]. However, designing a

catalyst is a difficult task, mainly due to the complexity of solid materials and heterogeneous catalysis,

which requires an understanding of multiple scientific fields, from surface science to chemical reaction

engineering.

Since the beginning of the research, catalyst development has frequently depended on ”trial and

error” techniques, where laboratory-size performances are assumed to be representative of industrial-

scale operation. Despite numerous attempts to rationalize the development of new catalytic materials,

by trying new approaches and techniques, the ”chemical experiment” keeps being a very credible tool for
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new catalyst development, giving information about several important parameters like conversion, selec-

tivity, stability... Nevertheless, with the introduction of high-throughput testing, the number of experiments

that need to be done in a laboratory became less limiting, being the interpretation and management of

obtained data the main restriction now [4]. The main improvements of this approach are situated around

using statistical techniques such as Design of Experiments (DoE), for example. DoE technique is a

statistical method for optimizing a specific response by taking into account the various factors that con-

tribute to the output. For example, in chemical engineering, this can be used to optimize the yield of a

specific reaction taking into account temperature or pressure as the process variables. This approach

gives the ability to explore the whole factor space and determine relevant combinations of factors to

optimize the objective function [4,47].

In terms of catalyst design techniques, there are three main ones:

• Statistics-Driven Catalyst Design

• Performance-Driven Catalyst Design

• Information-Driven Catalyst Design

Statistics-Driven Catalyst Design

In this catalyst design approach, catalyst properties that have to be optimized as well as the interval

where they will be modified need to be selected. This optimization is then performed by using an

”one-variable-at-a-time” principle. As the name says, this consists of a method where the design of

experiments involves the testing of one variable at a time to be able to investigate its effect on the

product quality and quantity [4, 47]. Instead of applying this principle, more sophisticated statistical

methods can also be used. A full factorial design is an example of this statistical methods, that can be

used over a big range of experimental conditions. However, the number of experiments, that would need

to be performed, when using this method, would be enormous and very time-consuming. A design type

that could solve this problem is a fractional factorial design. For this kind of method, a correlation is

made between the catalyst characteristics(xi) and its performance(y). This presents a linear behaviour

for the parameters (b1) and a quadratic one for interaction terms, as can be seen in Equation (2.2) [4].

y = b0 + b1x1 + b2x2 + b3x
2
1 + b4x

2
2 + b5x1x2 (2.2)

Although this technique may have good outputs in terms of catalyst design and performance assess-

ment, it has some drawbacks. The main one is the fact that the relations like the one from Equation (2.2),

have a deficiency in terms of the fundamental detail that governs the catalyst performance. This makes

this kind of relation more adequate for interpolations but very poor in what extrapolations are concerned.
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Accordingly, it can be considered as an insignificant method for studying how the catalyst works and

reacts to different operating conditions, like temperature, pressure or other feedstocks [4].

As a consequence, the choice of catalyst might not be optimal.

Figure 2.14: Statistics-Driven design methodology [4].

Performance-Driven Catalyst Design

The Performance-driven catalyst design technique is the most intensive method. In contrast to the

method presented previously, this methodology generally differentiates between two stages. One con-

sists of a catalyst screening stage and the other of an optimization stage.

In the first one, a big amount of catalysts are prepared, studied kinetically and ranked based on their

performance. In the second stage, the catalyst that, previously, had interesting results are tested more

thoroughly, to find the better one. This technique has a big drawback because it needs the synthesis

and testing of a large amount of materials, which can take up a lot of time and money [4,25].

Figure 2.15: Performance-Driven design methodology [4].
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Information-Driven Catalyst Design

The Information-Driven technique has the aim to overcome the drawbacks of the previously men-

tioned methodologies. In this procedure, the first step consists of an initial screening of catalysts to

select the catalysts with the properties that better optimize the process and its activity. Still, in this case,

the selected ones might not be the most active, but the ones that allow for gathering information on

catalyst properties and their performance [4,47].

The acquisition of this information happens in a second step, where the main objective is to know

better the reaction mechanism, especially in terms of intermediates, by-products that can be formed and

the effect of operational conditions on the output of the process.

The results of the catalyst screening and testing can be further integrated into a microkinetic model.

The needed kinetic and catalytic descriptors for this model are obtained by combining research on

a selected catalyst with an exploratory investigation of the catalyst descriptors on a small number of

catalysts, accompanied by the initial screening findings [4,47].

While the kinetic descriptors account for reactive qualities like activity or selectivity in terms of acti-

vation energies and pre-exponential factors, the catalytic descriptors account for the impact of catalyst

properties on performance. Taking this into account, the catalyst descriptors can be assumed as a fin-

gerprint for the catalyst, that when correlated with the microkinetic model, can translate into different

performances [4,47].

The developed models can then be used to produce reliable simulations by incorporating them into

an adequate reactor model to be able to compare simulation with experimental results. This procedure

can lead to a very good scale-up of the process while minimizing the number of tests that are done.

Both of the steps in this method require their own high-throughput kinetics set-up, which consists of

a set of parallel, usually fixed bed, reactors that are operated at the same temperature and pressure, but

with the option of varying space-time and catalysts [4,47].

The model-driven catalyst design technique or kinetics-driven design is a technique that fits in the

information-driven catalyst design method domain [4,25].

By integrating kinetic modelling with carefully chosen statistical analysis techniques, this method

strives to establish the missing descriptor-property connection. It is viewed as a very promising tech-

nique that is majorly applied to processes for which finding the optimal catalyst, in terms of activity and

stability remains a challenge. Some examples of these successful applications are the OCM and also

the production of light olefins via the FTS process [46,48].

Like any other technique, this approach has a drawback, related to the set of chosen descriptors.

If the set of catalyst descriptors is unrealistic, the optimization will not be industrially feasible, thus, the

choice of the catalyst descriptors is a very important step of the methodology since it can compromise
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all the other stages [46].

Figure 2.16: Information-Driven design methodology [4].

2.4 Conclusions

Hence, by analysing all the considerations presented in this chapter and reported in the literature,

it is possible to conclude that ethylene production is a topic of major importance with several different

processes being researched and considered for it in order to help tackle the environmental problems

associated to the mainstream production route. As mentioned before, the dehydration of ethanol appears

as one of the main ways for this production, especially taking into account the production of ethanol

from biomass with similar chemical properties to the one produced from SC, which can address the

challenges associated with the process. Nevertheless, the right catalyst for this is still a topic that needs

more research, especially concerning problems related to the deactivation of the catalysts, because, in

terms of performance, good values for conversion and selectivity have already been obtained.

Following this, the objective of this work is to help this research by applying a MDCD technique to

different case studies and consists of an information-driven design technique that allies the kinetics of

the process through a microkinetic model where catalyst descriptors will be implemented, together with

statistical tests. This aims to establish relationships between the physical properties of the catalyst and

the performance so it can be possible to reach an optimal catalyst structure. Considering the reported

catalysts, presented previously, zeolites appear as one of the best alternatives since they present very

good activity with deactivation being the only downside. So the focus of the work will be on this kind

of catalyst, especially, because, on top of what was already mentioned, a larger amount of research on

these has already been developed, mainly focusing on the possible modifications to this type of catalyst

to improve their stability, so bigger quantities of data on them are reported already making the process

of establishing relationships with the physical properties of the materials easier.
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3
Methodology
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Procedure

Figure 3.1 shows a schematical representation of the methodology proposed in Ref. [46] and followed

in this work. Even though the methodology previously presented some issues and some improvements

could be made to what was presented in Ref. [46], mainly related to integrating all the methodology in

just one software, it was followed equally to how it was stated in the referred work. It is based on three

different concepts. The first one is the concept of virtual catalyst which is a computational representation

of materials that are defined as a vector of m catalyst descriptors (Di,j). The number of virtual catalysts

to be tested is defined as n. The second concept is one of the real catalysts that are materials with

known composition and structure and have already been studied, previously, hence their performance

is already available and quantified. The third concept on which the methodology relies is the concept of

catalyst descriptor. This works as a bridge between virtual and real catalysts being defined as a factor

that has an impact on the reaction behaviour and kinetics varying from catalyst to catalyst [46].

Figure 3.1: Summary of the followed methodology for the model-driven catalyst design technique [46].

The first step in this methodology is the generation of the discovery library of virtual catalysts, in

the first iteration, which consists of a set of n virtual catalysts. This first library of virtual catalysts is

supposed to be very diverse to have a wide range of catalytic performances to be assessed. The first

goal of this iterative procedure is to form a targeted library starting from the discovery library, following

the steps shown in Figure 3.1. The targeted library consists of the virtual catalysts whose performances

are close to the ones of real catalysts, thus it contains only selected catalysts from the discovery library.
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If the targeted library can be generated then relationships between the descriptors and the performance

itself can be developed [46].

This methodology comprises 6 different steps, which are:

1. Virtual catalysts generation

2. Numerical experiments

3. Comparison between the performances of virtual and real catalysts

4. Analysis of the descriptor distributions

5. Building targeted libraries of catalysts

6. Developing descriptor-property relationships from real catalysts properties

These different steps will now be briefly explained.

Step 1.Virtual catalysts generation

This first step has as its main objective to generate the library of virtual catalysts. As said before,

in the first iteration the discovery library is developed, while on further iterations, if that is the case, the

targeted library is built.

