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ABSTRACT 

The following work resides in the scientific field of electronic 
design automation. In this paper, there is a particular emphasis on 
the automatic sizing of integrated circuits and how the process 
may be improved and optimized—mainly focusing on the 
application of Machine Learning and Deep Learning techniques 
to analog IC sizing, namely Reinforcement Learning 
methodology. This paper presents Asynchronous Actor-Critic, a 

Reinforcement Learning approach that can be applied to analog 
IC sizing. The proposed algorithm builds upon the AIDA-C tool 
and enhances its flow with an alternative RL-based sizing 
solution. The model is applied to two amplifier circuit topologies, 
VCOTA and Folded Cascode. For both cases, the agent can 
successfully perform the sizing of their components in a short 
time while fulfilling set target specifications.  
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1. INTRODUCTION 
Currently, markets are frenetic. Industries are developing and 
adapting to new patterns, and the market has become increasingly 
demanding. The electronics market, such as analog and digital 
circuits, is no exception. The overall projection of total IC sales 
growth in 2022 is unchanged and expected to rise 11% this year 
to a record-high $567.1 billion. The new 2Q22 update keeps the 

2022 growth forecast unchanged in analog ICs (up 12%) and logic 
integrated circuits (up 11%)[1]. 

At the same time, the need for new functionalities, longer battery 
times, smaller (thinner) devices, more power efficiency, less 
production and integration costs, and less design cost makes the 
design of electronic systems a genuinely challenging task. IC 
designers are building increasingly complex systems, and the 
integration in modern systems is exceptionally high and is 
common to find devices where the whole system is integrated into 

a single chip [2]. 

The complexity of electronic systems, the extremely competitive 
markets, and the strict time-to-market impose the use of 
Computer-Aided Design (CAD) tools to support the design 
process. In digital IC design, several Electronic Design 
Automation (EDA) tools and design methodologies are available 
to help the designers keep up with the new capabilities the 
technology offers. Currently, almost all low-level phases of the 

process are automated. The level of automation is far from the 
push-button stage but is keeping up reasonably well with the 
complexity supported by the technology[3][4]. On the other hand, 
analog design automation (ADA) tools are not keeping up with 

new challenges created by technological evolution. Due to the 
lack of automation, designers keep exploring the solution space 
manually. This method causes long design times and is allied to 

the non-reusable nature of analog IC, making analog IC design a 
cumbersome task. [3][4]. The difference between analog and 
digital design automation is because analog design generally is 
less systematic, more heuristic, and knowledge intensive than the 
digital counterpart and becomes critical when digital and analog 
circuits are integrated. 

This paper presents a methodology and tool for automatic analog 
IC sizing approach based on reinforcement learning (RL). This 
paper is organized as follows: section 2 overviews analog IC 
design with particular emphasis on analog IC sizing using RL; 
section 3 highlights previous work in Deep Reinforcement 

Learning applied to Analog IC Sizing; section 4 explains the 
proposed architecture; section 5 presents case studies; and finally, 
in section 6 some conclusions are drawn, and future work 
proposed. 

2. ANALOG IC DESIGN: OVERVIEW 
In order to locate analog IC sizing, a brief presentation of a typical 
analog IC design flow is shown, and the analog IC sizing task is 

described.  

2.1 Design Flow 
The specific design flow of Integrated Circuits is often unique and 
specific to each designer or company producing the IC, like the 
concept of human fingerprints. Each designer/company has its 
style of design. However, the more significant part of the work 

related to analog design flow can be generally mapped into the 
model proposed by Gielen and Rutenbar [10], which consists of a 
series of top-down topology selection and specifications 
translation steps and bottom-up layout generation and extraction 
steps including several verification stages along the way.  

Adopting the top-down strategy proved advantageous since it 
allowed exploring system architectures of higher complexity, 
which led to improved system optimization at a higher level of 
abstraction. This can be achieved before the beginning of more 
specific and intricate implementations at lower levels. This way, 
finding problems at the beginning of the design process is 

possible, leading to an increase in first-time success rate and a 
decrease in the necessary time it takes to conclude the entire 
process. 

