
Decentralized trajectory optimization for a fleet of industrial

mobile robots

Inês Sofia Baptista Silva
ines.sofia.silva@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Portugal

October 2022

Abstract

Multi-robot trajectory planning is a complex task given the need to avoid collisions with both
static and dynamic obstacles, such as other moving robots. This paper presents a novel approach to
efficiently generate collision-free optimal trajectories for multiple mobile robots, with time-varying
obstacle constraints. The proposed method first uses a sampling-based kinodynamic trajectory planner
to obtain an initial solution. Then, a non-linear optimization is applied to refine this solution into a
smoother trajectory. In classic approaches that solve multi-agent trajectory optimization problems,
the computational time often grows with the number of agents. As the main contribution of this work,
the proposed method interpolates a set of signed distance fields to obtain the signed distance from any
pose of the robot to the nearest static or dynamic obstacle. Thus, the formulated optimization problem
provides to the solver a single constraint regarding collision avoidance. Therefore, this method presents
to be more efficient. The algorithm was tested for a fleet of vehicles with non-linear constraints in
obstacle-populated scenarios.
Keywords:Path Planning for Multiple Mobile Robots or Agents, Collision Avoidance, Optimization
and Optimal Control, Multi-Robot Systems, Kinematics

1. Introduction

Many multi-robot systems require the inter-
coordination of mobile agents when navigating com-
plex environments. For instance, these systems can
have military, civil or even industrial applications
in areas such as surveillance, search and rescue and
transportation [1–4]. These scenarios require com-
puting collision-free trajectories from an initial to a
final position for every autonomous mobile robot in
the fleet.

Motion planning in multi-robot systems can be
rather challenging since each robot must avoid both
static and moving obstacles, in which the latter
might be other vehicles in the fleet. Additionally,
this becomes even more demanding when differen-
tial constraints are imposed by the physical dynam-
ics and limited control inputs are considered. Also,
it can be difficult to efficiently compute optimal
collision-free routes, where the trajectory quality is
determined by a cost function that, for example,
minimizes the control effort or the trajectory dura-
tion. This paper presents an efficient formulation
for the optimization problem that handles static
and dynamic obstacles in the environment.

2. Background

When dealing with motion planning problems, it is
necessary to distinguish between two designations:
path and trajectory [5]. Informally, a path is a spa-
tial construct with no time constraint. A trajectory,
on the other hand, provides a time constraint, by
assigning a time law to a geometric path.

There are many different path planning al-
gorithms proposed. Decomposition graph-based
methods [6] convert the motion planning problem
into a graph search one, by transforming the con-
figuration space into a finite set of regions called
cells. However, these methods show high com-
plexity in high-dimensional spaces. Additionally,
sampling-based techniques, such as Probabilistic
Roadmaps (PRM) [7] and Rapidly-exploring Ran-
dom Tree (RRT) [8], incrementally search for a solu-
tion in the environment. These algorithms are very
effective and they guarantee probabilistic complete-
ness. However, due to their random search prop-
erty, the solution obtained is not optimal. Finally,
the artificial potential fields approach [9] considers
the robot as a particle under the influence of an ar-
tificial potential field. This method can generate a
locally optimal trajectory. However, this approach
is not complete, since it is not guaranteed that a

1

solution will be found even if it exists.

Additionally, it is not only important to consider
global constraints, which are imposed by obstacles.
In fact, robots often have local constraints, which
can be considered as limits in velocities or accelera-
tions at every point due to kinematic and dynamic
restrictions. According to [10], this kind of prob-
lem may be more suitably formulated in the opti-
mal control framework, in which the solution is a
trajectory encoded as a sequence of states and con-
trols that optimizes a given objective function.

According to [11], the techniques for solving op-
timal control problems can be divided into two cat-
egories: indirect and direct methods. An indirect
method can achieve more accurate solutions, at the
expense of being more difficult to construct and
solve. On the other hand, a direct method dis-
cretizes the trajectory optimization problem and
converts the original problem into nonlinear pro-
gramming one [12]. The direct shooting and di-
rect collocation techniques are included in the di-
rect method family. Direct shooting methods are
suitable for applications with simple control and
few path constraints. Direct collocation methods
are more appropriate for applications where the dy-
namics and control must be computed accurately
and the structure of the control trajectory is not
known a priori.

