
Deep Reinforcement Learning applied to Analog
Integrated Circuit Sizing

Tomás Bessa
Instituto Superior Técnico
 Universidade de Lisboa

ABSTRACT

The following work resides in the scientific field of electronic
design automation. In this paper, there is a particular emphasis on
the automatic sizing of integrated circuits and how the process
may be improved and optimized—mainly focusing on the
application of Machine Learning and Deep Learning techniques
to analog IC sizing, namely Reinforcement Learning
methodology. This paper presents Asynchronous Actor-Critic, a

Reinforcement Learning approach that can be applied to analog
IC sizing. The proposed algorithm builds upon the AIDA-C tool
and enhances its flow with an alternative RL-based sizing
solution. The model is applied to two amplifier circuit topologies,
VCOTA and Folded Cascode. For both cases, the agent can
successfully perform the sizing of their components in a short
time while fulfilling set target specifications.

Keywords

Actor-Critic, Analog Integrated Circuits, Artificial Neural
Networks, Deep Learning, Electronic Design Automation,
Reinforcement Learning

1. INTRODUCTION
Currently, markets are frenetic. Industries are developing and
adapting to new patterns, and the market has become increasingly
demanding. The electronics market, such as analog and digital
circuits, is no exception. The overall projection of total IC sales
growth in 2022 is unchanged and expected to rise 11% this year
to a record-high $567.1 billion. The new 2Q22 update keeps the

2022 growth forecast unchanged in analog ICs (up 12%) and logic
integrated circuits (up 11%)[1].

At the same time, the need for new functionalities, longer battery
times, smaller (thinner) devices, more power efficiency, less
production and integration costs, and less design cost makes the
design of electronic systems a genuinely challenging task. IC
designers are building increasingly complex systems, and the
integration in modern systems is exceptionally high and is
common to find devices where the whole system is integrated into

a single chip [2].

The complexity of electronic systems, the extremely competitive
markets, and the strict time-to-market impose the use of
Computer-Aided Design (CAD) tools to support the design
process. In digital IC design, several Electronic Design
Automation (EDA) tools and design methodologies are available
to help the designers keep up with the new capabilities the
technology offers. Currently, almost all low-level phases of the

process are automated. The level of automation is far from the
push-button stage but is keeping up reasonably well with the
complexity supported by the technology[3][4]. On the other hand,
analog design automation (ADA) tools are not keeping up with

new challenges created by technological evolution. Due to the
lack of automation, designers keep exploring the solution space
manually. This method causes long design times and is allied to

the non-reusable nature of analog IC, making analog IC design a
cumbersome task. [3][4]. The difference between analog and
digital design automation is because analog design generally is
less systematic, more heuristic, and knowledge intensive than the
digital counterpart and becomes critical when digital and analog
circuits are integrated.

This paper presents a methodology and tool for automatic analog
IC sizing approach based on reinforcement learning (RL). This
paper is organized as follows: section 2 overviews analog IC
design with particular emphasis on analog IC sizing using RL;
section 3 highlights previous work in Deep Reinforcement

Learning applied to Analog IC Sizing; section 4 explains the
proposed architecture; section 5 presents case studies; and finally,
in section 6 some conclusions are drawn, and future work
proposed.

2. ANALOG IC DESIGN: OVERVIEW
In order to locate analog IC sizing, a brief presentation of a typical
analog IC design flow is shown, and the analog IC sizing task is

described.

2.1 Design Flow
The specific design flow of Integrated Circuits is often unique and
specific to each designer or company producing the IC, like the
concept of human fingerprints. Each designer/company has its
style of design. However, the more significant part of the work

related to analog design flow can be generally mapped into the
model proposed by Gielen and Rutenbar [10], which consists of a
series of top-down topology selection and specifications
translation steps and bottom-up layout generation and extraction
steps including several verification stages along the way.

Adopting the top-down strategy proved advantageous since it
allowed exploring system architectures of higher complexity,
which led to improved system optimization at a higher level of
abstraction. This can be achieved before the beginning of more
specific and intricate implementations at lower levels. This way,
finding problems at the beginning of the design process is

possible, leading to an increase in first-time success rate and a
decrease in the necessary time it takes to conclude the entire
process.

The system complexity influences the number of hierarchy levels
in the design flow. A generally accepted representation of design
architecture consists of two prominent design paths:

• Top-down electric synthesis: Includes topology
selection, design verification, and specification translation. The
latter is also known as circuit sizing at the lowest level;

• Bottom-up physical synthesis: Includes detailed
design verification after layout extraction and generation;

This work was hosted at Instituto de Telecomunicações, funded by

Fundação para a Ciência e Tecnologia–Ministério da Ciência, Tecnologia

e Ensino Superior (FCT/MCTES) through national funds and, when

applicable co-funded European Union (EU) funds under the project

UIDB/50008/2020.

