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Abstract

Olefins, mainly produced by steam cracking, are playing a bigger part in the chemical industry, year by
year. However, with the rise in environmental awareness and the new environmental policies, the search
for greener production processes is very important. Dehydration of ethanol into ethylene, the process of
interest in this thesis appears as one of the main alternatives to this problem. However, the ideal catalyst
for this is yet to be found. Hence, a methodology previously developed, named ”Model-driven catalyst
design”, was applied in this work to identify the most suitable catalyst properties to maximize ethylene
yield. This methodology integrates the kinetics of the process, by using identified catalyst descriptors,
namely chemisorption enthalpies, sticking coefficients and active site density, with statistical tools. It has
as main objective to establish relationships between catalyst properties and the observed performance.
Experimental data reported in two different studies obtained over zeolite-based catalysts modified through
dealumination and metal doping processes, with phosphorous and lanthanum, were used in this work
to correlate catalyst physical properties with their catalytic activity. Obtained relationships show that
lower chemisorption enthalpies of ethylene are associated with good performances while higher values
are related to worst performance selectivity-wise. This appeared associated with catalysts doped with
phosphorous, which leads to modifications in the catalyst’s porous structure and in the acidity of the
catalyst. Yet, this constitutes preliminary conclusions and broader datasets should be studied in the
future, so getting to an optimal catalyst composition can be an easier process.
Keywords: Catalyst descriptor, Kinetic modelling, Ethylene, Dehydration, Catalyst design,Virtual Catalyst

1. Introduction

With a claimed production capacity of 200 million
tons by 2024 and a predicted increase of almost
40% for the decade between 2016 and 2026, ethy-
lene is one of the chemicals with the largest pro-
duction in the world, being not only an important
product but a very important raw material, or in-
termediate, for the production of several products,
such as acetic acid and styrene [1]. The conven-
tional processes for the production of ethylene rely
majorly on fossil fuels, since the main production
route for it is steam cracking. However, due to the
rise of environmental concerns and the demand for
this fuel, finding new ways to produce this kind of
product is a priority. Among many processes like
methanol to olefins, oxidative coupling of methane
or Fischer-Tropsch synthesis, ethanol dehydration
to ethylene is reported to be one of the best al-
ternatives [2], especially with the rise of bioethanol
production, and the ease of how this can be pro-
duced from biomass. However, for this process
to be viable more insights and search needs to
be done, especially regarding the operating condi-

tions and catalyst. There are three types of catalyst
development techniques, statistics-driven design,
performance-driven design and information-driven
design. There is also an emerging approach re-
lated to information-driven design, entitled ”Model-
driven catalyst design”, which is based on the con-
cept of catalyst descriptors [3].

The objective of the present work was to ap-
ply the model-driven catalyst design to identify the
properties of zeolite-based catalysts that largely
affect ethanol conversion and ethylene selectivity
and therefore provide guidelines for the catalyst
synthesis To this end, a kinetic model based on
the reaction mechanism and catalyst descriptors
was developed considering an ideal plug flow reac-
tor. Various virtual catalysts, defined by a combina-
tion of the descriptor values (which will be defined
later), were formulated and tested in silico with the
developed kinetic model. The performance of vir-
tual catalysts was compared with the one of the
real catalysts and the match was statistically eval-
uated to establish relationships between the phys-
ical properties and observed performance, aiming
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to find a catalyst composition that would provide,
maximal yield and selectivity of ethylene.

2. Ethylene industrial production
Steam cracking is a well-established technology
that is the leader among the technologies for olefin
production. It consists of a petrochemical pro-
cess that breaks down saturated hydrocarbons into
smaller molecules. However, due to the rise of en-
vironmental concerns and the implementation of
new governmental policies associated with it, the
search for new processes is being given more im-
portance as time goes by [2, 4, 5].