Many methods have been proposed for multi-
robot trajectory planning. They can be divided
into centralized, decentralized, and decoupled ap-
proaches. In [13, 14], centralized techniques were
used, where the optimal trajectory generation prob-
lem was formulated as mixed integer quadratic pro-
gramming (MIQP) or sequential convex program-
ming (SQP) problems. The solutions generated
with centralized methods are complete and optimal.
Nevertheless, they are not scalable or robust.

Additionally, motion planning in multi-robot sys-
tems can be solved using decoupled techniques, such
as sequential planning methods [15–17]. In sequen-
tial planning, the trajectory of each robot is decou-
pled and it is generated by avoiding the previously
planned ones. This method is relatively fast, how-
ever, it cannot find a globally optimal solution.

3. Contributions

Based on the above considerations, this paper pro-
poses a multi-agent motion planning approach that
generates safe, dynamically feasible and locally op-
timal trajectories for multiple mobile robots with
nonlinear constraints. The proposed method will
follow a sequential planning approach to deal with
asynchronous tasks. Note that the generated tra-
jectories will not guarantee a globally optimal solu-
tion. In fact, a new trajectory is assigned with the
goal of avoiding the already planned ones.

In classic multi-robot trajectory optimization ap-
proaches, there is a restriction for each pair of
robots that limits the distance between them. Thus,
the computational complexity scales with the num-
ber of agents. The novelty of this method is that the
optimization problem of each trajectory is formu-
lated having only one constraint regarding obsta-
cle avoidance, which includes both static and dy-
namic obstacles. This approach makes a tradeoff
between computational effort and allocated mem-
ory. To build this single constraint regarding obsta-
cle avoidance is necessary to precompute and store
a set of signed distance fields, that maps the signed
distance from a generic point to the nearest obsta-
cle. Nevertheless, with this implementation, the
number of restrictions does not increase with the
number of robots and, consequently, it is possible
to reduce the problem complexity.

4. Problem Formulation

Consider a multi-robot system with N robots, R =
{R1, ..., RN}, that move in an 2-D environment,
W ∈ R2 populated by a set of M obstacles O =
{O1, ..., OM}. The set of all possible states of agent
i = {1, ..., N} are defined by the the state space X i,
while the set of the allowable control input space is
represented by U i.

The set of states that satisfies the global con-
straints are defined as Xfree. The dynamic con-
straints, that should be considered in this planning
problem, are expressed in a differential state model,
ẋ(t) = f(t,x(t),u(t)), defined for every state x ∈ X
and input u ∈ U .
For each robot Ri, a task s is assigned at time

tiinit. Every task should guarantee that the respec-
tive robot generates a feasible trajectory from its
initial state, xinit ∈ X i, to a goal state, xgoal ∈ X i.
Hence, the trajectory of robot Ri can be written
as πi : [tiinit, t

i
goal] → Xfree. Each trajectory is de-

fined by: its duration, T i; the control input along
the trajectory, u : [tiinit, t

i
goal] → U i; and the corre-

sponding states, x : [tiinit, t
i
goal] → X i.

In a multi-robot system, given the workspace
W and the tasks S = {s1, ..., sK} for the robot
set R, it is necessary to find a set of trajectories
P = {π1, ..., πK} that execute the K tasks. Note
that πi, πj of every two different robots Ri, Rj must
be conflict free. The tasks are assigned sequentially,
i.e, the trajectory πi is planned by avoiding the al-
ready defined ones: π1, ..., πi−1.

5. Methodology

In order to generate each robot trajectory, firstly, a
sampling-based method is used to create an initial
trajectory that satisfies the task assigned to a robot
Ri. Then, the trajectory is refined into a smoother
and shorter one by solving a trajectory optimiza-

2

tion problem. In both stages, the non-linear mo-
tion model of the robots is directly considered to
guarantee the feasibility of the trajectories.