CIRCUIT LEVEL

LEVEL i

TOPOLOGY

SELECTION

Specification (level i+1) Layout (level i+1)

Specification (level i) Layout (level i)

SYSTEM LEVEL

DEVICE LEVEL

More

Abstract

More

Concrete

LEVEL i+1

...

...

Top-Down Electrical

Synthesis

Bottom-Up Physical

Synthesis

Specifications Layout

Redesign

Backtracking

Redesign

Backtracking

VERIFICATION

VERIFICATION

VERIFICATION

EXTRACTION
SPECIFICATION

TRANSLATION

LAYOUT

GENERATION
VERIFICATION

Figure 1. Hierarchical level and design tasks of analog

design flow architecture
The process of determining the circuit topology best suited for a
given problem is called topology selection. When selecting the
topology that better suits a given problem, it is crucial to meet the

specifications at the current hierarchy level, where the available
topology can either be chosen from a determined set or
synthesized. Each block carries its specifications to the next level
down the hierarchy, and the process is repeated until the top-down
electric synthesis flow is complete.
The task which ensures the mapping of high-level block
specifications into independent specifications for each sub-block
is named Specification Translation. This task can be narrowed

down to circuit sizing when dealing with the lowest level, as the
sub-blocks are single devices. Circuit sizing is an iterative process
that determines a suitable set of lengths, widths, and multiplicities
for each device in the topology to achieve desired specifications.

2.2 Circuit Sizing
Recent developments show that analog and RF cells, such as
amplifiers or oscillators, can be automatically synthesized from
specification to fabrication. The most common methodologies
follow an optimization-based strategy with accurate circuit
simulations in the loop to evaluate the circuit’s performance.
These tend to be time-consuming since the complex relationship

between design parameters and circuit specifications plays a big
part in complicating this task, but they can find usable results
without user intervention. AIDA-C [3], developed at Instituto de
Telecomunicações (IT), is one such optimization-based sizing
approach. It is part of the AIDA Framework, an electronic design
automation framework fully developed at IT, and appears as an
Electronic Design Automation tool to aid designers in doing their
job better and faster. AIDA multi-objective design methodology

for automatic, analog IC sizing is based on NSGAII[5][6] multi-
objective multi-constraint optimization, and the circuit’s
performance evaluation is done with circuit simulators, e.g.,
ELDO, Spectre, or NGSPICE, ensuring that the developed
automatic circuit sizing is compliant with the accuracy
requirements of the analog designers. In AIDA-C, whose core
optimization engine is illustrated in Figure 2, circuit sizing and
optimization are implemented as a multi-objective multi-

constraint optimization problem defined as:

 
 

,...N, i
U
ixix

L
ix

,...J,jxjgsubject to

,...M,mxmft minimizefind x tha

21

210

21







where, x is a vector of N optimization variables,𝑔𝑗(𝑥) one of the

J constraints on the circuit performances and 𝑓𝑚(𝑥) is one of the

M circuit performances being optimized. However, these
optimization-based sizing approaches require many circuit
simulations, which take time and consume energy. Hence the
search for new and more effective approaches to automatically
size analog ICs. Here is where Machine Learning advances come

in handy, presenting significant innovation potential.

OUTPUTS

 Sized
Circuits

POF

INPUTS DESIGN STRATEGIES

EVALUATION

ENGINE

HSpice

SIMULATOR

INTERFACE

NSGA2

KERNEL

NSGA2

KERNEL

T
y
p
ic

a
l
P
O

F

x(random)

fm(x)

gj(x)

Corners

Corner POF

fm(x)

gj(x)

Typical

Figure 2. AIDA-C optimization loop [2]

3. PREVIOUS WORK
Automatic circuit sizing using reinforcement learning is a recent

research area, and some of the most relevant works are described
below.

In [7], a Circuit Attention Network is proposed. This approach is

built on an Actor-Critic framework, and its primary goal is
addressing the robust circuit sizing problem. Actor-Critic
methods are temporal difference methods that have a separate
memory structure to represent the policy value function. The
policy structure may also be known as the actor since it is used to
select actions. On the other hand, another model estimates the
value (the expected reward of the state), also known as the critic,
because it “criticizes” the actions previously performed by the

actor. The CAN serves as both the Actor and Critic and is, at
heart, a customized graph NN. It allows knowledge transfer
between different topologies of the same circuit type, and its
effectiveness has been proved through simulations. The stochastic
technique is implemented to mitigate the layout effect. It tries to
turn a sizing solution robust against layout uncertainty but
requires a previously sized circuit. Result validation is done
through post-layout simulation, showing significant improvement

in circuit performance compared to Bayesian Optimization and
GCN-RL.