These virtual catalysts can be generated through several techniques. The preferable ones according

to some reports [46] are the DoE, which assures that the sample of virtual catalyst is statistically signifi-

cant and meaningful, not just a set of randomly generated numbers. Among these statistical techniques,

space-filling design is very practical, since it makes good combinations when applied to deterministic

systems with a lot of variables as in this case. Space-filling designs are commonly used in computa-

tional experiments with the main objective of investigating the link between a set of inputs and a set of

outputs generated by a computer simulation [49].

In this methodology, a fast flexible space-filling design was used. This consists of an algorithm that

can quickly create space-filling designs both for rectangular and non-rectangular design spaces. When

compared to other methods, this Fast Flexible Filling (FFF) designs are able to issue better coverage

over the entire design space while being more quick and robust [49]. To apply this method software like

JMP 16 can be used [50].

The n virtual catalysts are constituted by a set of m descriptors, leading to a n × m matrix, as

represented by Figure 3.2, where columns represent different descriptors, while rows represent vectors

of descriptor combinations that can be called a virtual catalyst.
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Figure 3.2: General representation of a matrix of catalysts

In terms of values for these descriptors, they should be coherent with the chemistry of the reaction

of interest and preferably taken from previous studies that are reported in the literature. More complex

reaction systems, involving numerous components usually lead to more catalyst descriptors needed to

be taken into account while formulating a virtual catalyst, and vice versa [46].

Step 2.Numerical experiments

In this step, the previously generated virtual catalysts, are screened in a numerical set-up. The

numerical set-up in this context represents a microkinetic model, where the kinetics is correlated to the

selected descriptors, coupled with the adequate reactor model. With this numerical set-up, the behaviour

of all virtual catalysts, that compose the discovery library, can be evaluated, and parameters that can

characterize catalysts’ performance like conversion or selectivity can be calculated [46].

So evaluated performance of virtual catalysts should be further compared to the performance of real

catalysts. This, of course, implies that the operating conditions used in the experimental campaign have

to be used in the simulation.

Another important factor in this step is to provide enough diversity to the catalyst properties and

operating conditions, to be able to identify and quantify their effect on the performance and thus achieve

the main goal of the methodology during step 6 [46].

Figure 3.3 displays a graphic representation of this step, where l, represents the number of perfor-

mance parameters taken into account.
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Figure 3.3: Graphic representation of step 2 of the presented methodology.

Step 3.Comparison between the performances of virtual and real catalysts

Once the performance of the virtual catalysts is obtained from the numerical experiments step, it

should be compared with the performance obtained with real catalysts. One way of achieving this is by

comparing them through clustering algorithms and more precisely the k-Means clustering technique [46].

A cluster consists of data points, simulated and/or experimental, that have been grouped due to

particular commonalities [51], such as the obtained conversion and selectivities for the studied reaction.

K-means clustering consists of an algorithm based on a centroid where the distance between each

point of the studied data set and the centroid is calculated to assign data to a cluster. It can be considered

as an iterative process where points will be assigned to a group based on their similarities, in this case,

these are the catalyst performances, as represented in Figure 3.4 [52].

Figure 3.4: Example of the k-means clustering technique [53].

In the end, the main objective is to minimize the sum of the distances between the centroid and the

studied data points [52].

For this purpose, the software Orange3 [54] was utilized. This consists of a very intuitive tool that

can assess some problems related to k-Means clustering, namely the choice of a correct number of

clusters for a specific dataset and the high influence on the obtained results of the initialization step of
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the method [55,56].

Concerning the first problem, the software overcomes it by using the Silhouette evaluation to assess

the ideal number of clusters (k). Silhouette can be considered as a measure of similarity and works by

analysing the distance of each data point to the cluster where it belongs and its closest cluster, which can

be defined as the average distance of a point to all the remaining ones within the cluster and that to all

the points in the closest cluster. Then the silhouette value for a clustering technique can be considered

the average of the silhouette values for all the points involved [57]. The number of clusters that present

higher silhouette values represents the ideal cluster subdivision for a dataset.

Regarding the second issue with this technique, the initialization method utilized by this software is

the K-means ++. This starts by spreading out the first centroid randomly and then selecting the other

ones relying on the maximum square distance concept, as can be seen in eq. (3.1), where xi is a data

point and Cj a centroid [52]. Basically, after randomly picking the first centroid, it calculates the distances

between all the data points and the centroid. The datapoint that verifies eq. (3.1) will be considered as

a new centroid and the process is repeated until all the clusters are defined [52].

Di = max(j:1−k)∥ Xi − Cj ∥2 (3.1)

Step 4.Statistical analysis of the descriptor distributions

This fourth step is one of the most relevant ones since it is the one that will allow us to understand

the real influence of some descriptors on the observed performances.

The descriptors present different probability distributions in each one of the clusters obtained before.

By taking this concept into account, through comparing these distributions within all the clusters, we can

get to the more relevant descriptors, which allows us to differentiate from one to the other and start to

relate these with some real properties already [46].

To test the descriptor distributions some specific statistical tests need to be applied. In this case, tests

like the ANOVA or the t-student test, which are the most commonly used ones, should not be applied,

as these are indicated for data that follows a normal distribution type and catalyst descriptors are likely

to be non-normally distributed within the different clusters. Thus the non-parametric alternatives of the

mentioned tests, like the Kruskal-Wallis and the Mann-Whitney test, should be used [46].

The Kruskal-Wallis test by definition is used to determine if there is a difference that can be statisti-

cally significant between the medians of three or more groups, in this case, clusters [58].

In the case of the Mann-Whitney test, it is an equivalent of the two-sample t-student test, with the

difference that while the t-student test makes assumptions about the population’s distribution, the Mann-

Whitney test makes no assumptions [59]. This test is applied in the case where the number of clusters

to be studied is equal to 2.
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The assessment parameter that will be used in the application of this statistical test to evaluate if a

descriptor is a discriminating one or not will be the p-value. This value allows us to reject or evince the

null and the alternative hypothesis. The alternative hypothesis defends that the observed results have an

influence that is not a random cause while the null hypothesis defends that it occurs randomly. Hence, if

the p-value is under a certain threshold one can reject the null hypothesis and consider the alternative

hypothesis as the correct one. If the value is higher, one cannot reject the null hypothesis and cannot

conclude anything about the correctness of the alternative one [60]. For the studied methodology, the

p-value considered as the threshold for the identification of a descriptor as relevant or not was 0.05 as it

was already proven to be a good limit [61]. This means that if the distribution of a determinate descriptor

within the clusters presented a p-value lower than 0.05 it is considered relevant.

As in step 1, this test can also be applied by using the JMP 16 software [50].

Step 5.Building targeted libraries of catalysts

To accomplish the methodology’s objective, and to be able to establish relationships between catalyst

descriptors and physical properties, the number of virtual catalysts close to real catalysts should be high

enough. For this, the number of virtual catalysts in the surrounding of real catalysts should be increased

across iterations, which is done by generating targeted libraries from the discovered library used in the

first iteration.

Consequently, targeting means reducing the design space iteratively through the diminishing of dis-

criminating descriptor ranges with the main objective of getting virtual catalysts closer to the performance

of real catalysts [46].

There are no specific criteria defining when to stop performing this step. A good indication that there

is a representative sample of virtual catalysts is when the number of these virtual catalysts does not

increase in a cluster on consecutive iterations [46].

Concerning this narrowing down of the value ranges, standard deviations of around ±
√
2 times the

standard deviations of the discriminating descriptor on the studied cluster can be applied to the mean

of the cluster being studied by using eq. (3.2). It is reported, according to Chebyshev inequality that by

applying this formula, at least 50% of the virtual catalysts are retained on the new cluster that is being

generated [62,63], as can be proven by eq. (3.3) that represents the Chebyshev theorem where k is the

value taken into account as
√
2 for this case.

Ditargeted = Didiscovery ±
√
2× σdiscovery (3.2)

Chebyshev Theorem/inequality = 1− 1

k2
(3.3)
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Step 6.Developing descriptor-property relationships from real catalysts properties

This step aims at establishing a relationship between a qualitative property, which is measurable

and tuneable property of the studied catalyst and the descriptor that reflects this property in the kinetic

model(i.e. reflects on the kinetics).

A graphic representation of steps 4 and 6, taken from the paper that served as the basis for the

applied methodology [46], is shown in Figure 3.5. It demonstrates how a comparison of descriptors dis-

tributions and the identification of the most relevant descriptor is performed, as well as the establishment

of a relationship between these and the real properties of catalysts. Firstly, step 4 represents the com-

parison of the descriptors distributions within two different clusters allowing the differentiation between a

cluster with low Di and high Di. Considering this, from each one of the two clusters, that present different

properties between them, it is possible to take out conclusions by establishing a relation between the

values of Di and the property that characterized the real catalysts present in the cluster, constituting this

step 6. From the moment these assumptions are made, a qualitative relationship between a measurable

property of a catalyst and the descriptor that represents the role of that catalyst on the observed kinetics

is done, which is the final goal of the methodology [46].

Figure 3.5: Graphic representation of steps 4 and 6 of the presented methodology [46].
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4
Catalyst design
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The experimental results of two individual studies from the literature [3,24], reporting the performance

of various zeolite-based catalysts in the process of ethanol dehydration to ethylene, have been used in

this work. These studies had the main objective of studying the impact of some modifications, mainly

metal doping and dealumination processes, on the performance and stability of zeolites and they were

the chosen ones because, within their sets of experimental data, zeolites have suffered, exactly, some of

these modifications that are considered as some of the most relevant due to their influence on catalysts

activity and stability, as presented in chapter 2. On top of that, it was possible to extract the presented

data, easily, from the tables reported in the studies, so these were more accurate than if they needed to

be extracted by visual interpretation from figures.