5.1. Trajectory Planning
To solve the planning problem and to generate an
initial solution, an extension of the RRT algorithm,
the Kinodynamic RRT by La Valle [18], is imple-
mented. Both global and local constraints are going
to be considered when searching for a feasible tra-
jectory.
Finally, to show the random property of the Kin-

odynamic RRT, the algorithm was run fifty times
and, as expected, fifty different trajectories were
generated for the same motion planning problem.
Figure 1 reports the trajectories obtained. The in-
herent randomness of the Kinodynamic RRT algo-
rithm reflects on the low-quality path. In fact, the
solutions provided by this method are not smooth
and may contain unnecessary maneuvers to achieve
the goal region. This technique is good at deliver-
ing an initial solution, but it must be complemented
with more sophisticated methods to return higher
quality solutions.

RRT_10traj

Figure 1: Example of fifty different trajectories gen-
erated with the Kinodynamic RRT for the same mo-
tion problem.

5.2. Trajectory Optimization
Due to the possible non-linearity of the system dy-
namics, the trapezoidal collocation method was im-
plemented [10]. By using trapezoidal quadrature,
the continuous problem can be converted into a dis-
crete approximation. This is done by representing
the continuous state, control and system dynamics
by their values at specific points in time, known as
collocation points.

5.2.1 Dynamic Function

In direct collocation methods, the differential state
model can be considered as a constraint on the dy-
namics of the vehicle. With trapezoidal quadra-
ture, the first-order differential constraints can be

converted as equality constraints:

xk+1 − xk =
1

2
h (fk + fk+1) (1)

where h = tk+1 − tk with k ∈ {0, ..., C − 1} and
C is the number of collocation points. This ap-
proximation is then applied between every pair of
collocation points, where the discrete time nodes
along the trajectory are defined as tk = kh. Con-
sequently, xk = x(tk) is defined as the state at
point k, uk = u(tk) the control at point k, and
fk = f(tk,xk,uk) the systems dynamics at point k.

5.2.2 State and Control bounds

The physical limits of the system must be taken
into consideration when defining the optimization
problem. These constraints are applied throughout
the entire trajectory to the state and control vari-
ables. They are given by xmin ≤ xk ≤ xmax and
umin ≤ uk ≤ umax, with k ∈ {0, ..., C − 1}.

5.2.3 Boundary Constraints

Boundary constraints satisfy the requirements of
the initial and final states. They are given by some
function g(tinit, tgoal,x0,xC−1) ≤ 0.

5.2.4 Obstacle Avoidance Constraint

Let the cartesian coordinates of a robot R be de-
noted as p(t), for all t ∈ [tinit, tgoal]. A trajec-
tory is considered to be collision-free if the distance
from every vehicle position along the trajectory to
the nearest obstacle is greater than a safe margin,
dsafe > 0.

When considering static obstacles, it is advanta-
geous to simply precompute a signed distance field
(SDF) which stores the signed distance from any
point p(t) to the boundary of the nearest obstacle.
Values for the signed distance are negative inside
obstacles, positive outside and zero at the bound-
ary [19]. To create the SDF based on a binary oc-
cupancy grid map that represents the environment
it is necessary to compute the Euclidean Distance
Transform (EDT) for both the grid map and its
logical complement. The SDF is then given by the
difference between the two EDT values.

When generating an optimized trajectory it is
necessary to ensure that it does not collide with
any of the static or dynamic obstacles in the envi-
ronment. The novelty of this method lies in this
obstacle avoidance constraint. In the following re-
sults the dynamic obstacles are considered as other
moving robots. However, any dynamic object, such
as people, can be avoided using with this method,
if provided with a predictive movement model.

3

The distance between every position pi(t) of
agent Ri and all static obstacles and moving robots
must respects the safe margin:

sd(pi(t),pj(t), Om) ≥ dsafe, (2)

∀i, j ∈ {1, ..., N},∀m ∈ {1, ...,M}.