The system complexity influences the number of hierarchy levels 
in the design flow. A generally accepted representation of design 
architecture consists of two prominent design paths: 

• Top-down electric synthesis: Includes topology 
selection, design verification, and specification translation. The 
latter is also known as circuit sizing at the lowest level; 

• Bottom-up physical synthesis: Includes detailed 
design verification after layout extraction and generation;  
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Figure 1. Hierarchical level and design tasks of analog 

design flow architecture 
The process of determining the circuit topology best suited for a 
given problem is called topology selection. When selecting the 
topology that better suits a given problem, it is crucial to meet the 

specifications at the current hierarchy level, where the available 
topology can either be chosen from a determined set or 
synthesized. Each block carries its specifications to the next level 
down the hierarchy, and the process is repeated until the top-down 
electric synthesis flow is complete.  
The task which ensures the mapping of high-level block 
specifications into independent specifications for each sub-block 
is named Specification Translation. This task can be narrowed 

down to circuit sizing when dealing with the lowest level, as the 
sub-blocks are single devices. Circuit sizing is an iterative process 
that determines a suitable set of lengths, widths, and multiplicities 
for each device in the topology to achieve desired specifications.  

2.2 Circuit Sizing 
Recent developments show that analog and RF cells, such as 
amplifiers or oscillators, can be automatically synthesized from 
specification to fabrication. The most common methodologies 
follow an optimization-based strategy with accurate circuit 
simulations in the loop to evaluate the circuit’s performance. 
These tend to be time-consuming since the complex relationship 

between design parameters and circuit specifications plays a big 
part in complicating this task, but they can find usable results 
without user intervention. AIDA-C [3], developed at Instituto de 
Telecomunicações (IT), is one such optimization-based sizing 
approach. It is part of the AIDA Framework, an electronic design 
automation framework fully developed at IT, and appears as an 
Electronic Design Automation tool to aid designers in doing their 
job better and faster. AIDA multi-objective design methodology 

for automatic, analog IC sizing is based on NSGAII[5][6] multi-
objective multi-constraint optimization, and the circuit’s 
performance evaluation is done with circuit simulators, e.g., 
ELDO, Spectre, or NGSPICE, ensuring that the developed 
automatic circuit sizing is compliant with the accuracy 
requirements of the analog designers. In AIDA-C, whose core 
optimization engine is illustrated in Figure 2, circuit sizing and 
optimization are implemented as a multi-objective multi-

constraint optimization problem defined as: 
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where, x is a vector of N optimization variables,𝑔𝑗(𝑥) one of the 

J constraints on the circuit performances and 𝑓𝑚(𝑥) is one of the 

M circuit performances being optimized. However, these 
optimization-based sizing approaches require many circuit 
simulations, which take time and consume energy. Hence the 
search for new and more effective approaches to automatically 
size analog ICs. Here is where Machine Learning advances come 

in handy, presenting significant innovation potential. 
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Figure 2. AIDA-C optimization loop [2] 

3. PREVIOUS WORK 
Automatic circuit sizing using reinforcement learning is a recent 

research area, and some of the most relevant works are described 
below.  

In [7], a Circuit Attention Network is proposed. This approach is 

built on an Actor-Critic framework, and its primary goal is 
addressing the robust circuit sizing problem. Actor-Critic 
methods are temporal difference methods that have a separate 
memory structure to represent the policy value function. The 
policy structure may also be known as the actor since it is used to 
select actions. On the other hand, another model estimates the 
value (the expected reward of the state), also known as the critic, 
because it “criticizes” the actions previously performed by the 

actor. The CAN serves as both the Actor and Critic and is, at 
heart, a customized graph NN. It allows knowledge transfer 
between different topologies of the same circuit type, and its 
effectiveness has been proved through simulations. The stochastic 
technique is implemented to mitigate the layout effect. It tries to 
turn a sizing solution robust against layout uncertainty but 
requires a previously sized circuit. Result validation is done 
through post-layout simulation, showing significant improvement 

in circuit performance compared to Bayesian Optimization and 
GCN-RL.  