The methodology presented in Chapter 3 was then applied to obtain a relationship between the phys-

ical properties of the used catalysts and here identified descriptors that bridge these physical properties

and their effect on the kinetics of the given reaction. Real catalysts, used in the two selected studies

possess different physical properties that were previously well-characterized and studied. The first two

steps of the methodology, including the used kinetic model, are common for all the studied experimental

datasets. The third step of the methodology is also very similar to all the studied data since the per-

formance assessment parameters and the clustering technique were the same for all of them. Steps

4,5 and 6 are very case study dependant since the statistical tests to be applied and consequent con-

clusions will depend on the number of clusters obtained and on the real catalysts performance of each

study.

4.1 Generation of the virtual catalyst library

As mentioned earlier, a virtual catalyst is a combination of identified descriptors. Accordingly to the

relevant reports [46,48,64], usually employed catalytic descriptors include: 1) chemisorption enthalpies

of components, 2) sticking coefficients or initial probabilities that can be defined as the probability of a

molecule to be adsorbed on the catalyst surface after getting trapped [65], and, lastly, 3) the density of

active sites of the studied catalysts.

A virtual catalyst is defined by selecting a value for each descriptor from a priory-defined descriptor

range based on DoE and FFF methods. The initial set of these virtual catalysts represents the discovery

library. The number of virtual catalysts in the discovery library needs to be large enough to have a

representative set of descriptors combinations which will allow for establishing a relationship between

physical property and performance. With the descriptor number increase, the number of virtual catalysts

should increase as well.

As stated earlier the reaction network of ethanol dehydration to ethylene considered in this work is

presented in Figure 2.11. Accordingly, as mentioned above, the descriptors chosen in this work were
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based on works that were previously developed on this kind of methodology so it is already known

that they can influence the kinetics of the process and the way how to implement them on the kinetic

model was already reported as well. Considering this, the used ones were the following: 1) the sticking

coefficients of ethanol, 2) the sticking coefficient of ethylene, 3) the chemisorption enthalpies of ethanol,

4) the chemisorption enthalpy of ethylene, 5) the chemisorption enthalpy of DEE, and 6) the density of

active sites of the used catalyst. The used ranges for these parameters were estimated based on a

literature survey and their values are presented in Table 4.1. In the case of sticking coefficients, due

to a lack of data in the literature, their initial range was considered to be between 0 and 1 since they

represent probabilities.

The density of active sites was initially calculated by making use of the Horvath-Kawazoe method

[24], shown by eq. (4.1). The density of active sites is given in mol/m2, while the acid amount is mol/g

and the BET surface area is in m2/g. Applying the FFF design method, a discovery library was generated

in this work containing 120 virtual catalysts represented by a combination of those 6 descriptors. This

discovery library is presented in Table A.1 in appendix A. Figure 4.1 represents a 2D visualization of the

resulting discovery library, where each point represents a virtual catalyst.

ρacidactivesites =
Total acid ammount

BETSurfaceArea
(4.1)

Figure 4.1: Scatterplot matrix representation for the obtained discovery library by application of the FFF design.
Where D1,D2 and D3 represent the chemisorption enthalpies of ethanol,ethylene and DEE, respec-
tively. D4 and D5 represent the sticking coefficients for ethanol and ethylene and, lastly, D6 is the
density of active sites.
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Table 4.1: Value ranges used for the catalyst descriptors in the discovery library

Descriptor Value
∆Hchemisorption,Ethanol (kJ/mol) 35-135 [66–68]
∆Hchemisorption,Ethylene (kJ/mol) 35-165 [69]
∆Hchemisorption,DEE (kJ/mol) 50-90 [70]

S0,Ethanol 0-1
S0,Ethylene 0-1

ρactive sites(mol/m2) 2 × 10-7 - 2 × 10-6 [24,71]

4.2 Kinetic Model

4.2.1 Model formulation

To develop a microkinetic model, the reaction mechanism is the first thing that needs to be specified.

A microkinetic model is always coupled to a reactor model to be able to compare the simulation and

experimentally obtained results. Therefore, a kinetic model is usually defined by a group of mass balance

equations that take into account the thermodynamic and kinetic properties of the system.

In this study, a microkinetic model was developed by using the reaction mechanism shown in Fig-

ure 2.11 with the elementary steps presented in Table 2.2.

Based on this, a joint Langmuir-Hinshelwood-Hougen-Watson (LHHW) and Eley-Rideal (ER) mech-

anism was employed.

The LHHW approach defends that the adsorption of both reactants happens before the surface

reaction. It relies on some assumptions [72]:

• Entire surface presents the same activity for chemical adsorption

• Coverage does not influence the adsorption rate

• One species can only adsorb on one active site

• The adsorption species are all identical

• Molecules only adsorb on free sites

ER mechanism, on the other side considers that at least one of the reaction species participating in

one reaction reacts from the gas phase, while others react as adsorbed species [73].

Adsorption and desorption rates of a species i that undergo adsorption/desorption, apart from steps

1,5 and the forward step of reaction 9, where descriptors were implemented, were calculated according

to eq. (4.2) and eq. (4.3), respectively regardless of the model assumed for a specific reaction (LHHW

or ER). ki,ads, θ*,pi,g, θi stand for the adsorption rate coefficient, partial pressure of component i in the
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gas phase, the fraction of free active sites, desorption rate coefficient and the coverage of active sites

by component i in the same order.

ri,ads = ki,ads × pi,g × θ∗ (4.2)

ri,des = ki,des × θi (4.3)

The rates of reactions that follow ER mechanism were described by eq. (4.4) where kr,ER represents

the reaction rate coefficient of the surface reaction r (index ER indicates that reaction is taking place

according to ER mechanism), while pi indicates the partial pressure of the component i that reacts from

the gas phase. On the other side, if the reaction follows the LHHW mechanism the rate of surface

reaction r was calculated according to eq. (4.5), where kr,LHHW stands for the reaction rate coefficient

(index LHHW indicates that reaction is taking place according to LHHW mechanism), and θj denotes

surface coverage by component j (another reactant apart from the reactant i).

rr,ER = kr,ER × θi × pi,g (4.4)

rr,LHHW = kr,LHHW × θi × θj (4.5)

Finally, the balance of active sites is needed to simply account for the amount of vacant active sites

available for adsorption at any given moment. θ* has been calculated by eq. (4.6), where θ*
0 denotes the

initial amount of active sites which is equal to 1 as being related to the fraction. Accordingly, the surface

coverage available in a given time is a difference between the total (initial) amount of active sites and all

occupied active sites (occupied active sites correspond to the sum of surface coverages by all adsorbed

species).

θ∗ = θ∗0 −
N∑
i=1

θi (4.6)

The kinetic model was built around two assumptions:

• No rate determining step (RDS) consideration;

• Pseudo steady-state was considered for the surface species.

This further means that the rate of all reactions is calculated and that the concentration of surface

species does not change in time [74].

A plug-flow fixed bed reactor was used to collect experimental data in both case studies. Therefore

the mass balance of the components in the gas phase was calculated according to eq. (4.7), which is
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an ordinary differential equation. As such it needs one initial condition to be numerically solved, which

in this case was that Fi = Fi,0 at W = 0 (Fi and Fi,0 stands for the flowrate of component i along the

catalyst bed and the flowrate of component i at the reactor inlet in mol/s, respectively, while W stands

for the catalysts mass in kg). Following the assumption of steady-state for the surface species, the mass

balance on the catalyst’s surface was calculated, therefore, according to eq. (4.8), which is an algebraic

equation. Table 4.2 summarizes all the steps and respective thermodynamic parameters which were

used for the calculation of the kinetic constants, namely the ones for activated steps, following van’t Hoff

and Arrhenius equations, to be further used on the kinetic model.

dFi

dWcat
= Ri = Ct × (

N∑
1

ri,ads −
N∑
1

ri,des ±
N∑
1

ri,reaction) (4.7)

dθk
dt

= 0 =

N∑
1

rk,ads −
N∑
1

rk,des ±
N∑
1

rk,reaction (4.8)

Table 4.2: Standard reaction enthalpy (kJ/mol), standard reaction entropy (J/mol/K), activation energy (kJ/mol) and
pre-exponential factor (s-1 or 10-2 kPa-1 s-1) of forward reaction, forward reaction rate coefficient kf (s-1

or 10-2 kPa-1 s-1) at 500 K and equilibrium coefficient at 500 K (10-2 kPa-1, 10-2 kPa or dimensionless for
adsorption, desorption and surface transformation, respectively) for the elementary steps [39].