2.1. Ethanol dehydration into ethylene
Catalytic dehydration of ethanol into ethylene ap-
pears as one of the main alternatives for ethylene’s
main production process. It is a process that has
been known for a long time but has never been ex-
ploited for large-scale ethylene synthesis, mainly
due to the cost and raw material availability. How-
ever, this technique must be reassessed, due to
the big increase in bioethanol production, espe-
cially in the American and Asian continents. This
could solve the environmental problems related to
the conventional steam cracking route and lead to
a disruption of ethylene’s value chain reliance on
crude oil price fluctuations [2, 4].

2.2. Previously used catalysts
Ethanol dehydration can be considered an acid-
catalyzed reaction for which many catalysts have
already been tried: phosphoric acid, alumina-
based, heteropolyacid, and zeolites. The first three
mentioned types of catalysts are no longer used
either because of low stability related to easy de-
activation by coke deposition or the high cost as-
sociated with the need for loading in supports, for
example [6]. The last ones, zeolites, are consid-
ered to be the most promising catalysts in this pro-
cess. This is due to their porous structure that
can be easily modified to enhance selectivity to the
wanted products. As with everything, these still
have some disadvantages regarding, similarly to
the previous ones, less stability due to coke de-
position [6]. Hence finding the right catalyst for the
studied process is still a task that needs to be done.
Therefore making use of new catalyst development
techniques that aid the experimental work devel-
oped is more important than never.

2.3. Mechanism
Many studies have been made on the reaction
mechanism over different kinds of catalysts. For
zeolites, which are the main focus of this work, the
mechanism is consensual and it considers three
different reaction paths. The first one consists of
the ethanol dehydration to water and ethylene and

is thermodynamically endothermic while the sec-
ond is a bi-molecular step where ethanol is de-
hydrated into water and diethyl ether and is an
exothermic reaction. The third path embodies a di-
ethyl ether conversion to ethylene and ethanol, as
reported in previously conducted density-functional
theory studies by K. Alexopoulos et al.[7]. Finally,
their performances will be compared with the ones
from real catalysts to establish relationships be-
tween the physical properties of these and the ob-
served performance, to try to find an optimal cata-
lyst for the process.

3. Methodology
Figure 1 shows a schematical representation of the
methodology proposed in Ref.[3] and followed in
this work. It is based on three different concepts.
The first one is the concept of virtual catalyst which
is a computational representation of materials that
are defined as a vector of m catalyst descriptors
(Di,j). The number of virtual catalysts to be tested
is defined as n. The second concept is one of
the real catalysts that are materials with known
composition and structure and have already been
studied, previously, hence their performance is al-
ready available and quantified. The third concept
on which the methodology relies is the concept of
catalyst descriptor. This works as a bridge be-
tween virtual and real catalysts being defined as a
factor that has an impact on the reaction behaviour
and kinetics varying from catalyst to catalyst [3].

Figure 1: Summary of the followed methodology for the model-
driven catalyst design technique [3].

This methodology comprises 6 different steps
that will be now briefly explained.

Step 1.Virtual catalysts generation.
This first step has as its main objective to gener-
ate the library of virtual catalysts. These libraries
need to be statistically representative and mean-
ingful and for that, a Design of Experiments tech-
nique named Fast flexible space-filling design was
used. The n virtual catalysts obtained from the im-
plementation of this technique are constituted by
a set of m descriptors, leading to a n × m matrix,
where each row represents a vector of descriptor
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combinations, and consequently, a virtual catalyst
[3].

Step 2.Numerical experiments.
In this step, the previously generated virtual cat-
alysts, are screened in a numerical set-up. The
numerical set-up in this context represents a mi-
crokinetic model, where the kinetics is correlated
to the selected descriptors, coupled with the ad-
equate reactor model. With this numerical set-
up, the behaviour of all virtual catalysts, that com-
pose the discovery library, can be evaluated, and
parameters that can characterize catalysts’ perfor-
mance like conversion or selectivity can be calcu-
lated [3]. So evaluated performance of virtual cat-
alysts should be further compared to the perfor-
mance of real catalysts.