A critical aspect of the CAN is its ability to transfer knowledge,

i.e., it is applicable to several different topologies. Usually, there
are two problems associated with knowledge transfer. The first
one is letting a single GNN accommodate different input
dimension sizes resulting from different graph structures. CAN
successfully solves the first problem since graph pooling in CAN
performs node/edge feature dimension reduction and effortlessly
handles the input of different dimensions. The other problem is
making a single GNN model provide different-sized outputs due

to the difference in action spaces. This setback is solved by the
actor network of target topology. It inherits the feature embedding
layers from the source topology, replacing the MLP of source
topology with an untrained MLP, thus needing very few data
samples. Comparing the quality of the solution presented (the
CAN-RL method with FOMR reward) with the GCN-RL method
(which uses regular FOM reward). All in all, CAN-RL is better
regarding circuit performance and robustness. Additionally,

CAN-RL converges faster than the both GCN-RL and BO in most
cases. CAN-RL is the fastest one to converge. It converges faster

than both GCN-RL and BO. Relatively to BO, CAN-RL
converges 5.6 times faster for FOM rewards and 6.8 times faster
for FOMR rewards. When the reward function is FOMR, the
transfer makes CAN-RL approximately 2.8 times faster, which
proves knowledge transfer facilitates further speedup.

AutoCkt [8]is a ML optimization framework which is trained by
using RL. Firstly, there is a netlist of N design parameters and M

target specifications that need to be optimized. The parameters
are initialized, and the ANN uses the performance, target
specifications, and current parameters to act. Afterwards, L
trajectories are generated, and the targets are chosen among the
target specifications. The rewards are cumulative as they depend
on previous actions. Aiming to demonstrate AutoCkt’s
capabilities, three different simulation environments as well as
three circuit topologies are considered: transimpedance amplifier,
two-stage operational amplifier, two stage OTA. In order to test

its performance, AutoCkt is tested and compared to Genetic
Algorithm as well as a random RL agent. Compared to every
algorithm. AutoCkt is faster and can fulfill many more target
specifications than the other algorithms.

Robust Analog [9] is proposed as an efficient variation-aware
optimization framework for automatic analog circuit design. Its
primary goal is reducing simulation cost to design a robust circuit
which is not susceptible to variations. When in the presence of
any circuit topology, a search is conducted with the objective of
finding a circuit sizing vector which can satisfy the constraints
across all variations. The problem can, therefore, be formulated

as a constraint satisfaction problem. The prominent goal is to find
a sizing vector which satisfies any constraints under any corner
task. This approach possesses an actor-critic model which can
predict the value of task-conditioned action-state pairs. The aim
of the actor-critic network is looking for sizing that fits all
specified tasks. The reward is defined as the measurement of the
relative distance between the current performance metrics and the
design targets.

RobustAnalog is tested on three real-world/analog mixed signal
circuits: Two-stage OTA, the second a Folded-Cascode OTA and
the last one is a strongARM Latch. The results are compared to

those of Bayesian Optimization (BO), Evolutionary Strategy
(ES), and single-task RL algorithm (DDPG). Each method is
compared to the others by the average reward. Considering all
three circuit benchmarks, RobustAnalog achieves the smallest
simulation cost to accomplish all corner tasks. As far as
simulation costs go, RobustAnalog outperforms the other
methods by a significant amount. The reductions in simulation
cost are roughly 26 times in Two-Stage OTA, 30 times in

storngARM Latch and 14 times in Folded-Cascode OTA.
RobustAnalog shows a very significant improvement in
efficiency. RobustAnalog is, therefore, a fast variation-aware
optimization framework that is based on multitask RL. Its key
property involves the ability to conduct efficient multitask
learning with pruned training task space. Hence, it can design
circuits effectively for variations. It is shown to significantly
reduce simulation cost and scale to many variation cases.

RobustAnalog is, thus, a promising approach to drastically
shorten the circuit design cycle and reduce the cost.