A critical aspect of the CAN is its ability to transfer knowledge, 

i.e., it is applicable to several different topologies. Usually, there 
are two problems associated with knowledge transfer. The first 
one is letting a single GNN accommodate different input 
dimension sizes resulting from different graph structures. CAN 
successfully solves the first problem since graph pooling in CAN 
performs node/edge feature dimension reduction and effortlessly 
handles the input of different dimensions. The other problem is 
making a single GNN model provide different-sized outputs due 

to the difference in action spaces. This setback is solved by the 
actor network of target topology. It inherits the feature embedding 
layers from the source topology, replacing the MLP of source 
topology with an untrained MLP, thus needing very few data 
samples. Comparing the quality of the solution presented (the 
CAN-RL method with FOMR reward) with the GCN-RL method 
(which uses regular FOM reward). All in all, CAN-RL is better 
regarding circuit performance and robustness. Additionally, 

CAN-RL converges faster than the both GCN-RL and BO in most 
cases. CAN-RL is the fastest one to converge. It converges faster 



than both GCN-RL and BO. Relatively to BO, CAN-RL 
converges 5.6 times faster for FOM rewards and 6.8 times faster 
for FOMR rewards. When the reward function is FOMR, the 
transfer makes CAN-RL approximately 2.8 times faster, which 
proves knowledge transfer facilitates further speedup.  

AutoCkt [8]is a ML optimization framework which is trained by 
using RL. Firstly, there is a netlist of N design parameters and M 

target specifications that need to be optimized. The parameters 
are initialized, and the ANN uses the performance, target 
specifications, and current parameters to act. Afterwards, L 
trajectories are generated, and the targets are chosen among the 
target specifications. The rewards are cumulative as they depend 
on previous actions. Aiming to demonstrate AutoCkt’s 
capabilities, three different simulation environments as well as 
three circuit topologies are considered: transimpedance amplifier, 
two-stage operational amplifier, two stage OTA. In order to test 

its performance, AutoCkt is tested and compared to Genetic 
Algorithm as well as a random RL agent. Compared to every 
algorithm. AutoCkt is faster and can fulfill many more target 
specifications than the other algorithms. 

Robust Analog [9] is proposed as an efficient variation-aware 
optimization framework for automatic analog circuit design. Its 
primary goal is reducing simulation cost to design a robust circuit 
which is not susceptible to variations. When in the presence of 
any circuit topology, a search is conducted with the objective of 
finding a circuit sizing vector which can satisfy the constraints 
across all variations. The problem can, therefore, be formulated 

as a constraint satisfaction problem. The prominent goal is to find 
a sizing vector which satisfies any constraints under any corner 
task. This approach possesses an actor-critic model which can 
predict the value of task-conditioned action-state pairs. The aim 
of the actor-critic network is looking for sizing that fits all 
specified tasks. The reward is defined as the measurement of the 
relative distance between the current performance metrics and the 
design targets.  

RobustAnalog is tested on three real-world/analog mixed signal 
circuits: Two-stage OTA, the second a Folded-Cascode OTA and 
the last one is a strongARM Latch. The results are compared to 

those of Bayesian Optimization (BO), Evolutionary Strategy 
(ES), and single-task RL algorithm (DDPG). Each method is 
compared to the others by the average reward. Considering all 
three circuit benchmarks, RobustAnalog achieves the smallest 
simulation cost to accomplish all corner tasks. As far as 
simulation costs go, RobustAnalog outperforms the other 
methods by a significant amount. The reductions in simulation 
cost are roughly 26 times in Two-Stage OTA, 30 times in 

storngARM Latch and 14 times in Folded-Cascode OTA. 
RobustAnalog shows a very significant improvement in 
efficiency. RobustAnalog is, therefore, a fast variation-aware 
optimization framework that is based on multitask RL. Its key 
property involves the ability to conduct efficient multitask 
learning with pruned training task space. Hence, it can design 
circuits effectively for variations. It is shown to significantly 
reduce simulation cost and scale to many variation cases. 