Step 3.Comparison between the performances of vir-
tual and real catalysts.
Once the performance of the virtual catalysts is
studied in the numerical experiments step, it should
be compared with the real performance obtained
from real catalysts. To achieve this, clustering al-
gorithms like the k-Means clustering technique can
be used. A cluster consists of data points, simu-
lated and/or experimental, that have been grouped
due to particular commonalities [8] and can be per-
formed through the use of specific software like Or-
ange3, for example. This consists of a very intuitive
tool that can assess some problems related to k-
Means clustering, namely the choice of a correct
number of clusters for a specific dataset and the
high influence on the obtained results of the initial-
ization step of the method [3].

Step 4.Statistical analysis of the descriptor distribu-
tions.
The descriptors present different probability distri-
butions in each one of the clusters obtained be-
fore. By taking this concept into account, through
comparing these distributions within all the clus-
ters, we can get to the more relevant descriptors,
which allows us to differentiate from one to the
other and start to relate these with some real prop-
erties already[3]. To test the descriptor distribu-
tions some specific statistical tests need to be ap-
plied. In this case, tests like the ANOVA or the t-
student test, which are the most commonly used
ones, should not be applied, as these are indicated
for data that follows a normal distribution type and
catalyst descriptors are likely to be non-normally
distributed within the different clusters. Thus the
non-parametric alternatives of the mentioned tests,
like the Kruskal-Wallis and the Mann-Whitney test,
should be used [3]. The assessment parameter
that will be used in the application of this statistical
test to evaluate if a descriptor is a discriminating
one or not will be the p-value being 0.05 the value

considered as the threshold for the identification of
a descriptor as relevant or not [3].

Step 5.Building targeted libraries of catalysts.

To accomplish the methodology’s objective, and to
be able to establish relationships between catalyst
descriptors and physical properties, the number of
virtual catalysts close to real catalysts should be
high enough. For this, the number of virtual cat-
alysts in the surrounding of real catalysts should
be increased across iterations, which is done by
generating targeted libraries from the discovered
library used in the first iteration. Consequently, tar-
geting means reducing the design space iteratively
through the diminishing of discriminating descriptor
ranges with the main objective of getting virtual cat-
alysts closer to the performance of real catalysts
[3]. Concerning this narrowing down of the value
ranges, standard deviations of around ±

√
2 times

the standard deviations of the descriptor values for
the studied cluster can be applied to the mean of
the cluster. According to Chebyshev inequality, this
formula assures that at least 50% of the virtual cat-
alysts are retained on the new cluster that is being
generated [3].

Step 6.Developing descriptor-property relationships
from real catalyst properties.

This step aims at establishing a relationship be-
tween a qualitative property, which is measurable
and tuneable property of the studied catalyst and
the descriptor that reflects this property in the ki-
netic model(i.e. reflects on the kinetics).

4. Catalyst design
4.1. Generation of the virtual catalyst library

The discovery library initially generated needs to
be built with a considerable amount of virtual cat-
alysts so several different performances can be
obtained for comparison. A virtual catalyst is de-
fined by selecting a value for each descriptor from
a priory-defined descriptor ranges based on De-
sign of experiments and fast-flexible filling design
methods. As mentioned earlier, a virtual catalyst
is a combination of identified descriptors. The de-
scriptors chosen in this work were: 1) the stick-
ing coefficients of ethanol, 2) the sticking coeffi-
cient of ethylene, 3) the chemisorption enthalpies
of ethanol, 4) the chemisorption enthalpy of ethy-
lene, 5) the chemisorption enthalpy of DEE, and 6)
the density of active sites of the used catalyst. The
used ranges for these parameters were estimated
based on a literature survey and their values are
presented in Table 1. In the case of sticking coef-
ficients, due to a lack of data in the literature, their
initial range was considered to be between 0 and 1
since they represent probabilities.
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Table 1: Value ranges used for the catalyst descriptors in the
discovery library.[9, 10, 11, 12, 13, 14, 15]