4. Deep RL-Based Analog IC Sizing
The Analog IC Design Automation (AIDA) [3] software tool is
an automation solution developed and maintained at IT. The

AIDA framework implements an analog IC design flow from
circuit-level specifications to a physical layout description,
focusing on design optimizing and porting. It uses highly efficient

searching methods combined with accurate circuit-level
simulation, layout design rules, and parasitic extraction engines.
Although not directly integrated into AIDA’s tool, this work
follows its flow, providing an alternative Deep RL-based sizing
approach. The circuit setup, including netlists (circuit and test

benches), circuit parameterization and design variables, and
target specifications, is the one from AIDA. To that end, the
interface with the simulator and measurement processing are
wrapped in an environment suitable for RL. An agent is trained

to replace the optimizer, as illustrated in Figure 3.

Figure 3. Proposed method illustrative diagram

4.1 State Space, Action Space, and Reward
The state is defined by design variables. The ranges of the design
variables define the state space. Each variable range is encoded in
the tuple (min, max, step). The min corresponds to the minimum
size value a design variable can reach, whereas the max is the

maximum size value the same variable can reach, and finally, the
step is the minimum amount an action can alter the value of that
design variable. The target specifications, however, are set in the
environment wrapper and remain unchanged during the sizing
process. The specifications establish limits on the measured
performances and are used to compute the reward. An action in
this framework is an alteration in the state. These changes only
apply to design variables since the target specifications remain
unchanged.

Each action is defined by a tuple, which encompasses the design
variable that needs to be altered and the amount it can change

(called the “step size”). For this work, the step size defined for
each action is 1 or 10, meaning that an action can
increase/decrease by one or ten times the step of each design
variable.

Finally, any RL model needs a reward function. The RL process
is divided into episodes and timesteps. An episode comprises time
steps, and each episode in this work comprises 50 timesteps.
Upon each time step, an action is performed, resulting in a reward
assignment. If the action brings the circuit performance measures
closer to the target specifications, it means the circuit
performance was improved, resulting in a positive reward. On the

other hand, if the action leads the circuit performance away from
the target specifications, the assigned reward is negative.

The reward for each action is the difference between the target

specifications that are not fulfilled and the objective target
specifications, similarly to what is defined in AIDA. An action
results in an alteration of the state and, if the agent gets closer to
the target specification, it results in a reward increase. Otherwise,
the reward value decreases. This calculation is performed for
every target constraint (IDD, DC Gain, GBW, Phase Margin, and
FoM). The resulting reward for each action is obtained by adding
these results. If a solution is deemed impossible to simulate, the

episode is immediately terminated and a reward of -100 is

assigned to the episode. Once a feasible solution has been found,
the episode terminates and is given a reward of +2000.

4.2 Model Structure
The Actor-Critic model is defined as a large Neural Network.

Like all ANNs, the proposed network has an input layer, an output
layer, and a set of hidden layers. This work makes use of two
NNs. The first network is composed as follows: 1 input layer, 2
common hidden layers, 1 output relative to the actor, and 1 output
relative to the critic (Figure 4). The second network has: 1 input
layer, 2 hidden layers for the actor, 2 hidden layers for the critic,
1 output layer relative to the actor, 1 output layer relative to the
critic.

Figure 4 Model 1 representation

Figure 5. Model 2 representation

The chosen optimizer is the Stochastic Gradient Descent. One of

its parameters is the learning rate. The nature of this problem
caused the implementation of an adaptive learning rate. An
adaptive learning rate is a value of the learning rate which
decreases over time. To achieve that, it benefits from two main
parameters: gamma and step size. The first parameter controls the
decay rate, i.e., how much the learning rate will decrease. The
second parameter defines how frequently the learning rate is
updated (for example: if step size= 2: the learning rate is updated
every two episodes). In this work, the Leaky ReLU activation

function is applied to every layer except the last hidden layer of
the actor network on both models, where the sigmoid function is
applied. The output layer of the actor (for both models) is
subjected to a SoftMax activation function.

4.3 Action Selection
Exploration and exploitation are two possible approaches to face
in a decision-making problem. Exploitation consists of preferring

the decision assumed to be optimal regarding the observed data.
The main goal of this behavior is to avoid poor decisions as much
as possible. However, it may prevent the algorithm from finding
potentially better solutions. Exploration involves avoiding

decisions that may seem optimal. This process relies on
disregarding observed data, which is not considered sufficient to
identify the best possible option. The main goal is to find a
strategy with a favorable tradeoff between these decisions. The
exploration-exploitation tradeoff implies a decision regarding the

current model’s state. Hence, the actor’s output consists of a
probability distribution of the best action to take. The best
distribution, in this case, is the Categorical distribution since
selecting the action is a multi-class problem.