Let sdf(t) be a function that represents the SDF
of the environment at a time instant t, where static
obstacles and positions of vehicles with already de-
fined trajectories are considered. In Fig 2a is illus-
trated an example of an occupancy grid map, where
black represents the obstacles and white are unoc-
cupied areas. Fig. 2b presents the SDF computed
from the known map, where the darker blue rep-
resents the obstacle boundaries, light blue the area
inside the objects, and green and yellow the areas
outside the obstacles (yellow being the furthest from
an obstacle). Additionally, at the right bottom cor-
ner is represented a dynamic square object.

(a) Occupancy gridmap (b) SDF

Figure 2: Example of occupancy gridmap (a) and
SDF with dynamic obstacle (right bottom corner)
(b).

When formulating the trajectory optimization
problem of Ri, a set of sdf(t) is generated with a
defined time interval, tq ∈ {tinit, ..., tfinal}, where
tfinal = max(tigoal),∀i ∈ {1, ..., N}. Let us de-
fine a tuple that attaches the time step to the re-
spective generated sdf(tq), {(tq, sdf(tq))},∀q. The
set of all generated tuples is given by SD =⋃

tq∈{tinit,...,tfinal}{(tq, sdf(tq)}.
By interpolating SD, it is possible to obtain a

function that provides as an output the signed dis-
tance from Ri to the nearest obstacle or vehicle,
given a time t and the respective robot pose pi(t).
This function can be defined as d(t,pi(t)).

5.2.5 Cost Function

Without loss of generality, the cost function was
chosen to minimize the total duration of the vehi-
cle’s trajectory. By using direct collocation, this
can be achieved by minimizing the time step, i.e,
J(h,xk,uk) = h. Notwithstanding, it could also be
applied a cost function regarding, for example, the
control effort.

5.2.6 Proposed Formulation

Finally, the overall trajectory optimization problem
of robot Ri can be defined as follow:

Minimize J(h,xk,uk)

w.r.t. h,xk,uk, ∀k ∈ {0, ...C − 1}

subject to xk+1 − xk =
1

2
h(fk + fk+1),∀k(3)

d(hk,pi(hk)) ≥ dsafe, ∀k (4)

g(tinit, tgoal,x0,xC−1) ≤ 0 (5)

xmin ≤ xk ≤ xmax, ∀k (6)

umin ≤ uk ≤ umax, ∀k (7)

5.2.7 Initial Guess

It is critical to have a good initial guess when solv-
ing a trajectory optimization problem, as this allows
the solver to quickly arrive at the optimal solution.
In this paper, the trajectory generated by the Kin-
odynamic RRT, as specified in Section 5.1, serves
as the initial guess.

6. Results
This implementation was experimented on a fleet
of differential drive robots. However, this method
can be applied to any vehicle with dynamic con-
straints expressed as a differential state, as defined
in Section 4.

6.1. Non-linear Differential Drive Model
The state vector of a differential drive agent
with two wheels can be described by x =
[xr, yr, θr, t, vR, vL]

T ∈ X , where xr and yr are the
cartesian coordinates of the robot, θ is the orien-
tation of the robot with respect to the x-axis, t
denotes the time when each state is reached and, fi-
nally, vR and vL are the linear velocities of the right
and left wheels, respectively. Additionally, the con-
trol vector can be defined as u = [v, w, aR, aL]

T ,
where v is the vehicle linear velocity, ω is the angu-
lar velocity and aR and aL represent the linear ac-
celeration of the right and left wheels, respectively.

The kinematic model of the system is given by
the following nonlinear equations of motion:

ẋr = v cos θ; ẏr = v sin θ; θ̇r = ω;

ṫ = 1; v̇R = aR; v̇L = aL.
(8)

The vehicle has a constant acceleration between
two consecutive collocation points. The veloci-
ties and accelerations of both wheels are limited
to physically admissible values at every time step,
i.e, |vRk| ≤ vmax ∧ |vLk| ≤ vmax and |aRk| ≤
amax ∧ |aLk| ≤ amax, with k ∈ {0, ..., C − 1}. Addi-
tionally, the linear velocity of the vehicle cannot be
a negative value, since it cannot perform a reverse
manoeuvre, vk ≥ 0, k ∈ {0, ..., C − 1}.