Descriptor Value
∆Hchemisorption,Ethanol (kJ/mol) 35-135
∆Hchemisorption,Ethylene (kJ/mol) 35-165
∆Hchemisorption,DEE (kJ/mol) 50-90

S0,Ethanol 0-1
S0,Ethylene 0-1
ρactive sites 2 × 10-7 - 2 × 10-6

4.2. Kinetic model formulation
Due to numerical problems that occurred with the
simulations due to the high stiffness of the studied
process, associated, mainly, with the kinetic con-
stants of the system when modelling in terms of
concentrations, the developed kinetic model was
an adaptation of a previously built code, following
the mechanism stated on K. Alexopoulos et al.[7].
The model was developed by making use of the
following equations. Where F is the flow of the
components in mol/s, W is the mass of catalyst
in kg, θ∗ , θ∗0 , and θi are the amount of active sites
available for adsorption at a given time, the initial
amount of active sites and the surface coverage by
component i, respectively.

dFi

dWcat
= Ri (1)

Ri = Ct×(

N∑
1

ri,ads−
N∑
1

ri,des±
N∑
1

ri,reaction) (2)

Where Fi=Fi,0 at W = 0.

dθk
dt

= 0 =

N∑
1

rk,ads −
N∑
1

rk,des ±
N∑
1

rk,reaction

(3)

θ∗ = θ∗0 −
N∑
i=1

θi (4)

To avoid dealing with numeric problems as in
other previous approaches, a scaling factor was
used for the adsorption and desorption rates. The
scaling factor used was 103 to follow what had al-
ready been done in the previous modelling of this
process [16]. This model was solved in Python by
making use of the numpy and scipy packages.

The used parameters to assess the catalyst’s
performance were the conversion of ethanol and
the selectivity to ethylene and diethyl ether.

4.3. Descriptor Implementation
The catalyst descriptors will be implemented
through the rate coefficients of the reaction. The

adsorption and desorption steps of the gaseous
species C2H4, DEE, and C2H5OH were the chosen
ones for descriptor implementation. These steps
were assumed to be non-activated ones so the re-
action rates can be determined by using catalyst
descriptors. This way, the adsorption steps rate
constants were obtained through Equation 5 as in
[17], where k represents the rate constant of the
reaction, S0,i is the initial sticking probability, σ the
density of active sites in mol/m2, n is the order of
the reaction, R is the universal gas constant, T is
the temperature at which the process is being stud-
ied in Kelvin and, lastly, M is the molar mass of the
adsorbed component in kg/mol.

k =
S0,i

σn

√
RT

2πM
(5)

This equation was then converted to pressure
units so it could be used in the model by making
use of the ideal gas law [18].

Regarding the desorption steps, descriptors
were implemented on this by making use of the
Arrhenius equation, presented in Equation 6 [17],
where, similarly to Equation 5 the R and T rep-
resent the universal gas constant in J/ mol.K and
the process temperature in K, respectively. A is
the pre-exponential factor, that was assumed to
be placed in the interval from 1013 s-1 to 1016 s-1

as proposed by James A. Dumesic et al. [19].
Lastly, Ea represents the activation energy of the
reaction step in J/mol. The activation energies of
these desorption steps were considered equal to
the respective chemisorption enthalpies of the dif-
ferent species. This is based on the, previously
mentioned, assumption that these steps are non-
activated.

k = A× exp

(
−Ea

RT

)
(6)