RobustAnalog is, thus, a promising approach to drastically 
shorten the circuit design cycle and reduce the cost. 

4. Deep RL-Based Analog IC Sizing 
The Analog IC Design Automation (AIDA) [3] software tool is 
an automation solution developed and maintained at IT. The 

AIDA framework implements an analog IC design flow from 
circuit-level specifications to a physical layout description, 
focusing on design optimizing and porting. It uses highly efficient 

searching methods combined with accurate circuit-level 
simulation, layout design rules, and parasitic extraction engines. 
Although not directly integrated into AIDA’s tool, this work 
follows its flow, providing an alternative Deep RL-based sizing 
approach. The circuit setup, including netlists (circuit and test 

benches), circuit parameterization and design variables, and 
target specifications, is the one from AIDA. To that end, the 
interface with the simulator and measurement processing are 
wrapped in an environment suitable for RL. An agent is trained 

to replace the optimizer, as illustrated in Figure 3. 

 
Figure 3. Proposed method illustrative diagram 

4.1 State Space, Action Space, and Reward 
The state is defined by design variables. The ranges of the design 
variables define the state space. Each variable range is encoded in 
the tuple (min, max, step). The min corresponds to the minimum 
size value a design variable can reach, whereas the max is the 

maximum size value the same variable can reach, and finally, the 
step is the minimum amount an action can alter the value of that 
design variable. The target specifications, however, are set in the 
environment wrapper and remain unchanged during the sizing 
process. The specifications establish limits on the measured 
performances and are used to compute the reward. An action in 
this framework is an alteration in the state. These changes only 
apply to design variables since the target specifications remain 
unchanged. 

Each action is defined by a tuple, which encompasses the design 
variable that needs to be altered and the amount it can change 

(called the “step size”). For this work, the step size defined for 
each action is 1 or 10, meaning that an action can 
increase/decrease by one or ten times the step of each design 
variable.  

Finally, any RL model needs a reward function. The RL process 
is divided into episodes and timesteps. An episode comprises time 
steps, and each episode in this work comprises 50 timesteps. 
Upon each time step, an action is performed, resulting in a reward 
assignment. If the action brings the circuit performance measures 
closer to the target specifications, it means the circuit 
performance was improved, resulting in a positive reward. On the 

other hand, if the action leads the circuit performance away from 
the target specifications, the assigned reward is negative. 

The reward for each action is the difference between the target 

specifications that are not fulfilled and the objective target 
specifications, similarly to what is defined in AIDA. An action 
results in an alteration of the state and, if the agent gets closer to 
the target specification, it results in a reward increase. Otherwise, 
the reward value decreases. This calculation is performed for 
every target constraint (IDD, DC Gain, GBW, Phase Margin, and 
FoM). The resulting reward for each action is obtained by adding 
these results. If a solution is deemed impossible to simulate, the 

episode is immediately terminated and a reward of -100 is 



assigned to the episode. Once a feasible solution has been found, 
the episode terminates and is given a reward of +2000. 

4.2 Model Structure 
The Actor-Critic model is defined as a large Neural Network. 

Like all ANNs, the proposed network has an input layer, an output 
layer, and a set of hidden layers. This work makes use of two 
NNs. The first network is composed as follows: 1 input layer, 2 
common hidden layers, 1 output relative to the actor, and 1 output 
relative to the critic (Figure 4). The second network has: 1 input 
layer, 2 hidden layers for the actor, 2 hidden layers for the critic, 
1 output layer relative to the actor, 1 output layer relative to the 
critic. 