4.4 Circuit Sizing using Deep Reinforcement

Learning
Contrary to most ML methods, RL algorithms are not divided into

the typical training, validation, and test stages. In model training,
a given model is trained to be later tested and validated. This is
not the case for this work. The learning process in RL, precisely
the actor-critic method, is finding a feasible solution given the
environment with the constraints. Therefore, the principal
objective of the learning process is finding a feasible solution for
the environment and automating the sizing of the circuit. At first,
the neural network’s weights are initialized randomly. During the

beginning of the process, the quality of the results is low because
the agent is learning what actions result in better rewards. As
training progresses, the objective is to transform a poor-
performing agent into an agent that can size the circuit’s
components, meeting the set target specifications. The agent
maintains a policy (actor) π (at|st; θ) and a value function (critic)
V (st; θv). Both policy and value functions are updated after 50
timesteps or if a terminal state is reached.
The TD term is multiplied by the probability assigned by the

policy for the action at time t. This way, certain policies are more
heavily penalized if they incorrectly estimate the value function.

The entire process is represented in Figure 6, It is important to
highlight how it progresses over time. First, it is divided into
episodes and time steps. Each episode is composed of time steps
and in each time step, an action is performed. The selection of the
action is as it is described in Chapter 4.2.4. The result of the action
proceeds to influence the current state and reward. Afterwards,
the episode reward is updated as the last reward of the episode.
After each episode is finished, the reward function is updated,
leading to an update in the solving condition. Once the reward

function is updated, the training process enters in the finishing
step.

The finishing step is the final step in an episode, incorporating
every update the model needs to progress to the next episode. The
final step ensures the model is ready to progress to the following
episode and improve, by applying prior knowledge. The present
rewards are updated considering the past rewards multiplied by

the discounting factor and total episode rewards. The result is
used to calculate the advantage function. The advantage function
factors how beneficial an action is when compared to other
actions for a particular state. Following the advantage function
calculation, both policy losses and value losses are calculated.
Once they are calculated, the gradients are all set to 0. (This step
is important because PyTorch accumulates gradients,
compromising the backpropagation and weight adjustment

stages). The policy and value losses are added to achieve the total
loss, which contributes to updating the weights in the Deep NN.
Once the loss is fully calculated, it is possible to perform
backpropagation, thus updating the weights and improving the
network.

5. CASE STUDY
This Chapter is destined to the presentation of the results derived

from the implementation. Every model in this work, both agent
and environment, are implemented in Python 3.8.8, using
PyTorch as backend. The code is run on an AMD Ryzen 7 5700U
with Radeon Graphics CPU 1.80 GHz with 16GB of RAM.

5.1 Circuit Description
For proof of concept, the amplifier using voltage combiners for

gain enhancement (VCOTA), presented in [42], is considered as
well as the folded cascade amplifier (FCA), used in [43]. Voltage-
combiners are typically used in radio frequency, due to their
ability to convert fully differential signals into a single-ended one,
for 50 and 75-Ohm impedance matching. The electrical scheme

of a VC is shown in Figure 35. It employs a combination of a
NMOS in a common-drain configuration and an NMOS in a
common-source configuration.

Figure 7. Circuit Schematic - VCOTA

Figure 6. Analog IC Sizing

5.2 VCOTA
The selection of the best solutions is organized by targets
specifications. Each target has different specification, which

needs to be met for the agent to find a valid solution. To test the
first circuit (VCOTA), various target constraints are specified.
The circuit performances which are considered as a way of
evaluating the performance of the RL algorithm are: DC Gain,
IDD, GBW, Phase Margin (PM) and figure of merit (FoM). Their
ranges of values are shown in the table below´:

Table 2 VCOTA: Table displays constraints for each Target

IDD
(μA)

GBW
(MHz)

DC Gain
(dB)

PM (º)

Target
0:

< 350 > 35 > 50 45 < PM < 90

Target
1:

< 300 > 40 > 40 45 < PM < 90

Target
2:

< 700 > 120 > 50 45 < PM < 90

Target
3:

< 210 > 25 > 40 45 < PM < 90

Target
4:

< 130 > 2 > 40 45 < PM < 90

Target 0 is notably straightforward since the pre-determined
conditions are easier to meet. On the other hand, the constraints
on Target 1 are more complicated to fulfil. The IDD minimum
limit value is lower than that of Target 0, which, when conjugated
to the maximum limit set for GBW, make these constraints more
complicated to meet. Target 2 aims to set a higher GBW value by

sacrificing the maximum limit of IDD. Targets 3 and 4 are
designed with the goal of limiting the maximum IDD value while
not sacrificing DC Gain in the process. The main difference
between Target 3 and Target 4 is that target 4 handles the trade
off by lowering the lower limit of GBW while Target 3 does aims
to achieve a lower IDD value while keeping the GBW at relatively
standard levels.
For the VCOTA topology, the results show that the actor-critic

network learned the design patterns and found solutions in few
episodes. Moreover, it successfully finds solutions within
difficult constraints. Given the FoM in every result, it indicates
that the solutions it found are efficient, since the FoM value is
over 850 in most cases. The FoM is calculated based on Equation
20, indicating that the solutions are efficient.