4.4. Case Study 1
The experimental dataset studied by N.Zhan et
al.[12] was selected in this work to perform the
methodology. In their work, a set of 6 different
HZSM-5 zeolites, pure and doped with lanthanum
and phosphorous, were tested under different op-
erational conditions. The used percentages of
each element were 0.25%,0.5% and 1% for lan-
thanum and 2% for phosphorous. Upon the gener-
ation of the discovery library, all the virtual catalysts
were tested in silico(by the mean of a microkinetic
model) and the obtained performances have been
displayed in Figure 2, which shows ethylene selec-
tivity as a function of ethanol conversion. The real
catalysts performance is also presented in Figure
2 for an easier evaluation of virtual ones in terms
of matching the real catalyst behaviour.
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Figure 2: Obtained performances for the simulated virtual cat-
alysts and the respective real catalysts from dataset 1.Reaction
conditions: T=493K, W=0.5g of catalyst, atmospheric pressure,
WHSV = 2.0h−1.

Step 3- Comparison between the performances of
virtual and real catalysts
By making use of the Orange3 software to sta-
tistically evaluate the match between virtual and
real catalysts, three different clusters were identi-
fied for all the performances obtained with virtual
and real catalysts as the ideal number of division
groups, as shown in Figure 3. The first cluster,
coloured in blue, corresponds to very low conver-
sion and selectivity. The second one, coloured in
orange, corresponds to high conversions associ-
ated but lower selectivities. Lastly, the third clus-
ter in yellow presents high selectivities and conver-
sions. Given that only clusters, number two and
three have both virtual and real catalysts these two
are the only relevant clusters that will be statisti-
cally studied in further steps.

Figure 3: Output of the clustering step performed in Orange3
for case study 1.

Step 4- Statistical analysis of the descriptor distribu-
tions
After applying the statistical tests described ear-
lier, the relevance of used descriptors for observed
catalyst behaviour has been assessed by using
the p-value of the statistical tests as a quantitative
criterion. Accordingly, only the chemisorption en-
thalpy of ethylene satisfied this criterion and was
thus identified as the most influential descriptor for
the obtained results. Figure 4 displays a compar-
ison between the distributions of this descriptor in
box plots, where the central line represents the me-
dian of the descriptor distribution in the cluster, the

cross the mean of the descriptor values in each
cluster, and the edges of the box represent the 25th
percentile at the bottom and 75th percentile at the
top. The lines that stand outside the box are the
respective standard deviations of each one of the
clusters. These box plots work as a very good tool
when several groups of data are being studied si-
multaneously [20]. Because, not only this repre-
sentation can already help establish relationships
since it is already possible to see a trend in terms
of cluster 2 presenting higher values of chemisorp-
tion enthalpy, while cluster 3 presents very lower
chemisorption enthalpy values, but also it proves
that the descriptors are not normally distributed,
otherwise the median would be centred inside the
box and the rest of the diagram would be symmet-
ric, proving what was said in above, regarding the
application of non-parametric statistical tests.

Figure 4: Comparison of the distributions of the relevant de-
scriptor between clusters for the discovery library of case study
1.

Step 5-Building targeted libraries of virtual catalyst
Considering all the results obtained, a targeted li-
brary of virtual catalysts for each cluster will be cre-
ated by applying the Chebyshev inequality to the
values taken into account for the chemisorption en-
thalpy of ethylene within each cluster. Figures 5
and 6 show the results obtained upon applying the
targeting process to clusters 2 and 3, respectively.
As expected, the shrinking of the descriptor ranges
leads to a less broad range of performances, since
the dots that represent virtual catalysts are closer
to each other, but with a higher number of virtual
catalysts per cluster, approximating the distance
between virtual and real catalysts performances.
This was accomplished without an increase in the
total number of virtual catalysts, which proves the
targeting step was successful. The trend obtained
after the first iteration was retained after perform-
ing this step. Namely, cluster 2 is still characterized
by catalysts with high conversion but lower selec-
tivities, while cluster 3 contains catalysts with high
conversions and high selectivities.