 

Figure 4 Model 1 representation 

 

Figure 5. Model 2 representation 

The chosen optimizer is the Stochastic Gradient Descent. One of 

its parameters is the learning rate. The nature of this problem 
caused the implementation of an adaptive learning rate. An 
adaptive learning rate is a value of the learning rate which 
decreases over time. To achieve that, it benefits from two main 
parameters: gamma and step size. The first parameter controls the 
decay rate, i.e., how much the learning rate will decrease. The 
second parameter defines how frequently the learning rate is 
updated (for example: if step size= 2: the learning rate is updated 
every two episodes). In this work, the Leaky ReLU activation 

function is applied to every layer except the last hidden layer of 
the actor network on both models, where the sigmoid function is 
applied. The output layer of the actor (for both models) is 
subjected to a SoftMax activation function. 

4.3 Action Selection 
Exploration and exploitation are two possible approaches to face 
in a decision-making problem. Exploitation consists of preferring 

the decision assumed to be optimal regarding the observed data. 
The main goal of this behavior is to avoid poor decisions as much 
as possible. However, it may prevent the algorithm from finding 
potentially better solutions. Exploration involves avoiding 

decisions that may seem optimal. This process relies on 
disregarding observed data, which is not considered sufficient to 
identify the best possible option. The main goal is to find a 
strategy with a favorable tradeoff between these decisions. The 
exploration-exploitation tradeoff implies a decision regarding the 

current model’s state. Hence, the actor’s output consists of a 
probability distribution of the best action to take. The best 
distribution, in this case, is the Categorical distribution since 
selecting the action is a multi-class problem. 

4.4 Circuit Sizing using Deep Reinforcement 

Learning 
Contrary to most ML methods, RL algorithms are not divided into 

the typical training, validation, and test stages. In model training, 
a given model is trained to be later tested and validated. This is 
not the case for this work. The learning process in RL, precisely 
the actor-critic method, is finding a feasible solution given the 
environment with the constraints. Therefore, the principal 
objective of the learning process is finding a feasible solution for 
the environment and automating the sizing of the circuit. At first, 
the neural network’s weights are initialized randomly. During the 

beginning of the process, the quality of the results is low because 
the agent is learning what actions result in better rewards. As 
training progresses, the objective is to transform a poor-
performing agent into an agent that can size the circuit’s 
components, meeting the set target specifications. The agent 
maintains a policy (actor) π (at|st; θ) and a value function (critic) 
V (st; θv). Both policy and value functions are updated after 50 
timesteps or if a terminal state is reached. 
The TD term is multiplied by the probability assigned by the 

policy for the action at time t. This way, certain policies are more 
heavily penalized if they incorrectly estimate the value function.  

The entire process is represented in Figure 6, It is important to 
highlight how it progresses over time. First, it is divided into 
episodes and time steps. Each episode is composed of time steps 
and in each time step, an action is performed. The selection of the 
action is as it is described in Chapter 4.2.4. The result of the action 
proceeds to influence the current state and reward. Afterwards, 
the episode reward is updated as the last reward of the episode. 
After each episode is finished, the reward function is updated, 
leading to an update in the solving condition. Once the reward 

function is updated, the training process enters in the finishing 
step. 



The finishing step is the final step in an episode, incorporating 
every update the model needs to progress to the next episode. The 
final step ensures the model is ready to progress to the following 
episode and improve, by applying prior knowledge. The present 
rewards are updated considering the past rewards multiplied by 

the discounting factor and total episode rewards. The result is 
used to calculate the advantage function. The advantage function 
factors how beneficial an action is when compared to other 
actions for a particular state. Following the advantage function 
calculation, both policy losses and value losses are calculated. 
Once they are calculated, the gradients are all set to 0. (This step 
is important because PyTorch accumulates gradients, 
compromising the backpropagation and weight adjustment 

stages). The policy and value losses are added to achieve the total 
loss, which contributes to updating the weights in the Deep NN. 
Once the loss is fully calculated, it is possible to perform 
backpropagation, thus updating the weights and improving the 
network.  