4

Furthermore, the angular variation of the vehicle
every collocation point, should insure that the robot
only moves within the angular range of the sensor,

β, i.e, |ωk| ≥ β/2
hk

, k ∈ {0, ..., C − 1}.
Boundary constraints, for the specific

case where the vehicle starts and finishes
an assigned task at rest, can be given

by x0 =
[
xrinit, yrinit, θrinit, 0, 0

]T
and

xN−1 =
[
xrgoal, yrgoal, θrgoal, 0, 0

]T
.

6.2. Optimization Solver Integration

The algorithm was formulated using Python’s sym-
bolic framework CasADi [20] and was solved with
the open-source and highly efficient Interior Point
Optimizer (IPOPT) solver [21] . This solver finds
local optimum solutions of large-scale non-linear op-
timization problems using an interior-point method.

6.3. Multi-Robot Problem

For a set of six vehicles R =
{R1, R2, R3, R4, R5, R6}, asynchronous tasks
are assigned at time instants t1,2init = 0s, t3,4init = 5s

and t5,6init = 10s for the pairs of robots {R1, R2},
{R3, R4} and {R5, R6}, respectively. The trajec-
tories are generated sequentially, i.e, the first and
last trajectories to be calculated are π1 and π6,
respectively. To each vehicle i was assigned an
initial pose xi

init and a goal region Xi
goal.

Since the trajectory of R1 is the first one to be
generated it does not depend on any other vehi-
cle. Therefore, it is treated as a single-agent prob-
lem. When generating trajectory π2, the position
of R1 through time is described by a set of SDFs.
This set is interpolated and used in the optimiza-
tion problem to reveal information regarding the
signed distance from R2 to the nearest obstacle or
vehicle. Similarly to π2, the trajectory of R3 is cal-
culated avoiding the already existing ones, π1 and
π2. The remain trajectories were generated follow-
ing the same line of thought as the previous ones.

Finally, some strategic frames that validate the
implementation are depicted in Figure 3. It is pos-
sible to verify that all vehicles swerve to avoid col-
lisions.

6.4. Alternative Architectures

Typically, Trajectory Planning (TP), with the Kin-
odynamic RRT presented in Section 5.1, does not
take moving obstacles into account, i.e., when the
tree expands, the other agent positions are ignored.

Figure 4a illustrates the architecture followed to
obtained each previously presented trajectory. In
this approach, only the Trajectory Optimization
(TO) module considers the other vehicles trajec-
tories and, consequently, is the only responsible for
the moving obstacles avoidance. The TP takes as
inputs the static obstacles of the environment and

(a) t = 24s
R3 and R4 avoid colliding
with each other.

(b) t = 29s
R5 and R6 avoid colliding
with each other.

Figure 3: Trajectories of 6 vehicles with inter vehi-
cle avoidance, at different time instants.

the task to be assigned to vehicle Ri, i.e, the initial
and goal poses to plan the route.

However, the Kinodynamic RRT collision avoid-
ance module can be modified to take moving obsta-
cles into account as well. Essentially, before adding
a new node to the tree, the distance from that node
to the nearest obstacle, static or not, can be deter-
mined using d(t,pi(t)), where t and p(t) can be the
time instant and cartesian coordinates which de-
scribe the vehicle at that specific node. With this
approach, both the TP and TO modules have infor-
mation regarding other vehicles trajectories. Figure
4b represents the architecture of approach B.

 Motion planning of Ri

initial guess
 trajectory

Trajectory
planning

without inter
collision avoidance

Trajectory
optimization

Trajectories (P)

Environment (W) Trajectory (πi)

Task (si)

(a) Approach A

 Motion planning of Ri

initial guess
 trajectory

Trajectory
planning

with inter collision
avoidance

Trajectory
optimization

Environment (W)

Trajectories (P) Trajectory (πi)

Task (si)

(b) Approach B

Figure 4: Architecture of approaches A and B to
solve the motion planning and optimization of a
robot Ri. In (a) the TP only considers static ob-
stacles and does not avoid moving ones. In (b) the
TP considers both static and moving obstacles.