Elementary Steps ∆H0
r ∆S0

r E a(f) Af kf (500K) K eq (500K)
(0) W ↔ H2O(g) + ∗ 83 151 - - - 1.7 · 10-1

(1) EtOH(g) + ∗ ↔ M1 -122 -167 - - - 1.1·104

(2) M1 ↔ M2 14 7 - - - 8.0·10-2

(3) M2 ↔ ethoxy +H2O(g) 77 146 118 4.0·1013 1.9·101 3.8·10-1

(4) Ethoxy ↔ Ethene∗ 44 60 106 9.4·1012 7.9·101 3.5·10-2

(5) Ethene∗ ↔ C2H4(g) + ∗ 48 99 - - - 1.4·100

(6) M1 + EtOH(g) ↔ D1 -99 -162 - - - 7.6·101

(7) D1 ↔ D2 44 24 - - - 4.5·10-4

(8) D2 ↔ DEE ∗+H2O(g) 16 125 92 3.5·1012 8.6·102 7.2 ·104

(9) DEE∗ ↔ DEE(g) + ∗ 139 165 - - - 1.3 · 10-6

(10) DEE∗ ↔ C1 114 51 145 4.6·1013 3.3·10-2 5.7·10-10

(11) C1 ↔ Ethene ∗+EtOH(g) 59 175 - - - 9.5·102

(12) Ethoxy + EtOH(g) ↔ DEE∗ -129 -166 18 4.3·104 5.7·102 6.4·104

(13) D2 ↔ C2 + C2H4(g) 57 131 110 3.8·1012 1.2·101 7.7·100

(14) C2 ↔ M1 +H2O(g) 59 152 - - - 6.0·101

(15) M1 ↔ W + C2H4(g) 99 161 180 5.1·1014 8.0· 10-5 1.2· 10-2

(16) M2 ↔ C3 83 63 129 1.9·1013 6.4·10-1 4.2·10-6

(17) C3 ↔ W + C2H4(g) 2 92 - - - 4.0·104

(18) W + EtOH(g) ↔ C2 -98 -169 - - - 2.6·101

(19) C2 ↔ 2W + C2H4(g) 77 151 175 1.2·1015 6.3·10-4 7.0·10-1

(20) 2W ↔ W +H2O(g) 81 162 - - - 1.0 · 100

The pseudo-steady state approximation resulted in a system of Differential Algebraic Equation (DAE).

To solve this kind of equations Python was used by making use of the numpy and scipy packages [75].
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Adsorption rate coefficients for the non-activated adsorption steps, namely steps 0,6,11,14,17,18

and 20 were calculated based on the collision theory as eq. (4.10) indicates [76]. Reaction rates for

the remainder of the non-activated steps were calculated based on transition-state theory as eq. (4.9)

indicates [39, 77]. The desorption rate coefficient was calculated by applying thermodynamic consis-

tency [39,77]. Finally, the rate coefficients of steps 1, 5 and 9 were calculated taking into account previ-

ously defined descriptors as it will be explained in section 4.2.2. In the respective equations (eq. (4.9)-

eq. (4.10)), kB stands for Boltzmann constant, m the mass of a molecule, h represents the Planck’s

constant, N0 the number of reaction sites per catalyst and T the temperature in Kelvin.

kads =
kBT

h
(4.9)

kads =
1

N0

√
2πmkBT

(4.10)

kdes =
kads
Keq

(4.11)

The resulting model appeared to be very stiff as the kinetic parameters varied several order of mag-

nitude among each other. This created numerical instability which needed to be neutralized to be able

to obtain any meaningful solution. This is a rather common situation when considering LHHW and/or

ER mechanism and microkinetics, nonetheless possibilities to address this issue should be evaluated

for each given system. In this work, several options have been considered such as using different DAE

solving algorithms and adjusting the step size. Additionally, a scaling factor of 103 for the non-activated

step rates was used to cope with this issue, which also proved to be the most effective. The reasons

for introducing this scaling factor were two-fold. First, the same scaling factor was also applied in the

previous study on the system [78]. Second, it was assumed that the reduction of the rate coefficients

for three orders of magnitude would not compromise the balance between adsorption/desorption and

reaction rate, i.e. that the reaction will still be a sufficiently slower process. Apart from the scaling

factor, it might be worth noting that the model was initially based on the component concentrations, how-

ever, it was observed that working with the coverages provided better numerical stability, thus the rates

formulated in terms of coverages were used as the final model version.

The used parameters to assess the catalyst’s performance were the conversion of ethanol and the

selectivity to ethylene and diethyl ether. These were calculated by making use of eq. (4.12), eq. (4.13)

and eq. (4.14), respectively, with the flows in mol/s.

X =
FEthanol,0

FEthanol,0 − FEthanol,final
(4.12)
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SEthylene =
FEthylene,final

FEthanol,0 − FEthanol,final
(4.13)

SDEE =
2× FDEE,final

FEthanol,0 − FEthanol,final
(4.14)

4.2.2 Descriptor implementation

The above-mentioned 6 descriptors were implemented in the model via rate coefficients. The ad-

sorption and desorption steps of the gaseous species C2H4, DEE, and C2H5OH were the chosen ones

for descriptor implementation, namely steps 1,5 and the desorption step in 9 as shown in Figure 2.11.

These descriptors were used in this work due to: i) these were typical descriptors considered in other

works [46, 64] and ii) because these were the ones for which finding data on their value ranges was

easier. Adsorption steps were assumed to be non-activated ones, thus the rate coefficient was calcu-

lated via eq. (4.15) [64], where k represents the rate constant of the reaction, S0,i is the initial sticking

probability, n is the order of the reaction, R is the universal gas constant and, lastly, M is the molar mass

of the adsorbed component in kg/mol. This equation was then converted to pressure units so it could be

used in the model by making use of the ideal gas law [79].

k =
S0,i

σn

√
RT

2πM
(4.15)

The rate coefficients of desorption steps were calculated by making use of the Arrhenius equation,

presented as eq. (4.16) [64], where, A is the pre-exponential factor, that was assumed to be placed in

the interval from 1013 s-1 to 1016 s-1 as proposed by James A. Dumesic et al. [80]. Lastly, Ea represents

the activation energy of the reaction step in J/mol.

The activation energies of these desorption steps were considered equal to the respective chemisorp-

tion enthalpies of the different species. This is based on the assumption that these steps are non-

activated, as mentioned before, so the activation energies can be considered zero.

k = A× exp

(
−Ea

RT

)
(4.16)

4.3 Results and discussion

4.3.1 Case Study 1

The experimental dataset studied by N.Zhan et al. [24] was selected in this work to perform MDCD. In

their work, a set of 6 different HZSM-5 zeolites, pure and doped with lanthanum and phosphorous, were
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tested under different operational conditions. The used percentages of each element were 0.25%,0.5%

and 1% for lanthanum and 2% for phosphorous.

Table 4.3 shows the list of used catalysts with the indicated percentage of lanthanum and phos-

phorous in the doped ones as well as the respective conversions of ethanol and ethylene selectivities

achieved. Table 4.4 provides information about obtained catalyst characterization results.

Table 4.3: Real catalysts and respective performances for dataset 1 [24].

Catalyst XEthanol(%) SEthylene (%)
HZSM-5 87.3 83.9

2%PHZSM-5 73.5 15.8
0.25%La-2%PHZSM-5 78.5 22.8
0.5%La-2&PHZSM-5 88.2 30.6
1%La-2%PHZSM-5 76.9 32.1

0.5%LaHZSM-5 89.7 85.0
Reaction condition:0.5g of catalyst, atmospheric pressure, WHSV = 2.0h−1.

Table 4.4: Characteristics of the HZSM-5 zeolite and its modified versions on dataset 1 [24].

Catalyst SBET (m2 g-1) Vmicro (cm3 g-1) Pore width (nm)
HZSM-5 253 0.14 0.5615

2%PHZSM-5 187 0.13 0.5476
0.25%La-2%PHZSM-5 192 0.14 0.5489
0.5%La-2&PHZSM-5 194 0.14 0.5496
1%La-2%PHZSM-5 211 0.15 0.5665

0.5%LaHZSM-5 297 0.17 0.5623

Step 2-Numerical experiments

Upon the generation of the discovery library in section 4.1, all the virtual catalysts were tested in

silico(by the mean of a microkinetic model) and the obtained performances have been displayed in

Figure 4.2, which shows ethylene selectivity as a function of ethanol conversion.

The real catalysts performance is also presented in Figure 4.2 for an easier evaluation of virtual ones

in terms of matching the real catalyst behaviour.
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Figure 4.2: Obtained performances for the simulated virtual catalysts and the respective real catalysts from dataset
1.Reaction conditions:T=493K, W=0.5g of catalyst, atmospheric pressure, WHSV = 2.0h−1.

Step 3- Comparison between the performances of virtual and real catalysts

By making use of the Orange3 software to statistically evaluate the match between virtual and real

catalysts, three different clusters were identified for all the performances obtained with virtual and real

catalysts as the ideal number of division groups, as shown in Figure 4.3. The first cluster, coloured in

blue, corresponds to very low conversion and selectivity. The second one, coloured in orange, corre-

sponds to high conversions associated but lower selectivities. Lastly, the third cluster in yellow presents

high selectivities and conversions. Figure 4.3 is accompanied by Table 4.5, which shows details about

each cluster. Given that only clusters, number two and three have both virtual and real catalysts these

two are the only relevant clusters that will be statistically studied in further steps.

Table 4.5: Description of the three obtained clusters by application of k-means clustering technique to the discovery
library of case study 1.

Cluster Colour Number of
real catalysts

Number of
virtual catalysts

XEthanol(%) (mean and
standard deviation)

SEthylene(%) (mean and
standard deviation)

C1 Blue 0 9 12.79±14 7.61±23
C2 Orange 4 83 95.00±7 3.04±8
C3 Yellow 2 28 94.66±8 86.07±16
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Figure 4.3: Output of the clustering step performed in Orange3 for case study 1.

Step 4- Statistical analysis of the descriptor distributions

After applying the statistical tests described in chapter 3, the relevance of used descriptors for ob-

served catalyst behaviour has been assessed by using the p-value of the statistical tests as a quantitative

criterion. Table 4.6 summarizes the p-values obtained for all descriptors used in this step. Descriptors

with p-value lower than 0.05 were considered relevant.