Figure 7 represents the distribution of the iden-
tified relevant descriptor, explained previously, for
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Figure 5: Result of the targeting step (step 5) for cluster 2 of
case study 1.

Figure 6: Result of the targeting step (step 5) for cluster 3 of
case study 1.

the discovery library, and both the targeted libraries
for clusters 2 and 3, respectively.

Figure 7: Comparison of the distribution of the relevant descrip-
tor in the discovering and targeted libraries of virtual catalysts
for case study 1.

Step 6 - Developing descriptor-property relation-
ships from real catalysts properties
To relate catalyst compositions to these observa-
tions presented in Figure 7, a closer look at the
catalyst characterization needs to be done. Hence
by looking at the characterization done in [12], it
is possible to see that, as stated before, 6 differ-
ent catalysts were studied being the BET surface
one of the most pertinent studied characteristics
for the studied dataset, given the fact that it is a rel-
evant property for the chemisorption enthalpy as
well. The HZSM-5 catalyst that was modified by
the addition of only phosphorous presents a very
big performance drop, when compared to the un-
modified HZSM-5 zeolite, especially in terms of se-

lectivity. This can be due to a high reduction in
the BET surface area of the catalyst, also to lower
pore volume and width and, lastly, to a decrease
in the total acidity amount of the catalyst as re-
ported by N.Zhan et al.[12]. Considering that the
density of active sites was not identified as a rel-
evant descriptor, this change in the total acidity
could not be a major influence on the observed re-
sults, however, the p-value for the density of active
sites was very close to the one taken into account
as a threshold, so the acidity can end up being an
impactful factor. This decrease in the total acid-
ity amount is reported to have led to a major de-
crease in the quantity of stronger acid sites dimin-
ishing the acidic strength of the catalyst and conse-
quently hurting its performance given the fact that
this process is usually catalyzed by strongly acidic
zeolites [21]. On the other hand modification with
lanthanum has enhanced catalyst performance at
the studied operational conditions. This is prob-
ably associated with the increase in BET surface
area and micropore volume. Moreover, it is re-
ported that adding lanthanum to HZSM-5 can im-
prove the stability of the [AlO4]- anion, which can
be also one of the reasons why the HZSM-5 ze-
olite modified with just lanthanum is the one that
presents a better performance out of all of the cat-
alysts present in the dataset[22]. By analysing Fig-
ure 7 it is possible to observe that the targeted li-
brary for cluster 2, which is associated with lower
selectivities for ethylene, reveals to have higher val-
ues for the ethylene chemisorption enthalpy when
compared to the targeted library of cluster 3, re-
lated to a high selectivity for this compound that
presents lower values for the ethylene chemisorp-
tion enthalpy. So, taking into account these consid-
erations on catalyst characteristics and the shown
relations in Figure 7, one can conclude that higher
values of the chemisorption enthalpy of ethylene
are directly correlated to the presence of phospho-
rous, lower amounts of acidic strength of the cat-
alyst and BET surface area, and consequently, to
worst catalytic performance.

4.5. Case Study 2

Another set of experimental data was taken from
[23], where zeolites have been dealuminated apart
from being only doped with metals, as it was the
case in Case study 1. In this study, six different
ZSM-5 zeolites were prepared, characterized, and
tested, differing in the doping metal or the degree
of dealumination. Having performed the numerical
experiments step by making use of the developed
microkinetic model, the performances obtained for
the simulated virtual catalysts are shown in Figure
8.
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Figure 8: Obtained performances for the simulated virtual cata-
lysts and the respective real catalysts from the dataset 2.Reac-
tion conditions:T=493K, W=0.4g of catalyst, atmospheric pres-
sure, WHSV = 1.5h-1.

Step 3- Comparison between the performances of
virtual and real catalysts
Three different clusters were also identified, in this
case, by applying the silhouette method in the soft-
ware Orange3. All three clusters contain virtual
and real catalysts. In analogy to the previous case
study, these three clusters are marked in blue, or-
ange and yellow corresponding, respectively, to
lower conversions and selectivities, with high con-
version but low selectivity and high conversion and
selectivities.