In order to compare approaches A and B, the
problem in Subsection 6.3, regarding the six vehicles
set R, was solved fifty times with both approaches.
The results are depicted in Figures 5a-c. The data
regarding the computational time1 (Figure 5a) and
the trajectory duration (Figure 5b) of each module
(TP and TO), for both approaches, was gathered for
each one of the six agents. Finally, the frequency of

1The simulations were performed in a desktop with an
Intel Core i7 U-Processor Processor 1.80GHz, 16GB installed
RAM and an Intel(R) UHD Graphics. The operative system
used was Microsoft Windows 11 Pro.

5

failed trajectory generations is plotted in Figure 5c.
A failure occurs when the solver of the TO module
cannot find a locally optimal trajectory given the
initial guess provided from TP.

(a) Computational time

(b) Trajectory duration (cost)

(c) Frequency of failure

Figure 5: Violin plots regarding computational time
(a) and trajectory duration (b) for the TP and TO
algorithms of each vehicle. Frequency of failure for
both approaches (c).

Firstly, concerning approach A, it can be veri-
fied that the TP module is computationally faster.
In fact, the Kinodynamic RRT tree is significantly
slower to reach the goal region when dealing with
moving obstacles. However, approach A’s TO can-
not always optimize the trajectory given by the TP,
since it can be infeasible when considering moving
obstacles. This lead to a higher frequency of fail-
ures. Regarding approach B, the altered TP is com-
putationally slower, but the solver can always find
a solution. Thus, it can be concluded that there
are both advantages and disadvantages when using
either approach A or B.
Consequently, a third method was design, rep-

resented in Figure 6, that contemplates both ap-
proaches. When generating the trajectory of vehi-
cle Ri using approach C, it is obtained an initial
guess using the TP without inter collision avoid-
ance, which is provided to the TO. If the solver
cannot achieve an optimized trajectory, a new ini-

tial trajectory is computed using the TP with inter
collision avoidance and, subsequently, sent to the
TO. In this paper, the following results will be ob-
tained using approach C.

Figure 6: Architecture of approach C to solve the
motion planning and optimization of a robot Ri.
Initially, the TP only considers static obstacles. If
the TO cannot find a feasible solution, the TP is
reran, considering now both static and moving ob-
stacles.

6.5. Scalability Study

Next, the algorithm’s behaviour to overcrowded
spaces and how many routes can be built on this
specific map is examined. To do that, the initial and
final poses of each trajectory were generated ran-
domly inside the defined scenario, ensuring that all
initial poses were separated with a distance greater
than a safe margin dsafe. Also, all trajectories were
assigned at the same time instant, i.e, t1,...,N = 0s.
For an agent Ri, the motion planning module is ex-
ecuted based on approach C. If a trajectory can be
successfully generated, then the process is repeated
for a new agent, Ri+1. If a trajectory πi cannot
be found, the number of fails is increased, until a
maximum value, nmax, is reached. In this case, the
algorithm stops the search since it cannot add any
more agents to the environment.

This procedure that analyzes the scalability of
the method was repeated 20 times. The histogram
presenting the frequency of the maximum number
of agents allowed in the environment can be found
in Figure 7. The case with the least amount of
agents was obtained with 16 vehicles. On the other
hand, the situation in which was able to add more
agents to the scenario was reached with 25 vehicles.

Figure 7: Histogram with frequency of maximum
number of agents that can be added to the studied
scenario.

6

6.6. Fifty-Agent Problem
A set of fifty vehicles, R = {R1, ..., R50}, was used
to analyse the computational complexity of the TO
module with an increasing number of agents. To
do that, all trajectories were assigned at the same
time instant. The initial and final poses of each tra-
jectory were generated randomly inside the defined
map. Once again, it was verified if all initial poses
were at a distance larger than dsafe. Additionally,
was attempted to create trajectories with similar
lengths. To do that, in the random generation pro-
cess, was ensured that the distance between initial
and final poses was inside a defined range.
Unlike the previous case, in which was studied

the behavior of the proposed method in an over-
crowded environment, now the purpose is to ana-
lyze the computational complexity with an increas-
ing number of agents. Therefore, the map of the
environment was enlarged and the boundaries were
removed. Figure 8 represents the enlarged map, as
well as a solution for the fifty-agent motion planning
problem.