Accordingly, only the chemisorption enthalpy of ethylene satisfied this criterion and was thus identi-

fied as the most influential descriptor for the obtained results. Figure 4.4 displays a comparison between

the distributions of this descriptor in boxplots, where the central line of the box represents the median

of the descriptor distribution within the cluster, the cross represents the mean for the descriptor values

in each cluster, and the edges of the box represent the 25th percentile when at the bottom and 75th

percentile at the top. The lines that stand outside the box are the respective standard deviations of

each one of the clusters. These box plots work as a very good tool when several groups of data are

being studied simultaneously [81]. Because, not only this representation can already help establish re-

lationships since it is already possible to see a trend in terms of cluster 2 presenting higher values of

chemisorption enthalpy, while cluster 3 presents very lower chemisorption enthalpy values, but also it

proves that the descriptors are not normally distributed, otherwise the median would be centred inside

the box and the rest of the diagram would be symmetric, proving what was said in chapter 3, regarding
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the application of non-parametric statistical tests.

Table 4.6: Results of the statistical tests applied to each descriptor

Descriptor p-value
∆Hchemisorption,Ethanol 0.85
∆ Hchemisorption,Ethylene <0.001
∆Hchemisorption,DEE 0.3

S0,Ethanol 0.78
S0,Ethylene 0.35
ρactive sites 0.08

Figure 4.4: Comparison of the distributions of the relevant descriptor between clusters for the discovery library of
case study 1.

Figure 4.5 proves what was just mentioned as it shows a representation of the probability density

function for the chemisorption enthalpy of ethylene and it is very non-identical to what a normal distri-

bution density function looks like. On top of that, it reinforces the conclusions taken about box plots

given the fact that for cluster 3 a very intense peak is observable for values around 50 kJ/mol which

corresponds to the mean of the descriptor values present in cluster 3.
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Figure 4.5: Comparison, in terms of probability density function, of the distribution for the chemisorption enthalpy
of ethylene in all the three clusters.

Step 5-Building targeted libraries of virtual catalyst

Considering all the results obtained, a targeted library of virtual catalysts for each cluster will be

created by applying the Chebyshev inequality, as in chapter 3, to the values taken into account for the

chemisorption enthalpy of ethylene within each cluster. As stated before, by applying this principle we

are certain that at least 50% of the virtual catalysts generated will be retained in a cluster.

Figure 4.6 and Figure 4.7 show the results obtained upon applying the targeting process to clusters

2 and 3, respectively. As expected, the shrinking of the descriptor ranges leads to a less broad range of

performances, since the dots that represent virtual catalysts are closer to each other, but with a higher

number of virtual catalysts per cluster, as stated on Table 4.7, approximating the distance between

virtual and real catalysts performances. This was accomplished without an increase in the total number

of virtual catalysts, which proves the targeting step was successful.

The trend obtained after the first iteration was retained after performing this step. Namely, cluster

2 is still characterized by catalysts with high conversion but lower selectivities, while cluster 3 contains

catalysts with high conversions and high selectivities.

Table 4.7: Characteristics of the clusters obtained in the targeting step (step 5) for case study 1.

Descriptor Number of
virtual catalysts

XEthanol(%) (mean and
standard deviation)

SEthylene(%) (mean and
standard deviation)

Targeted C2 109 94.71 ± 8 1.90 ± 6
Targeted C3 105 96.47 ± 7 96.15 ± 6
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Figure 4.6: Result of the targeting step (step 5) for cluster 2 of case study 1.

Figure 4.7: Result of the targeting step (step 5) for cluster 3 of case study 1.
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Figure 4.8 represents the distribution of the identified relevant descriptor, explained previously, for the

discovery library, the targeted library for cluster C2 and the targeted library for cluster C3. The presented

descriptor ranges were the ones used to obtain Figure 4.6 and Figure 4.7, presented previously.

Figure 4.8: Comparison of the distribution of the relevant descriptor in the discovering and targeted libraries of
virtual catalysts for case study 1.

Step 6 - Developing descriptor-property relationships from real catalysts properties

In order to relate catalyst compositions to these observations presented in Figure 4.8, a closer look

at the catalyst characterization needs to be done. Looking at Table 4.4 it is possible to see that, as

stated before, 6 different catalysts were studied being the BET surface one of the most pertinent studied

characteristics for the studied dataset, given the fact that it is a relevant property for the chemisorption

enthalpy as well. This has the objective of understanding the physical adsorption of gaseous species on

solid materials and assumes that adsorption happens by multilayer creation and that there are an infinite

number of layers being adsorbed at the saturation pressure, which means that the adsorption happens

as if it was on a free surface [82].

The HZSM-5 catalyst that was modified by the addition of only phosphorous presents a very big

performance drop, when compared to the unmodified HZSM-5 zeolite, especially in terms of selectivity.

This can be due to a high reduction in the BET surface area of the catalyst, also to lower pore volume and

width and, lastly, to a decrease in the total acidity amount of the catalyst as demonstrated in Table 4.4

and reported by N.Zhan et al. [24]. Considering that the density of active sites was not identified as a
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relevant descriptor, this change in the total acidity could not be a major influence on the observed results,

however, the p-value for the density of active sites was very close to the one taken into account as a

threshold, so the acidity can end up being an impactful factor. This decrease in the total acidity amount

is reported to have led to a major decrease in the quantity of stronger acid sites diminishing the acidic

strength of the catalyst, which is a very important characteristic of the catalyst, and consequently hurting

its performance given the fact that this process is usually catalyzed by strongly acidic zeolites [83].

On the other hand modification with lanthanum has enhanced catalyst performance at the studied

operational conditions. This is probably associated with the increase in BET surface area and micropore

volume, as stated on Table 4.4. Moreover, it is reported that adding lanthanum to HZSM-5 can improve

the stability of the [AlO4]- anion, which can be also one of the reasons why the HZSM-5 zeolite modified

with just lanthanum is the one that presents a better performance out of all of the catalysts present in

the dataset [84].

By analysing Figure 4.8 it is possible to observe that the targeted library for cluster 2, which is asso-

ciated with lower selectivities for ethylene, reveals to have higher values for the ethylene chemisorption

enthalpy when compared to the targeted library of cluster 3, related to a high selectivity for this com-

pound that presents lower values for the ethylene chemisorption enthalpy.

So, taking into account these considerations on catalyst characteristics and the shown relations in

Figure 4.8, one can conclude that higher values of the chemisorption enthalpy of ethylene are directly

correlated to the presence of phosphorous, lower amounts of acidic strength of the catalyst and BET

surface area, and consequently, to worst catalytic performance.

4.3.2 Case Study 2

Another set of experimental data was taken from Ref [3], where zeolites have been dealuminated

apart from being only doped with metals, as it was the case in Case study 1. In this study, six different

ZSM-5 zeolites were prepared, characterized, and tested, differing in the doping metal or the degree

of dealumination. These catalysts are listed in Table 4.8 accompanied by corresponding conversions

and selectivities. Extension ”deAl” in the catalyst label is used to refer to the dealuminated catalysts,

while the extension P and La indicates doping with phosphorous and lanthanum in the same order. The

dealumination degree was 25,50 and 100% of the volume of oxalic acid used for catalyst preparation.

Table 4.8 provides a summary of the main physical characteristics of the used catalyst in Case study 2.
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Table 4.8: Real catalysts and respective performances for dataset 2 [3].

Catalyst Xethanol(%) Yethylene(%) Sethylene(%)
ZSM-5 45.8 3.98 6.11

ZSM-5 deAl-1/25 96.3 94.5 100
ZSM-5 deAl-1/50 82.5 30.1 33.4

ZSM-5 deAl-1/100 85.3 29.9 35.9
ZSM-5-P 41.8 9.97 23.8
ZSM-5-La 41.8 7.77 25.3

Reaction condition:0.4g of catalyst, atmospheric pressure, WHSV = 1.5h-1.

Table 4.9: Characteristics of the zeolites from the dataset 2 [3].

Surface Area (m2 g-1) Pore volume (cm3 g-1)
Catalyst SBET Smicro Sext Vmicro Vmeso
ZSM-5 372 245 127 0.13 0.13

ZSM-5 deAl-1/25 401 206 195 0.11 0.16
ZSM-5 deAl-1/50 447 214 232 0.12 0.19

ZSM-5-P 386 191 195 0.11 0.16
ZSM-5-La 381 194 186 0.11 0.15

Step 2-Numerical experiments

Similarly to the previously presented case study, the virtual catalysts performances were simulated

with the developed microkinetic model, by making use of the same discovery library as in Case study

1 generated in section 4.1 and presented in Table A.1 of appendix A, and the obtained results are

presented in Figure 4.9.
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Figure 4.9: Obtained performances for the simulated virtual catalysts and the respective real catalysts from the
dataset 2.Reaction conditions:T=493K, W=0.4g of catalyst, atmospheric pressure, WHSV = 1.5h-1.

Step 3- Comparison between the performances of virtual and real catalysts

Three different clusters were also identified, in this case, by applying the silhouette method in the

software Orange3. All three clusters contain virtual and real catalysts. In analogy to the previous case

study, these three clusters are marked in blue, orange and yellow corresponding, respectively, to lower

conversions and selectivities, with high conversion but low selectivity and high conversion and selectivi-

ties.

Table 4.10 provides a brief summary on each cluster characteristics, while Figure 4.10 visualizes the

results of the clustering step after this first iteration of the methodology.

Table 4.10: Description of the three obtained clusters by application of k-means clustering technique to the 2nd

dataset.