𝐹𝑜𝑀 =
𝐺𝐵𝑊 × 𝐶

𝐼𝑑𝑑
 [𝑀𝐻𝑧. 𝑝𝐹/𝑚𝐴]

For target 0, 1, 2 and 3, the average FoM is over 850, which
indicates quality in the solutions that the algorithm found.

However, for target 4, the average value of FoM is slightly above
300. This value is considerably low when compared to the other
targets. Target 4 compromises GBW in order to achieve a lower
and feasible IDD value. Therefore, since GBW is sub optimal,
that change will reflect on the FoM value, resulting in a poor FoM
for Target 4. The second model (Chapter 4.2.6) produced the
following results: ure of the model changed.

The number of episodes necessary to reach a valid solution for
target 0 decreases on average when compared to its model

counterpart. However, for the remaining Target specifications,
the second model needs on average more time to reach a valid
solution. This way, the second model seems to perform better for
simpler solutions whereas the first model outperforms its
counterpart for more complex solutions, although the difference
is small. One aspect worth mentioning is that the number of
episodes needed to reach a solution varies greatly depending on

the utilized ”seed” value, leading to the conclusion that the seed
value greatly influences the number of episodes needed to reach
a solution. As for the FoM value, all the results are above 800
(except for Target 4, which is expected). There is a slight decrease
in average FoM value for Target 0 when compared to the one
obtained by model 1, although the difference is minimal. This
observation is also applicable for targets 1 and 3. The difference
between these values is not significant enough. Surprisingly, the

average FoM value increases for target 2 and 4, surpassing the
one obtained by the first model. It is important to illustrate how
the agent evolves and learns over each episode on different
occasions. With that goal in mind, several graphs were taken
which show how each target specification evolves in an episode.
To get a clearer view of it, different episodes in distinct stages of
the sizing process are depicted. The first set is taken for one of the
first episodes, the second for one for a later stage, and the third

set represents how the different target parameters evolve during
the episode for which the agent finds a solution. This process was
done for both models and topologies.

Table 1 VCOTA: Model 1

Seed # IDD
(µA)

DC
Gain
(dB)

GBW
(MHz)

PM (º)
FoM2

(MHz×pF/mA)

12 4

T
a
rg

e
t
0

347.2 55,3 49.45 58,9 854,7

72 50 347.0 58,8 45.57 49,1 787,8

44 124 308.9 58,4 43.67 46,1 848,2

56 70 339.5 55,1 45.72 74,4 807,9

80 21 345.9 54,4 62.64 62,8 1086,4

21 15 261.8 58,7 41.28 49,1 946,1

13 5 345.9 56,2 46.92 55,4 814,0

Average 41,3 --------- --------- --------- --------- 877,9

12 34

T
a
rg

e
t
1

285,6 53,750 42,24 79,644 887,283

15 46 260,4 58,449 42,72 48,024 984,351

16 77 298,7 55,889 49,46 45,718 993,533

19 57 279,8 53,053 45,45 46,475 974,619

24 32 297,5 53,412 47,71 58,052 962,313

Average 49,2 --------- --------- --------- --------- 960,420

12 34

T
a
rg

e
t
2

615.0 48,429 143,8 73,789 1403,415

14 184 666.4 53,370 124,4 46,399 1120,308

16 201 679.9 52,370 130,7 62,829 1153,398

20 268 593.1 50,920 124,3 63,475 1257,840

80 209 559.1 54,380 120,4 57,045 1292,535

Average 179,2 --------- --------- --------- --------- 1245,499

12 34

T
a
rg

e
t
3

209,9 55,771 34,44 72,784 984,773

15 247 207,1 52,864 35,52 63,396 1028,833

24 54 187,2 48,983 26,04 69,794 834,732

21 143 207,1 57,824 30,16 63,036 873,573

22 49 202,0 47,200 26,33 46,743 782,190

Average 105,4 --------- --------- --------- --------- 900,820

12 39

T
a
rg

e
t
4

117,6 51,068 4,696 89,493 239,572

15 5 128,7 46,519 2,201 88,901 102,616

22 24 129,2 52,674 15,54 53,254 721,798

24 41 122,9 45,109 4,265 86,979 208,175

21 143 108,9 54,185 4,591 88,005 252,906

Average 50,4 --------- --------- --------- --------- 305,013

Figure 8. VCOTA Model 1 – Early Episode

Figure 9. VCOTA Model 1 – Intermediate Episode

Figure 10.VCOTA Model 1 – Final Episode

Figure 11.VCOTA Model 2 – Early Episode

Table 3 VCOTA: Model 2

Seed # IDD

(µA)