  

5. CASE STUDY 
This Chapter is destined to the presentation of the results derived 

from the implementation. Every model in this work, both agent 
and environment, are implemented in Python 3.8.8, using 
PyTorch as backend. The code is run on an AMD Ryzen 7 5700U 
with Radeon Graphics CPU 1.80 GHz with 16GB of RAM. 

5.1 Circuit Description 
For proof of concept, the amplifier using voltage combiners for 

gain enhancement (VCOTA), presented in [42], is considered as 
well as the folded cascade amplifier (FCA), used in [43]. Voltage-
combiners are typically used in radio frequency, due to their 
ability to convert fully differential signals into a single-ended one, 
for 50 and 75-Ohm impedance matching. The electrical scheme 

of a VC is shown in Figure 35. It employs a combination of a 
NMOS in a common-drain configuration and an NMOS in a 
common-source configuration. 
  
 

 

 

Figure 7. Circuit Schematic - VCOTA 

 

 

Figure 6. Analog IC Sizing  



 

5.2 VCOTA 
The selection of the best solutions is organized by targets 
specifications. Each target has different specification, which 

needs to be met for the agent to find a valid solution. To test the 
first circuit (VCOTA), various target constraints are specified. 
The circuit performances which are considered as a way of 
evaluating the performance of the RL algorithm are: DC Gain, 
IDD, GBW, Phase Margin (PM) and figure of merit (FoM). Their 
ranges of values are shown in the table below´: 

Table 2 VCOTA: Table displays constraints for each Target 

 

IDD 
(μA) 

GBW 
(MHz) 

DC Gain 
(dB) 

PM (º) 

Target 
0: 

< 350 > 35 > 50 45 < PM < 90 
 

Target 
1: 

< 300 > 40 > 40 45 < PM < 90 
 

 

Target 
2: 

< 700 > 120 > 50 45 < PM < 90 
 

 

Target 
3: 

< 210 > 25 > 40 45 < PM < 90 
 

 

Target 
4: 

< 130 > 2 > 40 45 < PM < 90 
 

 

 
 
Target 0 is notably straightforward since the pre-determined 
conditions are easier to meet. On the other hand, the constraints 
on Target 1 are more complicated to fulfil. The IDD minimum 
limit value is lower than that of Target 0, which, when conjugated 
to the maximum limit set for GBW, make these constraints more 
complicated to meet. Target 2 aims to set a higher GBW value by 

sacrificing the maximum limit of IDD. Targets 3 and 4 are 
designed with the goal of limiting the maximum IDD value while 
not sacrificing DC Gain in the process. The main difference 
between Target 3 and Target 4 is that target 4 handles the trade 
off by lowering the lower limit of GBW while Target 3 does aims 
to achieve a lower IDD value while keeping the GBW at relatively 
standard levels. 
For the VCOTA topology, the results show that the actor-critic 

network learned the design patterns and found solutions in few 
episodes. Moreover, it successfully finds solutions within 
difficult constraints. Given the FoM in every result, it indicates 
that the solutions it found are efficient, since the FoM value is 
over 850 in most cases. The FoM is calculated based on Equation 
20, indicating that the solutions are efficient. 

𝐹𝑜𝑀 =  
𝐺𝐵𝑊 × 𝐶

𝐼𝑑𝑑
 [𝑀𝐻𝑧. 𝑝𝐹/𝑚𝐴] 

For target 0, 1, 2 and 3, the average FoM is over 850, which 
indicates quality in the solutions that the algorithm found. 

However, for target 4, the average value of FoM is slightly above 
300. This value is considerably low when compared to the other 
targets. Target 4 compromises GBW in order to achieve a lower 
and feasible IDD value. Therefore, since GBW is sub optimal, 
that change will reflect on the FoM value, resulting in a poor FoM 
for Target 4. The second model (Chapter 4.2.6) produced the 
following results: ure of the model changed. 