Cluster Colour Number of
real catalysts

Number of
virtual catalysts

XEthanol(%) (mean and
standard deviation)

SEthylene(%) (mean and
standard deviation)

C1 Blue 3 9 20.06 ±18 12.15±26
C2 Orange 2 80 95.68±6 2.40±7
C3 Yellow 1 31 97.46±5 88.69±29
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Figure 4.10: Output of the clustering step performed in Orange3 for the 2nd dataset.

Step 4- Statistical analysis of the descriptor distributions

Having applied the statistical tests, which this time was the Kruskal Wallis test, due to having more

than two clusters with real catalysts, it was possible to identify the discriminating descriptors for this

case.

The same threshold of 0.05 was applied as the boundary for the p-value to filter more from less

influential descriptors, which were the chemisorption enthalpies of ethanol, ethylene and DEE, as sum-

marized in Table 4.11.

Table 4.11: Results of the statistical tests applied to each descriptor

Descriptor p-value
∆Hchemisorption,Ethanol <0.001
∆ Hchemisorption,Ethylene <0.001
∆Hchemisorption,DEE 0.02

S0,Ethanol 0.66
S0,Ethylene 0.29
ρactive sites 0.36

Figure 4.11, Figure 4.12 and Figure 4.13 show the comparison of the obtained distributions for the

three relevant descriptors in the three clusters. Once again it is possible to observe that the descriptors

do not follow a normal distribution and that, like in the first case study, there are already some trends that
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can be verified especially for the first two descriptors. Namely cluster 1 which presents very low values

for ethanol chemisorption enthalpy, also cluster 3 presents very low values for ethylene chemisorption

enthalpy, similarly to Case study 1. Cluster 1 presents an outlier, which is the numeric point, represented

by a dot, that is outside the box plot. This point is named an outlier because it is numerically far from the

remainder of the data [85].

Figure 4.11: Comparison of the distributions of the chemisorption enthalpy of ethanol between clusters for the
discovery library of case study 2.
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Figure 4.12: Comparison of the distributions of the chemisorption enthalpy of ethylene between clusters for the
discovery library of case study 2.

Figure 4.13: Comparison of the distributions of the chemisorption enthalpy of DEE between clusters for the discov-
ery library of case study 2.
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Step 5- Building targeted libraries of virtual catalysts

The Chebyshev inequality was again applied to the clusters obtained in step 4 by using virtual cat-

alysts from the discovery library. In Figure 4.14 and Figure 4.15 the results obtained by the targeting

process to clusters 1 and 2 are presented.

By visual intuition, one could say that the targeting process has been successful for both of the clus-

ters, due to the fact that the number of virtual catalysts in the cluster is higher than that obtained for the

discovery library. However, both of the clusters after the targeting step do not contain real catalysts any-

more. This could be because the real catalysts for both of these clusters were close to their boundaries,

representing one of the major downsides of using a dataset with low quantities of real catalysts(<10

samples), as is the case.

Regarding cluster number three, one can say that the targeting step was developed with success.

Not only the number of virtual catalysts was extended but also the real catalyst was retained within the

cluster with virtual catalyst performances being closer to the real one, as can be seen on Figure 4.16.

A summary of the main features of this cluster is presented in Table 4.12, being characterized by

high ethanol conversion and ethylene selectivity.

Figure 4.14: Result of the targeting step (step 5) for cluster 1 of case study 2.
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Figure 4.15: Result of the targeting step (step 5) for cluster 2 of case study 2.

Figure 4.16: Result of the targeting step (step 5) for cluster 3 of case study 2.
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Table 4.12: Characteristics of the clusters obtained in the targeting step (step 5) for case study 2.

Descriptor Number of
virtual catalysts

XEthanol(%) (mean and
standard deviation)

SEthylene(%) (mean and
standard deviation)

Targeted C2 97 99.02 ± 2 94.27 ± 9

Based on the results of this targeting step, it is possible to affirm that only cluster three can be

considered relevant for further investigation. Hence, only the descriptor distributions for this cluster

were further statistically studied and the obtained results are shown in Figure 4.17, Figure 4.18 and

Figure 4.19 for the distribution of the three discriminating descriptors(the chemisorption enthalpies of

ethanol, ethylene and DEE).

Figure 4.17: Comparison of the distributions of the chemisorption enthalpy of ethanol in the discovery library and
target library of virtual catalysts for case study 2.
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Figure 4.18: Comparison of the distributions of the chemisorption enthalpy of ethylene in the discovery library and
target library of virtual catalysts for case study 2.

Figure 4.19: Comparison of the distributions of the chemisorption enthalpy of DEE in the discovery library and
target library of virtual catalysts for case study 2.
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Step 6- Developing descriptor-property relationships from real catalysts properties

Firstly, through analysis of the previously presented boxplots, the hypothesis from case study 1, of

lower ethylene chemisorption enthalpies being related to better catalyst performance is corroborated by

the study of the second dataset as can be proven by Figure 4.19. Moreover, since both ZSM-5 doped

with phosphorous and lanthanum present poor performance on this dataset, the presence of synergy

between these two when catalysts are doped with both can be a possibility, due to the observed data

from case study 1 as already previously reported [24].

Concerning the chemisorption enthalpies of ethanol and DEE by taking a look at the distributions

of these descriptors between the discovery library and the studied cluster, it is not possible to take any

kind of conclusions, despite the fact they are statistically relevant. However, this reassures us that the

chemisorption enthalpy of ethylene can be considered the most discriminating descriptor of the process

in the simulated conditions.

In the case of the third cluster, the only real catalyst present is a dealuminated ZSM-5 zeolite, being

the one where 25% of oxalic acid was used during catalyst preparation. Since only this sample is present

in the cluster and, on top of that, cluster 2 also has ZSM-5 zeolites that have been dealuminated but

with higher percentages of oxalic acid, the assumption that a dealumination step during the catalyst

synthesis process could influence the identified relevant descriptors and, in this case, the selectivity for

ethylene of the process cannot be statistically proven. Thus, it is not possible to establish any kind of

relationship between catalyst characteristics and the observed performance.
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5
Conclusions
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Conclusions

The work developed in this thesis had the aim of allowing the design of new catalysts for ethanol

dehydration to ethylene process, by trying to establish relations between physical properties and the

verified performance, making use of a recently developed approach. This process is of major impor-

tance since it is seen as one of the biggest alternatives to the conventional routes for olefin production,

especially when considering the need for this kind of chemical.

The used methodology consists of a comprehensive methodology denominated Model-driven cata-

lyst design. This is performed with the help of several statistical tools and techniques namely the FFF

design, k-means clustering, through Orange3 software and the Mann-Whitney and Kruskal-Wallis tests,

by making use of JMP16 software. A fundamental microkinetic model is also needed to perform the

simulations for different conditions and catalysts.

First of all, concerning the kinetic model development, this revealed to be hard to model due to

numerical problems related to the very broad range of magnitude associated with the rate constants of

the process. As a consequence, several different approaches needed to be considered and the usage

of scaling factors was needed.

Secondly, regarding the followed catalyst design technique, as it was already proven in previous

works [46], the application of the methodology itself can be considered as successful, representing an

important tool in facing the biggest problems related to the kinetics-driven design of catalysts since

it allows to create direct relations between the chemical properties and the results obtained on the

statistical tests while being less expensive and time-consuming. Furthermore, even though it helps to

have big sets of experimental data, it is proven by this work that it still works with smaller sets, being this

a very promising feature to be taken into account for the future. However, some improvements still need

to be made, especially in trying to use fewer tools so it is more integrated and efficient, as stated in [46].

When applied to ethanol dehydration to ethylene, for Case study 1, one can conclude that the

chemisorption enthalpy of ethylene is the discriminating descriptor and that lower values for this are

associated with better catalytic performance, while higher values for this are related to worse catalytic

performance, especially in terms of selectivity. This is possibly connected to a reduction in the BET

surface area and in the volume and width of the pores related to metal doping a catalyst, especially with

phosphorous in this case. On top of this, a big decrease in the total acid amount, especially in the acidic

strength of the catalysts, which constitutes an important property for the studied process, is verified for

the catalyst associated with the worst performances. This conclusion is based on three different clusters

that were obtained, having two both virtual and real catalysts. On the other hand, it was possible to infer

that lower values of the ethylene chemisorption enthalpy are associated with higher ethanol conversion

and selectivity for ethylene.

As for case study 2, the low number of real catalysts proved to be a setback for this study, leading
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to a non-successful targeting step and a lack of statistically relevant results that didn’t allow taking

conclusions. Thus, even though, it is possible to perform the methodology and reach conclusions and

results with samples containing lower amounts of real catalysts, it can be concluded that a big dataset

should always be used to make sure that the methodology is always successful.

Overall, even though this constitutes a set of preliminary conclusions and more studies should be

done to acquire more relationships and prove what was concluded until this point, the applicability of

the methodology was successful with the chemisorption enthalpy of ethylene being discovered as the

main factor influencing the performance of zeolites for the studies datasets. This appeared related to the

acid strength of the catalyst and the surface area available for adsorption. Both of these properties can

be manipulated by modifying catalyst structure mainly through metal doping processes and this should

be taken into account for further studies, especially in design phases for real catalysts, so the ethanol

dehydration process can overcome the issue associated with catalysts and reach its full potential in

order to aid the environmental change that is needed nowadays.
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Future work

First of all, the main focus of future works that might be done on this application is regarding the

kinetic model developed for the application of the methodology. Given the fact that high numerical

problems were encountered, new approaches for the model development and more research to check if

the model works according to reality should be done especially considering the importance that this can

have on the observed results.