Figure 8: Solution for the fifty-multi agent problem.
The trajectories of all vehicles were overlaid. The
assigned initial pose of each robot is represented by
its respective rectangular shape.

In addiction, the fifty-agent motion planning
problem was solved fifty times for each agent. The
data regarding the TO computational time of each
agent was collected and presented in Figure 9a. As
previously mentioned, the first trajectory generated
is treated as a single-robot problem. This leads to
a visibly faster computation compared to the re-
maining agents. Generally, the computational time
of the TO increases slightly with the addition of new
vehicles. In fact, the environment becomes progres-
sively more crowded and the space for the vehicles
to move more scarce. Figure 9b depicts the data
collected regarding the trajectory duration of the
generated routes for each vehicle.
Furthermore, a regression analysis of the mean

values of computational time of each vehicle was
made to measure the relationship between the com-
plexity and the number of agents. The result-
ing regression line, presented in Figure 9a, enabled
us to estimate a growth rate of 0.208 seconds per
agent. This result indicates that the complexity
scales slower than an unitary linear rate with the
number of vehicles.

(a) Data distribution regarding computational time of
the Trajectory Optimization module for every vehicle.

(b) Data distribution regarding trajectory duration ob-
tained for every vehicle.

Figure 9: Data collected regarding the Trajectory
Optimization of each vehicle, generated fifty times.

7. Conclusions

This paper proposes a method that generates
collision-free and kinodynamic feasible trajectories
for a fleet of autonomous vehicles with non-linear
constraints in non-convex scenarios. The motion
planning problem was decoupled into two modules.
The first module performs a sampling-based Kino-
dynamic RRT trajectory search to find a collision-
free route, while the second one uses trapezoidal
direct collocation to optimize the previous solution
into a smooth and collision-free trajectory. This
formulation presented only one restriction regard-
ing static and moving obstacle avoidance. As the
main novelty of this paper, a set of signed distance
fields was used to describe the environment and the
dynamic obstacles through time. This renders the
solver performance independent from the number of
agents.

First, the proposed method was validated for a 6
agent problem. Then, the algorithm scalability was
studied. Finally, a 50 agent motion optimization
problem was analyzed and, it was verified that, the
computational complexity had an increase with a
rate less than unitary, with the number of vehicles.

7

References
[1] F. Kendoul. Survey of advances in guidance,

navigation, and control of unmanned rotorcraft
systems. In Journal of Field Robotics, vol-
ume 29, pages 315–378. Wiley Online Library,
2012. doi : 10.1002/rob.20414.

[2] R. Saber, W. Dunbar, and R. Murray. Co-
operative control of multi-vehicle systems
using cost graphs and optimization. In
American Control Conference, volume 3,
pages 2217–2222. IEEE, 2003. doi :
10.1109/ACC.2003.1243403.

[3] W. Meng, Z. He, R. Su, A. Shehabinia, L. Lin,
R. Teo, and L. Xie. Decentralized control
of multi-UAVs for target search, tasking and
tracking. In IFAC Proceedings Volumes, vol-
ume 47, pages 10048–10053. Elsevier, 2014. doi
: 10.3182/20140824-6-ZA-1003.02665.

[4] Y. Zhao, Z. Zheng, and Y. Liu. Survey
on computational-intelligence-based UAV path
planning. In Knowledge-Based Systems, vol-
ume 158, pages 54–64. Elsevier, 2018. doi :
10.1016/0021-9991(88)90002-2.

[5] A. Wolek and C. Woolsey. Model-based path
planning. In Sensing and Control for Au-
tonomous Vehicles, page 183–206. Springer,
2017. doi : 10.1007/978-3-319-55372-69.