The number of episodes necessary to reach a valid solution for 
target 0 decreases on average when compared to its model  

counterpart. However, for the remaining Target specifications, 
the second model needs on average more time to reach a valid 
solution. This way, the second model seems to perform better for 
simpler solutions whereas the first model outperforms its 
counterpart for more complex solutions, although the difference 
is small. One aspect worth mentioning is that the number of 
episodes needed to reach a solution varies greatly depending on 

the utilized ”seed” value, leading to the conclusion that the seed 
value greatly influences the number of episodes needed to reach 
a solution. As for the FoM value, all the results are above 800 
(except for Target 4, which is expected). There is a slight decrease 
in average FoM value for Target 0 when compared to the one 
obtained by model 1, although the difference is minimal. This 
observation is also applicable for targets 1 and 3. The difference 
between these values is not significant enough. Surprisingly, the 

average FoM value increases for target 2 and 4, surpassing the 
one obtained by the first model. It is important to illustrate how 
the agent evolves and learns over each episode on different 
occasions. With that goal in mind, several graphs were taken 
which show how each target specification evolves in an episode. 
To get a clearer view of it, different episodes in distinct stages of 
the sizing process are depicted. The first set is taken for one of the 
first episodes, the second for one for a later stage, and the third 

set represents how the different target parameters evolve during 
the episode for which the agent finds a solution. This process was 
done for both models and topologies. 

Table 1 VCOTA: Model 1 

Seed #  IDD 
(µA) 

DC 
Gain 
(dB) 

GBW 
(MHz) 

PM (º) 
FoM2 

(MHz×pF/mA) 

12 4 

T
a
rg

e
t 
0

 

347.2 55,3 49.45 58,9 854,7 

72 50 347.0 58,8 45.57 49,1 787,8 

44 124 308.9 58,4 43.67 46,1 848,2 

56 70 339.5 55,1 45.72 74,4 807,9 

80 21 345.9 54,4 62.64 62,8 1086,4 

21 15 261.8 58,7 41.28 49,1 946,1 

13 5 345.9 56,2 46.92 55,4 814,0 

Average 41,3 --------- --------- --------- --------- 877,9 

12 34 

T
a
rg

e
t 
1

 

285,6 53,750 42,24 79,644 887,283 

15 46 260,4 58,449 42,72 48,024 984,351 

16 77 298,7 55,889 49,46 45,718 993,533 

19 57 279,8 53,053 45,45 46,475 974,619 

24 32 297,5 53,412 47,71 58,052 962,313 

Average 49,2 --------- --------- --------- --------- 960,420 

12 34 

T
a
rg

e
t 
2

 

615.0 48,429 143,8 73,789 1403,415 

14 184 666.4 53,370 124,4 46,399 1120,308 

16 201 679.9 52,370 130,7 62,829 1153,398 

20 268 593.1 50,920 124,3 63,475 1257,840 

80 209 559.1 54,380 120,4 57,045 1292,535 

Average 179,2 --------- --------- --------- --------- 1245,499 

12 34 

T
a
rg

e
t 
3

 

209,9 55,771 34,44 72,784 984,773 

15 247 207,1 52,864 35,52 63,396 1028,833 

24 54 187,2 48,983 26,04 69,794 834,732 

21 143 207,1 57,824 30,16 63,036 873,573 

22 49 202,0 47,200 26,33 46,743 782,190 

Average 105,4 --------- --------- --------- --------- 900,820 

12 39 

T
a
rg

e
t 
4

 

117,6 51,068 4,696 89,493 239,572 

15 5 128,7 46,519 2,201 88,901 102,616 

22 24 129,2 52,674 15,54 53,254 721,798 

24 41 122,9 45,109 4,265 86,979 208,175 

21 143 108,9 54,185 4,591 88,005 252,906 

Average 50,4 --------- --------- --------- --------- 305,013 

 



 
Figure 8. VCOTA Model 1 – Early Episode 

 
Figure 9. VCOTA Model 1 – Intermediate Episode 

 
Figure 10.VCOTA Model 1 – Final Episode

 
Figure 11.VCOTA Model 2 – Early Episode 

Table 3 VCOTA: Model 2 

Seed #  IDD 

(µA) 