Figure 9 visualizes the results of the clustering
step after this first iteration of the methodology.

Figure 9: Output of the clustering step performed in Orange3
for the 2nd dataset.

Step 4- Statistical analysis of the descriptor distribu-
tions
Having applied the statistical tests, which this time
was the Kruskal Wallis test, due to having more
than two clusters with real catalysts, it was possi-
ble to identify the discriminating descriptors for this
case.

The same threshold of 0.05 was applied as the
boundary for the p-value to filter more from less in-
fluential descriptors, which were the chemisorption
enthalpies of ethanol, ethylene and diethyl ether.
Figures 10, 11 and 12 show the comparison of
the obtained distributions for the three relevant de-
scriptors in the three clusters. Cluster 1 which
presents very low values for ethanol chemisorption
enthalpy, also cluster 3 presents very low values for

ethylene chemisorption enthalpy, similarly to Case
study 1.

Figure 10: Comparison of the distributions of the chemisorption
enthalpy of ethanol between clusters for the discovery library of
case study 2.

Figure 11: Comparison of the distributions of the chemisorption
enthalpy of ethylene between clusters for the discovery library
of case study 2.

Figure 12: Comparison of the distributions of the chemisorp-
tion enthalpy of diethyl ether between clusters for the discovery
library of case study 2.

Step 5-Building targeted libraries of virtual catalyst
In analogy to Case study 1, the Chebyshev in-
equality was applied to the clusters obtained in the
previous step. In Figure 13 and Figure 14 the re-
sults obtained for the targeting process to clusters
1 and 2 are presented. By looking at the figures,
by visual intuition, one could conclude that the tar-
geting process has been successful for both of the
clusters since the number of virtual catalysts in the
cluster is way higher than that obtained for the dis-
covery library. However, both of the clusters after
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the targeting step do not contain real catalysts any-
more. This could be because the real catalysts for
both of these clusters were close to their bound-
aries, representing one of the major downsides of
using a dataset with low quantities of real cata-
lysts(<10 samples), as is the case.

Figure 13: Result of the targeting step (step 5) for cluster 1 of
case study 2.

Figure 14: Result of the targeting step (step 5) for cluster 2 of
case study 2.

Regarding cluster number three, one can say
that the targeting step was developed with suc-
cess. Not only the number of virtual catalysts was
extended but also the real catalyst retained within
the cluster with virtual catalyst performances being
closer to the real one, as can be seen in Figure 15
So only this cluster can be considered relevant and
will be the only one to be statistically studied from
now on. Thus, the distributions of the descriptors
on this cluster are presented as well from Figure
16 to Figure 18.

Figure 15: Result of the targeting step (step 5) for cluster 3 of
case study 2.

Figure 16: Comparison of the distributions of the chemisorption
enthalpy of ethanol in the discovery library and target library of
virtual catalysts for case study 2.

Figure 17: Comparison of the distributions of the chemisorption
enthalpy of ethylene in the discovery library and target library of
virtual catalysts for case study 2.

Figure 18: Comparison of the distributions of the chemisorption
enthalpy of DEE in the discovery library and target library of
virtual catalysts for case study 2.