DC
Gain
(dB)

GBW

(MHz)
PM (º)

FoM2

(MHz×pF/mA)

12 15
T

a
rg

e
t
0

282,1 50,073 37,26 75,367 792,401

72 4 325,6 58,129 45,96 60,478 846,799

44 15 336,4 58,144 48,12 58,541 858,187

56 27 314,7 56,318 37,02 77,097 705,892

80 23 338,3 51,148 47,62 73,330 844,450

21 14 260,0 58,465 42,65 48,043 984,204

13 32 317,8 58,128 37,79 49,306 713,579
Average 18,6 --------- --------- --------- --------- 820,787

12 91

T
a
rg

e
t
1

286,5 50,966 45,46 67,870 951,973

14 639 280,1 53,292 45,05 46,934 965,030

16 36 298,8 58,106 43,00 57,185 863,319

20 43 295,1 53,818 63,35 58,740 1287,919

80 216 299,8 52,984 44,42 86,082 888,991

Average 205 --------- --------- --------- --------- 991,446

12 72

T
a
rg

e
t
2

678,6 55,624 121,1 68,230 1070,738

15 431 651,4 54,481 133,1 48,729 1225,866

16 251 689,8 50,249 129,9 69,897 1130,191

19 231 593,1 50,948 124,2 52,838 1256,638

24 318 660,0 48,621 142,9 80,245 1298,823

Average 260,6 --------- --------- --------- --------- 1196,451

12 353

T
a
rg

e
t
3

197,3 55,707 26,79 61,690 814,704

15 272 204,3 45,247 29,24 74,400 858,994

24 67 189,5 52,866 25,86 47,798 818,726

21 318 200,4 57,605 26,99 54,492 807,975

22 31 176,8 56,651 29,02 66,046 984,639

Average 208,2 --------- --------- --------- --------- 857,007

12 353

T
a
rg

e
t
4

127,6 50,243 4,672 86,658 219,670

15 87 113,4 43,590 5,345 85,781 282,829

22 31 121,3 46,415 10,76 74,667 532,363

24 30 129,5 42,906 2,835 87,062 131,367

21 485 121,4 56,448 1,169 84,976 577,780

Average 197,2 --------- --------- --------- --------- 348,802

Figure 12. VCOTA Model 2 – Intermediate Episode

Figure 13.VCOTA Model 2 – Final Episode

Both models obtained successful results, fulfilled the target
specifications and within a reasonable time. Overall, the first
model performed better than the second one regarding the number
of episodes it needed to reach a solution and the average FoM
value. However, the difference between both models is not large
and greatly depends on the seeds, leading to the conclusion that
both model structures perform well when applied to the VCOTA

topology.

6. CONCLUSIONS
This work presents a reinforcement learning approach –
Advantage Actor-Critic - that successfully contributed to the
analog IC sizing for two amplifiers: VCOTA and FCA, given

their intended target performances. There has not been much
research on the topic at hand. Reinforcement Learning is still
being tested on analog IC sizing. The available information is not
widely spread as there is little research on the subject.

The Actor-Critic model proved to be very flexible, fast, and
capable of satisfying complex constraints with relative ease. This
technique can prove itself extremely useful in the future as it
possesses a tremendous potential. This work shows that the actor-
critic approach can learn design patterns and generate circuit
sizing that are correct for specification tradeoffs.

The otential of the actor-critic algorithm shows considerable
promises to future applications and could prove itself extremely
useful in future research. This work showed that it can adapt to
different analog IC environments, namely VCOTA and FCA,

proving it generalizes quite well to other more complex

7. REFERENCES

[1] The McClean Report - A complete analysis and forecast of
the semicondutor industry. (2022). IC Insights.
https://www.icinsights.com/data/reports/6/1/brochure.pdf?p
arm=1666909705.

[2] Lourenc¸o, Nuno, Ricardo Martins, and Nuno Horta.
Automatic analog IC sizing and optimization constrained
with PVT corners and layout effects. Cham: Springer
International Publishing, 2017.