DC 
Gain 
(dB) 

GBW 

(MHz) 
PM (º) 

FoM2 

(MHz×pF/mA) 

12 15 
T

a
rg

e
t 
0

 
282,1 50,073 37,26 75,367 792,401 

72 4 325,6 58,129 45,96 60,478 846,799 

44 15 336,4 58,144 48,12 58,541 858,187 

56 27 314,7 56,318 37,02 77,097 705,892 

80 23 338,3 51,148 47,62 73,330 844,450 

21 14 260,0 58,465 42,65 48,043 984,204 

13 32 317,8 58,128 37,79 49,306 713,579 
Average 18,6 --------- --------- --------- --------- 820,787 

12 91 

T
a
rg

e
t 
1

 

286,5 50,966 45,46 67,870 951,973 

14 639 280,1 53,292 45,05 46,934 965,030 

16 36 298,8 58,106 43,00 57,185 863,319 

20 43 295,1 53,818 63,35 58,740 1287,919 

80 216 299,8 52,984 44,42 86,082 888,991 

Average 205 --------- --------- --------- --------- 991,446 

12 72 

T
a
rg

e
t 
2

 

678,6 55,624 121,1 68,230 1070,738 

15 431 651,4 54,481 133,1 48,729 1225,866 

16 251 689,8 50,249 129,9 69,897 1130,191 

19 231 593,1 50,948 124,2 52,838 1256,638 

24 318 660,0 48,621 142,9 80,245 1298,823 

Average 260,6 --------- --------- --------- --------- 1196,451 

12 353 

T
a
rg

e
t 
3

 

197,3 55,707 26,79 61,690 814,704 

15 272 204,3 45,247 29,24 74,400 858,994 

24 67 189,5 52,866 25,86 47,798 818,726 

21 318 200,4 57,605 26,99 54,492 807,975 

22 31 176,8 56,651 29,02 66,046 984,639 

Average 208,2 --------- --------- --------- --------- 857,007 

12 353 

T
a
rg

e
t 
4

 

127,6 50,243 4,672 86,658 219,670 

15 87 113,4 43,590 5,345 85,781 282,829 

22 31 121,3 46,415 10,76 74,667 532,363 

24 30 129,5 42,906 2,835 87,062 131,367 

21 485 121,4 56,448 1,169 84,976 577,780 

Average 197,2 --------- --------- --------- --------- 348,802 

 

 



 
Figure 12. VCOTA Model 2 – Intermediate Episode 

 

Figure 13.VCOTA Model 2 – Final Episode 

Both models obtained successful results, fulfilled the target 
specifications and within a reasonable time. Overall, the first 
model performed better than the second one regarding the number 
of episodes it needed to reach a solution and the average FoM 
value. However, the difference between both models is not large 
and greatly depends on the seeds, leading to the conclusion that 
both model structures perform well when applied to the VCOTA 

topology. 

6. CONCLUSIONS 
This work presents a reinforcement learning approach – 
Advantage Actor-Critic - that successfully contributed to the 
analog IC sizing for two amplifiers: VCOTA and FCA, given 

their intended target performances. There has not been much 
research on the topic at hand. Reinforcement Learning is still 
being tested on analog IC sizing. The available information is not 
widely spread as there is little research on the subject. 

The Actor-Critic model proved to be very flexible, fast, and 
capable of satisfying complex constraints with relative ease. This 
technique can prove itself extremely useful in the future as it 
possesses a tremendous potential. This work shows that the actor-
critic approach can learn design patterns and generate circuit 
sizing that are correct for specification tradeoffs. 

The otential of the actor-critic algorithm shows considerable 
promises to future applications and could prove itself extremely 
useful in future research. This work showed that it can adapt to 
different analog IC environments, namely VCOTA and FCA, 

proving it generalizes quite well to other more complex 
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