Step 6 - Developing descriptor-property relation-
ships from real catalysts properties
Firstly, through analysis of the previously pre-
sented boxplots, the hypothesis from case study 1,
of lower ethylene chemisorption enthalpies being
related to better catalyst performance is corrobo-
rated by the study of the second dataset as can be
proven by Figure 18. Moreover, since both ZSM-
5 doped with phosphorous and lanthanum present
poor performance on this dataset, the presence
of synergy between these two when catalysts are
doped with both can be a possibility, due to the ob-
served data from case study 1 as already previ-
ously reported [12]. Concerning the chemisorption
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enthalpies of ethanol and DEE by taking a look at
the distributions of these descriptors between the
discovery library and the studied cluster, it is not
possible to take any kind of conclusions, despite
the fact they are statistically relevant. However,
this reassures us that the chemisorption enthalpy
of ethylene can be considered the most discrimi-
nating descriptor of the process in the simulated
conditions. In the case of the third cluster, the only
real catalyst present is a dealuminated ZSM-5 ze-
olite, being the one where 25% of oxalic acid was
used during catalyst preparation. Since only this
sample is present in the cluster and, on top of that,
cluster 2 also has ZSM-5 zeolites that have been
dealuminated but with higher percentages of oxalic
acid, the assumption that a dealumination step dur-
ing the catalyst synthesis process could influence
the identified relevant descriptors and, in this case,
the selectivity for ethylene of the process cannot
be statistically proven. Thus, it is not possible to
establish any kind of relationship between catalyst
characteristics and the observed performance.

5. Conclusions

First of all, concerning the kinetic model develop-
ment, this revealed to be hard to model due to nu-
merical problems related to the very broad range
of magnitude associated with the rate constants of
the process. As a consequence, several different
approaches needed to be considered and the us-
age of scaling factors was needed. Secondly, re-
garding the followed catalyst design technique, as
it was already proven in previous works [3], the ap-
plication of the methodology itself can be consid-
ered successful, representing an important tool in
facing the biggest problems related to the kinetics-
driven design of catalysts since it allows to cre-
ate direct relations between the chemical proper-
ties and the results obtained on the statistical tests
while being less expensive and time-consuming.
Furthermore, even though it helps to have big sets
of experimental data, it is proven by this work that
it still works with smaller sets, being this a very
promising feature to be taken into account for the
future. However, some improvements still need to
be made, especially in trying to use fewer tools
so it is more integrated and efficient, as stated in
[3]. When applied to ethanol dehydration to ethy-
lene, for Case study 1, one can conclude that the
chemisorption enthalpy of ethylene is the discrimi-
nating descriptor and that lower values for this are
associated with better catalytic performance, while
higher values for this are related to worse catalytic
performance, especially in terms of selectivity. This
is possibly connected to a reduction in the BET
surface area and in the volume and width of the
pores related to metal doping a catalyst, especially

with phosphorous in this case. On top of this, a
big decrease in the total acid amount, especially
in the acidic strength of the catalysts, which con-
stitutes an important property for the studied pro-
cess, is verified for the catalyst associated with the
worst performances. This conclusion is based on
three different clusters that were obtained, having
two both virtual and real catalysts. On the other
hand, it was possible to infer that lower values
of the ethylene chemisorption enthalpy are asso-
ciated with higher ethanol conversion and selec-
tivity for ethylene. As for case study 2, the low
number of real catalysts proved to be a setback
for this study, leading to a non-successful target-
ing step and a lack of statistically relevant results
that didn’t allow taking conclusions. Thus, even
though, it is possible to perform the methodology
and reach conclusions and results with samples
containing lower amounts of real catalysts, it can
be concluded that a big dataset should always be
used to make sure that the methodology is always
successful. Overall, even though this constitutes
a set of preliminary conclusions and more studies
should be done to acquire more relationships and
prove what was concluded until this point, the ap-
plicability of the methodology was successful with
the chemisorption enthalpy of ethylene being dis-
covered as the main factor influencing the perfor-
mance of zeolites for the studies datasets. This ap-
peared related to the acid strength of the catalyst
and the surface area available for adsorption. Both
of these properties can be manipulated by modify-
ing catalyst structure mainly through metal doping
processes and this should be taken into account
for further studies, especially in design phases for
real catalysts, so the ethanol dehydration process
can overcome the issue associated with catalysts
and reach its full potential in order to aid the envi-
ronmental change that is needed nowadays.
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