[3] Martins, Ricardo, et al.” AIDA: Robust layout-aware
synthesis of analog ICs including sizing and layout
generation.” 2015 International Conference on Synthesis,
Modeling, Analysis and Simulation Methods and
Applications to Circuit Design (SMACD). IEEE, 2015.

[4] R. F. Badaoui and R. Vemuri,” Analog VLSI circuit-level
synthesis using multi-placement structures,” 2005 IEEE
International Symposium on Circuits and Systems, 2005, pp.

5978-5981 Vol. 6, doi: 10.1109/ISCAS.2005.1466001.
[5] K. Deb, A. Pratap, S. Agarwal, T. MeyarivanA fast and

elitist multiobjective genetic algorithm: NSGA-II IEEE
Trans. Evol. Comput., 6 (2) (2002), pp. 182-
197, 10.1109/4235.996017

[6] K. Deb, H. BeyerSelf-adaptive genetic algorithms with
simulated binary crossover Evol. Comput., 9 (2) (2001),
pp. 197-221, 10.1162/106365601750190406

[7] Li, Yaguang, et al.” A Circuit Attention Network-Based
Actor-Critic Learning Approach to Robust Analog
Transistor Sizing.” 2021 ACM/IEEE 3rd Workshop on
Machine Learning for CAD (MLCAD). IEEE, 2021

[8] Settaluri, Keertana, et al.” AutoCkt: deep reinforcement
learning of analog circuit designs.” 2020 Design,
Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2020.

[9] Shi, Wei, et al.” RobustAnalog: Fast Variation-Aware

Analog Circuit Design Via Multi-task RL.” arXiv preprint
arXiv:2207.06412 (2022).

[10] J. Domingues, A. Gusmão, N. Horta, N. Lourenço and R.
Martins, “Accelerating Voltage-Controlled Oscillator Sizing
Optimizations with ANN-based Convergence Classifiers
and Frequency Guess Predictors,” 2022 18th International
Conference on Synthesis, Modeling, Analysis and
Simulation Methods and Applications to Circuit Design

(SMACD), 2022, pp. 1-4, doi:
10.1109/SMACD55068.2022.9816265.

[11] Zhao, Zhenxin, and Lihong Zhang.” Deep Reinforcement
Learning for Analog Circuit Sizing.” 2020 IEEE
International Symposium on Circuits and Systems (ISCAS).
IEEE, 2020.

[12] Chen, Po-Yan, et al.” A Reinforcement Learning Agent for
Obstacle-Avoiding Rectilinear Steiner Tree Construction.”

Proceedings of the 2022 International Symposium on
Physical Design. 2022.

[13] K.-W. Lin et al., “A maze routing-based methodology with
bounded exploration and path-assessed retracing for
constrained multilayer obstacle-avoiding rectilinear Steiner
tree construction,” ACM TODAES, Vol. 23, Iss. 4, Article
45. May, 2018

	1. INTRODUCTION
	2. ANALOG IC DESIGN: OVERVIEW
	2.1 Design Flow
	2.2 Circuit Sizing
	Recent developments show that analog and RF cells, such as amplifiers or oscillators, can be automatically synthesized from specification to fabrication. The most common methodologies follow an optimization-based strategy with accurate circuit simulat...

	3. PREVIOUS WORK
	4. Deep RL-Based Analog IC Sizing
	The Analog IC Design Automation (AIDA) [3] software tool is an automation solution developed and maintained at IT. The AIDA framework implements an analog IC design flow from circuit-level specifications to a physical layout description, focusing on d...
	4.1 State Space, Action Space, and Reward
	4.2 Model Structure
	4.3 Action Selection
	4.4 Circuit Sizing using Deep Reinforcement Learning
	Contrary to most ML methods, RL algorithms are not divided into the typical training, validation, and test stages. In model training, a given model is trained to be later tested and validated. This is not the case for this work. The learning process i...

	5. CASE STUDY
	This Chapter is destined to the presentation of the results derived from the implementation. Every model in this work, both agent and environment, are implemented in Python 3.8.8, using PyTorch as backend. The code is run on an AMD Ryzen 7 5700U with ...
	5.1 Circuit Description
	For proof of concept, the amplifier using voltage combiners for gain enhancement (VCOTA), presented in [42], is considered as well as the folded cascade amplifier (FCA), used in [43]. Voltage-combiners are typically used in radio frequency, due to the...
	5.2 VCOTA

	6. CONCLUSIONS
	7. REFERENCES