Secondly, the number of descriptors used or the number of steps where they are implemented can

also be a subject of change in the future. Even though these have only been applied to adsorption and

desorption steps in the present work, there are already some works regarding this procedure that apply

them in other kinds of steps [64].

For that, they make use of the Brönsted- Evans-Polanyi principle. This principle defends that there is

a proportional relationship between the difference in the activation energies of two reactions of the same

family and their reaction enthalpies, as stated by eq. (6.1) [86, 87], where Ea is the activation energy of

a reaction from the same family, ∆H is the enthalpy of the reaction that is being studied and α is the

transfer coefficient of the Polanyi-relationship.

Ea = E0 + α∆H (6.1)

The descriptor, in this case, would be implemented via the enthalpy of the reaction term, as reported

by J. Sun et al [64]. However, the amount of data regarding the values of the needed parameters for the

application of this equation is still scarce, especially when considering the set of reactions in this study.

So a study of it could be helpful to improve the quality of the obtained results and assess the effect of

more catalyst characteristics.

Regarding the methodology itself, there is still plenty of room to improve it. So for future work, the

methodology should be applied to many more datasets with different catalyst modifications and com-

positions to be able to establish improved relationships between performance and properties. Another

thing that could help would be creating a broader dataset with many more studied real catalysts, so

more clusters with real and virtual catalysts would be obtained and then more conclusions could be

taken. Additionally, an optimization step could be added to the methodology. This could be done, for

example, by applying regression to the obtained libraries and respective intervals of values, so numeric

correlations can be obtained, and better assumptions can be made on a consequent design phase.

Lastly, as suggested in previous works [46], integrating all the steps into just one tool is also a task

to make the procedure more efficient. For example, this can be achieved by using Python or Matlab

software and its packages.
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[36] G. Özçakır and A. Karaduman, “Effect of metal doped zsm-5 catalyst on aromatic yield and coke

formation in microalgal bio-oil production,” International Journal of Natural and Applied Sciences,

vol. 4, pp. 20–32, 2021.

[37] T. F. Robin, A. B. Ross, A. R. Lea-Langton, and J. M. Jones, “Stability and activity of doped transition

metal zeolites in the hydrothermal processing,” Frontiers in Energy Research, vol. 3, 2015.

[38] Y. Fang, H. Zhang, X. Li, H. Huang, H. Xin, M. Lu, M. Li, and X. Li, “Ethylene production from

ethanol over metal/phosphorus-modified zsm-5 catalysts,” Energy and Environment Focus, vol. 3,

pp. 227–235, July 2014.

69



[39] K. Alexopoulos, M. John, K. V. D. Borght, V. Galvita, M. F. Reyniers, and G. B. Marin, “Dft-based

microkinetic modeling of ethanol dehydration in h-zsm-5,” Journal of Catalysis, vol. 339, pp. 173–

185, July 2016.

[40] R. Batchu, V. V. Galvita, K. Alexopoulos, T. S. Glazneva, H. Poelman, M. F. Reyniers, and G. B.

Marin, “Ethanol dehydration pathways in h-zsm-5: Insights from temporal analysis of products,”

Catalysis Today, vol. 355, pp. 822–831, September 2020.

[41] W. Wang, Y. Jiang, and M. Hunger, “Mechanistic investigations of the methanol-to-olefin (mto)

process on acidic zeolite catalysts by in situ solid-state nmr spectroscopy,” vol. 113, March 2006,

pp. 102–114.

[42] S. Mehariya, A. Iovine, P. Casella, D. Musmarra, A. Figoli, T. Marino, N. Sharma, and A. Molino,

“Chapter 7 - fischer–tropsch synthesis of syngas to liquid hydrocarbons,” in Lignocellulosic Biomass

to Liquid Biofuels, A. Yousuf, D. Pirozzi, and F. Sannino, Eds. Academic Press, 2020, pp. 217–248.

[43] J. J. H. B. Sattler, I. D. Gonzalez-Jimenez, L. Luo, B. A. Stears, A. Malek, D. G. Barton, B. A.

Kilos, M. P. Kaminsky, T. W. G. M. Verhoeven, E. J. Koers, M. Baldus, and B. M. Weckhuysen,

“Platinum-promoted ga/al2o3 as highly active, selective, and stable catalyst for the dehydrogenation

of propane,” Angewandte Chemie International Edition, vol. 53, no. 35, pp. 9251–9256, 2014.

[44] J. G. D. Vries and S. D. Jackson, “Homogeneous and heterogeneous catalysis in industry,” Catalysis

Science and Technology, vol. 2, p. 2009, October 2012.

[45] J. K. Nørskov and T. Bligaard, “The catalyst genome,” Angewandte Chemie International Edition,

vol. 52, pp. 776–777, January 2013.

[46] L. Pirro, P. S. Mendes, S. Paret, B. D. Vandegehuchte, G. B. Marin, and J. W. Thybaut, “Descriptor-

property relationships in heterogeneous catalysis: Exploiting synergies between statistics and fun-

damental kinetic modelling,” Catalysis Science and Technology, vol. 9, pp. 3109–3125, 2019.

[47] R. Tesser and V. Russo, Advanced reactor modeling with MATLAB: Case studies with solved ex-

amples. De Gruyter, December 2020.

[48] A. Chakkingal, L. Pirro, A. R. C. da Cruz, A. J. Barrios, M. Virginie, A. Y. Khodakov, and J. W. Thy-

baut, “Unravelling the influence of catalyst properties on light olefin production via fischer–tropsch

synthesis: A descriptor space investigation using single-event microkinetics,” Chemical Engineering

Journal, vol. 419, September 2021.

[49] R. Lekivetz and B. Jones, “Fast flexible space-filling designs for nonrectangular regions,” Quality

and Reliability Engineering International, vol. 31, pp. 829–837, July 2015.

70



[50] Statistical software — jmp. Accessed on 11/05/2022. [Online]. Available: https://www.jmp.com/

en be/home.html

[51] Understanding k-means clustering in machine learning — by dr.michael j.garbade — towards

data science. Accessed on 10/05/2022. [Online]. Available: https://towardsdatascience.com/

understanding-k-means-clustering-in-machine-learning-6a6e67336aa1

[52] N. Sharma, “K-means clustering explained - neptune.ai,” November 2021, accessed on

20/06/2022. [Online]. Available: https://neptune.ai/blog/k-means-clustering

[53] P. Patil, “K means clustering : Identifying f.r.i.e.n.d.s in the world

of strangers — by prasad patil — towards data science,” May 2018,

accessed on 20/06/2022. [Online]. Available: https://towardsdatascience.com/

k-means-clustering-identifying-f-r-i-e-n-d-s-in-the-world-of-strangers-695537505d

[54] Orange data mining - data mining. Accessed on 11/05/2022. [Online]. Available: https:

//orangedatamining.com/

[55] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of cluster analy-

sis,” Journal of Computational and Applied Mathematics, vol. 20, pp. 53–65, November 1987.

[56] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seeding,” in Proceedings

of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’07. USA:

Society for Industrial and Applied Mathematics, 2007, p. 1027–1035.

[57] F. Wang, H.-H. Franco-Penya, J. D. Kelleher, J. Pugh, and R. Ross, “An analysis of the application

of simplified silhouette to the evaluation of k-means clustering validity,” in Machine Learning and

Data Mining in Pattern Recognition, P. Perner, Ed. Cham: Springer International Publishing, 2017,

pp. 291–305.

[58] Kruskal-wallis test: Definition, formula, and example - statology. Accessed on 11/05/2022. [Online].

Available: https://www.statology.org/kruskal-wallis-test/

[59] Mann whitney u test: Definition, how to run in spss - statistics how to. Accessed on 11/05/2022.

[Online]. Available: https://www.statisticshowto.com/mann-whitney-u-test/#definition

[60] How to interpret a p-value less than 0.05 (with examples). Accessed on 4/10/2022. [Online].

Available: https://www.statology.org/p-value-less-than-0-05/

[61] C. Andrade, “The P value and statistical significance: Misunderstandings, explanations, challenges,

and alternatives,” Indian J. Psychol. Med., vol. 41, no. 3, pp. 210–215, May 2019.

71

https://www.jmp.com/en_be/home.html
https://www.jmp.com/en_be/home.html
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://neptune.ai/blog/k-means-clustering
https://towardsdatascience.com/k-means-clustering-identifying-f-r-i-e-n-d-s-in-the-world-of-strangers-695537505d
https://towardsdatascience.com/k-means-clustering-identifying-f-r-i-e-n-d-s-in-the-world-of-strangers-695537505d
https://orangedatamining.com/
https://orangedatamining.com/
https://www.statology.org/kruskal-wallis-test/
https://www.statisticshowto.com/mann-whitney-u-test/#definition
https://www.statology.org/p-value-less-than-0-05/


[62] Chebyshev’s theorem in statistics - statistics by jim. Accessed on 11/05/2022. [Online]. Available:

https://statisticsbyjim.com/basics/chebyshevs-theorem-in-statistics/

[63] Statistics how to. Accessed on 29/09/2022. [Online]. Available: https://www.statisticshowto.com/

[64] J. Sun, J. W. Thybaut, and G. B. Marin, “Microkinetics of methane oxidative coupling,” Catalysis

Today, vol. 137, no. 1, pp. 90–102, 2008, recent Developments in Combinatorial Catalysis Research

and High-Throughput Technologies.