[6] J. C. Latombe. Robot Motion Planning, chap-
ter 2-3. Kluwer Academic Publishers, USA,
1991.

[7] L. Kavraki, P. Svestka, J.C. Latombe, and
M.H. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configura-
tion spaces. In IEEE Transactions on Robotics
and Automation, volume 12, pages 566 – 580,
September 1996. doi : 10.1109/70.508439.

[8] S. M. LaValle. Planning algorithms. Cam-
bridge university press, 2006.

[9] O. Khatib. Real-time obstacle avoid-
ance for manipulators and mobile robots.
IEEE International Conference on Robotics
and Automation, 2:500–505, 1985. doi :
10.1109/ROBOT.1985.1087247.

[10] J. T. Betts. Practical Methods for Optimal
Control and Estimation Using Nonlinear Pro-
gramming. Society for Industrial and Applied
Mathematics, 2nd edition, 2010.

[11] M. Kelly. An introduction to trajectory opti-
mization: How to do your own direct colloca-
tion. In SIAM Review, volume 59, pages 849–
904. SIAM, 2017. doi: 10.1137/16M1062569.

[12] J. T. Betts. Survey of numerical methods for
trajectory optimization. In Journal of guid-
ance, control, and dynamics, volume 21, pages
193–207, 1998. doi: 10.2514/2.4231.

[13] D. Mellinger, A. Kushleyev, and V. Kumar.
Mixed-integer quadratic program trajectory
generation for heterogeneous quadrotor teams.
In IEEE international conference on robotics
and automation, pages 477–483. IEEE, 2012.
doi: 10.1109/ICRA.2012.6225009.

[14] F. Augugliaro, A. P. Schoellig, and
R. D’Andrea. Generation of collision-free
trajectories for a quadrocopter fleet: A se-
quential convex programming approach. In
IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 1917–1922,
2012. doi: 10.1109/IROS.2012.6385823.

[15] M. Čáp, P. Novák, A. Kleiner, and M. Se-
lecký. Prioritized planning algorithms for tra-
jectory coordination of multiple mobile robots.
In IEEE Transactions on Automation Science
and Engineering, volume 12, pages 835–849.
IEEE, 2015. doi: 10.1109/TASE.2015.2445780.

[16] Y. Chen, M. Cutler, and J. P. How. Decou-
pled multiagent path planning via incremen-
tal sequential convex programming. In IEEE
International Conference on Robotics and Au-
tomation, pages 5954–5961. IEEE, 2015. doi:
10.1109/ICRA.2015.7140034.

[17] D. R. Robinson, R. T. Mar, K. Estabridis, and
G. Hewer. An efficient algorithm for optimal
trajectory generation for heterogeneous multi-
agent systems in non-convex environments. In
IEEE Robotics and Automation Letters, vol-
ume 3, pages 1215–1222. IEEE, 2018. doi:
10.1109/LRA.2018.2794582.

[18] S. M. LaValle and J. Kuffner Jr. Random-
ized kinodynamic planning. In The interna-
tional journal of robotics research, volume 20,
pages 378–400. SAGE Publications, 2001. doi:
doi.org/10.1177/027836401220674.

[19] T. Chan and Wei Z. Level set based shape
prior segmentation. In IEEE Computer Society
Conference on Computer Vision and Pattern
Recognition, volume 2, pages 1164–1170. IEEE,
2005. doi: 10.1109/CVPR.2005.212.

[20] J. Andersson, J. Gillis, G. Horn, J. B. Rawl-
ings, and M. Diehl. CasADi – A software
framework for nonlinear optimization and op-
timal control. In Mathematical Programming
Computation, volume 11, pages 1–36. Springer,
2019. doi: 10.1007/s12532-018-0139-4.

8

[21] A. Wächter and L. T. Biegler. On the im-
plementation of an interior-point filter line-
search algorithm for large-scale nonlinear pro-
gramming. In Mathematical programming, vol-
ume 106, pages 25–57. Springer, 2006. doi:
10.1007/s10107-004-0559-y.

9