[65] Sticking probability. Accessed on 08/06/2022. [Online]. Available: https://www.chemeurope.com/

en/encyclopedia/Sticking probability.html

[66] C. chau Chiu, G. N. Vayssilov, A. Genest, A. Borgna, and N. Rösch, “Predicting adsorption en-
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A
Appendix A

Table A.1: Discovery library generated by making use of the FFF design. Where D1,D2 and D3 represent the
chemisorption enthalpies of ethanol,ethylene and DEE, respectively. D4 and D5 represent the sticking
coefficients for ethanol and ethylene and, lastly, D6 is the density of active sites.

Virtual catalyst D1 D2 D3 D4 D5 D6
1 127.22 98.92 51.24 0.07 0.99 1.23E-06
2 120.84 91.36 54.19 0.25 0.77 1.56E-06
3 111.27 60.30 69.72 0.31 0.13 1.77E-06
4 120.32 161.64 73.37 0.03 0.22 1.96E-06
5 97.25 118.63 64.66 0.06 0.85 1.91E-06
6 57.70 113.37 61.13 0.31 0.94 1.46E-06
7 132.98 164.35 61.80 0.16 0.98 1.05E-06
8 133.31 144.46 55.16 0.05 0.60 1.74E-06
9 54.61 110.04 68.35 0.69 0.11 2.00E-06
10 44.83 43.31 53.40 0.87 0.04 1.94E-06
11 131.72 63.47 50.27 1.00 0.01 1.80E-06
12 61.30 81.78 54.34 0.18 0.18 1.73E-06
13 86.50 40.56 72.30 0.50 0.03 1.27E-06
14 73.61 45.01 61.35 0.46 0.46 1.00E-06
15 37.39 90.21 76.57 0.13 0.05 1.31E-06
16 51.69 44.22 71.29 0.06 0.14 2.43E-07

Continued on next page
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Table A.1 – continued from previous page
Virtual catalyst D1 D2 D3 D4 D5 D6
17 127.97 121.35 63.75 0.67 0.91 2.64E-07
18 103.04 160.00 54.45 0.97 0.74 9.18E-07
19 124.65 144.84 53.25 0.57 0.87 6.36E-07
20 93.86 65.15 58.94 0.65 0.72 6.74E-07
21 110.73 86.08 70.65 0.88 0.93 1.30E-06
22 129.73 90.02 59.27 0.55 0.57 1.36E-06
23 111.43 81.14 58.74 0.23 0.63 2.84E-07
24 100.29 56.34 56.53 0.60 0.48 1.88E-06
25 134.31 46.33 65.30 0.91 0.70 1.59E-06
26 128.34 81.29 67.73 0.73 0.36 1.86E-06
27 80.06 50.40 63.40 0.51 0.95 1.82E-06
28 82.73 150.99 53.64 0.39 0.23 1.44E-06
29 74.84 133.44 55.84 0.81 0.67 1.37E-06
30 76.36 96.26 60.22 0.00 0.96 2.46E-07
31 105.77 105.97 50.23 0.36 0.98 6.77E-07
32 52.42 151.83 50.91 0.32 0.67 7.45E-07
33 79.93 159.82 69.34 0.11 0.82 3.81E-07
34 75.27 55.60 53.29 0.30 0.74 3.99E-07
35 40.84 35.14 55.95 0.13 0.26 5.10E-07
36 129.32 162.53 89.89 0.49 0.66 8.91E-07
37 47.63 156.40 86.83 0.02 0.95 9.05E-07
38 87.86 101.81 58.39 0.05 0.03 7.32E-07
39 46.39 149.73 68.94 0.17 0.01 8.25E-07
40 87.41 118.16 88.06 0.12 0.54 2.73E-07
41 38.47 145.89 58.13 0.51 0.35 1.57E-06
42 71.04 98.81 82.07 0.22 0.45 1.85E-06
43 73.19 116.03 88.97 0.05 0.20 1.46E-06
44 49.06 160.78 65.61 0.89 0.89 1.18E-06
45 65.01 66.71 64.93 0.95 0.62 8.38E-07
46 50.23 92.43 69.48 0.92 0.65 3.39E-07
47 70.70 77.98 50.44 0.71 0.05 8.79E-07
48 85.33 88.38 55.70 0.74 0.41 3.75E-07
49 40.07 74.10 62.55 0.56 0.08 6.47E-07
50 69.83 164.26 63.57 0.78 0.21 5.42E-07
51 82.64 163.82 79.78 0.60 0.45 2.23E-07
52 61.93 110.95 53.89 0.61 0.70 2.03E-07
53 43.04 116.28 50.54 0.64 0.45 1.25E-06
54 60.09 158.39 60.35 0.98 0.03 1.51E-06
55 121.54 39.00 74.14 0.71 0.59 4.38E-07
56 57.35 47.07 89.07 0.96 0.96 5.09E-07
57 124.39 108.38 85.13 0.01 0.70 5.13E-07
58 116.87 42.93 80.68 0.32 0.79 2.60E-07
59 43.07 44.59 78.23 0.53 0.69 4.81E-07
60 60.24 80.09 82.90 0.15 0.90 3.50E-07
61 95.64 61.08 82.63 0.99 0.91 1.85E-06
62 85.63 111.24 89.92 0.84 0.90 1.25E-06
63 61.67 35.05 71.82 0.78 0.86 1.02E-06
64 69.32 38.71 88.71 0.53 0.26 1.92E-06
65 71.13 39.05 66.99 0.11 0.71 1.36E-06
66 54.84 82.63 74.69 0.07 0.57 1.05E-06
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Table A.1 – continued from previous page
Virtual catalyst D1 D2 D3 D4 D5 D6
67 59.58 68.28 69.17 0.03 0.73 1.85E-06
68 127.94 36.89 87.41 0.35 0.82 1.76E-06
69 37.95 84.76 51.74 0.34 0.50 1.98E-06
70 77.58 39.91 50.06 0.67 0.78 1.62E-06
71 37.11 63.69 66.69 0.49 0.77 1.16E-06
72 119.88 133.94 81.92 0.11 0.92 8.05E-07
73 94.71 89.55 89.21 0.44 0.97 1.02E-06
74 129.85 123.59 77.49 0.86 0.83 1.94E-06
75 107.96 94.82 61.50 0.68 0.83 1.17E-06
76 88.63 114.24 68.16 0.46 0.69 1.68E-06
77 67.79 155.13 78.44 0.26 0.75 1.09E-06
78 66.66 143.03 85.80 0.64 0.64 1.89E-06
79 35.16 91.55 84.30 0.76 0.59 1.72E-06
80 61.77 133.66 86.24 0.24 0.79 1.59E-06
81 42.53 131.19 59.50 0.73 0.92 1.81E-06
82 39.99 164.84 76.35 0.63 0.96 1.60E-06
83 40.25 109.58 82.20 0.95 0.76 1.06E-06
84 36.21 147.52 88.25 0.69 0.74 5.65E-07
85 74.22 121.08 75.28 0.49 1.00 8.50E-07
86 62.91 134.81 77.45 0.72 0.25 1.24E-06
87 116.09 159.41 87.25 0.72 0.12 1.68E-06
88 82.11 84.06 73.71 0.98 0.31 1.53E-06
89 97.51 153.95 83.76 0.96 0.46 1.41E-06
90 134.78 89.26 83.23 0.79 0.11 9.57E-07
91 122.83 72.32 83.14 0.60 0.65 1.63E-06
92 107.65 54.85 87.80 0.88 0.34 1.99E-06
93 134.14 70.99 86.52 0.26 0.17 1.96E-06
94 98.26 75.83 80.84 0.01 0.08 1.66E-06
95 59.72 52.62 87.21 0.39 0.55 1.36E-06
96 52.61 62.44 89.24 0.59 0.01 1.50E-06
97 118.98 35.94 60.56 0.60 0.19 1.11E-06
98 132.13 75.94 57.11 0.87 0.34 2.11E-07
99 50.87 36.72 81.29 0.85 0.32 8.08E-07
100 122.53 79.58 86.26 0.90 0.06 3.87E-07
101 37.71 125.40 89.33 0.85 0.18 9.37E-07
102 59.13 124.61 83.92 0.44 0.00 6.96E-07
103 38.83 133.47 72.81 0.29 0.40 4.51E-07
104 96.06 54.70 51.09 0.21 0.02 1.19E-06
105 89.14 57.70 68.38 0.19 0.31 5.40E-07
106 72.14 65.02 77.11 0.02 0.40 3.12E-07
107 132.58 55.22 62.69 0.39 0.26 8.57E-07
108 122.06 110.43 66.16 0.41 0.45 9.39E-07
109 108.64 124.04 53.19 0.20 0.51 9.96E-07
110 115.37 148.74 59.75 0.96 0.40 3.07E-07
111 134.60 160.89 51.63 0.37 0.05 2.57E-07
112 109.26 152.63 50.71 0.50 0.08 1.99E-06
113 117.28 109.10 52.38 0.93 0.04 1.39E-06
114 78.49 131.03 81.34 0.38 0.15 1.01E-06
115 127.56 127.97 71.20 0.15 0.20 7.55E-07
116 110.01 107.61 79.22 0.54 0.31 6.00E-07
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Table A.1 – continued from previous page
Virtual catalyst D1 D2 D3 D4 D5 D6
117 131.12 147.76 82.79 0.33 0.38 1.21E-06
118 105.18 141.47 64.99 0.27 0.11 1.39E-06
119 101.74 139.01 74.99 0.86 0.28 3.67E-07
120 132.79 152.22 73.42 0.81 0.53 6.44E-07
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